
BRGTC6: Source-Synchronous Parallel
Chip-to-Chip Link
Barry Lyu, Parker Schless, Vayun Tiwari

Cornell University, Computer Systems Laboratory
Advisor: Dr. Christopher Batten

I. ABSTRACT

Sending data across two chips reliably involves many chal-
lenges, including clock-domain-crossing (CDC), flow control,
error detection, etc. There are many different schemes and
protocols already in place for data transfer with different
trade-offs. Simple protocols such as SPI and I2C provide
light-weight synchronous serial transfers at low frequencies
and are ideal for low-data-rate transfers such as debugging
or peripheral connections. Advanced protocols such as PCIE
or USB use special encodings and clock-data-recovery for
high speed serial transfers. They usually require complicated
SERDES logic and analog integration, and are less suitable for
light-weight chip-to-chip or mesh-on-chip links. Parallel links
are alternatives to serial links, although recent serial links have
gained popularity as they require fewer I/O pins and are not
subject to skew between data lines. Modern parallel links such
as DDR (double data-rate) links for DRAM and HBM provide
wide and extremely high data-rate links at the cost of complex
controllers and training sequences. The goal of BRGTC6 is to
find balance between performance, latency, and complexity
through a unified, lightweight, parallel link, applicable for
chip-to-chip, chiplet, and mesh-on-chip communications. We
developed an 8-bit wide, single-data-rate, source-synchronous
interface with credit-based flow control, built-in self testing
and repair-ability, and taped-out a 1mm

2, 200MHz test
chip in TSMC 65nm (Figure 1) for validation and evaluation,
achieving a throughput of 1.6Gb/s at 200MT/s in post-
silicon testing. 1 Our full architecture is seen in Figure 2.

II. ARCHITECTURE

The minimal setup required to send data across chips is
a source-synchronous interface that forwards the message
and valid bits along with the clock. The downstream chip
would sample the message relative to the forwarded clock
and then employ an asynchronous FIFO for CDC to its own
clock domain (Figure 3). This setup, however, requires the
downstream link to drain the FIFO faster than the upstream
link, otherwise messages might be discarded as the FIFO fills
up. It is also vulnerable to skew and may only be able to
operate at low frequencies. In later subsections, we detail

1In STA, our design closed on timing for a clock period of 6ns
(166MHz). However, in post-silicon testing, our chip was able to run reliably
up to 200MHz. We attribute this to conservative margins in our timing
constraints, including large clock uncertainties and extra input delays.

Fig. 1: BRGTC6 GDS (left) and die-shot (right)

how we build up from minimal setup to the BRGTC6 link,
addressing issues and vulnerabilities.

A. Link Reset Scheme

Async-FIFOs operate across two clock domains and typ-
ically requires two synchronous reset signals, relative to the
write clock and read clock respectively. This synchronous reset
scheme, however, is not ideal for chip-to-chip links: depending
on the power-on and reset sequence, an arbitrary chip might
come out of reset first and start operating while the other chip
is still in reset: If the receiving chip comes out of reset first,
it will enter a metastable state as the write pointer of the chip
has not yet been reset.

To account for this issue, we employ a unified reset scheme
for the async-FIFO (Figure 4): the upstream chip sends a
link_reset to the downstream chip. link_reset is tied
to the upstream chip’s core reset (up_reset) so they assert
together, but link_reset de-asserts after a fixed 10 cycle
delay to ensure the link is held in reset longer than the chip.
The active high link_reset asynchronously resets both
the write and read pointers of the downstream FIFO when
asserted. However, we use a special reset synchronizer to
synchronously de-assert it, preventing potential metastability
issues on de-assertion. Overall, this scheme guarantees that as
long as there is a period of time when both chips are in reset,
the sequence in which chips come out of reset does not affect
normal functionality.

