
CONSTRUCTING VERTICALLY INTEGRATED
HARDWARE DESIGN METHODOLOGIES USING

EMBEDDED DOMAIN-SPECIFIC LANGUAGES AND
JUST-IN-TIME OPTIMIZATION

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Derek Matthew Lockhart

August 2015

© 2015 Derek Matthew Lockhart

ALL RIGHTS RESERVED

CONSTRUCTING VERTICALLY INTEGRATED HARDWARE DESIGN METHODOLOGIES

USING EMBEDDED DOMAIN-SPECIFIC LANGUAGES AND JUST-IN-TIME

OPTIMIZATION

Derek Matthew Lockhart, Ph.D.

Cornell University 2015

The growing complexity and heterogeneity of modern application-specific integrated circuits

has made hardware design methodologies a limiting factor in the construction of future comput-

ing systems. This work aims to alleviate some of these design challenges by embedding pro-

ductive hardware modeling and design constructs in general-purpose, high-level languages such

as Python. Leveraging Python-based embedded domain-specific languages (DSLs) can consider-

ably improve designer productivity over traditional design flows based on hardware-description

languages (HDLs) and C++, however, these productivity benefits can be severely impacted by the

poor execution performance of Python simulations. To address these performance issues, this work

combines Python-based embedded-DSLs with just-in-time (JIT) optimization strategies to gener-

ate high-performance simulators that significantly reduce this performance-productivity gap. This

thesis discusses two frameworks I have constructed that use this novel design approach: PyMTL,

a Python-based, concurrent-structural modeling framework for vertically integrated hardware de-

sign, and Pydgin, a framework for generating high-performance, just-in-time optimizing instruc-

tion set simulators from high-level architecture descriptions.

BIOGRAPHICAL SKETCH

Derek M. Lockhart was born to Bonnie Lockhart and Scott Lockhart in the suburbs of Saint

Louis, Missouri on August 8th, 1983. He grew up near Creve Coeur, Missouri under the guidance

of his mother; he spent his summers in Minnesota, California, Florida, Colorado, Texas, New

Hampshire, Massachusetts, and Utah to visit his frequently moving father. In high school, Derek

dedicated himself to cross country and track in addition to his academic studies. He graduated from

Pattonville High School as both a valedictorian and a St. Louis Post-Dispatch Scholar Athlete.

Determined to attend an undergraduate institution as geographically distant from St. Louis as

possible, Derek enrolled at the California Polytechnic State University in San Luis Obispo. At

Cal Poly, Derek tried his best to be an engaged member of the campus community by serving as

President of the Tau Beta Pi engineering honor society, giving university tours as an Engineering

Ambassador, and even becoming a member of the Persian Students of Cal Poly club. He completed

a degree in Computer Engineering in 2007, graduating Magna Cum Laude and With Honors.

Motivated by his undergraduate research experiences working under Dr. Diana Franklin and

by an internship in the Platforms group at Google, Derek decided to pursue a doctorate degree

in the field of computer architecture. He chose to trek across the country yet again in order to

accept an offer from Cornell University where he was admitted as a Jacobs Fellow. After several

years and a few failed research projects, Derek found his way into the newly created lab of Pro-

fessor Christopher Batten. During his time at Cornell, he received an education in Electrical and

Computer Engineering, with a minor in Computer Science.

Derek has recently accepted a position as a hardware engineer in the Platforms group of Google

in Mountain View, CA. There he hopes to help build amazing datacenter hardware and continue

his quest to create a design methodology that will revolutionize the process of hardware design.

iii

ACKNOWLEDGEMENTS

The following acknowledgements are meant to serve as a personal thanks to the many indi-

viduals important to my personal and professional development. For more detailed recognition of

specific collaborations and financial support of this thesis, please see Section 1.4.

To start, I would like to thank the numerous educators in my life who helped make this thesis

possible. Mr. Bierenbaum, Mrs. McDonald, John Kern, and especially Judy Mitchell-Miller had a

huge influence on my education during my formative years. At Cal Poly, Dr. Diana Franklin was

a wonderful teacher, advisor, and advocate for my admission into graduate schools.

I would like to thank the CSL labmates who served as a resource for thoughtful discussion and

support. In particular, Ben Hill, Rob Karmazin, Dan Lo, Jonathan Winter, KK Yu, Berkin Ilbeyi,

and Shreesha Shrinath. I would also like to thank my colleagues at the University of California

at Berkeley who were friends and provided numerous, inspirational examples of great computer

architecture research. This includes Yunsup Lee, Henry Cook, Andrew Waterman, Chris Celio,

Scott Beamer, and Sarah Bird.

I would like to thank my committee members. Professor Rajit Manohar remained a dedi-

cated and consistent committee member throughout my erratic graduate career. Professor Zhiru

Zhang believed in PyMTL and introduced me to the possibilities of high-level synthesis. Professor

Christopher Batten took me in as his first student. He taught me how to think about design, sup-

ported my belief that good code and infrastructure are important, and gave me an opportunity to

explore a somewhat radical thesis topic.

I would like to thank my mentors during my two internships in the Google Platforms group:

Ken Krieger and Christian Ludloff. They both served as wonderful sources of knowledge, positive

advocates for my work, and always made me excited at the opportunity to return to Google.

I would like to thank my friends Lisa, Julian, Katie, Ryan, Lauren, Red, Leslie, Thomas, and

Matt for making me feel missed when I was at Cornell and at home when I visited California. I

would like to thank the wonderful friends I met at Cornell and in Ithaca throughout my graduate

school career, there are too many to list. And I would like to thank Jessie Killian for her incredible

support throughout the many frantic weeks and sleepless nights of paper and thesis writing.

I would like to thank Lorenz Muller for showing me that engineers can be cool too, and for

convincing me to become one. I would like to thank my father, Scott Lockhart, for instilling in

iv

me an interest in technology in general, and computers in particular. I would like to thank my

stepfather, Tom Briner, whose ability to fix almost anything is a constant source of inspiration; I

hope to one day be half the problem-solver that he is.

Most importantly, I would like to thank my mother, Bonnie Lockhart, for teaching me the

importance of dedication and hard work, and for always believing in me. None of my success

would be possible without the lessons and principles she ingrained in me.

v

TABLE OF CONTENTS
Biographical Sketch . iii
Acknowledgements . iv
Table of Contents . vi
List of Figures . viii
List of Tables . x
List of Abbreviations . xi

1 Introduction 1
1.1 Challenges of Modern Computer Architecture Research 1
1.2 Enabling Academic Exploration of Vertical Integration 2
1.3 Thesis Proposal and Overview . 3
1.4 Collaboration, Previous Publications, and Funding 4

2 Hardware Modeling for Computer Architecture Research 6
2.1 Hardware Modeling Abstractions . 6

2.1.1 The Y-Chart . 7
2.1.2 The Ecker Design Cube . 8
2.1.3 Madisetti Taxonomy . 9
2.1.4 RTWG/VSIA Taxonomy . 10
2.1.5 An Alternative Taxonomy for Computer Architects 12
2.1.6 Practical Limitations of Taxonomies . 17

2.2 Hardware Modeling Methodologies . 18
2.2.1 Functional-Level (FL) Methodology . 20
2.2.2 Cycle-Level (CL) Methodology . 20
2.2.3 Register-Transfer-Level (RTL) Methodology 21
2.2.4 The Computer Architecture Research Methodology Gap 22
2.2.5 Integrated CL/RTL Methodologies . 24
2.2.6 Modeling Towards Layout (MTL) Methodology 26

3 PyMTL: A Unified Framework for Modeling Towards Layout 28
3.1 Introduction . 28
3.2 The Design of PyMTL . 30
3.3 PyMTL Models . 32
3.4 PyMTL Tools . 35
3.5 PyMTL By Example . 37

3.5.1 Accelerator Coprocessor . 37
3.5.2 Mesh Network . 45

3.6 SimJIT: Closing the Performance-Productivity Gap 48
3.6.1 SimJIT Design . 49
3.6.2 SimJIT Performance: Accelerator Tile . 50
3.6.3 SimJIT Performance: Mesh Network . 52

3.7 Related Work . 57
3.8 Conclusion . 58

vi

4 Pydgin: Fast Instruction Set Simulators from Simple Specifications 60
4.1 Introduction . 60
4.2 The RPython Translation Toolchain . 62
4.3 The Pydgin Embedded-ADL . 67

4.3.1 Architectural State . 67
4.3.2 Instruction Encoding . 68
4.3.3 Instruction Semantics . 69
4.3.4 Benefits of an Embedded-ADL . 71

4.4 Pydgin JIT Generation and Optimizations . 72
4.5 Performance Evaluation of Pydgin ISSs . 79

4.5.1 SMIPS . 81
4.5.2 ARMv5 . 84
4.5.3 RISC-V . 86
4.5.4 Impact of RPython Improvements . 89

4.6 Related Work . 90
4.7 Conclusion . 91

5 Extending the Scope of Vertically Integrated Design in PyMTL 92
5.1 Transforming FL to RTL: High-Level Synthesis in PyMTL 92

5.1.1 HLSynthTool Design . 93
5.1.2 Synthesis of PyMTL FL Models . 94
5.1.3 Algorithmic Experimentation with HLS 94

5.2 Completing the Y-Chart: Physical Design in PyMTL 97
5.2.1 Gate-Level (GL) Modeling . 97
5.2.2 Physical Placement . 99

6 Conclusion 103
6.1 Thesis Summary and Contributions . 103
6.2 Future Work . 106

Bibliography 109

vii

LIST OF FIGURES
1.1 The Computing Stack . 2

2.1 Y-Chart Representations . 7
2.2 Eckert Design Cube . 8
2.3 Madisetti Taxonomy Axes . 9
2.4 RTWG/VSIA Taxonomy Axes . 10
2.5 A Taxonomy for Computer Architecture Models 13
2.6 Model Classifications . 16

3.1 PyMTL Model Template . 33
3.2 PyMTL Example Models . 34
3.3 PyMTL Software Architecture . 35
3.4 PyMTL Test Harness . 36
3.5 Hypothetical Heterogeneous Architecture . 38
3.6 Functional Dot Product Implementation . 39
3.7 PyMTL DotProductFL Accelerator . 39
3.8 PyMTL DotProductCL Accelerator . 41
3.9 PyMTL DotProductRTL Accelerator . 43
3.10 PyMTL DotProductRTL Accelerator Continued 44
3.11 PyMTL FL Mesh Network . 46
3.12 PyMTL Structural Mesh Network . 47
3.13 Performance of an 8x8 Mesh Network . 48
3.14 SimJIT Software Architecture . 50
3.15 Simulator Performance vs. Level of Detail . 51
3.16 SimJIT Mesh Network Performance . 53
3.17 SimJIT Performance vs. Load . 55
3.18 SimJIT Overheads . 56

4.1 Simple Bytecode Interpreter Written in RPython 64
4.2 RPython Translation Toolchain . 65
4.3 Pydgin Simulation . 66
4.4 Simplified ARMv5 Architectural State Description 67
4.5 Partial ARMv5 Instruction Encoding Table . 68
4.6 ADD Instruction Semantics: Pydgin . 70
4.7 ADD Instruction Semantics: ARM ISA Manual 70
4.8 ADD Instruction Semantics: SimIt-ARM . 71
4.9 ADD Instruction Semantics: ArchC . 72
4.10 Simplified Instruction Set Interpreter Written in RPython 74
4.11 Impact of JIT Annotations . 75
4.12 Unoptimized JIT IR for ARMv5 LDR Instruction 76
4.13 Optimized JIT IR for ARMv5 LDR Instruction . 76
4.14 Impact of Maximum Trace Length . 79
4.15 SMIPS Instruction Set Simulator Performance 82
4.16 ARMv5 Instruction Set Simulator Performance 84

viii

4.17 RISC-V Instruction Set Simulator Performance 87
4.18 RPython Performance Improvements Over Time 89

5.1 PyMTL GCD Accelerator FL Model . 95
5.2 Python GCD Implementations . 96
5.3 Gate-Level Modeling . 98
5.4 Gate-Level Physical Placement . 100
5.5 Micro-Floorplan Physical Placement . 101
5.6 Macro-Floorplan Physical Placement . 101
5.7 Example Network Floorplan . 102

ix

LIST OF TABLES
2.1 Comparison of Taxonomy Axes . 11
2.2 Modeling Methodologies . 19

3.1 DotProduct Coprocessor Performance . 42

4.1 Simulation Configurations . 80
4.2 Detailed SMIPS Instruction Set Simulator Performance Results 83
4.3 Detailed ARMv5 Instruction Set Simulator Performance Results 85
4.4 Detailed RISC-V Instruction Set Simulator Performance Results 88

5.1 Performance of Synthesized GCD Implementations 97

x

LIST OF ABBREVIATIONS

MTL modeling towards layout
FL functional level
CL cycle-level
RTL register-transfer level
GL gate-level
DSL domain-specific language
DSEL domain-specific embedded language
EDSL embedded domain-specific language
ADL architectural description language
ELL efficiency-level language
PLL performance-level language
HDL hardware description language
HGL hardware generation language
HLS high-level synthesis
CAS cycle-approximate simulator
ISS instruction set simulator
VM virtual machine
WSVM whole-system virtual machine
VCD value change dump
FFI foreign-function interface
CFFI C foreign-function interface
DBT dynamic binary translation
JIT just-in-time compiler
SEJITS selective embedded just-in-time specialization
IR intermediate representation
ISA instruction set architecture
RISC reduced instruction set computer
CISC complex instruction set computer
PC program counter
MIPS million instructions per second
SRAM static random access memory
CAD computer aided design
EDA electronic-design automation
VLSI very-large-scale integration
ASIC application-specific integrated circuit
ASIP application-specific instruction set processor
FPGA field-programmable gate array
SOC system-on-chip
OCN on-chip network

xi

CHAPTER 1
INTRODUCTION

Since the invention of the transistor in 1947, technology improvements in the manufacture

of digital integrated circuits has provided hardware architects with increasingly capable building

blocks for constructing digital systems. While these semiconductor devices have always come

with limitations and trade-offs with respect to performance, area, power, and energy, computer

architects could rely on technology scaling to deliver better, faster, and more numerous transistors

every 18 months. More recently, the end of Dennard scaling has limited the benefits of transis-

tor scaling, resulting in greater concerns about power density and an increased focus on energy

efficient architectural mechanisms [SAW+10, FM11]. As benefits of transistor scaling diminish

and Moore’s law begins to slow, an emphasis is being placed on both hardware specialization and

vertically integrated hardware design as alternative approaches to achieve high-performance and

energy-efficient computation for emerging applications.

1.1 Challenges of Modern Computer Architecture Research

These new technology trends have created numerous challenges for academic computer archi-

tects researching the design of next-generation computational hardware. These challenges include:

1. Accurate power and energy modeling: Credible computer architecture research must pro-

vide accurate evaluations of power, energy, and area, which are now primary design con-

straints. Unfortunately, evaluation of these design characteristics is difficult using traditional

computer architecture simulation frameworks.

2. Rapid design, construction, and evaluation of systems-on-chip: Modern systems-on-chip

(SOCs) have grown increasingly complex, often containing multiple asymmetric processors,

specialized accelerator logic, and on-chip networks. Productive design and evaluation tools

are needed to rapidly explore the heterogeneous design spaces presented by SOCs.

3. Effective methodologies for vertically integrated design: Opportunities for significant im-

provements in computational efficiency and performance exist in optimizations that reach

across the hardware and software layers of the computing stack. Computer architects need

productive hardware/software co-design tools and techniques that enable incremental refine-

ment of specialized components from software specification to hardware implementation.

1

Register-Transfer Level

Circuits

Transistors

Programming Language

Algorithm

Instruction Set Architecture

Microarchitecture

Application

Operating System

Gate Level

In
du

st
ry

 P
ro

du
ct

 C
ap

ab
il

it
ie

s

A
ca

de
m

ic
 P

ro
je

ct
 C

ap
ab

il
iti

es

Figure 1.1: The Computing Stack – A sim-
plified view of the computing stack is shown to
the left. The instruction set architecture layer
acts as the interface between software (above)
and hardware (below). Each layer exposes ab-
stractions that simplify system design to the
layers above, however, productivity advantages
afforded by these abstrations come at the cost
of reduced performance and efficiency. Verti-
cally integrated design performs optimizations
across layers and is becoming increasingly im-
portant as a means to improve system perfor-
mance. Academic research groups, tradition-
ally limited to exploring one or two layers of
the stack due to limited resources, face con-
siderable challenges performing vertically in-
tegrated hardware research going forward.

