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Abstract—Manycore processors are now integrating up to 1000
simple cores into a single die, yet these processors still rely on
high-diameter mesh on-chip networks (OCNs) without complex
flow-control nor custom circuits due to three reasons: (1) many-
cores require simple, low-area routers; (2) manycores usually use
standard-cell-based design; and (3) manycores use a tiled phys-
ical design methodology. In this paper, we explore mesh and
torus topologies with internal concentration and/or ruche chan-
nels that require low area overhead and can be implemented using
a traditional standard-cell-based tiled physical design methodol-
ogy. We use a combination of analytical and RTL modeling along
with layout-level results for both hard macros and a 3⇥3 mm 256-
terminal OCN in a 14-nm technology for twelve topologies. Criti-
cally, the networks we study use a tiled physical design methodol-
ogy meaning they: (1) tile a homogeneous hard macro across the
chip; (2) implement chip top-level routing between hard macros
via short wires to neighboring macros; and (3) use timing closure
for the hard macro to quickly close timing at the chip top-level.
Our results suggest that a concentration factor of four and a ruche
factor of two in a 2D-mesh topology can reduce latency by over 2⇥
at similar area and bisection bandwidth for both small and large
messages compared to a 2D-mesh baseline.

I. INTRODUCTION

Today’s network, embedded, and server processors already
integrate tens of processor cores on a single chip, and there
is growing interest in using a manycore approach to integrate
an even larger number of relatively simple cores within a sin-
gle die. Early manycore research prototypes included 16–110
cores [13,14,22,23,32], complemented by manycore processors
in industry with 64–128 cores [3,12,30,33,34]. Recent research
prototypes have scaled core counts by an order-of-magnitude
including the 496-core Celerity [28], 1000-core KiloCore [5],
and 1024-core Epiphany-V [26]. The manycore approach has
demonstrated significant improvements in energy efficiency and
throughput per unit area for highly parallel workloads.

Almost all manycore processors use a simple 2D-mesh on-
chip-network (OCN) topology [3, 5, 12, 22, 23, 28, 33, 34] (pos-
sibly with limited external concentration [13,30]), scaling from
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a 4⇥4 mesh in the RAW processor [32] up to a 32⇥32 mesh
in the Epiphany-V processor [26]. It is well known that the
high diameter of 2D-mesh topologies can significantly increase
packet latency and thus reduce system-level performance [8].
Indeed, there is a rich body of literature proposing numerous
techniques to reduce packet latency in on-chip networks. Novel
OCN flow-control schemes [20,25,27] and/or OCN custom cir-
cuits [6, 18] can be used to reduce router and channel latencies.
Alternatively, novel OCN topologies can reduce the network di-
ameter including concentrated mesh [2], fat-tree [2], flattened
butterfly [19], multi-drop express channels [10, 11], Clos [17],
Slim NoC [4], and asymmetric high-radix topologies [1]. How-
ever, this raises the question: Why do manycore processor sil-
icon implementations continue to use simple high-diameter
on-chip networks given the potential benefit reported in the
literature for adopting novel on-chip network flow-control
schemes, custom circuits, and/or topologies?

Based on our experiences contributing to the Celerity many-
core processor [9,28,29] and building an open-source OCN gen-
erator [31], we argue there are three primary reasons for this gap
between principle and practice.

Manycores Require Simple, Low-Area Routers – Many-
core processors by definition use simple cores leaving mod-
est area for the OCN routers (e.g., 10% of chip area in [26,
28]). Therefore, manycore processors usually use single-stage
routers [5, 13, 26, 28], and protocol deadlock is often through
multiple physical networks [22, 23, 32, 33] as opposed to using
virtual channels. These simple single-stage OCN routers miti-
gate the need for complex flow-control schemes.