B. Channel Clock Division

Physical links typically run slower than core logic due to de-
lays from I/O and external wiring. Thus, we want to be able to
run links at a lower frequency than the core. In complex links,



Fig. 2: BRGTC6 architecture

Fig. 3: Minimal chip-to-chip source-synchronous interface

Fig. 4: Async-FIFO reset scheme

this is typically achieved with a PLL (phase-locked loop), but
this is a heavy weight solution that typically involves analog
integration and adds significant complexities to verification
and physical design. As a lightweight alternative, we use a
counter-based clock divider to divide the core clock (Figure 3).
The divider supports division by arbitrary multiples of 2, and
we gate the data lines so data only toggles with the divided
clock.

C. Credit-Based Flow Control

To handle downstream back pressure, we included credit-
based flow control in our link: upstream chips are assigned
a predefined number of credits, according to the depth of the
downstream async-FIFO (16 for BRGTC6). The upstream link
deducts one credit whenever sending a message, and may only
send messages when it has credits remaining. The downstream
link, on the other hand, would send one credit back whenever a
message is pulled from its async-FIFO, allowing the upstream
link to send another message.

While credit-based flow control handles back pressure,
returning credits involves sending signals backwards from
downstream to upstream. In a two-way link, credit returns can
be implemented by embedding credit returns in the opposite
channel, so credits returned by a chip will be forwarded

Fig. 5: Example credit return waveform

along with its clock to be sampled by the other chip. To
allow for one-way links and decoupling credit returns from
data channels, we employed a fully asynchronous credit-return
scheme (Figure 5): when the downstream link wants to return a
credit, it will toggle the credit line of the link. The upstream
chip implements an asynchronous counter (equivalent to a 0-
bit async-FIFO with only pointer handling logic) and counts
the number of posedges on the credit line. At every cycle,
if the counter is non-zero, the upstream chip decrements
the counter and adds 2 to its current number of credits. 2

We bundled clock dividers and credit handling logic into
CreditSend and CreditRecv modules to jointly handle
the logic (Figure 2).

D. Configuration Interface

To be able to configure and debug the chip, we include an
SPI minion and a configuration interface. The configuration
interface has an array of configuration registers, such that an
external SPI master3 can poll status registers to retrieve the
status of the chip, or write settings registers to configure the
chip. Available configurations include clock division factors,
built-in testing settings, skewing adjustments, etc. Statuses
include link status, failure count, received messages, etc.

E. Skew Tolerance

For chip-to-chip links, skew between inter-chip lines are
hard to predict. Multiple factors can cause skew between data
lines, including different wire-bond lengths, PCB traces, and
on-chip driving/sampling logic. To account for possible skews,

2Since the downstream chip toggles for every 1 credit, encountering a
posedge suggests that 2 credits have been returned, so we increment by 2.

3For BRGTC6, we use an RP2040 MCU to drive the SPI interface.



Fig. 6: Skew control mechanism

we toggle data relative to the falling edge of the channel clock,
leaving margin for the setup and hold time so downstream
can sample data correctly (Figure 6). To allow for more fine-
tuned control against severe skews, we added a lightweight
mechanism for artificially controlling the relationship between
the clock and the data pins. When operating the link based on
a divided clock, we maintain a counter off the original clock
to track when data can be toggled. By introducing an offset
to the counter, we can shift when data toggles relative to the
original clock. For example, with a clock divisor of 8, we can
adjust the phase of the data by 1/8 of a channel clock period.
This adjustment can be manually set through the configuration
interface to adjust the setup and hold relationships, as well as
the counter skew in the channel.

F. Built-in Testing Functionality

While we could test the link by manually sending messages
across the link with the configuration interface, SPI operates
much slower than the link and cannot achieve full throughput
of the link. To test the link exhaustively at full throughput,
we included built-in testing functionalities that generate and
send patterns in the upstream and checks against those pat-
terns in the downstream (Figure 2). The PatternGen and
corresponding PatternChk modules support two operating
modes: random patterns or alternating fixed patterns. In ran-
dom testing mode, pseudo-random patterns are generated and
checked against a Linear Feedback Shift Register (LFSR).
In fixed pattern testing mode, two 8-bit patterns can be set
through the configuration interface and the PatternGen
module will alternate between sending the two patterns. The
PatternChk module in the downstream chip will check
received messages against the patterns. When there is a
mismatch, the erroneous message can be polled through the
configuration interface to allow for further debugging. For
example, when polled messages show that a single bit never
toggles, it could be that the pad or connection is dead. Upon
initiating a test sequence through the configuration register,
patterns will be continuously sent through the link, and then
upon receiving 256 correct messages in a row, the link
indicates that it is ”locked” through a status register.