Industry has long dealt with these challenges through the use of significant engineering re-

sources, particularly with regards to manpower. As indicated in Figure 1.1, the allocation of nu-

merous, specialized engineers at each layer of the computing stack has allowed companies such

as IBM and Apple to capitalize on the considerable benefits of vertically integrated design and

hardware specialization. In some cases, these solutions span the entire technology stack, includ-

ing user-interfaces, operating systems, and the construction of application-specific integrated cir-

cuits (ASICs). However, vertically integrated optimizations are much less commonly explored by

academic research groups due to their greater resource limitations. This trend is likely to con-

tinue without considerable innovation and drastic improvements in the productivity of tools and

methodologies for vertically integrated design.

1.2 Enabling Academic Exploration of Vertical Integration

In an attempt to address some of these limitations, this thesis demonstrates a novel approach to

constructing productive hardware design methodologies that combines embedded domain-specific

languages with just-in-time optimization. Embedded domain-specific languages (EDSLs) en-

able improved designer productivity by presenting concise abstractions tailored to suit the par-

ticular needs of domain-specific experts. Just-in-time optimizers convert these high-level EDSL

2

descriptions into high-performance, executable implementations at run-time through the use of

kernel-specific code generators. Prior work on selective embedded just-in-time specialization (SE-

JITS) introduced the idea of combining EDSLs with kernel- and platform-specific JIT specializers

for specialty computations such as stencils, and argued that such an approach could bridge the

performance-productivity gap between productivity-level and efficiency-level languages [CKL+09].

This work demonstrates how the ideas presented by SEJITS can be extended to create productive,

vertically integrated hardware design methodologies via the construction of EDSLs for hardware

modeling along with just-in-time optimization techniques to accelerate hardware simulation.

1.3 Thesis Proposal and Overview

This thesis presents two prototype software frameworks, PyMTL and Pydgin, that aim to ad-

dress the numerous productivity challenges associated with researching increasingly complex hard-

ware architectures. The design philosophy behind PyMTL and Pydgin is inspired by many great

ideas presented in prior work, as well as my own proposed computer architecture research method-

ology I call modeling towards layout (MTL). These frameworks leverage a novel design approach

that combines Python-based, embedded domain-specific languages (EDSLs) for hardware model-

ing with just-in-time optimization techniques in order to improve designer productivity and achieve

good simulation performance.

Chapter 2 provides a background summary of hardware modeling abstractions used in hard-

ware design and computer architecture research. It discusses existing taxonomies for classifying

hardware models based on these abstractions, discusses limitations of these taxonomies, and pro-

poses a new methodology that more accurately represents the tradeoffs of interest to computer

architecture researchers. Hardware design methodologies based on these various modeling trade-

offs are introduced, as is the computer architure research methodology gap and my proposal for

the vertically integrated modeling towards layout research methodology.

Chapter 3 discusses the PyMTL framework, a Python-based framework for enabling the mod-

eling towards layout evaluation methodology for academic computer architecture research. This

chapter discusses the software architecture of PyMTL’s design including a description of the

PyMTL EDSL. Performance limitations of using a Python-based simulation framework are char-

3

acterized, and SimJIT, a proof-of-concept, just-in-time (JIT) specializer is introduced as a means

to address these performance limitations.

Chapter 4 introduces Pydgin, a framework for constructing fast, dynamic binary translation

(DBT) enabled instruction set simulators (ISSs) from simple, Python-based architectural descrip-

tions. The Pydgin architectural description language (ADL) is described, as well as how this

embedded-ADL is used by the RPython translation toolchain to automatically generate a high-

performance executable interpreter with embedded JIT-compiler. Annotations for JIT-optimization

are described, and evaluation of ISSs for three ISAs are provided.

Chapter 5 describes preliminary work on further extensions to the PyMTL framework. An

experimental Python-based tool for performing high-level synthesis (HLS) on PyMTL models is

discussed. Another tool for creating layout generators and enabling physical design from within

PyMTL is also introduced.

Chapter 6 concludes the thesis by summarizing its contributions and discussing promising di-

rections for future work.

1.4 Collaboration, Previous Publications, and Funding

The work done in this thesis was greatly improved thanks to contributions, both small and

large, by colleagues at Cornell. Sean Clark and Matheus Ogleari helped with initial publication

submissions of PyMTL v0 through their development of C++ and Verilog mesh network models.

Edgar Munoz and Gary Zibrat built valuable models using PyMTL v1. Gary additionally was a

great help in running last-minute simulations for [LZB14]. Kai Wang helped build the assembly

test collection used to debug the Pydgin ARMv5 instruction set simulator and also explored the

construction of an FPGA co-simulation tool for PyMTL. Yunsup Lee sparked the impromptu “code

sprint” that resulted in the creation of the Pydgin RISC-V instruction set simulator and provided

the assembly tests that enabled its construction in under two weeks. Carl Friedrich Bolz and

Maciej Fijałkowski provided assistance in performance tuning Pydgin and gave valuable feedback

on drafts of [LIB15].

Especially valuable were contributions made by my labmates Shreesha Srinath and Berkin

Ilbeyi, and my research advisor Christopher Batten. Shreesha and Berkin were the first real users

of PyMTL, writing numerous models in the PyMTL framework and using PyMTL for architectural

4

exploration in [SIT+14]. Berkin was a fantastic co-lead of the Pydgin framework, taking charge

of JIT optimizations and also performing the thankless job of hacking cross-compilers, building

SPEC benchmarks, running simulations, and collecting performance results. Shreesha was integral

to the development of a prototype PyMTL high-level synthesis (HLS) tool, providing expertise on

Xilinx Vivado HLS, a collection of example models, and assistance in debugging.

Christopher Batten was both a tenacious critic and fantastic advocate for PyMTL and Pydgin,

providing guidance on nearly all aspects of the design of both frameworks. Particularly valuable

were Christopher’s research insights and numerous coding “experiments”, which led to crucial

ideas such as the use of greenlets to create pausable adapters for PyMTL functional-level models.

Some aspects of the work on PyMTL, Pydgin, and hardware design methodologies have been

previously published in [LZB14], [LIB15], and [LB14]. Support for this work came in part from

NSF CAREER Award #1149464, a DARPA Young Faculty Award, and donations from Intel Cor-

poration and Synopsys, Inc.

5

CHAPTER 2
HARDWARE MODELING FOR COMPUTER

ARCHITECTURE RESEARCH
The research, development, and implementation of modern computational hardware involves

complex design processes which leverage extensive software toolflows. These design processes, or

design methodologies, typically involve several stages of manual and/or automated transformation

in order to prepare a hardware model or implementation for final fabrication as an application-

specific integrated circuit (ASIC) or system-on-chip (SOC). In the later stages of the design pro-

cess, the terminology used for hardware modeling is largely agreed upon thanks to the wide usage

of very-large scale integration (VLSI) toolflows provided by industrial electronic-design automa-

tion (EDA) vendors. However, there is much less agreement on terminology to categorize models

at higher levels of abstraction; these models are frequently used in computer architecture research

where a wider variety of techniques and tools are used.

This chapter aims to provide background, motivation, and a consistent lexicon for the various

aspects of hardware modeling and simulation related to this thesis. While considerable existing ter-

minology exists in the area of hardware modeling and simulation, many terms are vague, confus-

ing, used inconsistently to mean different things, or generally insufficient. The following sections

describe how many of these terms are used in the context of prior work, and, where appropriate,

present alternatives that will be used throughout the thesis to describe my own work.

2.1 Hardware Modeling Abstractions

Hardware modeling abstractions are used to simplify the creation of hardware models. They

enable designers to trade-off implementation time, simulation speed, and model detail to minimize

time-to-solution for a given task. Based on these abstractions, hardware modeling taxonomies have

been developed in order to classify the various types of hardware models used during the process

of design-space exploration and logic implementation. These taxonomies allow stakeholders in

the design process to communicate precisely about what abstractions are utilized by a particular

model and implicitly convey what types of trade-offs the model makes. In addition, taxonomies en-

able discussions about methodologies in terms of the specific model transformations performed by

manual and automated design processes. Several taxonomies have been proposed in prior literature

to categorize the abstractions used in hardware design, a few of which are described below.

6

StructuralBehavioral

Geometry

Chip Floorplan

Tile Placement

Macro Placement

Cell Placement

Polygons

Transistors
Gates, Flipflops

ALUs, Registers
Modules

CPU, SOC

Transfer Functions
Logic

Register Transfer
Algorithms
Systems

Algorithmic

Block

Logic

Circuit

Architectural

(a) Y-Chart Diagram

Abstraction Structural Behavioral Physical
Level Domain Domain Domain

Functional algorithm;
instruction set

Architectural processors,
memories,
networks

functional with
cycle-level timing

macro
floorplan

Register-
Transfer

dpath/ctrl split;
regs, SRAMs,
functional units

sequential &
combinational
concurrent blocks

micro
floorplan

Gate logic gates;
flip-flops

boolean equations;
truth tables

cell tiling

(b) Table Representation of an Alternative Y-Chart

Figure 2.1: Y-Chart Representations – Originally introduced in [GK83], the Y-chart can be used
to classify models based on their characteristics in the structural, behavioral, and geometric (i.e.,
physical) domains. The traditional Y-chart diagram shown in 2.1a is useful for visually demon-
strating design processes that gradually transform models from abstract to detailed representations.
An alternative view of the Y-chart from a computer architecture perspective is shown in table 2.1b;
red boxes indicate how commonly used hardware design toolflows map to the Y-chart axes. Note
that these boxes do not map well to the design flows often described in digital design texts. In
practice, different toolflows exists for high-level computer architecture modeling (top-left box),
low-level logic design (bottom-left box), and physical chip design (far right box).

2.1.1 The Y-Chart

One commonly referenced taxonomy for hardware modeling is the Y-chart, shown in Fig-

ure 2.1a. Complex hardware designs generally leverage hierarchy and abstraction to simplify the

design process, and the Y-chart aims to categorize a given model or component by the abstrac-

tion level used across three distinct axes or domains. The three domains illustrate three views of

a digital system: the structural domain characterizes how a system is assembled from intercon-

nected subsystems; the behavioral domain characterizes the temporal and functional behavior of

a system; and the geometric domain characterizes the physical layout of a system. In [GK83] the

Y-chart was proposed not only as a way to categorize various designs, but also as a way to describe

design methodologies using arrows to specify transformations between domains and abstraction

levels. Design methodologies illustrated using the Y-chart typically consist of a series of arrows

that iteratively work their way from the more abstract representations located on the outer rings

down to the detailed representations on the inner rings.

7

Time Causality

Clock Related

Propagation Delay

Stru
ctu

ra
l

Data
flo

w
Beh

av
io

ra
l

Bit Values

Composite Bit Values

Abstract Values

(a) Design Cube Axes

Timing

View

Values

Algorith
mic Level

Registe
r Transfe

r L
evel

Gate Level

(b) Design Classifications

Figure 2.2: Eckert Design Cube – The above diagrams demonstrate the axes, abstractions, and
design classifications of the Design Cube as presented in [EH92]. Specific VHDL model instances
can be plotted as points within the design cube space based on their timing, value, and design view
abstractions (2.2a); Eckert argued it was often more useful to group these model instances into
more general classifications based purely on their timing characteristics (2.2b).

While a useful artifact for thinking about the organization of large hardware projects, the Y-

chart does not map particularly well to the methodologies and toolflows used by most computer

architects and digital designers. For example, consider the alternative mapping of the Y-chart to an

architecture-centric view in Table 2.1b. A typical methodology for hardware design leverages three

very different software frameworks for: (1) high-level functional/architectural modeling in the

structural and behavioral domains (e.g., SystemC, C/C++); (2) low-level RTL/gate-level modeling

in the structural and behavioral domains (e.g., SystemVerilog, VHDL); and (3) modeling in the

geometric domain (e.g., TCL floorplanning scripts).

2.1.2 The Ecker Design Cube

One primary criticism of the Y-chart taxonomy is the fact that it is much more suitable for

describing a process or path from architectural- to circuit-level implementation than it is for quan-

tifying the state of a specific model. Another significant criticism is the fact that the Y-chart does

not map particularly well to hardware modeling languages like Verilog and VHDL which describe

behavioral and structural aspects of design, but not geometry. To address these deficiencies, Eckert

and Hofmeister presented the Design Cube as an alternative taxonomy for VHDL models [EH92].

8

Decreasing Detail

Timing
Gate Delay WallclockClock

Related
Generic Event/

Message
Causality

Complete Internal
State

Program Visible
State

State
Not Modeled

Partial
State

State

Bit Composite Bit Abstract
Format

True Partially True
Value

Figure 2.3: Madisetti Taxonomy Axes – Four axes of classification were proposed by Madisetti
in [Mad95], two of which (value and format) categorize the accuracy of datatypes used within
a model. Although not explicitly indicated in the diagram above, different classifications could
potentially be assigned to the kernel and the interface of a model depending on how much detail
was tracked internally versus exposed externally.

The Design Cube, shown in Figure 2.2, specifies three axes: design view, timing, and value.

The design view axis specifies the modeling style used by the VHDL model, either behavioral,

dataflow, or structural. The behavioral and structural design views map directly to the behavioral

and structural domains of the Y-chart, while dataflow is described as a bridge between these two

views. The timing and value axes describe the abstraction level of timing information and data

values represented by the model, respectively. Using these three axes, models can be classified as

discrete points within the design cube space, and design processes can be described as edges or

transitions between these points. [EH92] additionally proposed a “design level” classification for

models based on the timing axis. A diagram of this classification can be seen in Figure 2.2b.

2.1.3 Madisetti Taxonomy

A taxonomy by Madisetti was proposed as a means to classify the fidelity of VHDL models

used for virtual prototyping [Mad95]. The four axes of classification in Madisetti’s taxonomy,

shown in Figure 2.3, are meant to categorize not just hardware but also module interaction with

co-designed software components. Both the value and format axes are used to described the fi-

delity of datatypes used within a model: the value axis describes signals as either true or partially

true depending on their numerical accuracy, while the format axis describes the representation

9

Data Resolution

Bit Format Value Property Token

Functional Resolution

Digitial Logic Algorithmic Mathematical

Structural Resolution

Structural Block Diagram Single Black Box

Temporal Resolution

Gate
Propagation

Clock
Accurate

Instruction
Cycle

Token
Cycle

Partial
Order

Cycle
Approximate

System
Event

Higher Resolution Lower Resolution

Figure 2.4: RTWG/VSIA Taxonomy Axes – The RTWG/VSIA taxonomy presented in
[BMGA05] takes influence from, and expands upon, many of the ideas proposed by the Y-chart,
Design Cube, and Madisetti taxonomies. The four axes provide separate classifications of the in-
ternal state and external interface of a model. A fifth axes, not shown above, was also proposed to
describe the software programmibility of a model, i.e., how it appears to target software.

abstraction used by signals (bit, composite bit, or abstract). The timing axis classifies the detail

of timing information provided by a model. The state axis describes the amount of internal state

information tracked and exposed to users of the model.

An interesting aspect of Madisetti’s proposed taxonomy is that it provides two distinct clas-

sifications for a given model: one for the kernel (datapath, controllers, storage) and another for

the interface (ports). One benefit of this approach is that the interoperability of two models can be

easily determined by ensuring the timing and format axes of their interface classifications intersect.

2.1.4 RTWG/VSIA Taxonomy

The RTWG/VSIA taxonomy, described in great detail by [BMGA05], evolved from the com-

bined efforts of the RASSP Terminology Working Group (RTWG) and the Virtual Socket Interface

Aliance (VSIA). Initial work on this taxonomy came from the U.S. Department of Defense funded

Rapid Prototyping of Application Specific Signal Processors (RASSP) program. It was later re-

fined by the industry-supported VSIA in hopes of clarifying the modeling terminology used within

10

Taxonomy Axes
Y-Chart Structural Functional Geometric

Design Cube Timing Value View

Madisetti Timing Format Value State

RTWG/VSIA Temporal Data Structural Functional Internal/
Resolution Value Resolution Resolution External

Table 2.1: Comparison of Taxonomy Axes – Reproduced from [BMGA05], the above table
compares the classification axes used by each taxonomy. Note that Madisetti specifies value to
have a meaning that is different from the Design Cube and RTWG/VSIA taxonomies.

the IC design community. Figure 2.4 shows the four axes that the RTWG/VSIA taxonomy uses

to classify models: temporal resolution, data resolution, functional resolution, and structural res-

olution. Like the Madisetti taxonomy, the RTWG/VSIA taxonomy is intended to apply the four

axes independently to the internal and external views of a model, effectively grading a model on

eight attributes. An additional axis called the software programming axis, not shown in Figure 2.4,

is also proposed by the RTWG/VSIA taxonomy in order to describe the interfacing of hardware

models with co-designed software components.