Manycores Use Standard-Cell-Based Design – Manycore
processor design teams (and indeed chip design in general) have
been steadily moving towards highly automated standard-cell-
based design methodologies [22,23,26,28]. Unfortunately, this
complicates using more advanced circuit techniques in the liter-
ature to reduce router and/or channel latency.

Manycores Use a Tiled Physical Design Methodology –
Physical design is a critical challenge in implementing many-
core processors. A tiled physical design methodology is the
key to overcoming this challenge and has been used in multiple
manycore implementations [22, 23,26, 28]. A tiled physical de-
sign methodology adheres to the following constraints: (1) the
design is based on tiling a homogeneous hard macro across
the chip; (2) all chip top-level routing between hard macros
must use short wires to neighboring macros; and (3) timing clo-
sure for the hard macro must imply timing closure at the chip
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top-level. Unfortunately, a tiled physical design methodology
precludes using many low-diameter, high-radix topologies pro-
posed in the literature which require long global channels routed
at the chip top-level and/or heterogeneous hard macros.

In this paper, we seek to close this gap between principle
and practice by exploring techniques for implementing low-
diameter on-chip networks for manycore processors based on
low-area routers, standard-cell-based design, and a tiled phys-
ical design methodology. Section II describes how mesh and
torus topologies with concentration and/or ruche channels can
use a tiled physical design methodology. Ruche channels1 are
a novel technique concurrently proposed in this work and by
Jung et. al in [16] which provide dedicated channels for pack-
ets to skip past routers for efficient long distance communica-
tion. Ruche channels are better suited to on-chip networks using
a traditional standard-cell-based physical design methodology
compared to prior work on physical and virtual express chan-
nels [7, 10, 20]. Section III compares 12 topologies using an
analytical model based on router and channel RTL implemen-
tations and a standard-cell-based flow. Section IV uses PyOCN
(an open-source OCN generator [31]) to generate both hard-
macro and full-chip layout for each topology suitable for use in
a 3⇥3 mm 256-core manycore processor implemented in a 14-
nm technology. Our results suggest that by leveraging a con-
centration factor of four and a ruche factor of one in a 2D-mesh
topology, our approach can reduce latency by over 2⇥ at similar
area and bisection bandwidth for both small and large messages
compared to a 2D-mesh baseline.

II. MANYCORE OCN TOPOLOGIES

Our target system is a manycore with 256 cores arranged in
a 16⇥16 grid (see Figure 1(a)). Figure 1(b–m) illustrates the
12 topologies explored in this work. Figure 1(b) illustrates our
baseline 2D-mesh topology as implemented in most state-of-
the-art manycore processors [3, 5, 12, 22, 23, 28, 33, 34]. We use
elastic-buffer flow-control [24] and dimension-ordered routing
on all mesh topologies.

We explore internal concentration where multiple cores share
a single router [21]. Figure 1(c–d) illustrates a concentration
factor of 4–8. Unlike external concentration, internal concentra-
tion reduces latency while maintaining per-terminal throughput
and homogeneous channel bandwidths. Concentration reduces
the number of routers, increases router radix, decreases the bi-
section channel count, and reduces network diameter.

Ruche channels are a novel technique which add dedicated
channels to skip past some number of routers. A ruche factor of
two means each ruche channel skips to a router two hops away,
while a ruche factor of three means each ruche channel skips
to a router three hops away. A ruche factor of zero means there
are no ruche channels, and a ruche factor of one means the ruche
channel directly connects nearest neighbors. Figure 1(e,h) illus-
trates a ruche factor of two and three. Ruche channels maintain
the number of routers, increase router radix, increase the bisec-
tion channel count, and reduce network diameter. Ruche chan-
nels are related to but distinct from express channels [7, 10].

1Ruching involves gathering fabric in a repeating pattern to make a pleat or
ruffle. The logical topology diagram for mesh networks with ruche channels
(see Figure 1(e)) resembles a ruched garment.