G. CRC and Repair

Lastly, to add robustness to the link, we include CRC and
repair modules. The CRC unit adds a parity bit to the link,
allowing for downstream parity checks to identify failures
(the parity bits cannot be used for error correction, however).
The repair unit adds a repair line to the link, which allows
for shifting I/O signals to another pad to accommodate for

any single pad or connection failure. Both modules’ repair
selection can be configured through the configuration interface.

III. VERIFICATION

Pre-silicon verification for our chip-to-chip link is essential
to ensuring correct functionality due to the asynchronous
nature of the design. While previous BRG tapeouts have
been able to use PyMTL to perform verification, it does
not support asynchronous inputs and outputs. In addition,
PyMTL is designed to be used for verification of a single
hardware block, whereas we want to be able to test two of
our links communicating in simulation. To accomplish this,
we use a pure Verilog testing methodology that allows us
to have complete control over all testing elements, while
also allowing for robust controlled-randomization support and
module parameterization.

A. Testbench Structure

Our integration tests are set up using the testbench structure
seen in Figure 7. Two instances of our link are instantiated,
along with automated sources and sinks that send and receive
test stimuli to and from the DUT’s. A centralized run() task
executes each test case which controls the messages to be
sent and received by the sources and sinks. Multiple such
testbenches can be instantiated via parameterization so that
DUT’s with different parameters such as different bitwidths
can be tested. Since each link interfaces with the test environ-
ment through SPI signals, we have created a testbench element
SpiDriverValRdy which handles converting the val/rdy
microprotocol of the test sources and sinks into SPI signals
for communicating with the links.

Since a key part of our design is the ability to handle clock
skewing on the link, we need to be able to insert such delays as
part of our test bench. To do this, the CredSkewer module
is used which inserts configurable, artificial delays into each
bit of the link using shift registers whose lengths are able to
be set as part of the specific test case. Additionally, errors
can be injected into each bit of the link to test error checking
capabilities.

B. Integration Tests

Our integration tests are designed to test as many aspects
of the links as possible to ensure robust communication in all
scenarios. Such tests exercise the communication functionality
for various clock periods and clock period differences between
chips, different amounts of skew on the credit interface by
setting the CredSkewer modules appropriately, and different
settings of the credit clock generator. Back-pressure tests are
also performed where the testbench will control exactly when
messages on either side of the link are sent and/or received
to ensure no message is lost from end-to-end when internal
backups occur. Our links are capable of sending a variety
of message types, including fixed patterns, random patterns
generated by an LFSR, and channel messages sent via the SPI
interface. All of these types of messages are tested under the
various conditions listed above.



Fig. 7: Testbench structure and module connections for
BRGTC6 dual-chip integration tests

C. Constrained Randomization

In PyMTL testing, randomization is performed by globally
setting a seed in the testbench. While ideal for reproducibility
since the same set of messages are produced every time in
the same order, such a simple mechanism is not ideal for our
application as we want to be able to randomize our many
testbench parameters with as many combinations as possible to
ensure robustness. To fix this, we use the DPI interface to pass
in a randomly-generated seed via a C program which obtains
the system time. Using the system time as the seed means
that we will be guaranteed a different seed for every run of the
program since it counts the number of seconds since a specific
date in history. To implement constrained randomization of
the test case parameters, this seed is added to the test case
number and passed to the test case function itself, thus making

each seed different for each test case within the simulation.
A number of optional parameters are also available to be
passed into each test case, such as the skew amounts for the
CredSkewer, individual clock periods, reset delays, repair
bit selection, etc. If these optional parameters are not explicitly
provided by the user, then they are randomized according to
the seed and pre-defined minimum and maximum bounds.
Additionally, the seed for each test case is printed out when
the test is run, so a specific seed for a specific test case and be
explicitly added to the run list so that that series of messages
and parameters can be tested every time the test bench is run.