A comparison of the concepts used by the RTWG/VSIA taxonomy with the taxonomies previ-

ously discussed can be seen in Table 2.1. Note that the structural resolution and functional reso-

lution axes mirror the structural and functional axes of the Y-chart, while the temporal resolution

and data resolution axes mirror the timing and value axes used in the Ecker Design Cube.

Also defined in [BMGA05] is precise terminology for a number of model classes widely used

by the hardware design community, along with their categorization within this RTWG/VSIA tax-

onomy. A few of these model classifications are summarized below:

• Functional Model – describes the function of a component without specifying any timing

behavior or any specific implementation details.

• Behavioral Model – describes the function and timing of a component, but does not describe

a specific implementation. Behavioral models can come in a range of abstraction levels; for

example, abstract-behavioral models emulate cycle-approximate timing behavior and expose

inexact interfaces, while detailed-behavioral models aim to reproduce clock-accurate timing

behavior and expose an exact specification of hardware interfaces.

11

• Instruction-Set Architecture Model – describes the function of a processor instruction set

architecture by updating architecturally visible state on an instruction-level granularity. In

the RTWG/VSIA taxonomy, a processor model without ports is classified as an ISA model,

whereas a processor model with ports is classified as a behavioral model.

• Register-Transfer-Level Model – describes a component in terms of combinational logic,

registers, and possibly state-machines. Primarily used for developing and verifying the logic

of an IC component, an RTL model acts as unambiguous documentation for a particular

design solution.

• Logic-Level Model – describes the function and timing of a component in terms of boolean

logic functions and simple state elements, but does not describe details of the exact logic

gates needed to implement the functions.

• Cell-Level Model – describes the function and timing of a component in terms of boolean

logic gates, as well as the structure of the component via the interconnections between those

gates.

• Switch-Level Model – describes the organization of transistors implementing the behavior

and timing of a component; the transistors are modeled as voltage-controlled on-off switches.

• Token-Based Performance Model – describes performance of a system’s architecture in

terms of response time, throughput, or utilization by modeling only control information, not

data values.

• Mixed-Level Model – is a composition of several models at different abstraction levels.

2.1.5 An Alternative Taxonomy for Computer Architects

A primary drawback of the previous taxonomies is that they do not clearly convey the attributes

computer architects care most about when building and discussing models. Using the Y-chart as

an example, the structural and behavioral domains dissociate the functionality aspects of a model

since the same functional behavior can be achieved from either a monolithic or hierarchical design

(in an attempt to remedy this, the Design Cube combined these two attributes into a single axis).

In the RTWG/VSIA taxonomy, data resolution is its own axis although it has overlap with both

the functional resolution axis when computation is approximate and the resource resolution axis

12

Behavioral Accuracy

PreciseApproximateNone

Timing Accuracy

Gate
Propagation

Cycle
Precise

Instruction/
Event

None Cycle
Approximate

Lower Resolution Higher Resolution

Resource Accuracy

Transistor-LevelGate-LevelNone Unit-LevelMonolithic

Figure 2.5: A Taxonomy for Computer Architecture Models – The proposed taxonomy above
characterizes hardware models based on how precisely they model the behavior, timing, and re-
sources of target hardware. In this context, behavior refers to the functional behavior of a model:
how input values map to output values. These axes map well to three important model classes used
by computer architects: functional-level (FL), cycle-level (CL), and register-transfer-level (RTL).

when computation is bit-accurate. Similarly, the structural and geometric domains of the Y-chart

both hint at how accurately a model represents physical hardware resources, however, physical

geometry generally plays little role in the models produced by computer architects.

In addition, the model classifications suggested by some of the previous taxonomies do not map

particularly well to the model classes most-frequently used by computer architects. For example,

the classifications suggested by the Ecker Design Cube in Figure 2.2b do not include higher-level,

timing agnostic models. These classifications are based only on the timing axis of the Design Cube

and do not consider the relevance of other attributes fundamental to hardware modeling.

To address these issues, an alternative taxonomy is proposed which classifies hardware mod-

els based on three attributes of primary importance to computer architects: behavioral accuracy,

timing accuracy, and resource accuracy. The abstractions associated with each of these axes are

shown in Figure 2.5 and described in detail below:

• Behavioral Accuracy – describes how correctly a model reproduces the functional behavior

of a component, i.e., the accuracy of the generated outputs given a set of inputs. In most

cases computer architects want the functional behavior of a model to precisely match the

target hardware. Alternatively a model designer may want behavior that only approximates

the target hardware (e.g., floating-point reference models used to track the error of fixed-point

13

target hardware), or may not care about the functional behavior at all (e.g., analytical models

that generate timing or power estimates).

• Timing Accuracy – describes how precisely a model recreates the timing behavior of a

component, i.e., the delay between when inputs are provided and the output becomes avail-

able. Computer architects generally strive to create models that are cycle precise to the target

hardware, but in practice their models are typically more correctly described as cycle ap-

proximate. Models that only track timing on an event-level basis are also quite common

(e.g., instruction set simulators). Models with finer timing granularity than cycle level are

sometimes desirable (e.g., gate-level simulation), but such detail is rarely necessary for most

computer architecture experiments.

• Resource Accuracy – describes to what degree a model parallels the physical resources of

a component. These physical resources include both the granularity of component bound-

aries as well as the structure of interface connections. Accurate representation of physical

resources generally make it easier to correctly replicate the timing behavior of a component,

particularly when resources are shared and can only service a limited number of requests

in a given cycle. Structural-concurrent modeling frameworks and hardware-description lan-

guages (HDLs) make component and interface resources an explicit first-class citizen, greatly

simplifying the task of accurately modeling the physical structure of a design; functional and

object-oriented modeling frameworks have no such notion and require extra diligence by the

designer to avoid unrealistic resource sharing and timing behavior [VVP+02, VVP+06].

Note that the abstraction levels for all three axes begin with None since it is sometimes desirable

for a model to convey no information about a particular axis.

Three model classes widely used in computer architecture research map particularly well to the

axes described above: functional-level (FL) models imitate just the behavior of target hardware,

cycle-level (CL) models imitate both the behavior and timing, and register-transfer-level (RTL)

models imitate the behavior, timing, and resources. Figure 2.6 shows how the FL, CL, and RTL

classes map to the behavioral accuracy, timing accuracy, and resource accuracy axes. Note that for

each model class there is often a range of accuracies at which it may model each attribute. The

common use cases and implementation strategies for each of these models are described in greater

detail below.

14

• Functional-Level (FL) – models implement the functional behavior but not the timing con-

straints of a target. FL models are useful for exploring algorithms, performing fast emula-

tion of hardware targets, and creating golden models for validation of CL and RTL mod-

els. The FL methodology usually has a data structure and algorithm-centric view, leveraging

productivity-level languages such as MATLAB or Python to enable rapid implementation and

verification. FL models often make use of open-source algorithmic packages or toolboxes

to aid construction of golden models where correctness is of primary concern. Performance-

oriented FL models may use efficiency-level languages such as C or C++ when simulation

time is the priority (e.g., instruction set simulators).

• Cycle-Level (CL) – models capture the behavior and cycle-approximate timing of a hard-

ware target. CL models attempt to strike a balance between accuracy, performance, and

flexibility while exploring the timing behavior of hypothetical hardware organizations. The

CL methodology places an emphasis on simulation speed and flexibility, leveraging high-

performance efficiency-level languages like C++. Encapsulation and reuse is typically achieved

through classic object-oriented software engineering paradigms, while timing is most often

modeled using the notion of ticks or events. Established computer architecture simulation

frameworks (e.g., ESESC [AR13], gem5 [BBB+11]) are frequently used to increase pro-

ductivity as they typically provide libraries, simulation kernels, and parameterizable baseline

models that allow for rapid design-space exploration.

• Register-Transfer-Level (RTL) – models are behavior-accurate, cycle-accurate, and resource-

accurate representations of hardware. RTL models are built for the purpose of verification

and synthesis of specific hardware implementations. The RTL methodology uses dedicated

hardware description languages (HDLs) such as SystemVerilog and VHDL to create bit-

accurate, synthesizable hardware specifications. Language primitives provided by HDLs are

designed specifically for describing hardware: encapsulation is provided using port-based

interfaces, composition is performed via structural connectivity, and logic is described using

combinational and synchronous concurrent blocks. These HDL specifications are passed to

simulators for evaluation/verification and EDA toolflows for collection of area, energy, tim-

ing estimates and construction of physical FPGA/ASIC prototypes. Originally intended for

the design and verification of individual hardware instances, traditional HDLs are not well

suited for extensive design-space exploration [SAW+10, SWD+12, BVR+12].

15

Behavioral Accuracy

PreciseApproximateNone

Timing Accuracy

Gate
Propagation

Cycle
Precise

Instruction/
Event

None Cycle
Approximate

Lower Resolution Higher Resolution

Resource Accuracy

Transistor-LevelGate-LevelNone Unit-LevelMonolithic

(a) Functional-Level (FL) Model

Behavioral Accuracy

PreciseApproximateNone

Timing Accuracy

Gate
Propagation

Cycle
Precise

Instruction/
Event

None Cycle
Approximate

Lower Resolution Higher Resolution

Resource Accuracy

Transistor-LevelGate-LevelNone Unit-LevelMonolithic

(b) Cycle-Level (CL) Model

Behavioral Accuracy

PreciseApproximateNone

Timing Accuracy

Gate
Propagation

Cycle
Precise

Instruction/
Event

None Cycle
Approximate

Lower Resolution Higher Resolution

Resource Accuracy

Transistor-LevelGate-LevelNone Unit-LevelMonolithic

(c) Register-Transfer-Level (RTL) Model

Figure 2.6: Model Classifications – The FL, CL, and RTL model classes each model a compo-
nent’s behavior, timing, and resources to different degrees of accuracy.

16

2.1.6 Practical Limitations of Taxonomies

Although the taxonomy proposed in the previous section maps much more directly to the mod-

els and research methodologies used by most computer architects, it does not address many of the

practical, software-engineering issues related to model implementations. Two models may have

identical classifications with respect to each of their axes, however, they may be incompatible

due to the use of different implementation approaches (for example, the use of port-based versus

method-based communication interfaces). This is particularly problematic within the context of a

design process that leverages multiple design languages and simulation tools. As previously indi-

cated for the Y-chart in Figure 2.1b and the functional-, cycle-, and register-transfer level models in

Section 2.1.5, transformations along and/or across axes boundaries, or between model classes, of-

ten require the use of multiple distinct toolflows. Research exploring vertically integrated architec-

tural optimizations encounter these boundaries frequently, and as will be discussed in Section 2.2,

this context switching between various languages, design patterns, and tools can be a significant

hindrance to designer productivity. A few of the software-engineering challenges facing computer

architects wishing to build models for co-simulation are discussed below.

Model Implementation Language Ideally, two interfacing models would use an identical mod-

eling language, but if models are at different levels of abstraction, this may not be the case. An

ordering of possible interfacing approaches from easiest to most difficult includes: identical lan-

guage, identical runtime, foreign-function interface, and sockets/files.

Model Interface Style Models written in different languages and frameworks may use different

mechanisms for their communication interfaces. For example, components written in hardware

description languages expose ports in order to communicate inputs and outputs, while compo-

nents in object-oriented languages usually expose methods instead. Some different styles of model

interfacing include ports, methods, and functions.

Model Composition Style The interface style also strongly influences the how components are

composed in the model hierarchy. Models with port-based interfaces use structural composition:

input values are received from input ports that are physically connected with the output ports of

another component; output values are returned using output ports which are again physically con-

17

nected to the input ports of another component. These structural connections prevent a component

from being reused by multiple producers unless (a) multiple unique instances are created and in-

dividually connected to each producer or (b) explicit arbitration units are used to interface the

multiple producers with the component. In contrast, models with method- or function-based inter-

faces use functional composition: input values are received via arguments from a single caller, and

output values are generated as a return value to the same caller. This call interface can be reused

by multiple producers without the need for arbitration logic, often unintentionally. Structural com-

position inherently limits models to having at most one parent, whereas functional composition

allows models to have multiple parents and global signals that violate encapsulation.

Model Logic Semantics Different modeling languages also use different execution semantics

for their logic blocks. Hardware description languages provide blocks with concurrent execution

semantics to better match the behavior of real hardware. These concurrent blocks can execute

either synchronously or combinationally. Most popular general-purpose languages have sequen-

tial execution semantics and function calls in these languages are non-blocking, although it is also

possible to leverage asynchronous libraries to provide blocking semantics. Logic execution seman-

tics for hardware models are generally one of the following: concurrent synchronous, concurrent

combinational, sequential non-blocking, or sequential blocking.

Model Data Types Models constructed using the same programming language and communica-

tion interface may still be incompatible because they exchange values using different data types.

Data types typically must share both the same structure and encoding in order to be compatible.

The structure of a data type describes how it encapsulates and provides access to data; a data type

structure may simply be a raw value (e.g., int, float), it may have fields (e.g., struct), or it

may have methods (e.g., class). The encoding of a data type describes how the value or values it

encapsulates are represented, which could potentially be strings/tokens, numeric, or bit-accurate.

2.2 Hardware Modeling Methodologies

Current computer architecture research involves using a variety of modeling languages, model-

ing design patterns, and modeling tools depending on the level of abstraction a designer is working

18

FL CL RTL

Modeling Productivity Level Efficiency Level Hardware Description
Languages (PLL) (ELL) (HDL)

MATLAB/R/Python C/C++ Verilog/VHDL

Modeling Functional: Object-Oriented: Concurrent-Structural:
Patterns Data Structures, Classes, Combinational Logic,

Algorithms Methods, Clocked Logic,
Ticks and/or Events Port Interfaces

Modeling Third-party Algorithm Computer Architecture Simulator Generators,
Tools Packages and Toolboxes Simulation Frameworks Synthesis Tools,

Verification Tools

Table 2.2: Modeling Methodologies – Functional-level (FL), cycle-level (CL), and register-
transfer-level (RTL) models used by computer architects each have their own methodologies with
different languages, design patterns, and tools. These distinct methodologies make it challenging
to create a unified modeling environment for vertically integrated architectural exploration.

at. These languages, design patterns, and tools can be used to describe a modeling methodology for

a particular abstraction level or model class. A summary of the modeling methodologies for the

functional-level (FL), cycle-level (CL), and register-transfer-level (RTL) model classes introduced

in Section 2.1.5 is shown in Table 2.2.

Learning the languages and tools of each methodology requires a significant amount of intellec-

tual overhead, leading many computer architects to specialize for the sake of productivity. An un-

fortunate side-effect of this overhead-induced specialization has been a split in the computer archi-

tecture community into camps centered around the research methodologies and toolflows they use.

Two particularly pronounced camps are those centered around the cycle-level (CL) and register-

transfer-level (RTL) research methodologies. These methodologies, as well as the functional-level

(FL) methodology, are described in the subsections below.

As vertically integrated design becomes of greater importance for achieving performance and

efficiency goals, the challenges associated with context switching between the FL, CL, and RTL

methodologies will become increasingly prominent. A few possible approaches for constructing

vertically integrated research methodologies that address some of these challenges are discussed

below. One particularly promising methodology which has been adopted by the PyMTL frame-

work, called modeling towards layout (MTL), is also introduced.

19

2.2.1 Functional-Level (FL) Methodology

Computer architecture and VLSI researchers widely use the functional-level (FL) methodol-

ogy to both create “golden” reference models for validation and to perform exploratory algo-

rithmic experimentation. The FL methodology frequently takes advantage of productivity-level

languages (PLLs) such as Matlab, R, and Python to enable rapid model construction and ex-

perimentation. These languages have higher-level language constructs and provide access to a

wide array of algorithmic toolboxes and packages; these packages are either included as part

of the language’s standard library or made available by third-parties. One drawback of PLLs is

that they generally exhibit much slower simulation performance than efficiency-level languages

(ELLs) such as C and C++. While the rising popularity of PLLs has resulted in the active de-

velopment of JIT compilers that significantly improve the execution performance of these lan-

guages [CBHV10, RHWS12, BCFR09], they may not be suitable for all types of FL models. For

example, instruction set simulators, which are functional models that model the instruction-level

execution behavior of a processor architecture, must be extremely fast to execute large binaries.