Ruche channels do not use separate interchanges and ensure all
routers are homogeneous (i.e., all routers are a source and des-
tination for exactly one ruche channel, ruche channels overlap).
We use oblivious minimal routing on the ruche channels.

Figure 1(f–g,i–j) illustrates topologies that combine concen-
tration and ruche channels. Finally, we explore 2D-torus topolo-
gies with similar concentration factors (see Figure 1(k–m)).
We use minimal routing, credit-based flow-control, two virtual
channels, and a dateline to avoid deadlock in the torus topolo-
gies. These 12 topologies provide a broad range of design
points with different: topology styles (mesh/torus), numbers of
routers, router radix, bisection channel count, channel lengths,
and diameter. Figure 1 shows the naming convention we will
use in the rest of the paper. For example, mesh-c4r3 refers to a
topology with a concentration factor of four and ruche factor of
three. We will also use suffix such as mesh-c4r3-b128 to refer
to a topology with a channel bandwidth of 128 b/cycle.

Figure 1(n–q) illustrates how to map these 12 topologies to a
tiled physical design methodology. Mapping mesh-c1r0 simply
requires careful placement of the pins for north, west, south,
and east channels at the macro level to ensure short chip top-
level routes (see Figure 1(n)). If l ⇥ l are the dimensions of
each macro, then the channels in mesh-c1r0 are approximately
l long. Since all macros must be homogeneous, macros on the
edge and corners require a few gates at the chip top-level to
ensure input channels are never enabled and output channels
are never ready. Mapping mesh-c1r2 requires an additional set
of north, west, south, and east channels, along with a set of
feed-through channels (see Figure 1(o)). Again, careful place-
ment of pins ensure short routes with a possible cross-over at
the chip top-level. Ruche channels are approximately 2l long.
Mapping mesh-c1r3 requires an additional set of feed-through
channels (see Figure 1(p)). Ruche channels are now approxi-
mately 3l long. Finally, mapping torus-c1r0 requires just one
set of north, west, south, and east channels along with one set
of feed-through channels. Most channels are approximately 2l
long, although the channels at the edges may be slightly shorter
or longer due to the chip top-level wrap-around routing. While
adding ruche channels to torus topologies is possible, it can
be challenging to map these ruche channels into a tiled design
methodology and/or to route on these topologies. Figures 1(r–t)
illustrates floorplans which enable using the tiled physical de-
signs in Figures 1(n–q) at higher concentration factors.

Our approach meets the three constraints of a tiled physi-
cal design methodology. First, all topologies can be imple-
mented using a homogeneous hard macro which can then be
tiled across the chip. Second, all chip top-level routing between
hard macros is either short straight routing, short cross-over
routing, or short wrap-around routing. Third, assuming careful
consideration of timing constraints on register-to-output, input-
to-register, and input-to-output paths, timing closure for all hard
macros can imply timing closure at the chip top-level.

III. MANYCORE OCN ANALYATICAL MODELING

In this section, we explore tradeoffs across different topolo-
gies using analytical modeling before presenting more realis-
tic layout-level results in Section IV. To choose an appropri-
ate core area, we implemented a RISC-V RV32IMAF in-order
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Figure 1. Twelve Topologies Implemented Using a Tiled Physical Design Methodology – (a) 16⇥16 manycore; (b–d) mesh with increasing
concentration; (e–g) mesh w/ ruche factor of 2, increasing concentration; (h–j) mesh w/ ruche factor of 3, increasing concentration; (k–m) torus
w/ increasing concentration; (n) = mesh-c1r0 pin placement enables short chip top-level routing, unused channels terminated at top level; (o) =
mesh-c1r2 tile w/ feed-through channel, short cross-over chip top-level routing; (p) = mesh-c1r3 tile w/ two feed-through channels, short cross-
over chip top-level routing; (q) = torus-c1r0 tile w/ folded torus, one feed-through channel, short cross-over chip top-level routing; (r–t) = macro
floorplans for increasing concentration.