D. Testing Modes

Our RTL simulations support both Verilator and VCS.
We also include support for FFGL simulation and BAGL
simulation for our integration tests with VCS to ensure proper
functionality post-synthesis and post-place-and-route, respec-
tively.

IV. ASIC SETUP

Our PDK (Process Development Kit) provider is MUSE
(Multi-Project-Wafer) University Service. From them, we were
provided with .tar.gz archive files, which contain all
necessary dependencies for a tapeout. In the Batten Research
Group, we split the PDK into two categories: (1) the ’PDK’
which contains device models and is used for full custom
designs, and (2) the ’ADK’ (or ASIC Design Kit), which
contains dependencies for standard cell designs. For BRGTC6,
we focus on the ADK.

Using a shell script, we untar all of the directories in the
ADK, and create a standard view. Since there are many files,
with complicated directory structures, this is a specific design
methodology to keep an organized list of all files that our
tooling scripts point to.

Our ASIC flow is implemented and automated with CMake.
The high-level flow consists of the following steps:

1) Initialization: Copies and modifies the ADK standard
view files, setting up the necessary directory structure
and preparing the environment for the subsequent flow
stages.

2) Pickling: Combines all source Verilog files and include
paths into a single file using Verilator. This process
ensures that all modules are explicitly defined within
a single file, making it suitable for synthesis.

3) Synthesis: Runs Synopsys Design Compiler with the
provided synthesis scripts to generate a synthesized
netlist, SDC, SDF, and timing reports based on the
pickled Verilog source.

4) FFGL simulation: Performed post-synthesis using VCS
to validate the synthesized netlist against the expected
functionality. The primary focus in this stage is to verify
that the synthesized gate-level netlist behaves identically
to the RTL design.

5) Place and route (PnR): Executes the place and route
flow using Cadence Innovus. This step includes IO as-
signment generation, floorplanning, power routing, clock



tree synthesis, and routing to produce the post-layout
GDS and timing information.

6) BAGL simulation: Performed post-PnR using VCS to
verify the timing and functionality of the layout netlist.
This simulation incorporates extracted parasitic data
(SPEF) and the final SDF generated during PnR to
accurately model delays and coupling effects.

7) Merge watermark: Merges a custom watermark GDS
with the PnR output GDS using Mentor Calibre.

8) Merge sealring: Integrates the ADK-provided sealring
GDS with the watermarked GDS using Calibre, forming
a complete top-level sealringed layout.

9) Generate and insert dummy filler cells: Creates dummy
filler cells using Calibre to fill gaps in the layout
and merges the filler GDS with the sealringed GDS,
producing the final filled layout.

10) Design rules check (DRC): Runs DRC on the filled GDS
using Calibre to verify that the layout complies with the
PDK-specific design rules for metal spacing, width, and
other layout constraints.

11) Layout vs. schematic (LVS): Performs LVS to compare
the final layout against the synthesized netlist, ensuring
that the physical layout matches the intended circuit
design. This is done using Calibre with hierarchical cell
handling to isolate standard cells and reduce false error
checks.

V. SYNTHESIS & TIMING CONSTRAINTS

The synthesis flow for BRGTC6 is managed through a
comprehensive TCL script in Synopsys Design Compiler,
which defines the key timing constraints necessary for ensuring
functional integrity across the core, link, and credit domains.
Given the asynchronous nature of several control paths and the
presence of multiple clock domains, precise timing constraints
are essential to prevent false path optimizations and misaligned
data transfers.

A. Clock Definitions

Two primary clocks and one generated clock are defined in
the synthesis script to represent the different timing domains
in BRGTC6:

• Core clock (clk_core): defined with a period of 6 ns,
corresponding to a nominal frequency of 166MHz. It
is sourced from the clk_pad input and drives the main
datapath and logic throughout the design.