Instruction-set simulators are nearly always implemented in C or C++ and often have complex

implementations that utilize advanced performance optimizations like dynamic binary translation.

The FL methodology is becoming more important as algorithmic optimizations are mapped

into hardware to create specialized units, requiring extensive design-space exploration at the al-

gorithm level. However, FL models’ lack of timing and resource information require their use in

tandem with CL or RTL models in order to perform computer architecture studies that propose

microarchitectural enhancements.

2.2.2 Cycle-Level (CL) Methodology

Modern computer architecture research has increasingly relied on the cycle-level (CL) method-

ology as the primary tool for evaluating novel architectural mechanisms. A CL methodology

is characterized as the use of a cycle-approximate simulator (CAS), generally in the form of

a simulation framework implemented in a general-purpose language such as C or C++ (e.g.,

gem5 [BBB+11], SimpleScalar [ALE02], ESESC [AR13]), configured and/or modified to model

a particular system architecture and any enhancements. Models built using a CL methodology

are capable of generating fairly accurate estimates of system performance (in terms of cycles ex-

20

ecuted) provided that the simulated models properly implement a sufficient level of architectural

detail [BGOS12]. Additional tools like McPAT [LAS+13], CACTI [MBJ09], Wattch [BTM00],

ORION [WPM02, KLPS09, KLPS11], DSENT [SCK+12], and Aladdin [SRWB14] can augment

these frameworks to generate preliminary estimates for other key metrics such as area, energy,

and timing. The architecture community has generally considered the benefits (e.g., flexibility,

simulation speed) of CAS frameworks to outweigh the drawbacks (e.g., accuracy, reproducibility),

making them a popular choice among academic research groups.

One considerable limitation of the CL methodology is its limited credibility when generating

performance estimates for novel architectures such as specialized accelerators. A CL methodol-

ogy relies on existing implementations of processors, memories, and networks to act as targets

from which models implemented in a CAS framework are validated. However, for targets such as

novel accelerators, researchers must model large, unique, and workload-specific hardware blocks

that generally have no hardware targets from which to validate their CL models. Several studies

have shown that without validation, performance and power estimates from CL models become

difficult to trust [GKO+00,GKB09,BGOS12,GPD+14,DBK01,CLSL02]. In addition, specializa-

tion research is particularly interested in tradeoffs related to area and energy-efficiency, making it

particularly difficult to perform credible specialization research using a purely CL methodology.

While tools like Aladdin can help explore the area and power tradeoffs of accelerator architec-

tures, they are not designed for characterizing more programmable specialized units. Due to their

high-productivity but limited accuracy, CL methodologies are best suited for performing rapid and

extensive design-space exploration to detect performance trends, rather than generating accurate

performance measurements for specific design points.

2.2.3 Register-Transfer-Level (RTL) Methodology

Another methodology for computer architecture research relies on the construction of synthe-

sizable register-transfer-level (RTL) models using a hardware description language (HDL) such as

SystemVerilog, Verilog, or VHDL. Paired with a commercial ASIC EDA toolflow, a synthesizable

implementation can generate highly accurate estimates of area, energy, cycle time, and cycles ex-

ecuted. Unlike the approximate models of hardware behavior created using a CL methodology, an

RTL methodology constructs a true hardware implementation which provides a number of advan-

tages beyond just improved accuracy. An RTL methodology increases credibility with industry,

21

enforces a model/simulator separation which enhances reproducibility, provides interoperability

with a range of industry-grade tools, and enables a path to build FPGA or ASIC prototypes. Al-

though widely used by industry and VLSI research groups, the RTL methodology is less popular

in computer architecture research due to long development times and slow RTL simulation speeds.

An RTL methodology can be leveraged by architects to create HDL implementations of novel

specialized blocks, helping address some of the problems encountered when experimenting with

architectures incorporating large amounts of specialization. Unfortunately, the limited productivity

of an HDLs makes it difficult to quickly create hardware instances of many different specialized

units. In addition, the limited general-purpose programming capabilities of HDLs make it difficult

for researchers to mix blocks at various levels of abstraction, for example, composing detailed

models of specialized units with cycle-approximate, analytical, or functional implementations of

other system components. Research with RTL methodologies generally focus on generating ac-

curate area, energy, and timing evaluations of particular design instances, but perform minimal

design-space exploration as a result of the limited productivity of HDL design.

However, the recent development of modern, highly-parameterizable hardware description lan-

guages, referred to in this thesis as hardware generation languages (HGLs), have enabled con-

siderably increased productivity for RTL methodologies. HGLs such as Genesis2 [SWD+12],

Chisel [BVR+12], and Bluespec [Nik04, HA03] allow researchers to replace the traditional prac-

tice of constructing specific chip instances, with an approach focused on construction of chip

generators. As described by Schacham et al. , chip generators include templated RTL implemen-

tations that enable several key productivity advantages, including rapid design-space exploration

and codification of designer knowledge [SAW+10]. While HGLs considerably improve designer

productivity, thus increasing opportunities for large design-space exploration while still achieving

high-fidelity simulation, their productivity remains limited when compared to CL methodologies

due to their fundamentally more detailed, and therefore slower, simulation speeds.

2.2.4 The Computer Architecture Research Methodology Gap

The distinct languages, design patterns, and tools utilized by the FL, CL, and RTL method-

ologies result in a computer architecture research methodology gap. This methodology gap intro-

duces intellectual and technical barriers that make it challenging to transition between modeling

abstractions and even more challenging to create an integrated flow across modeling abstractions.

22

Industry is able to bridge this gap by utilizing their considerable resources to build large design

teams. For academic research groups with limited resources and manpower bridging this gap can

be exceedingly difficult, often resulting in over-emphasis on a single level of abstraction.

Several mechanisms introduced in prior work have shown promise as techniques to help address

the various challenges contributing to the methodology gap. These mechanisms are listed and

briefly discussed below.

Concurrent-Structural Frameworks Concurrent-structural frameworks provide hardware-inspired

constructs for modeling port-based interfaces, concurrent execution, and structural composition.

Vachharajani et al. have shown these constructs address the mapping problem inherent to CL

models written in sequential, object-oriented languages, greatly improving clarity, accuracy, and

component reuse [VVP+02]. HDLs for RTL design generally provide these constructs natively,

however, a few general-purpose language, cycle-level simulation frameworks have adopted similar

features (e.g., Liberty [VVP+06, VVP+02], Cascade [GTBS13], and SystemC [Pan01]).

Unified Modeling Languages Unified modeling languages enable specification of multiple mod-

eling abstractions using a single description language. The use of a single specification language

greatly reduces cognitive overhead for designers who would otherwise need expertise in multiple

design languages. SystemC was proposed as a C++ language for multiple modeling tasks [Pan01]

including FL/CL/transaction-level modeling and RTL design (using a synthesizable subset), but

has primarily seen wide adoption for virtual system prototyping and high-level synthesis.

Hardware Generation Languages Hardware generation languages (HGLs) are hardware de-

sign languages that enable the construction of highly-parameterizable hardware templates [SAW+10].

HGLs facilitate design-space exploration at the register-transfer level; some HGLs also improve

the productivity of RTL design through the introduction of higher-level design abstractions. Ex-

amples of HGLs include Genesis II [SWD+12], Chisel [BVR+12], and Bluespec [Nik04, HA03].

HDL Integration HDL integration provides mechanisms for native co-simulation of Verilog/VHDL

RTL with FL/CL models written in more flexible general-purpose languages. Such integration ac-

celerates RTL verification by supporting fast multilevel simulation of Verilog components with CL

models, and enabling embedding of FL/CL golden models within Verilog for test bench validation.

23

Grossman et al. noted that the unique HDL integration techniques in the Cascade simulator, such

as interface binding, greatly assisted hardware validation of the Anton supercomputer [GTBS13].

SEJITS Selective embedded just-in-time specialization (SEJITS) pairs embedded domain-specific

languages (EDSLs) [Hud96] with EDSL-specific JIT compilers to provide runtime generation

of optimized, platform-specific implementations from high-level descriptions. SEJITS enables

efficiency-level language (ELL) performance from productivity-level language (PLL) code, signif-

icantly closing the performance-productivity gap for domain specific computations [CKL+09]. As

an additional benefit, SEJITS greatly simplifies the construction of new domain-specific abstrac-

tions and high-performance JIT specializers by embedding specialization machinery within PLLs

like Python.

Latency-Insensitive Interfaces While more of a best-practice than explicit mechanism, consis-

tent use of latency-insensitive interfaces at module boundaries is key to constructing libraries of

interoperable FL, CL, and RTL models. Latency-insensitive protocols provide control abstraction

through module-to-module stall communication, significantly improving component composabil-

ity, design modularity, and facilitating greater test re-use [VVP+06, CMSV01].

Each of these mechanisms can potentially be integrated into toolflows in order to ease the transi-

tion between model abstractions. The remaining two sections discuss vertically integrated research

methodologies that could potentially benefit from the use of these mechanisms.

2.2.5 Integrated CL/RTL Methodologies

One approach to enabling more vertically integrated research methodologies involves com-

bining the CL and RTL methodologies to enable test reuse and co-simulation of CL and RTL

models. Such an integrated CL/RTL methodology would allow the productivity and simulation

benefits of cycle-approximate simulation with the credibility of RTL designs. Prior work has

shown such integration provides opportunities for improved design-space exploration and RTL

verification [GTBS13].

Transitioning between CL and RTL models in such a methodology would still be a manual pro-

cess, such as when refining a CL model used for design space exploration into a more detailed RTL

24

implementation. Converting from a model built in a CAS framework into a synthesizable HDL im-

plemenation is currently a non-trivial process, requiring a complete rewrite in a new language and

familiarity with a wholly different toolflow. HGLs can greatly help with the productivity of cre-

ating these RTL designs, however, they do not address the problem of interfacing CL and RTL

models. Three possible approaches for enabling such integration are outlined below.

Integrating HGLs into Widely Adopted CAS Frameworks A relatively straight-forward ap-

proach involves translating HGL design instances into industry standard HDLs and then compiling

this generated HDL into a widely adopted CAS framework. For example, one could use Chisel

to implement a specialized block, generate the corresponding Verilog RTL, use a tool such as

Verilator [ver13] to translate the Verilog RTL into a cycle-accurate C++ model, and then link the

model into the gem5 simulation framework. One limitation of this approach is that most widely

adopted CAS frameworks are not designed with HGL integration in mind, potentially limiting the

granularity of integration. While it might be possible to integrate blocks designed with an HGL

methodology into the memory system of gem5, it would be more challenging to create new spe-

cialized functional units or accelerators that are tightly coupled to the main processor pipeline.

Integrating HGLs into New CAS Frameworks A more radical approach involves developing

a new CAS framework from scratch specifically designed to facilitate tight integration with HGLs.

Such a CAS framework would likely need to avoid performance optimizations such as split func-

tional/timing models and use some form of concurrent-structural modeling [VVP+02, VVP+06].

One example of such an approach is Cascade, a C++ framework used in the development of the An-

ton 2 supercomputer. Cascade was specifically designed to enable rapid design-space exploration

using a CL methodology while also providing tight integration with Verilog RTL [GTBS13]. Cas-

cade includes support for interfacing binding, enabling composition of Verilog and C++ modules

without the need for specialized data-marshalling functions.

Creating a Unified CAS/HGL Framework The most extreme approach involves constructing

a completely unified framework that enables construction of both CL and RTL models in a single

high-level language. Like Cascade, such a framework would likely have a concurrent-structural

modeling approach with port-based interfaces and concurrent execution semantics, as well as pro-

vide bit-accurate datatypes, in order to support the design of RTL models. Additionally, such a

25

framework would need to have a translation mechanisms to convert RTL models described in the

framework into an industry-standard HDL to enable compatibility with EDA toolflows.

SystemC was originally envisioned to be such a framework, although it is mostly used in prac-

tice for cycle-approximate and even more abstract transaction-level modeling to create virtual sys-

tem platforms for early software development [sys14]. The PyMTL framework was also designed

with this approach in mind, however, it additionally extends its capabilities up the stack to enable

construction of FL models as well. The integrated FL/CL/RTL methodology built into PyMTL is

described in the next section.

2.2.6 Modeling Towards Layout (MTL) Methodology

While the integrated CL/RTL methodologies described above help provide interoperability be-

tween CL and RTL models, thus enabling rapid design space exploration and the collection of

credible area/energy/timing results, they do not address the issue of interfacing with FL models.

As mentioned previously, FL models are increasingly important in the design of specialized accel-

erators that map algorithmic optimizations into hardware implementations. Construction of such

accelerators benefit considerably from an incremental design strategy that refines a component

from high-level algorithm, to cycle-approximate model, to detailed RTL implementation, while

also performing abstraction-level appropriate design-space exploration along the way. I call such

a modeling methodology modeling towards layout (MTL).

The goal of the MTL methodology is to take advantage of the individual strengths of FL,

CL, and RTL models, and combine them into a unified, vertically integrated design flow. The

hope is that such a methodology will enable computer architects to generate credible analyses

of area, energy, and timing without sacrificing the ability to perform productive design-space ex-

ploration. Note that the MTL flow is fundamentally different from the approach of high-level

synthesis (HLS). While HLS aims to take a high-level algorithm implementation in C or C++ and

attempt to automatically infer a hardware implementation, the MTL methodology is a manual re-

finement process. The MTL methodology is orthogonal to HLS and allows a designer full control

to progressively tune their model with respect to timing accuracy and implementation detail.

A key challenge of the MTL methodology is maintaining compatibility between FL, CL, and

RTL models, which promotes both the reuse of test harnesses and the ability to co-simulate compo-

nents at different abstraction levels. Integrating FL models into such a flow is particularly challeng-

26

ing due to their lack of timing information. In Chapter 3, I discuss how PyMTL, a Python-based

implementation of an MTL methodology, addresses these challenges; PyMTL takes advantage of

the mechanisms previously described in Section 2.2.4 to ease the process of vertically integrated

hardware design.

To provide a brief preview of PyMTL: PyMTL is a unified, Python-based framework to fa-

cilitate a tightly integrated FL/CL/RTL methodology. PyMTL leveraging a concurrent-structural

modeling approach, and naturally supports incremental refinement from high-level algorithms to

cycle-approximate model to cycle-accurate implementation. An embedded DSL allows Python

to be used as a hardware generation language for construction of highly-parameterized hardware

designs. These parameterized designs can then be translated into synthesizable Verilog instances

for use with commercial toolflows. Due to the unified nature of the framework, high-level cycle-

approximate models can naturally be simulated alongside detailed RTL implementations, allowing

users to finely control speed and accuracy tradeoffs on a module by module basis. Existing Verilog

IP can be incorporated for co-simulation using a Verilator-based translation toolchain, enabling

those with significant Verilog experience to leverage Python as a productive verification language.

Finally, PyMTL provides several productivity components to ease the process of constructing and

flexibly unit testing high-level models with latency-insensitive interfaces.

27

CHAPTER 3
PYMTL: A UNIFIED FRAMEWORK FOR MODELING

TOWARDS LAYOUT

Given the numerous barriers involved in performing vertically integrated hardware design, I

developed PyMTL1 as a framework to help address many of the pain points encountered in com-

puter architecture research. PyMTL began as a simple hardware-generation language in Python,

an alternative to Verilog that would enable the construction of more parameterizable and reusable

RTL models. However, it quickly became clear that there was considerable value in providing

tight integration with more abstract cycle-level and functional-level models in PyMTL, and that

Python’s high-level, general-purpose programming facilities provided an incredible opportunity

to improve the productivity of constructing FL and CL models as well. The implementation of

PyMTL was heavily influenced by ideas introduced in prior work; a key lesson learned from my

work on PyMTL is that the unification of these ideas into a single framework produces productiv-

ity benefits greater than the sum of its parts. In particular, combining embedded domain-specific

languages (EDSL) with just-in-time (JIT) specializers is a particularly attractive and promising

approach for constructing hardware modeling frameworks going forward.

This chapter discusses the features, design, and software architecture of the PyMTL framework.

This includes the Python-based embedded-DSL used to describe PyMTL hardware models and the

model/tool split implemented in the framework architecture to enable modularity and extensibility.

The use of the PyMTL for implementing a vertically integrated, modeling towards layout design

methodology is demonstrated through several simple examples. Finally, the SimJIT just-in-time

specializer for generating optimized code from PyMTL embedded-DSL descriptions is introduced

and evaluated as a technique for reducing the overhead of PyMTL simulations.