Figure 2. OCN Component-Level Results – (a) router area with differ-
ent radices and port bitwidths under a 950 ps clock constraint; (b) min-
imum cycle time that can be achieved for queues manually placed at
various distances with an auto-routed channel between them.

TABLE I. ANALYTICAL MODELING RESULTS

BB (Kb/cycle) Area (%)

Topology NR r NBC HD Havg 32 64 128 256 32 64 128 256

mesh-c1r0 256 5 32 60 21.3 1 2 4 8 4.4 8.9 15.2 27.6
mesh-c4r0 64 8 16 28 10.5 0.5 1 2 4 2.0 3.9 7.3 13.6
mesh-c8r0 32 12 8 20 7.8 0.3 0.5 1 2 2.0 3.6 6.8 12.8

mesh-c1r2 256 9 96 32 11.6 3 6 12 24 11.6 20.6 36.5 61.2
mesh-c4r2 64 12 48 16 6.3 1.5 3 6 12 5.4 9.8 18.3 32.9
mesh-c8r2 32 16 24 12 4.9 0.8 1.5 3 6 4.6 8.1 15.5 28.1

mesh-c1r3 256 9 128 24 9.7 4 8 16 32 13.8 24.7 43.4 71.5
mesh-c4r3 64 12 64 12 6.0 2 4 8 16 6.7 12.2 22.6 40.5
mesh-c8r3 32 16 32 12 5.7 1 2 4 8 5.2 9.6 18.0 32.8

torus-c1r0 256 5 64 32 16.0 2 4 8 16 6.9 12.9 23.6 42.2
torus-c4r0 256 5 32 16 8.0 1 2 4 8 3.3 6.2 11.7 21.8
torus-c8r0 256 5 16 12 6.0 0.5 1 2 4 2.9 5.4 10.3 19.2

NR = number of routers; r = router radix (i.e., number of ports per router); NBC =
number of bisection channels; HD = diameter of the network; Havg = average
hop latency over all source/destination pairs; BB = bisection bandwidth; Area =
OCN area as a percentage of the full chip.
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Figure 3. Latency and Area Tradeoffs – The zero-load latency and area
overhead are compared for both 64-bit message and 256-bit message,
with the bisection bandwidth normalized to 2 Kb/cycle and 4 Kb/cycle.
Each topology is labeled with the channel bandwidth that corresponds
to the normalized bisection bandwidth. Topologies that cannot reach
the given bisection bandwidth even with channel bandwidth equal to
the message size are not shown in the plot. B = normalized bisection
bandwidth in bits per cycle; M = message size in bits.

single-issue processor with 4KB instruction and data caches in
RTL using PyMTL3 [15] and then used a commercial standard-
cell-based toolflow in a 14-nm technology. The resulting area is
37,029 µm2 which roughly corresponds to a 3⇥3 mm chip area
for 256 cores. This per-core area is roughly 1.5⇥ larger than the
per-core area in Celerity [28], but this is expected since Celerity
does not support floating point and uses scratchpad memories
instead of caches. Our per-core area is roughly 3.3⇥ smaller
than the per-core area in Epiphany-V [26], but again this is ex-
pected since Epiphany-V implements a 64-bit instruction set,
supports dual-issue, and includes 64 KB of SRAM per core. Ul-
timately, we chose a tile size of 185⇥185 µm which is a reason-
able target in between prior manycore implementations. We tar-
get a 1 GHz clock frequency which is comparable to the Celerity
clock frequency when running at nominal voltage [9, 28].