• Downstream credit clock (down_cred_clk): operates
at the same frequency as the core clock but is treated as
an independent clock domain to account for asynchronous
credit returns. To account for wiring delays, the clock is
constrained with some clock uncertainty.

• Upstream credit clock (up_cred_clk): produced by
dividing the core clock by a factor clk_div_factor.
A value of 1 disables division while larger values (2, 4,
8) allow for programmable skew control. The clock is
also inverted, placing the rising edge of up_cred_clk
exactly half a channel-clock period after the core-clock

rising edge, so data launched on the core clock’s falling
edge reaches the receiver before the sampling edge, as
explained above.

B. Input and Output Delays

To ensure accurate timing analysis across the chip-to-chip
link, both input and output delays are explicitly defined relative
to the channel clocks. The PDDW12DGZ_G pad cell is declared
as the external driver for all inputs or load of all output
ports to accurately model RC strength, slew rates, and buffer
delays. This standardizes the delay calculation and mitigates
discrepancies introduced by varying drive strengths.

a) Input Delays: Input delays are defined relative to the
down_cred_clk, accounting for potential skew and trace
mismatch. The delay window is calculated as:

max input delay = Tclk � down cred clk margin

= 6 ns � 2 ns = 4 ns

min input delay = down cred clk margin = 2 ns

Data can therefore arrive anytime within a 2 ns to 4 ns
window relative to the sampling edge of down_cred_clk.

b) Output Delays: Output delays are defined relative to
the up_cred_clk, accounting for clock inversion and data
launch timing. The delay window is calculated as:

max output delay =
Tclk

2
� up cred clk margin

= 3 ns � 2.75 ns = 0.25 ns

min output delay = up cred clk margin � Tclk

2

= 2.75 ns � 3 ns = �0.25 ns

This configuration centers the sampling edge in the
middle of the data valid window. Both input and
output delays use source_latency_included and
network_latency_included to capture on-chip routing
and pad delays, ensuring that timing analysis accounts for all
possible data launch and arrival scenarios.

C. Asynchronous Paths

Asynchronous paths involve signals that are not launched
and sampled based on the same clock edge. We use the
set_false_path command to exclude these paths from
timing analysis. This prevents Design Compiler from attempt-
ing to optimize or constrain them, as they do not have
deterministic timing relationships.

• Reset path (asynchronous reset synchronizer): from ex-
ternal reset input to synchronizer register input

• SPI interface: from SPI clock, MOSI, chip select to
synchronizer registers within SPI minion

• Upstream credit send counter and downstream credit
receive FIFO: all paths to read and write point synchro-
nizers.

• CRC: input to the synchronizer register for CRC error
flags.



Fig. 8: BRGTC6 staggered padring and pinout

We stream out Synopsys Design Constraints (.sdc) for use
in Place & Route and Standard Delay Format (.sdf) for use
in VCS.

VI. PHYSICAL IMPLEMENTATION

A key challenge in the physical implementation of BRGTC6
was effectively managing a high signal count within a limited
die perimeter. There are 35 data signals, 16 IO VDD, 8 core
VDD, 24 common GND, and 1 power-on-control, totaling at
84 required I/O. Due to the sealring and corner cells, our
effective side length was shrunk to 700 microns.

CPGA wire-bonding packaging constraints required bond-
pad pitch to be greater than 60 microns. Around the total
perimeter, this limits us to around 46 bondpads: not nearly
enough for our purpose.

We decided upon a staggered bondpad scheme (Figure 8),
which is possible because our ADK defines I/O cells and bond-
pads separately. Using the circuit-under-pad (CUP) scheme,
each metal bondpad requires one I/O cell (which handles
signal driving to or from the core) to be placed beneath it.
The I/O cells are placed in-line along the perimeter of the die,
and pads are placed with alternating orientations, creating an
inner and outer ring of pads. While this scheme reduces the
core logic area, it effectively doubles the amount of signals
one can route on/off the chip. As seen in the GDS (Figure 1,
this was not an issue, as the total amount of logic for our link
was small relative to our available area.