3.1 Introduction

Limitations in technology scaling have led to a growing interest in non-traditional system archi-

tectures that incorporate heterogeneity and specialization as a means to improve performance under

strict power and energy constraints. Unfortunately, computer architects exploring these more ex-

otic architectures generally lack existing physical designs to validate their power and performance
1PyMTL loosely stands for [Py]thon framework for [M]odeling [T]owards [L]ayout and is pronounced the same

as “py-metal”.

28

models. The lack of validated models makes it challenging to accurately evaluate the computa-

tional efficiency of these designs [BGOS12, GKO+00, GKB09, GPD+14, DBK01, CLSL02]. As

specialized accelerators become more integral to achieving the performance and energy goals of

future hardware, there is a crucial need for researchers to supplement cycle-level simulation with

algorithmic exploration and RTL implementation.

Future computer architecture research will place an increased emphasis on a methodology we

call modeling towards layout (MTL). While computer architects have long leveraged multiple

modeling abstractions (functional level, cycle level, register-transfer level) to trade off simulation

time and accuracy, an MTL methodology aims to vertically integrate these abstractions for itera-

tive refinement of a design from algorithm, to exploration, to implementation. Although an MTL

methodology is especially valuable for prototyping specialized accelerators and exploring more ex-

otic architectures, it has general value as a methodology for more traditional architecture research

as well.

Unfortunately, attempts to implement an MTL methodology using existing publicly-available

research tools reveals numerous practical challenges we call the computer architecture research

methodology gap. This gap is manifested as the distinct languages, design patterns, and tools com-

monly used by functional level (FL), cycle level (CL), and register-transfer level (RTL) modeling.

The computer architecture research methodology gap exposes a critical need for a new vertically

integrated framework to facilitate rapid design-space exploration and hardware implementation.

Ideally such a framework would use a single specification language for FL, CL, and RTL model-

ing, enable multi-level simulations that mix models at different abstraction levels, and provide a

path to design automation toolflows for extraction of credible area, energy, and timing results.

In this chapter, I introduce PyMTL, my attempt to construct such a unified, highly productive

framework for FL, CL, and RTL modeling. PyMTL leverages a common high-productivity lan-

guage (Python2.7) for behavioral specification, structural elaboration, and verification, enabling

a rapid code-test-debug cycle for hardware modeling. Concurrent-structural modeling combined

with latency-insensitive design allows reuse of test benches and components across abstraction lev-

els while also enabling mixed simulation of FL, CL, and RTL models. A model/tool split provides

separation of concerns between model specification and simulator generation letting architects

focus on implementing hardware, not simulators. PyMTL’s modular construction encourages ex-

tensibility: using elaborated model instances as input, users can write custom tools (also in Python)

29

such as simulators, translators, analyzers, and visualizers. Python’s glue language facilities pro-

vide flexibility by allowing PyMTL models and tools to be extended with C/C++ components or

embedded within existing C/C++ simulators [SIT+14]. Finally, PyMTL serves as a productive

hardware generation language for building synthesizable hardware templates thanks to an HDL

translation tool that converts PyMTL RTL models into Verilog-2001 source.

Leveraging Python as a modeling language improves model conciseness, clarity, and imple-

mentation time [Pre00,CNG+06], but comes at a significant cost to simulation time. For example,

a pure Python cycle-level mesh network simulation in PyMTL exhibits a 300× slowdown when

compared to an identical simulation written in C++. To address this performance-productivity

gap, inspiration is taken from the scientific computing community which has increasingly adopted

productivity-level languages (e.g., MATLAB, Python) for computationally intensive tasks by re-

placing hand-written efficiency-level language code (e.g., C, C++) with dynamic techniques such

as just-in-time (JIT) compilation [num14, RHWS12, CBHV10] and selective-embedded JIT spe-

cialization [CKL+09, BXF13].

I also introduce SimJIT, a custom just-in-time specializer that takes CL and RTL models writ-

ten in PyMTL and automatically generates, compiles, links, and executes fast, Python-wrapped

C++ code seamlessly within the PyMTL framework. SimJIT is both selective and embedded pro-

viding much of the benefits described in previous work on domain-specific embedded specializa-

tion [CKL+09]. SimJIT delivers significant speedups over CPython (up to 34× for CL models and

63× for RTL models), but sees even greater benefits when combined with PyPy, an interpreter for

Python with a meta-tracing JIT compiler [BCFR09]. PyPy is able to optimize unspecialized Python

code as well as hot paths between Python and C++, boosting the performance of SimJIT simula-

tions by over 2× and providing a net speedup of 72× for CL models and 200× for RTL models.

These optimizations mitigate much of the performance loss incurred by using a productivity-level

language, closing the performance gap between PyMTL and C++ simulations to within 4–6×.

3.2 The Design of PyMTL

PyMTL is a proof-of-concept framework designed to provide a unified environment for con-

structing FL, CL, and RTL models. The PyMTL framework consists of a collection of classes

implementing a concurrent-structural, embedded domain-specific language (EDSL) within Python

30

for hardware modeling, as well as a collection of tools for simulating and translating those mod-

els. The dynamic typing and reflection capabilities provided by Python enable succinct model

descriptions, minimal boilerplate, and expression of flexible and highly parameterizable behav-

ioral and structural components. The use of a popular, general-purpose programming language

provides numerous benefits including access to mature numerical and algorithmic libraries, tools

for test/development/debug, as well as access to the knowledge-base of a large, active development

community.

The design of PyMTL was inspired by several mechanisms proposed in prior work. These

mechanisms, previously discussed in detail in Section 2.2.4, are relisted here along with how they

have explicitly influenced the design of PyMTL.

• Concurrent-Structural Frameworks – PyMTL is designed from the ground up to be a

concurrent-structural framework. All communication between models occurs over port-

based interfaces and all run-time model logic has concurrent execution semantics. This

considerably simplifies the interfacing of FL, CL, and RTL models.

• Unified Modeling Languages – PyMTL utilizes a single specification language, Python2.7,

to define all aspects of FL, CL, and RTL models. This includes model interfaces, structural

connectivity, behavioral logic, static elaboration, and unit tests. In addition, PyMTL takes

this concept one-step further by implementing the framework, simulation tool, translation

tool, and user-defined extensions in Python2.7 as well.

• Hardware Generation Languages – A translation tool provided by the PyMTL framework

in combination with the powerful static elaboration capabilities of PyMTL allows it to be

used as a productive hardware generation language. PyMTL enables much more powerful

parameterization and configuration facilities than traditional HDLs, while providing a path

to EDA toolflows via translation of PyMTL RTL into Verilog.

• HDL Integration – RTL models written within PyMTL can be natively simulated along-

side FL and CL models written in PyMTL. PyMTL can also automatically translate PyMTL

RTL models into Verilog HDL and wrap them in a Python interface to co-simulate PyMTL-

generated Verilog with pure-Python CL and FL models. In addition, PyMTL provides the

capability to import hand-written Verilog IP for testing or co-simulation.

31

• SEJITS – Simulations in the PyMTL framework can optionally take advantage of SimJIT,

a just-in-time specializer for CL and RTL models, to improve the performance of PyMTL

simulations. While SimJIT-CL is a prototype implementation that only works for a small

subset of models, SimJIT-RTL is a mature specializer in active use.

• Latency-Insensitive Interfaces – The PyMTL framework strongly encourages the use of

latency-insensitive interfaces by providing a number of helper components for testing and

creating models that use the ValRdy interface. These components include test sources and

test sinks, port bundles that simplify the instantiation and connectivity of ValRdy interfaces,

as well as adapters that expose user-friendly queue and list interfaces to hide the complexity

of manually managing valid and ready signals.

3.3 PyMTL Models

PyMTL models are described in a concurrent-structural fashion: interfaces are port-based, logic

is specified in concurrent logic blocks, and components are composed structurally. Users define

model implementations as Python classes that inherit from Model. An example PyMTL class

skeleton is shown in Figure 3.1. The __init__ model constructor (lines 3–15) both executes

elaboration-time configuration and declares run-time simulation logic. Elaboration-time configu-

ration specializes model construction based on user-provided parameters. This includes the model

interface (number, direction, message type of ports), internal constants, and structural hierarchy

(wires, submodels, connectivity). Run-time simulation logic is defined using nested functions

decorated with annotations that indicate their simulation-time execution behavior. Provided dec-

orators include @s.combinational for combinational logic and @s.tick_fl, @s.tick_cl, and

@s.tick_rtl for FL, CL, and RTL sequential logic, respectively. The semantics of signals (ports

and wires) differ depending on whether they are updated in a combinational or sequential logic

block. Signals updated in combinational blocks behave like wires; they are updated by writing

their .value attributes and the concurrent block enclosing them only executes when its sensitiv-

ity list changes. Signals updated in sequential blocks behave like registers; they are updated by

writing their .next attributes and the concurrent block enclosing them executes once every sim-

ulator cycle. Much like Verilog, submodel instantiation, structural connectivity, and behavioral

logic definitions can be intermixed throughout the constructor.

32

1 class MyModel(Model):
2

3 def __init__(s, constructor_params):
4

5 # input port declarations
6 # output port declarations
7 # other member declarations
8

9 # wire declarations
10 # submodule declarations
11 # connectivity statements
12 # concurrent logic specification
13

14 # more connectivity statements
15 # more concurrent logic specification

Figure 3.1: PyMTL Model Template – A
basic skeleton of a PyMTL model, which is
simply a Python class that subclasses Model.
Model classes are parameterized by argu-
ments passed into the class initializer method,
__init__. Parameterization arguments are
used by statements inside the initializer
method to perform static-elaboration: static,
construction-time configuration of model at-
tributes, connectivity, hierarchy, and even run-
time behavior. Elaboration logic can mix wire
and submodule declarations, structural connec-
tivity, and concurrent logic definitions.

A few simple PyMTL model definitions are shown in Figure 3.2. The Register model consists

of a constructor that declares a single input and output port (lines 12–13) as well as a sequential

logic block using a s.tick_rtl decorated nested function (lines 19–21). Ports are parameterizable

by message type, in this case a Bits fixed-bitwidth message of size nbits (line 11). Due to the

pervasive use of the Bits message type in PyMTL RTL modeling, syntactic sugar has been added

such that InPort(4) may be used in place of the more explicit InPort(Bits(4)). We use this

shorthand for the remainder of our examples. The Mux model is parameterizable by bitwidth and

number of ports: the input is declared as a list of ports using a custom shorthand provided by

the PyMTL framework (line 11), while the select port bitwidth is calculated using a user-defined

function bw (line 12). A single combinational logic block is defined during elaboration (lines

19–21). No explicit sensitivity list is necessary as this is automatically inferred during simulator

construction. The MuxReg model structurally composes Register and Mux models by instantiating

them like normal Python objects (lines 16–17) and connecting their ports via the s.connect()

method (lines 21–25). Note that it is not necessary to declare temporary wires in order to connect

submodules as ports can simply be directly connected. A list comprehension is used to instantiate

the input port list of MuxReg (line 11). This Python idiom is commonly used in PyMTL design to

flexibly construct parameterizable lists of ports, wires, and submodules.

The examples in Figure 3.2 also provide a sample of PyMTL models that are fully translatable

to synthesizable Verilog HDL. Translatable models must: (1) describe all behavioral logic within

within s.tick_rtl and s.combinational blocks, (2) use only a restricted, translatable subset of

Python for logic within these blocks, and (3) pass all data using ports or wires with fixed-bitwidth

33

1 # A purely sequential model.
2 class Register(Model):
3

4 # Initializer arguments specify the
5 # model is parameterized by bitwidth.
6 def __init__(s, nbits):
7

8 # Port interface declarations must
9 # specify both directionality and

10 # signal datatype of each port.
11 dtype = Bits(nbits)
12 s.in_ = InPort (dtype)
13 s.out = OutPort(dtype)
14

15 # Concurrent blocks annotated with
16 # @tick* execute every clock cycle.
17 # Writes to .next have non-blocking
18 # update semantics.
19 @s.tick_rtl
20 def seq_logic():
21 s.out.next = s.in_

1 # A purely combinational model.
2 class Mux(Model):
3

4 # Model is parameterized by bitwidth
5 # and number of input ports.
6 def __init__(s, nbits, nports):
7

8 # Integer nbits act as a shorthand
9 # for Bits(nbits); concise array

10 # syntax declares an InPort list.
11 s.in_ = InPort[nports](nbits)
12 s.sel = InPort (bw(nports))
13 s.out = OutPort(nbits)
14

15 # @combinational annotated blocks
16 # only execute when input values
17 # change. Writes to .value have
18 # blocking update semantics.
19 @s.combinational
20 def comb_logic():
21 s.out.value = s.in_[s.sel]

1 # A purely structural model.
2 class MuxReg(Model):
3

4 # The dtype = 8 default value, a shorthand for dtype = Bits(8), could
5 # alternatively receive a more complex user-defined type like a BitStruct.
6 def __init__(s, dtype = 8, nports = 4):
7

8 # The parameterized interface uses a user-defined bw() function to
9 # compute the correct bitwidth for sel. A list comprehension specifies

10 # the number of input ports, equivalent to InPort[nports](dtype).
11 s.in_ = [InPort(dtype) for x in range(nports)]
12 s.sel = InPort (bw(nports))
13 s.out = OutPort(dtype)
14

15 # Parameterizable child models are instantiated like Python classes.
16 s.reg_ = Register(dtype)
17 s.mux = Mux (dtype, nports)
18

19 # Input and output ports of the parent and child models are
20 # structurally connected using s.connect() statements.
21 s.connect(s.sel, s.mux.sel)
22 for i in range(nports):
23 s.connect(s.in_[i], s.mux.in_[i])
24 s.connect(s.mux.out, s.reg_.in_)
25 s.connect(s.reg_.out, s.out)

Figure 3.2: PyMTL Example Models – Basic RTL models demonstrating sequential, combina-
tional, and structural components in PyMTL. Powerful construction and elaboration logic enables
design of highly-parameterizable models, while remaining Verilog-translatable.

34

Model

Config

Simulator
Tool

Translator
Tool

Verilog

Traces &
VCD

Elaborator
Model

Instance

Test & Sim
Harnesses

User
Tool

User Tool
Output

Specification Tools Outputs

EDA
Flow

Figure 3.3: PyMTL Software Architecture – A model and configuration are elaborated into a
model instance; tools manipulate the model instance to simulate or translate the design.

message types (like Bits). While these restrictions limit some of the expressive power of Python,

PyMTL provides mechanisms such as BitStructs, PortBundles, and type inference of local

temporaries to improve the succinctness and productivity of translatable RTL modeling in PyMTL.

Purely structural models like MuxReg are always translatable if all child models are translatable.

This enables the full power of Python to be used during elaboration. Even greater flexibility is

provided to non-translatable FL and CL models as they may contain arbitrary Python code within

their @s.tick_fl and @s.tick_cl behavioral blocks. Examples of FL and CL models, shown in

Figures 3.7, 3.8, and 3.11, will be discussed in further detail in Sections 3.5.1 and 3.5.2.

3.4 PyMTL Tools

The software architecture of the PyMTL framework is shown in Figure 3.3. User-defined mod-

els are combined with their configuration parameters to construct and elaborate model classes into

model instances. Model instances act as in-memory representations of an elaborated design that

can be accessed, inspected, and manipulated by various tools, just like a normal Python object.

For example, the TranslationTool takes PyMTL RTL models, like those in Figure 3.2, inspects

their structural hierarchy, connectivity, and concurrent logic, then uses this information to gener-

ate synthesizable Verilog that can be passed to an electronic design automation (EDA) toolflow.

Similarly, the SimulationTool inspects elaborated models to automatically register concurrent

logic blocks, detect sensitivity lists, and analyze the structure of connected ports to generate op-

35

1 @pytest.mark.parametrize(
2 'nbits,nports', [(8, 2), (8, 3), (8, 4), (8, 8)
3 (16, 2), (16, 3), (16, 4), (16, 8),
4 (32, 2), (32, 3), (32, 4), (32, 8)]
5)
6 def test_muxreg(nbits, nports, test_verilog):
7 model = MuxReg(nbits, nports)
8 model.elaborate()
9 if test_verilog:

10 model = TranslationTool(model)
11

12 sim = SimulationTool(model)
13 for inputs, sel, output in gen_vectors(nbits,nports):
14 for i, val in enumerate(inputs):
15 model.in_[i].value = val
16 model.sel.value = sel
17 sim.cycle()
18 assert model.out == output

Figure 3.4: PyMTL Test Harness – The SimulationTool and py.test package are used
to simulate and verify the MuxReg module in Figure 3.2. A command-line flag uses the
TranslationTool to automatically convert the MuxReg model into Verilog and test it within the
same harness.

timized Python simulators. The modular nature of this model/tool split encourages extensibility

making it easy for users to write their own custom tools such as linters, translators, and visual-

ization tools. More importantly, it provides a clean boundary between hardware modeling logic

and simulator implementation logic letting users focus on hardware design rather than simulator

software engineering.