We construct an analytical model for area, zero-load latency,
and bisection bandwidth based on the OCN component-level
results shown in Figure 2. We model the channel latency as a
function of distance between routers. We measured the mini-
mum delay using static-timing analysis that can be achieved for
two queues that are manually placed at various distances with
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Figure 4. Latency and Bandwidth Tradeoffs – Zero-load latency and
bisection bandwidth are compared for both 64-bit messages and 256-
bit messages, with maximum area overhead for the OCN constrained
at 10% and 20% of the total chip area. Each topology is labeled with
the corresponding channel bandwidth that either reaches the maximum
overhead or reaches the message size. A = maximum OCN area over-
head; M = message size in bits.

an auto-routed channel between them. We use this data to es-
timate the number of channel queues that need to be inserted
in each channel to meet the target 1 GHz clock frequency. We
model the area of the OCNs as a function of router radix and
channel bandwidth. We pushed a number of OCN routers from
PyOCN [31] with different radices and port bitwidths through
the ASIC toolflow using a 950 ps timing constraint. We use
the post-place-and-route area information as an estimate of the
buffering and switching logic in the router. With the pitch and
minimum width information of the metal layers that are used
for local routing, we can calculate the linear wire density and
estimate the area that needs to be reserved for channel pins on
each edge of the hard macro. Based on the floorplans shown
in Figure 1(r–t), we can calculate the area that is used by the
OCN (both for the router and channels). We also interpolate
and extrapolate component-level results to estimate the area of a
router with any given radix and bitwidth. We calculate the zero-
load latency under uniform random traffic and bisection band-
width as described in [8]. In the analytical model, we assume
one-cycle router latency and at least one-cycle channel latency.
Topologies with short channels and low radix can potentially
achieve a zero-cycle channel latency (i.e., router buffering/arbi-



tration and channel traversal can be completed in a single cy-
cle). However, this will also push the ASIC tool to use larger
and faster cells which can increase area. We will explore the im-
pact of zero-cycle channel latency in Section IV. The analytical
modeling results are shown in Table I. Figure 3 shows the zero-
load latency vs. area overhead for a fixed bisection bandwidth.
Figure 4 shows the zero-load latency vs. bisection bandwidth
for a fixed area overhead. Results are shown for both small
messages (64b) suitable for scratchpad-based manycores with
word accesses and large messages (256b) suitable for cache-
based manycores with cacheline accesses.

Impact of Concentration – Concentration reduces the number
of routers, increases router radix, decrease the number of bisec-
tion channels, and increases the channel length. The router area
model in Figure 2(a) suggests higher-radix single-cycle routers
are still very feasible for concentration factors of 4–8. Simi-
larly, the channel latency model in Figure 2(b) also suggests that
longer single-cycle channels are still very feasible for these con-
centration factors. Thus concentration reduces network diame-
ter by reducing the number of hops while maintaining router
and channel latency (see Table I). If we focus only on the mesh
topology without ruche channels, then across all scenarios in
Figures 3 and 4, increasing concentration reduces the zero-load
latency. Concentration also reduces the number of bisection
channels. This can reduce the bisection bandwidth for small
messages since increasing the channel bandwidth beyond the
message size has no benefit (see Figure 4(a–b)). However, for
large messages, concentration can compensate by increasing the
channel bandwidth (see Figure 4(c–d)). In terms of reducing la-
tency, a concentration factor of four is more area efficient than
a concentration factor of eight. The benefit from c4 to c8 is less
significant compared to from c1 to c4, which indicates that the
area benefit from the reduction in the number of routers is out-
weighed by the increase in router area due to increased radix.

Impact of Ruche Channels – Ruche channels are long phys-
ical channels that aggressively bypass routers. Ruche channels
maintain the number of routers, increase router radix, and in-
crease the number of bisection channels. As with concentra-
tion, the router area and channel latency models suggest higher-
radix single-cycle routers and longer single-cycle channels are
still very feasible for ruche factors of 2–3 (with the possible
exception of mesh-c8r3 which requires ruche channels that are
over 2 mm long). Even so, ruche channels do increase router
area and each hard macro needs to reserve additional area to
accommodate the feed-through channels. When area is con-
strained, adding ruche channels may require narrower channels
which increase serialization latency. Compared to concentra-
tion, ruche channels are less area efficient in terms of reducing
latency, but given a sufficient area budget, ruche channels can be
effective. For example, in Figure 4(b), the channel bandwidth
of all topologies are limited by the small message size and the
area budget is relatively large, and thus ruche channels improve
both latency and bisection bandwidth.