VII. POST SILICON VALIDATION

Previous validation solutions in the group involved using
bulky lab equipment and complicated SPI drivers to write SPI
transactions one at a time to a single device. For our tapeout,
being able to communicate with two chips at once and with

Fig. 9: Chip Tester board layout

Fig. 10: BRGTC6 dual-chip daughter board layout

fast transactions was paramount to effective testing. Addition-
ally, we wanted to make a platform suitable for demoing the
chip. To accomplish this, we developed a system utilizing a
central Chip Tester board (Figure 9) as well as a dedicated
daughter board that implements the traces connecting each
chips’ links (Figure 10). The daughter board is then able
to communicate over a standard 40-pin header to the Chip
Tester (Figure 11) which uses an RP2040 microcontroller
to drive the two SPI busses at once. The Chip Tester also
includes on-board LDO’s which generate the core and I/O
voltages and can be configured via the RP2040. A configurable
clock generator is also on the board which can generate two
independent clock frequencies up to 200MHz. Buttons and
an OLED screen on the board can be used to start and run
tests/demos independently, but the board can also be connected
to a computer over a standard USB-C connection to send and
receive commands. In addition to a dual-chip daughter board,
a single-chip daughter board has also been populated which
acts as a standard breakout board for all pins of the chip. Such
a board is used for testing a chip in isolation, as well as future
emulation with an FPGA.

VIII. EVALUATION

To evaluate our dual-chip setup, we vary the clock frequency
of each chip with a nominal I/O voltage of 3.3V and nominal



Fig. 11: Testing setup

Parameter Value
Clock Divider Factor 1
Clock Divider Skew 0

Pattern Mode 0 (LFSR)
Pattern Bypass 0 (no bypass)

Up Repair Select 0 (no usage)
Down Repair Select 0 (no usage)

TABLE I: Configuration parameters for each chip for the
frequency sweeps. Both chips are set with the parameters
above.

core voltage of 1.0V from 150MHz to 250MHz on each
chip. The parameters of the chips during the test are tabulated
in Table I. After setting those parameters, a ”go” signal is
asserted on both chips, and both chips send random messages
using the LFSR for 30 seconds before the Pattern State register
is read again, upon which a reading of 2 indicates that there
were no errors. Reading the Pattern Error Count register should
also return 0 to indicate there were no errors. The results
of the frequency sweeps are shown in Figure 12. As can
be seen, for all combinations of frequencies 200MHz and
under, both chips pass. When the upstream chip is configured
for 210MHz, the downstream chip fails to receive the cor-
rect messages, an interesting result given that the same test
at 220MHz passes on both chips. The reasoning for this
phenomenon is unclear, but we suspect it is related to a setup
time failure when a different path is triggered for >200MHz.
Further testing is needed to verify this hypothesis. Other than
the 210MHz anomaly, both chips continue to work up until
230MHz (with the exception of a single chip failure for a
220MHz test), where both chips start to fail by incurring a
nonzero number of errors on the link during the 30 second
test duration. Based on this, we can conclude that our link as
implemented on our specific dual-chip daughter board has a
bandwidth of BW = 8 · (200e6) = 1.6Gb/s or 200MT/s

given our link is 8 bits wide.

Fig. 12: BRGTC6 frequency sweep tests performed after
setting the parameters in Table I to both chips. The links run
for 30 seconds after the ”go” signal is asserted on both chips.
Each grid position is split in half, with the left upper triangle
corresponding to chip 1’s pass/fail status and the right lower
triangle corresponding to chip 0’s pass/fail. Red indicates a
failure and green indicates a pass.


	Abstract
	Architecture
	Link Reset Scheme
	Channel Clock Division
	Credit-Based Flow Control
	Configuration Interface
	Skew Tolerance
	Built-in Testing Functionality
	CRC and Repair

	Verification
	Testbench Structure
	Integration Tests
	Constrained Randomization
	Testing Modes

	ASIC Setup
	Synthesis & Timing Constraints
	Clock Definitions
	Input and Output Delays
	Asynchronous Paths

	Physical Implementation
	Post Silicon Validation
	Evaluation