The PyMTL framework uses the open-source testing package py.test [pyt14a] along with the

provided SimulationTool to easily create extensive unit-test suites for each model. One such

unit-test can be seen in Figure 3.4. After instantiating and elaborating a PyMTL model (lines 7–

8), the test bench constructs a simulator using the SimulationTool (line 12) and tests the design

by setting input vectors, cycling the simulator, and asserting outputs (lines 14–18). A number

of powerful features are demonstrated in this example: the py.test @parametrize decorator

instantiates a large number of test configurations from a single test definition (lines 1–5), user

functions are used to generate configuration-specific test vectors (line 13), and the model can be

automatically translated into Verilog and verified within the same test bench by simply passing the

--test-verilog flag at the command line (lines 9–10). In addition, py.test can provide test

36

coverage statistics and parallel test execution on multiple cores or multiple machines by importing

additional py.test plugins [pyt14b, pyt14c].

3.5 PyMTL By Example

In this section, I demonstrate how PyMTL can be used to model, evaluate, and implement two

models for architectural design-space exploration: an accelerator coprocessor and an on-chip net-

work. Computer architects are rarely concerned only with the performance of a single component,

rather we aim to determine how a given mechanism may impact system performance as a whole.

With this in mind, the accelerator is implemented in the context of the hypothetical heterogeneous

system shown in Figure 3.5a. This system consists of numerous compute tiles interconnected by

an on-chip network. Section 3.5.1 will explore the implementation of an accelerator on a single

tile, while Section 3.5.2 will investigate a simple mesh network that might interconnect such tiles.

3.5.1 Accelerator Coprocessor

This section describes the modeling of a dot-product accelerator within the context of a single

tile containing a simple RISC processor, an L1 instruction cache, and an L1 data cache. The

dot-product operator multiplies and accumulates the values of two equal-length vectors, returning

a single number. This accelerator is implemented as a coprocessor with several configuration

registers to specify the size of the two input vectors, their base addresses, and a start command.

The coprocessor is designed to share a port to the L1 data cache with the processor as shown in

Figure 3.5a. A modeling towards layout methodology is used to refine the accelerator design from

algorithm to implementation by first constructing a functional-level model, and gradually refining

it into cycle-level and finally register-transfer-level models.

Functional Level Architects build an FL model as a first step in the design process to familiarize

themselves with an algorithm and create a golden model for validating more detailed implementa-

tions. Figure 3.6 demonstrates two basic approaches to constructing a simple FL model. The first

approach (lines 1–2) manually implements the dot-product algorithm in Python. This approach

provides an opportunity for the designer to rapidly experiment with alternative algorithm imple-

mentations. The second approach (lines 4–5) simply calls the dot library function provided by

37

L1 DCache

L1 ICache

Arbitration

Dot
Product

Accelerator
Processor

(a) Block Diagram (b) Post-Place-and-Route Layout

Figure 3.5: Hypothetical Heterogeneous Architecture – (a) Accelerator-augmented compute
tiles interconnected by an on-chip network; (b) Synthesized, placed, and routed layout of compute
tile shown in (a). Processor, cache, and accelerator RTL for this design were implemented and
tested entirely in PyMTL, automatically translated into Verilog HDL, then passed to a Synopsys
toolflow. Processor shown in blue, accelerator in orange, L1 caches in red and green, and critical
path in black.

the numerical package NumPy [Oli07]. This approach provides immediate access to a verified,

optimized, high-performance golden reference.

Unfortunately, integrating such FL implementations into a computer architecture simulation

framework can be a challenge. Our accelerator is designed as a coprocessor that interacts with both

a processor and memory, so the FL model must implement communication protocols to interact

with the rest of the system. This is a classic example of the methodology gap.

Figure 3.7 demonstrates a PyMTL FL model for the dot-product accelerator capable of inter-

acting with FL, CL, and RTL models of the processor and memory. While more verbose than

the simple implementations in Figure 3.6, the DotProductFL model must additionally control

interactions with the processor, memory, and accelerator state. This additional complexity is

greatly simplified by several PyMTL provided components: ReqRespBundles encapsulate col-

lections of signals needed for latency-insensitive communication with the processor and mem-

ory (lines 3–4), the ChildReqRespQueueAdapter provides a simple queue-based interface to the

38

1 def dot_product_manual(src0, src1):
2 return sum([x*y for x,y in zip(src0, src1)])
3

4 def dot_product_library(src0, src1):
5 return numpy.dot(src0, src1)

Figure 3.6: Functional Dot Product Implementation – A functional implementation of the dot
product operator. Both a manual implementation in Python and a higher-performance library im-
plementation are shown.

1 class DotProductFL(Model):
2 def __init__(s, mem_ifc_types, cpu_ifc_types):
3 s.cpu_ifc = ChildReqRespBundle (cpu_ifc_types)
4 s.mem_ifc = ParentReqRespBundle(mem_ifc_types)
5

6 s.cpu = ChildReqRespQueueAdapter(s.cpu_ifc)
7 s.src0 = ListMemPortAdapter (s.mem_ifc)
8 s.src1 = ListMemPortAdapter (s.mem_ifc)
9

10 @s.tick_fl
11 def logic():
12 s.cpu.xtick()
13 if not s.cpu.req_q.empty() and not s.cpu.resp_q.full():
14 req = s.cpu.get_req()
15 if req.ctrl_msg == 1:
16 s.src0.set_size(req.data)
17 s.src1.set_size(req.data)
18 elif req.ctrl_msg == 2: s.src0.set_base(req.data)
19 elif req.ctrl_msg == 3: s.src1.set_base(req.data)
20 elif req.ctrl_msg == 0:
21 result = numpy.dot(s.src0, s.src1)
22 s.cpu.push_resp(result)

Figure 3.7: PyMTL DotProductFL Accelerator – Concurrent-structural modeling allows com-
position of FL models with CL and RTL models, but introduces the need to implement com-
munication protocols. QueueAdapter and ListAdapter proxies provide programmer-friendly,
method-based interfaces that hide the complexities of these protocols.

ChildReqRespBundle and automatically manages latency-insensitive communication to the pro-

cessor (lines 6, 12–14, 22), and the ListMemPortAdapter provides a list-like interface to the

ParentReqRespBundle and automatically manages the latency-insensitive communication to the

memory (lines 7–8).

Of particular note is the ListMemPortAdapter which allows us to reuse numpy.dot from

Figure 3.6 without modification. This is made possible by the greenlets concurrency package

[pyt14d] that enables proxying array index accesses into memory request and response transactions

39

over the latency-insensitive, port-based model interfaces. These proxies facilitate the composition

of existing, library-provided utility functions with port-based processors and memories to quickly

create a target for validation and software co-development.

Cycle Level Construction of a cycle-level model provides a sense of the timing behavior of a

component, enabling architects to estimate system-level performance and make first-order design

decisions prior to building a detailed RTL implementation. Figure 3.8 shows an implementation of

the DotProductCL model in PyMTL. Rather than faithfully emulating detailed pipeline behavior,

this model simply aims to issue and receive memory requests in a cycle-approximate manner by

implementing a simple pipelining scheme. Like the FL model, the CL model takes advantage of

higher-level PyMTL library constructs such as the ReqResponseBundles and QueueAdapters to

simplify the design, particularly with regards to interfacing with external communication protocols

(lines 3–7). Logic is simplified by pre-generating all memory requests and storing them in a list

once the go signal is set (line 39), this list is used to issue requests to memory as backpressure

allows (lines 23–24). Data is received from the memory in a pipelined manner and stored in

another list (lines 25–26). Once all data is received it is separated, passed into numpy.dot, and

returned to the processor (lines 28–31).

Because DotProductCL exposes an identical port-based interface to DotProductFL, construc-

tion of the larger tile can be created using an incremental approach. These steps include writing

unit-tests based on golden FL model behavior, structurally composing the FL model with the pro-

cessor and memory to validate correct system behavior, verifying the CL model in isolation by

reusing the FL unit tests, and finally swapping the FL model and the CL model for final system-

level integration testing. This pervasive testing gives us confidence in our model, and the final

composition of the CL accelerator with CL or RTL memory and processor models allow us to

evaluate system-level behavior.

To estimate the performance impact of our accelerator, a more detailed version of DotProductCL

is combined with CL processor and cache components to create a CL tile. This accelerator-

augmented tile is used to execute a 1024× 1024 matrix-vector multiplication kernel (a compu-

tation consisting of 1024 dot products). The resulting CL simulation estimates our accelerator will

provide a 2.9× speedup over a traditional scalar implementation with loop-unrolling optimizations.

40

1 class DotProductCL(Model):
2 def __init__(s, mem_ifc_types, cpu_ifc_types):
3 s.cpu_ifc = ChildReqRespBundle (cpu_ifc_types)
4 s.mem_ifc = ParentReqRespBundle(mem_ifc_types)
5

6 s.cpu = ChildReqRespQueueAdapter (s.cpu_ifc)
7 s.mem = ParentReqRespQueueAdapter(s.mem_ifc)
8

9 s.go = False
10 s.size = 0
11 s.src0 = 0
12 s.src1 = 0
13 s.data = []
14 s.addrs = []
15

16 @s.tick_cl
17 def logic():
18 s.cpu.xtick()
19 s.mem.xtick()
20

21 if s.go:
22

23 if s.addrs and not s.mem.req_q.full():
24 s.mem.push_req(mreq(s.addrs.pop()))
25 if not s.mem.resp_q.empty():
26 s.data.append(s.mem.get_resp())
27

28 if len(s.data) == s.size*2:
29 result = numpy.dot(s.data[0::2], s.data[1::2])
30 s.cpu.push_resp(result)
31 s.go = False
32

33 elif not s.cpu.req_q.empty() and not s.cpu.resp_q.full():
34 req = s.cpu.get_req()
35 if req.ctrl_msg == 1: s.size = req.data
36 elif req.ctrl_msg == 2: s.src0 = req.data
37 elif req.ctrl_msg == 3: s.src1 = req.data
38 elif req.ctrl_msg == 0:
39 s.addrs = gen_addresses(s.size, s.src0, s.src1)
40 s.go = True

Figure 3.8: PyMTL DotProductCL Accelerator – Python’s high-level language features
are used to quickly prototype a cycle-approximate model with pipelined memory requests.
QueueAdapters wrap externally visible ports with a more user-friendly, queue-like abstraction
for enqueuing and dequeuing data. These adapters automatically manage valid and ready signals
of the latency insensitive interface and provide backpressure that is used to cleanly implement stall
logic. The user-defined gen_addresses() function creates a list of memory addresses that are
used to fetch data needed for the dot product operation; once all this input data has been fetched
numpy.dot() is used to compute the result. A pipeline component could be added to delay the
return of the dot product computation and more realistically model the timing behavior of the
hardware target.

41

Configuration CL Speedup RTL Speedup Cycle Area Execution
(Cycles) (Cycles) Time Time

Proc+Cache 1.00× 1.00× 2.10ns 1.04mm2 9.3ms
Proc+Cache+Accel 2.90× 2.88× 2.21ns 1.06mm2 3.4ms

Table 3.1: DotProduct Coprocessor Performance – Performance comparison for tile in Fig-
ure 3.5a with the accelerator coprocessor (Proc+Cache+Accel) and without (Proc+Cache); both
configurations include an RTL implementations of a 5-stage RISC processor, instruction cache, and
data cache. Performance estimates of execution cycles generated from the CL model (CL Speedup)
are quite close to the RTL implementation (RTL speedup): 2.90× estimated versus 2.88× actual.

Register-Transfer Level The CL model allowed us to quickly obtain a cycle-approximate per-

formance estimate for our accelerator-enhanced tile in terms of simulated cycles, however, area,

energy, and cycle time are equally important metrics that must also be considered. Unfortunately,

accurately predicting these metrics from high-level models is notoriously difficult. An alternative

approach is to use an industrial EDA toolflow to extract estimates from a detailed RTL imple-

mentation. Building RTL is often the most appropriate approach for obtaining credible metrics,

particularly when constructing exotic accelerator architectures.

PyMTL attempts to address many of the challenges associated with RTL design by providing a

productive environment for constructing highly parameterizable RTL implementations. Figures 3.9

and 3.10 show the top-level and datapath code for the DotProductRTL model. The PyMTL

EDSL provides a familiar Verilog-inspired syntax for traditional combinational and sequential

bit-level design using the Bits data-type, but also layers more advanced constructs and power-

ful elaboration-time capabilities to improve code clarity. A concise top-level module definition is

made possible by the use of PortBundles and the connect_auto method, which automatically

connects parent and child signals based on signal name (lines 1-8). BitStructs are used as mes-

sage types to connect control and status signals (lines 14–15), improving code clarity by providing

named access to bitfields (lines 28, 34–35, 39). Mixing of wire declarations, sequential logic def-

initions, combinational logic definitions, and parameterizable submodule instantiations (lines 58–

61) enable code arrangements that clearly demarcate pipeline stages. In addition, DotProductRTL

shares the same parameterizable interface as the FL and CL models enabling reuse of unmodified

FL and CL test benches for RTL validation before automatic translation into synthesizable Verilog.

42

1 class DotProductRTL(Model):
2 def __init__(s, mem_ifc_types, cpu_ifc_types):
3 s.cpu_ifc = ChildReqRespBundle (cpu_ifc_types)
4 s.mem_ifc = ParentReqRespBundle(mem_ifc_types)
5

6 s.dpath = DotProductDpath(mem_ifc_types, cpu_ifc_types)
7 s.ctrl = DotProductCtrl (mem_ifc_types, cpu_ifc_types)
8 s.connect_auto(s.dpath, s.ctrl)
9

10 class DotProductDpath(Model):
11 def __init__(s, mem_ifc_types, cpu_ifc_types):
12 s.cpu_ifc = ChildReqRespBundle (cpu_ifc_types)
13 s.mem_ifc = ParentReqRespBundle(mem_ifc_types)
14 s.cs = InPort (CtrlSignals())
15 s.ss = OutPort(StatusSignals())
16

17 #--- Stage M: Memory Request ------------------------------
18 s.count = Wire(cpu_ifc_types.req .data.nbits)
19 s.size = Wire(cpu_ifc_types.req .data.nbits)
20 s.src0_addr_M = Wire(mem_ifc_types.req .addr.nbits)
21 s.src1_addr_M = Wire(mem_ifc_types.req .addr.nbits)
22

23 @s.tick_rtl
24 def stage_seq_M():
25 ctrl_msg = s.cpu_ifc.req_msg .ctrl_msg
26 cpu_data = s.cpu_ifc.req_msg .data
27

28 if s.cs.update_M:
29 if ctrl_msg == 1: s.size .next = cpu_data
30 elif ctrl_msg == 2: s.src0_addr_M.next = cpu_data
31 elif ctrl_msg == 3: s.src1_addr_M.next = cpu_data
32 elif ctrl_msg == 0: s.ss.go .next = True
33

34 if s.cs.count_clear_M: s.count.next = 0
35 elif s.cs.count_en_M: s.count.next = s.count + 1
36

37 @s.combinational
38 def stage_comb_M():
39 if s.cs.baddr_sel_M == src0: base_addr_M = s.src0_addr_M
40 else: base_addr_M = s.src1_addr_M
41

42 s.mem_ifc.req_msg.type_.value = 0
43 s.mem_ifc.req_msg.addr.value = base_addr_M + (s.count<<2)
44

45 s.ss.last_item_M.value = s.count == (s.size - 1)

Figure 3.9: PyMTL DotProductRTL Accelerator – RTL implementation of a dot product ac-
celerator in PyMTL, control logic is not shown for brevity. The PyMTL EDSL combines familiar
HDL syntax with powerful elaboration capabilities for constructing parameterizable and Verilog-
translatable models. The top-level interface used for DotProductRTL matches the interfaces used
by DotProductFL and DotProductCL which, along with their implementations of the ValRdy
latency-insensitive communication protocol, allow them to be drop-in replacements for each other.