Combining Concentration and Ruche Channels – Concen-
tration significantly reduces latency and area but decreases the
number of bisection channels, while ruche channels increase
the number of bisection channels but add area overhead. Thus
combining concentration and ruche channels can provide addi-

TABLE II. POST-PLACE-AND-ROUTE MACRO RESULTS

Positive Slack (ps) Area Overhead (%)

Topology HD Havg 32 64 128 256 32 64 128 256

mesh-c1r0 60 21.3 175 66 19 33 5.9 9.6 16.3 35.3
mesh-c1r0q0 30 10.6 0.5 46 – – 7.9 13.8 – –
mesh-c4r0 28 10.5 94 73 51 24 2.7 4.6 10.2 18.2
mesh-c4r2 16 6.3 39 49 18 – 6.4 10.7 22.5 –
torus-c1r0 32 16.0 174 19 139 – 8.6 17.7 37.6 –

HD = diameter of the network; Havg = average hop latency; Positive Slack =
worst-case positive slack for all constrained paths given 1 ns chip-level
target cycle time; Area = OCN area overhead as a percentage of the full
chip. Designs that do not meet timing or have prohibitively high area
overhead are not shown.

tional benefits. With concentration, a ruche factor of two is a
better tradeoff; increasing the ruche factor to three adds more
area overhead with marginal benefit or even a negative impact
on latency. We consider mesh-c4r2 as a promising design point.
It is always on or close to the Pareto-optimal frontier across all
scenarios in Figures 3 and 4, except for Figure 3(b) where it
cannot achieve a bisection bandwidth of 4096 b/cycle because
the channel bandwidth is limited by the small message size.

Torus Topologies – Practical on-chip torus topologies always
use a folded torus to ensure all channels are similar in length.
Compared to mesh topologies, torus topologies do not increase
the router radix, but can still take advantage of longer single-
cycle channels. In Figure 3, torus-c1r0 consumes less area
for the same bisection bandwidth compared to mesh-c1r2 and
mesh-c1r3. This trend is less obvious for topologies with con-
centration because the radix of the router is already relatively
high for these topologies. While torus topologies are certainly
competitive, concentrated mesh topologies with ruche channels
provide higher bandwidth on short messages. Perhaps just as
importantly, mesh topologies are simpler than the correspond-
ing torus topologies which require multiple virtual channels to
avoid deadlock and use more complicated routing logic.

Summary – Concentration is very effective in reducing area
overhead and zero-load latency but may reduce the bisection
bandwidth at high concentration factors and thus limit overall
throughput. Ruche channels, on the other hand, reduce the av-
erage hop count and increase the number of bisection channels
but may require narrower channels due to the area overhead
that comes from more feed-through channels and higher radix
routers. Combining concentration and ruche channels provides
an elegant hybrid solution. We find that mesh-c4r2 is a promis-
ing topology. According to our analysis, mesh-c4r2 dominates
the baseline mesh-c1r0 in zero-load latency, area, and band-
width under different area constraints or bisection bandwidth
constraints for both small and large message sizes.