43

46 #--- Stage R: Memory Response -----------------------------
47 s.src0_data_R = Wire(mem_ifc_types.resp.data.nbits)
48 s.src1_data_R = Wire(mem_ifc_types.resp.data.nbits)
49

50 @s.tick_rtl
51 def stage_seq_R():
52 mem_data = s.mem_ifc.resp_msg.data
53 if s.cs.src0_en_R: s.src0_data_R.next = mem_data
54 if s.cs.src1_en_R: s.src1_data_R.next = mem_data
55

56 #--- Stage X: Execute Multiply ----------------------------
57 s.result_X = Wire(cpu_ifc_types.req.data.nbits)
58 s.mul = IntPipelinedMultiplier(
59 nbits = cpu_ifc_types.req.data.nbits,
60 nstages = 4,
61)
62 s.connect_dict({ s.mul.op_a : s.src0_data_R,
63 s.mul.op_b : s.src1_data_R,
64 s.mul.product : s.result_X })
65

66 #--- Stage A: Accumulate ----------------------------------
67 s.accum_A = Wire(cpu_ifc_types.resp.data.nbits)
68 s.accum_out = Wire(cpu_ifc_types.resp.data.nbits)
69

70 @s.tick_rtl
71 def stage_seq_A():
72 if s.reset or s.cs.accum_clear_A:
73 s.accum_A.next = 0
74 elif s.cs.accum_en_A:
75 s.accum_A.next = s.accum_out
76

77 @s.combinational
78 def stage_comb_A():
79 s.accum_out.value = s.result_X + s.accum_A
80 s.cpu_ifc.resp_msg.value = s.accum_A

Figure 3.10: PyMTL DotProductRTL Accelerator Continued – Elaboration logic within
__init__() mixes sequential/combinational blocks, wire declarations, module instantiations, and
connectivity statements. Lines 58–64 instantiate and structurally connect a pipelined multiplier.

Figure 3.5b shows a synthesized, placed, and routed implementation of the tile in Figure 3.5a,

including a 5-stage RISC processor, dot-product accelerator, instruction cache, and data cache.

The entire tile was implemented, simulated, and verified in PyMTL before being translated into

Verilog and passed to a Synopsys EDA toolflow. Using this placed-and-routed design, area, en-

ergy, and timing metrics were extracted for the tile. Execution performance of the RTL model and

physical metrics for the placed-and-routed design can be seen in Table 3.1. The simulated cycles

of the RTL implementation demonstrates a speedup of 2.88×, indicating that our CL model did a

44

particularly good job of modeling our implementation; this becomes more difficult to achieve with

more complicated designs. The dot-product accelerator added an area overhead of 4% (0.02 mm2)

and increased the cycle time of the tile by approximately 5%. Fortunately, the improvement in

simulated cycles resulted in a net execution time speedup of 2.74×. This performance improve-

ment must be weighed against the overheads and the fact that the accelerator is only useful for

dot-product computations.

3.5.2 Mesh Network

The previous section evaluated adding an accelerator to a single tile from Figure 3.5a in isola-

tion, however, this tile is just one component in a much larger multi-tile system. In this section, the

design and performance of a simple mesh network to interconnect these tiles is briefly explored.

Functional Level Verifying tile behavior in the context of a multi-tile system can be greatly sim-

plified by starting with an FL network implementation. PyMTL’s concurrent-structural modeling

approach allows us to quickly write a port-based FL model of our mesh network (behaviorally

equivalent to a “magic” single-cycle crossbar) and connect it with FL, CL, or RTL tiles in or-

der to verify our tiles and to provide a platform for multi-tile software development. Figure 3.11

shows a full PyMTL implementation of an FL network. PyMTL does not force the user to use the

higher-level interface proxies utilized by the DotProductFL model; the NetworkFL model instead

manually sets signals to implement the latency-insensitive communication protocol (lines 30–38).

This provides users a fine granularity of control depending on preferences and modeling needs.

Cycle Level A CL mesh network emulating realistic network behavior is implemented to investi-

gate network performance characteristics. Figure 3.12 contains PyMTL code for a structural mesh

network. This model is designed to take a PyMTL router implementation as a parameter (line

2) and structurally compose instances of this router into a complete network (lines 16–37). This

approach is particularly powerful as it allows us to easily instantiate the network with either FL,

CL, or RTL router models to trade-off accuracy and simulation speed. Alternatively, it allows us to

quickly swap out routers with different microarchitectures for either verification or evaluation pur-

poses. To construct a simple CL network model, we use MeshNetworkStructural to construct

an 8x8 mesh network composed of routers using XY-dimension ordered routing and elastic-buffer

45

1 class NetworkFL(Model):
2 def __init__(s, nrouters, nmsgs, data_nbits, nentries):
3

4 # ensure nrouters is a perfect square
5 assert sqrt(nrouters) % 1 == 0
6

7 net_msg = NetMsg(nrouters, nmsgs, data_nbits)
8 s.in_ = InValRdyBundle [nrouters](net_msg)
9 s.out = OutValRdyBundle[nrouters](net_msg)

10

11 s.nentries = nentries
12 s.output_fifos = [deque() for x in range(nrouters)]
13

14 @s.tick_fl
15 def network_logic():
16

17 # dequeue logic
18 for i, outport in enumerate(s.out):
19 if outport.val and outport.rdy:
20 s.output_fifos[i].popleft()
21

22 # enqueue logic
23 for inport in s.in_:
24 if inport.val and inport.rdy:
25 dest = inport.msg.dest
26 msg = inport.msg[:]
27 s.output_fifos[dest].append(msg)
28

29 # set output signals
30 for i, fifo in enumerate(s.output_fifos):
31

32 is_full = len(fifo) == s.nentries
33 is_empty = len(fifo) == 0
34

35 s.out[i].val.next = not is_empty
36 s.in_[i].rdy.next = not is_full
37 if not is_empty:
38 s.out[i].msg.next = fifo[0]

Figure 3.11: PyMTL FL Mesh Network – Functional-level model emulates the functionality but
not the timing of a mesh network. This is behaviorally equivalent to an ideal crossbar. Resource
constraints exist only on the model interface: multiple packets can enter the same queue in a
single cycle, but only one packet may leave per cycle. Unlike the dot product FL model shown
in Figure 3.7, this FL model does not use interface proxies and instead manually handles the
signalling logic of the ValRdy protocol. The collections.deque class provided by the Python
standard library is used to greatly simplify the implementation of queuing logic.

46

1 class MeshNetworkStructural(Model):
2 def __init__(s, RouterType, nrouters, nmsgs, data_nbits, nentries):
3

4 # ensure nrouters is a perfect square
5 assert sqrt(nrouters) % 1 == 0
6

7 s.RouterType = RouterType
8 s.nrouters = nrouters
9 s.params = [nrouters, nmsgs, data_nbits, nentries]

10

11 net_msg = NetMsg(nrouters, nmsgs, data_nbits)
12 s.in_ = InValRdyBundle [nrouters](net_msg)
13 s.out = OutValRdyBundle[nrouters](net_msg)
14

15 # instantiate routers
16 R = s.RouterType
17 s.routers = [R(x, *s.params) for x in range(s.nrouters)]
18

19 # connect injection terminals
20 for i in xrange(s.nrouters):
21 s.connect(s.in_[i], s.routers[i].in_[R.TERM])
22 s.connect(s.out[i], s.routers[i].out[R.TERM])
23

24 # connect mesh routers
25 nrouters_1D = int(sqrt(s.nrouters))
26 for j in range(nrouters_1D):
27 for i in range(nrouters_1D):
28 idx = i + j * nrouters_1D
29 cur = s.routers[idx]
30 if i + 1 < nrouters_1D:
31 east = s.routers[idx + 1]
32 s.connect(cur.out[R.EAST], east.in_[R.WEST])
33 s.connect(cur.in_[R.EAST], east.out[R.WEST])
34 if j + 1 < nrouters_1D:
35 south = s.routers[idx + nrouters_1D]
36 s.connect(cur.out[R.SOUTH], south.in_[R.NORTH])
37 s.connect(cur.in_[R.SOUTH], south.out[R.NORTH])

Figure 3.12: PyMTL Structural Mesh Network – Structurally composed network parameterized
by network message type, network size, router buffering, and router type. Note that the router type
parameter takes a Model class as input, which could potentially be either a PyMTL FL, CL, or RTL
model depending on the desired simulation speed and accuracy characteristics. This demonstrates
the power of static elaboration for creating highly-parameterizable models and model generators.
This elaboration logic can use arbitrary Python while still remaining Verilog translatable as long as
the user-provided RouterType parameter is a translatable RTL model. The use of ValRdyBundles
significantly reduces structural connectivity complexity.

47

10 20 30 40

Injection Rate (%)

0

50

100

150

L
at

en
cy

 (
C

y
cl

es
)

Average Latency vs. Bandwidth

1M 2M 3M 4M

Offered Traffic

.5M

1.0M

1.5M

2.0M

A
cc

ep
te

d
 T

ra
ff

ic

10%

20%

30%

40% 50% 60%

Offered vs. Accepted Load

Figure 3.13: Performance of an 8x8 Mesh Network – Latency-bandwidth and offered-accepted
traffic performance for a 64-node, XY-dimension ordered mesh network with on-off flow control.
These plots, generated from simulations of a PyMTL cycle-level model, indicate saturation of the
network is reached shortly after an injection rate of approximately 30%.

flow control. Simulations of this model allows us to quickly generate the network performance

plots shown in Figure 3.13. These simulations estimate that the network has a zero-load latency of

13 cycles and saturates at an injection rate of 32%.

Register-Transfer Level Depending on our design goals, we may want to estimate area, energy,

and timing for a single router, the entire network in isolation, or the network with the tiles attached.

An RTL network can be created using the same top-level structural code as in Figure 3.12 by

simply passing in an RTL router implementation as a parameter. Structural code in PyMTL is

always Verilog translatable as long as all leaf modules are also Verilog translatable.

3.6 SimJIT: Closing the Performance-Productivity Gap

While the dynamic nature of Python greatly improves the expressiveness, productivity, and

flexibility of model code, it significantly degrades simulation performance when compared to a

statically compiled language like C++. We address this performance limitation by using a hybrid

just-in-time optimization approach. We combine SimJIT, a custom just-in-time specializer for

48

converting PyMTL models into optimized C++ code, with the PyPy meta-tracing JIT interpreter.

Below we discuss the design of SimJIT and evaluate its performance on CL and RTL models.

3.6.1 SimJIT Design

SimJIT consists of two distinct specializers: SimJIT-CL for specializing cycle-level PyMTL

models and SimJIT-RTL for specializing register-transfer-level PyMTL models. Figure 3.14 shows

the software architecture of the SimJIT-CL and SimJIT-RTL specializers. Currently, the designer

must manually invoke these specializers on their models, although future work could consider

adding support to automatically traverse the model hierarchy to find and specialize appropriate CL

and RTL models.

SimJIT-CL begins with an elaborated PyMTL model instance and uses Python’s reflection ca-

pabilities to inspect the model’s structural connectivity and concurrent logic blocks. We are able

to reuse several model optimization utilities from the previously described SimulationTool to

help in generating optimized C++ components. We also leverage the ast package provided by

the Python Standard Library to implement translation of concurrent logic blocks into C++ func-

tions. The translator produces both C++ source implementing the optimized model as well as a C

interface wrapper so that this C++ source may be accessed via CFFI, a fast foreign function inter-

face library for calling C code from Python. Once code generation is complete, it is automatically

compiled into a C shared library using LLVM, then imported into Python using an automatically

generated PyMTL wrapper. This process gives the library a port-based interface so that it appears

as a normal PyMTL model to the user.

Similar to SimJIT-CL, the SimJIT-RTL specializer takes an elaborated PyMTL model instance

and inspects it to begin the translation process. Unlike SimJIT-CL, SimJIT-RTL does not attempt

to perform any optimizations, rather it directly translates the design into equivalent synthesizable

Verilog HDL. This translated Verilog is passed to Verilator, an open-source tool for generating

optimized C++ simulators from Verilog source [ver13]. We combine the verilated C++ source

with a generated C interface wrapper, compile it into a C shared library, and once again wrap this

in a generated PyMTL model.

While both SimJIT-CL and SimJIT-RTL can generate fast C++ components that significantly

improve simulation time, the Python interface still has a considerable impact on simulation perfor-

mance. We leverage PyPy to optimize the Python simulation loop as well as the hot-paths between

49

PyMTL
CL Model
Instance

SimJIT-CL Tool

llvm/gcc Wrapper
Gen

CL C++
Source

Translation

Verilator

Wrapper
Gen

Verilog
Source

PyMTL
RTL Model

Instance
llvm/gccRTL C++

Source

C Interface
Source

C Interface
Source

C Shared
Library

C Shared
Library

SimJIT-RTL Tool

PyMTL
cffi Model
Instance

PyMTL
cffi Model
Instance

Translation

Figure 3.14: SimJIT Software Architecture – SimJIT consists of two specializers: one for CL
models and one for RTL models. Each specializer can automatically translate PyMTL models
into C++ and generate the appropriate wrappers to enable these C++ implementations to appear as
standard PyMTL models.

the Python and C++ call interface, significantly reducing the overhead of using Python compo-

nent wrappers. Compilation time of the specializer can also take a considerable amount of time,

especially for SimJIT-RTL. For this reason, PyMTL includes support for automatically caching

the results from translation for SimJIT-RTL. While not currently implemented, caching the results

from translation for SimJIT-CL should be relatively straight-forward. In the next two sections, we

examine the performance benefits of SimJIT and PyPy in greater detail, using the PyMTL models

discussed in Sections 3.5.1 and 3.5.2 as examples.

3.6.2 SimJIT Performance: Accelerator Tile

We construct 27 different tile models at varying levels of detail by composing FL, CL, and

RTL implementations of the processor (P), caches (C), and accelerator (A) for the compute tile

in Figure 3.5a. Each configuration is described as a tuple 〈P,C,A〉 where each entry is FL, CL,

or RTL. Each configuration is simulated in CPython with no optimizations and also simulated

again using both SimJIT and PyPy. For this experiment, a slightly more complicated dot product

50

1 2 3 4 5 6 7 8 9
Level of Detail

1
100

1
10

1
2

1
R

el
at

iv
e

Si
m

ul
at

or
 P

er
fo

rm
an

ce SimJIT+PyPy
CPython

Figure 3.15: Simulator Performance vs. Level of Detail – Simulator performance using CPython
and SimJIT+PyPy with the processor, memory, and accelerator modeled at various levels of ab-
straction. Results are normalized against the pure ISA simulator using PyPy. Level of detail (LOD)
is measured by allocating a score of one for FL, two for CL, and three for RTL and then summing
across the three models. For example, a FL processor composed with a CL memory system and
RTL accelerator would have an LOD of 1+2+3 = 6.

accelerator was used than the one described in Section 3.5.1. SimJIT+PyPy runs applied SimJIT-

RTL specialization to all RTL components in a model, whereas SimJIT-CL optimizations were

only applied to the caches due to limitations of our current proof-of-concept SimJIT-CL specializer.

Figure 3.15 shows the simulation performance of each run plotted against a “level of detail” (LOD)

score assigned to each configuration. LOD is calculated such that LOD = p+ c+ a where p, c,

and a have a value corresponding to the model complexity: FL = 1, CL = 2, RTL = 3. Note that

the LOD metric is not meant to be an exact measure of model accuracy but rather a high-level

approximation of overall model complexity. Performance is calculated as the execution time of

a configuration normalized against the execution time of a simple object-oriented instruction set

simulator implemented in Python and executed using PyPy. This instruction set simulator is given

an LOD score of 1 since it consists of only a single FL component, and it is plotted at coordinate

coordinate (1,1) in Figure 3.15.

A general downward trend is observed in relative simulation performance as LOD increases.

This is due to the greater computational effort required to simulate increasingly detailed models,

resulting in a corresponding increase in execution time. In particular, a significant drop in perfor-

mance can be seen between the simple instruction set simulator (LOD = 1) and the 〈FL,FL,FL〉

51

configuration (LOD = 3). This gap demonstrates the costs associated with modular modeling of

components, structural composition, and communication overheads incurred versus a monolithic

implementation with a tightly integrated memory and accelerator implementation. Occasionally, a

model with a high LOD will take less execution time than a model with low LOD. For CPython

data points this is largely due to more detailed models taking advantage of pipelining or parallelism

to reduce target execution cycles. For example, the FL model of the accelerator does not pipeline

memory operations and therefore executes many more target cycles than the CL implementation.