IV. MANYCORE OCN PHYSICAL DESIGN

Based on the results from analytical modeling, we selected a
set of promising topologies with different channel bandwidths
for macro-level physical analysis. We used PyOCN to generate
the hard macro as well as the full-chip layout. PyOCN is a uni-
fied Python-based framework for modeling, testing, and evalu-
ating on-chip networks [31]. We pushed each design through
the ASIC toolflow multiple times and recorded the minimum
area that meets all timing constraints. We also experimented



with zero-cycle channel latencies for each topology (i.e., re-
moving the channel queue so router buffering/arbitration and
channel traversal take one cycle). We found that mesh-c1r0
is the only topology that can achieve zero-cycle channel la-
tency without introducing substantial area overhead. We will
use mesh-c1r0q0 to indicate a mesh-c1r0 topology with zero-
cycle channel latency. We carefully floorplan the macro and
place the pins to enable short chip top-level routing (see Fig-
ure 1(r–t) and Figure 6). We use “dummy cores” to connect to
the injection and ejection ports of the router to queues to prevent
the ASIC toolflow from optimizing away any logic and to accu-
rately model terminal channel latencies. We create a hard fence
for each dummy core so that the router cannot place any cells
into the area that is reserved for the actual processing cores. We
also place routing blockages on top of the fences to prevent the
router from using any routing resources that are reserved for use
by the processing cores. Our 14-nm technology has a total of 13
metal layers. We use three metal layers for horizontal routing
(M2, M4, M6) and three for vertical routing (M3, M5, M7). We
reserve M8 and M9 for the local power grid, M10 and M11 for
global routing (e.g., clock, reset, chip-level I/O), and M12 and
M13 for the global power grid. The results of our macro-level
analysis can be found in Table II.

To ensure that timing closure for the hard macro can imply
timing closure at the chip top-level, we carefully constrain the
maximum delay of each register-to-output, input-to-output, and
input-to-register path such that the sum of the path delays which
form a register-to-register path at the chip top-level is less than
a clock cycle (Tc). For example, for mesh-c4r2 we constrain
the maximum delay of register-to-output paths that end at the
east ruche output port to be 0.4Tc, west to east feed-through
paths to be 0.3Tc, and input-to-register paths that start at the
west ruche input port to be 0.25Tc. Our timing constraints are a
sufficient but not necessary condition for meeting timing at the
chip top-level. Ideally, we only need to constrain the sum of
the delays for these paths rather than constrain each of the three
paths separately. Unfortunately, such complex constraints are
not currently supported by the ASIC toolflow.

Figure 5(a) illustrates tradeoffs between bisection bandwidth
and area for several topologies. As predicted in our analyti-
cal analysis, all topologies provide similar bisection bandwidth
for a given area (ignoring message size limitations). By adding
ruche channels to mesh-c4r0, mesh-c4r2 achieves comparable
bisection bandwidth at similar area overhead compared to mesh-
c1r0. This supports our hypothesis that ruche channels can
complement the reduced bisection channel count brought by
concentration. Figure 5(b–c) illustrates tradeoffs between zero-
load latency and area for both small (64b) and large (256b) mes-
sages. For both cases, mesh-c4r2 achieves the lowest latency at
similar area. Compared to mesh-c4r0, adding ruche channels
further reduces the zero-load latency. Although ruche channels
lead to narrower channels at the same area, the benefit of re-
duced average hop count still outweighs the increase in serial-
ization latency. For example, mesh-c4r2-b64 has similar area as
mesh-c4r0-b128; it increases serialization latency by two cycles
but reduces average hop latency by four cycles (see Table II).

One key observation is that packets can travel long distances
in a single cycle. Thus topologies with long channels are critical

to reducing the diameter of the network. In the baseline mesh-
c1r0, a single-cycle channel is of length 185 µm. In mesh-c4r0,
a single-cycle channel is of length 370 µm, and in mesh-c1r2, a
single-cycle ruche channel is also of length 370 µm. Combining
concentration and ruche channels results in even longer single-
cycle channels. In mesh-c4r2, a single-cycle ruche channel is of
length 740 µm which starts to approach the single-cycle limit.

We also observed that mesh-c1r0q0 significantly reduces the
diameter of the network compared to mesh-c1r0. However, it
brings area overhead as it pushes the ASIC toolflow to use larger
and faster standard cells. It is hard to meet timing with zero-
cycle channels when these channels are wide. In our experi-
ments, mesh-c1r0q0 fails to meet timing at channel bandwidths
larger than 64 bits, which limits the maximum bisection band-
width it can achieve. Overall, even though mesh-c1r0q0 reduces
the average hop latency by 2⇥, a combination of concentration
and ruche channels still achieves lower latency and higher bi-
section bandwidth at similar area compared to mesh-c1r0q0.

In this work, we assume all hard macros are implemented
internally as a single flat module. This allows the cores in a
hard macro to have different shapes and/or orientations. This
may make a macro with concentration harder to implement as
it is now four times or even eight times larger compared to a
mesh-c1r0 macro. We leave exploring multi-level hierarchi-
cal design methodologies which might compose core macros
within a larger concentrated macro for future work.

To verify that our hard macro can indeed meet the 1 ns chip
top-level timing constraint, we pushed full-chip layouts through
the ASIC toolflow using each of the hard macros. The mesh-
c1r0-b64 chip has a positive slack of 47.7 ps, mesh-c4r0-b128
chip has a positive slack of 240.1 ps, mesh-c4r2-b128 chip has
a positive slack of 292.6 ps, torus-c1r0-b32 chip has a positive
slack of 455.7 ps, and torus-c1r0-b64 has a positive slack of
283.4 ps. The positive slack is significantly better than the worst
case positive slack shown in Table II because our macro-level
timing constraints are rather conservative. Figure 7 shows the
full-chip layout for torus-c1r0 and mesh-c4r2. By integrating
feed-through channels into the macro, we enable short chip top-
level routing for topologies that would otherwise require long
and complicated chip top-level routing.

V. CONCLUSIONS

Practical manycore processor implementations usually avoid
novel on-chip network flow-control schemes, custom cir-
cuits, and/or topologies due to various physical design is-
sues. This paper makes the case that it is possible to imple-
ment low-diameter on-chip networks in manycore processors
by creatively adapting mesh/torus topologies with concentra-
tion and ruche channels for a tiled physical design methodology.
Through a combination of analytical modeling and rigorous
layout-level evaluation in a traditional standard-cell-based flow,
this paper demonstrated that 2D-mesh topologies with modest
concentration factors (concentration factor of four) and modest
length ruche channels (ruche factor of two) can reduce latency
by over 2⇥ at similar area and bisection bandwidth for both
small and large messages compared to a 2D-mesh baseline.



Figure 5. Bandwidth, Latency, and Area Tradeoffs for Post-Place-and-Route Results – M = message size in bits; (a) = bandwidth and area tradeoffs;
(b) = latency and area tradeoffs for small messages (64b); (c) = latency and area tradeoffs for large messages (256b).
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Figure 6. Example Macro-Level Post-Place-and-Route Layouts – All layouts are to scale and include 1–4 blockages, 1–4 dummy cores, and fences
to constrain placement of the router and channels. (a–d) layouts for mesh-c1r0 at four different channel bandwidths; (e) layout for mesh-c1r0q0-
b32 (i.e., no channel queues), OCN requires more area than mesh-c1r0-b32; (f) layout for torus-c1r0-b32, OCN requires comparable area to
mesh-c1r0-b32; (g–h) layout for mesh-c4r0-b128 and mesh-c4r2-b64 both of which require comparable area (smaller OCN router “square” in
mesh-c4r2-b64 is outweighed by longer and wider channel “rectangles”).
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Figure 7. Example Chip-Level Post-Place-and-Route Layouts – (a) full-chip layout with 256 instances of the torus-c1r0-b32 hard macro which is
shown in Figure 6(f); (b) close-up of required chip top-level routing including cross-over routing to neighboring hard macro, wrap-around routing,
and global clock and reset routing over the hard macro; (c) full-chip layout for 64 instances of the mesh-c4r2-b64 hard macro which is shown in
Figure 1(h); (d) = close-up of the required chip top-level routing including straight-across routing at the middle of each macro side.
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