For SimJIT+PyPy data points the effectiveness of each specialization strategy and the complexity

of each component being specialized plays an equally significant role. FL components only ben-

efit from the optimizations provided by PyPy and in some cases may perform worse than CL or

RTL models which benefit from both SimJIT and PyPy, despite their greater LOD. Section 3.6.3

explores the performance characteristics of each specialization strategy in more detail.

Comparing the SimJIT+PyPy and CPython data points we can see that just-in-time special-

ization is able to significantly improve the execution time of each configuration, resulting in a

vertical shift that makes even the most detailed models competitive with the CPython versions of

simple models. Even better results could be expected if SimJIT-CL optimizations were applied

to CL processor and CL accelerator models as well. Of particular interest is the 〈RTL,RTL,RTL〉

configuration (LOD = 9) which demonstrates better simulation performance than many less de-

tailed configurations. This is because all subcomponents of the model can be optimized together

as a monolithic unit, further reducing the overhead of Python wrapping. More generally, Fig-

ure 3.15 demonstrates the impact of two distinct approaches to improving PyMTL performance:

(1) improvements that can be obtained automatically through specialization using SimJIT+PyPy,

and (2) improvements that can be obtained manually by tailoring simulation detail via multi-level

modeling.

3.6.3 SimJIT Performance: Mesh Network

We use the mesh network discussed in Section 3.5.2 to explore in greater detail the performance

impact and overheads associated with SimJIT and PyPy. A network makes a good model for this

purpose, since it allows us to flexibly configure size, injection rate, and simulation time to examine

SimJIT’s performance on models of varying complexity and under various loads. Figure 3.16

shows the impact of just-in-time specialization on 64-node FL, CL, and RTL mesh networks near

52

1K 10K 100K 1M 10M
Number of Cycles

1x

5x

10x
15x
25x

Sp
ee

du
p

(a) FL Network

CPython PyPy

1K 10K 100K 1M
Number of Cycles

1x

5x
10x

30x

75x
150x
300x

(b) CL Network

CPython PyPy C++
SimJIT-CL SimJIT-CL+PyPy

1K 10K 100K
Number of Cycles

1x

5x
10x

60x

200x

1000x
(c) RTL Network

CPython PyPy Verilator
SimJIT-RTL SimJIT-RTL+PyPy

Figure 3.16: SimJIT Mesh Network Perfor-
mance – Simulation of 64-node FL, CL, and
RTL mesh network models operating near sat-
uration. Dotted lines indicate total simulation-
time speedup including all compilation and
specialization overheads. Solid lines indi-
cate speedup ignoring alloverheads shown in
Figure 3.18. For CL and RTL models, the
solid lines closely approximate the speedup
seen with caching enabled. No SimJIT op-
timization exists for FL models, but PyPy is
able to provide good speedups. SimJIT+PyPy
brings CL/RTL execution time within 4×/6×
of C++/Verilator simulation, respectively.

saturation. All results are normalized to the performance of CPython. Dotted lines show speedup of

total simulation time while solid lines indicate speedup after subtracting the simulation overheads

shown in Figure 3.18. These overheads are discussed in detail later in this section. Note that the

dotted lines in Figure 3.16 are the real speedup observed when running a single experiment, while

the solid line is an approximation of the speedup observed when caching is available. Our SimJIT-

RTL caching implementation is able to remove the compilation and verilation overheads (shown

in Figure 3.18) so the solid line closely approximates the speedups seen when doing multiple

simulations of the same model instance.

53

The FL network plot in Figure 3.16(a) compares only PyPy versus CPython execution since

no embedded-specializer exists for FL models. PyPy demonstrates a speedup between 2–25×

depending on the length of the simulation. The bend in the solid line represents the warm-up time

associated with PyPy’s tracing JIT. After 10M target cycles the JIT has completely warmed-up

and almost entirely amortizes all JIT overheads. The only overhead included in the dotted line is

elaboration, which has a performance impact of less than a second.

The CL network plot in Figure 3.16(b) compares PyPy, SimJIT-CL, SimJIT-CL+PyPy, and a

hand-coded C++ implementation against CPython. The C++ implementation is implemented us-

ing an in-house concurrent-structural modeling framework in the same spirit as Liberty [VVP+06]

and Cascade [GTBS13]. It is designed to have cycle-exact simulation behavior with respect to

the PyMTL model and is driven with an identical traffic pattern. The pure C++ implementation

sees a speedup over CPython of up to 300× for a 10M-cycle simulation, but incurs a significant

overhead from compilation time (dotted line). While this overhead is less important when model

design has completed and long simulations are being performed for evaluation, this time signifi-

cantly impacts the code-test-debug loop of the programmer, particularly when changing a module

that forces a rebuild of many dependent components. An interpreted design language provides a

significant productivity boost in this respect as simulations of less than 1K target cycles (often used

for debugging) offer quicker turn around than a compiled language. For long runs of 10M target

cycles, PyPy is able to provide a 12× speedup over CPython, SimJIT a speedup of 30×, and the

combination of SimJIT and PyPy a speedup of 75×; this brings us within 4× of hand-coded C++.

The RTL network plot in Figure 3.16(c) compares PyPy, SimJIT-RTL, SimJIT-RTL+PyPy, and

a hand-coded Verilog implementation against CPython. For the Verilog network we use Verilator

to generate a C++ simulator, manually write a C++ test harness, and compile them together to

create a simulator binary. Again, the Verilog implementation has been verified to be cycle-exact

with our PyMTL implementation and is driven using an identical traffic pattern. Due to the detailed

nature of RTL simulation, Python sees an even greater performance degredation when compared to

C++. For the longest running configuration of 10M target cycles, C++ observes a 1200× speedup

over CPython. While this performance difference makes Python a non-starter for long running

simulations, achieving this performance comes at a significant compilation overhead: compiling

Verilator-generated C++ for the 64-node mesh network takes over 5 minutes using the relatively

fast -O1 optimization level of GCC. PyPy has trouble providing significant speedups over more

54

10 20 30 40 50 60
Injection Rate (%)

1x

5x
10x
20x

50x
100x
200x

Sp
ee

du
p

(a) SimJIT-CL

CPython SimJIT PyPy SimJIT + PyPy

10 20 30 40 50 60
Injection Rate (%)

1x

5x
10x
20x

50x
100x
200x

(b) SimJIT-RTL

Figure 3.17: SimJIT Performance vs. Load – Impact of injection rate on a 64-node network
simulation executing for 100K cycles. Heavier load results in longer execution times, enabling
overheads to be amortized more rapidly for a given number of simulated cycles as more time is
spent in optimized code.

complicated designs, and in this case only achieves a 6× improvement over CPython. SimJIT-

RTL provides a 63× speedup and combining SimJIT-RTL with PyPy provides a speedup of 200×,

bringing us within 6× of verilated hand-coded Verilog.

To explore how simulator activity impacts our SimJIT speedups, we vary the injection rate of

the 64-node mesh network simulations for both the CL and RTL models (see Figure 3.17). In

comparison to CPython, PyPy performance is relatively consistent across loads, while SimJIT-CL

and SimJIT-RTL see increased performance under greater load. SimJIT speedup ranges between

23–49× for SimJIT-CL+PyPy and 77–192× for SimJIT-RTL+PyPy. The curves of both plots

begin to flatten out at the network’s saturation point near an injection rate of 30%. This is due to the

increased amount of execution time being spent inside the network model during each simulation

tick meaning more time is spent in optimized C++ code for the SimJIT configurations.

The overheads incurred by SimJIT-RTL and SimJIT-CL increase with larger model sizes due

to the increased quantity of code that must be generated and compiled. Figure 3.18 shows these

overheads for 4×4 and 8×8 mesh networks. These overheads are relatively modest for SimJIT-

RTL at under 5 and 20 seconds for the 16- and 64-node meshes, respectively. The use of PyPy

55

16 +PyPy 64 +PyPy
0

5

10

15

20
Se

co
nd

s
(a) SimJIT-CL

16 +PyPy 64 +PyPy
0

50

100

150

200

250
(b) SimJIT-RTL

elaboration
code generation

verilation
compilation

wrapping
sim creation

configuration elaboration code verilation compilation python simulator total
generation wrapping creation overhead

CL 16 CPython .02 .35 - 2.98 .11 .01 3.47
PyPy .04 1.64 - 2.99 .25 .01 4.92

64 CPython .08 1.69 - 14.51 .22 .02 16.52
PyPy .21 4.17 - 14.58 .60 .06 19.61

RTL 16 CPython .41 .87 4.75 22.57 .13 .05 28.77
PyPy 1.10 2.95 4.78 22.88 .28 .11 32.07

64 CPython 1.84 3.48 20.09 230.42 .25 .67 256.75
PyPy 3.58 7.12 20.20 228.57 .80 .66 260.93

Figure 3.18: SimJIT Overheads – Elaboration, code generation, verilation, compilation, Python
wrapping (wrapping), and sim creation all contribute overhead to run-time construction of special-
izers. Compile time has the largest impact for both SimJIT-RTL and SimJIT-CL. Verilation, which
is not present in SimJIT-CL, has a significant impact for SimJIT-RTL, especially for larger models.

slightly increases the overhead of SimJIT. This is because SimJIT’s elaboration, code generation,

wrapping, and simulator creation phases are all too short to amortize PyPy’s tracing JIT overhead.

However, this slowdown is negligible compared to the significant speedups PyPy provides during

simulation. SimJIT-RTL has an additional verilation phase, as well as significantly higher compi-

lation times: 22 seconds for a 16-node mesh and 230 seconds for a 64-node mesh. Fortunately, the

overheads for verilation, compilation, and wrapping can be converted into a one-time cost using

SimJIT-RTL’s simple caching scheme.

56

3.7 Related Work

A number of previous projects have proposed using Python for hardware design. Stratus,

PHDL, and PyHDL generate HDL from parameterized structural descriptions in Python by us-

ing provided library blocks, but do not provide simulation capabilities or support for FL or CL

modeling [BDM+07, Mas07, HMLT03]. MyHDL uses Python as a hardware description language

that can be simulated in a Python interpreter or translated to Verilog and VHDL [Dec04,VJB+11].

SysPy is a tool intended to aid processor-centric SoC designs targeting FPGAs that integrates with

existing IP and user-provided C source source [LM10]. PDSDL, enables behavioral and struc-

tural description of RTL models that can be simulated within a Python-based kernel, as well as

translated into HDL. PDSDL was used in the construction of Trilobyte, a framework for refining

behavioral processor descriptions into HDL [ZTC08, ZHCT09]. Other than PDSDL, the above

frameworks focus primarily on structural or RTL hardware descriptions and do not address higher

level modeling. In addition, none attempt to address the performance limitations inherent to using

Python for simulation.

Hardware generation languages help address the need for rapid design-space exploration and

collection of area, energy, and timing metrics by making RTL design more productive. Genesis2

combined SystemVerilog with Perl scripts to create highly parameterizable hardware designs for

the creation of chip generators [SWD+12, SAW+10]. Chisel is an HDL implemented as an EDSL

within Scala. Hardware descriptions in Chisel are translated into to either Verilog HDL or C++

simulations. There is no Scala simulation of hardware descriptions [BVR+12]. BlueSpec is an

HGL built on SystemVerilog that describes hardware using guarded atomic actions [Nik04,HA03].

A number of other simulation frameworks have applied a concurrent-structural modeling ap-

proach to cycle-level simulation. The Liberty Simulation Environment argued that concurrent-

structural modeling greatly improved understanding and reuse of components, but provided no

HDL integration or generation [VVP+02, VVA04, VVP+06]. Cascade is a concurrent-structural

simulation framework used in the design and verification of the Anton supercomputers. Cascade

provides tight integration with an RTL flow by enabling embedding of Cascade models within Ver-

ilog test harnesses as well as Verilog components within Cascade models [GTBS13]. SystemC also

leverages a concurrent-structural design methodology that was originally intended to provide an

integrated framework for multiple levels of modeling and refinement to implementation, including

57

a synthesizable language subset. Unfortunately, most of these thrusts did not see wide adoption

and SystemC is currently used primarily for the purposes of virtual system prototyping and high

level synthesis [Pan01, sys14].

While significant prior work has explored generation of optimized simulators including work

by Penry et al. [PA03, PFH+06, Pen06], to our knowledge there has been no previous work on

using just-in-time compilation to speed up CL and RTL simulations using dynamically-typed lan-

guages. SEJITS proposed just-in-time specialization of high-level algorithm descriptions written

in dynamic languages into optimized, platform-specific multicore or CUDA source [CKL+09]. JIT

techniques have also been previously leveraged to accelerate instruction set simulators (ISS) [May87,

CK94, WR96, MZ04, TJ07, WGFT13]. The GEZEL environment combines a custom interpreted

DSL for coprocessor design with existing ISS, supporting both translation into synthesizable VHDL

and simulation-time conversion into C++ [SCV06]. Unlike PyMTL, GEZEL is not a general-

purpose language and only supports C++ translation of RTL models; PyMTL supports JIT special-

ization of CL and RTL models.

3.8 Conclusion

This chapter has presented PyMTL, a unified, vertically integrated framework for FL, CL, and

RTL modeling. Small case studies were used to illustrate how PyMTL can close the computer

architecture methodology gap by enabling productive construction of composable FL, CL, and

RTL models using concurrent-structural and latency-insensitive design. While these small exam-

ples demonstrated some of the power of PyMTL, PyMTL is just a first step towards enabling rapid

design-space exploration and construction of flexible hardware templates to amortize design effort.

In addition, a hybrid approach to just-in-time optimization was proposed to close the performance

gap introduced by using Python for hardware modeling. SimJIT, a custom JIT specializer for

CL and RTL models, was combined with the PyPy meta-tracing JIT interpreter to bring PyMTL

simulation of a mesh network within 4×–6× of optimized C++ code.

A key contribution of this work is the idea that combining embedded-DSLs with JIT specializ-

ers can be used to construct a productive, vertically integrated hardware design methodology. The

ultimate goal of this approach is to achieve the benefits of both efficiency-level language produc-

tivity for hardware design and productivity-level language performance for efficient simulation.

58

While prior work on SEJITS has proposed similar techniques for improving the productivity of

working with domain-specific algorithms, such as stencil and graphs computations, PyMTL has

demonstrated this approach can be applied in a much more general manner for designing hardware

at multiple levels of abstraction. The PyMTL framework has also shown that such an approach is

a promising technique for the construction of future hardware design tools.

59

CHAPTER 4
PYDGIN: FAST INSTRUCTION SET SIMULATORS FROM

SIMPLE SPECIFICATIONS
In the previous chapter, the use of SimJIT was able to significantly improve the simulation

performance of PyMTL cycle-level (CL) and register-transfer-level (RTL) models. Constructing a

similar SimJIT for functional-level (FL) models is a much more challenging problem because these

models generally contain arbitrary Python and frequently take advantage of powerful language

features needed to quickly and concisely implement complex algorithms. For many FL models

the PyPy interpreter can provide sufficient speedups due to its general-purpose tracing-JIT; for

example, PyPy was able to provide up to a 25× improvement in simulation performance for the

FL network in Figure 3.16. However, instruction set simulators (ISSs) are a particularly important

class of FL model that have a critical need for high performance simulation. This performance is

needed to enable the execution of large binary executables for application development, but PyPy

alone cannot achieve the performance fidelity needed to implement a practicable ISS.

This chapter describes Pydgin: a framework that generates fast instruction set simulators with

dynamic binary translation (DBT) from a simple, Python-based, embedded architectural descrip-

tion language (ADL). Background information on the RPython translation toolchain is provided;

this toolchain is a framework for implementing dynamic language interpreters with meta-tracing

JITs that is adapted by Pydgin for use in creating fast ISSs. Pydgin’s Python-based, embedded-

ADL is described and compared to ADLs used in other ISS-generation frameworks. ISS-specific

JIT annotations added to Pydgin are described and their performance impact is analyzed. Finally,

three ISSs constructed using Pydgin are benchmarked and evaluated.

4.1 Introduction

Recent challenges in CMOS technology scaling have motivated an increasingly fluid bound-

ary between hardware and software. Examples include new instructions for managing fine-grain

parallelism, new programmable data-parallel engines, programmable accelerators based on recon-

figurable coarse-grain arrays, domain-specific co-processors, and a rising demand for application-

specific instruction set processors (ASIPs). This trend towards heterogeneous hardware/software

abstractions combined with complex design targets is placing increasing importance on highly

productive and high-performance instruction set simulators (ISSs).

60

Unfortunately, meeting the multitude of design requirements for a modern ISS (observability,

retargetability, extensibility, and support for self-modifying code) while also providing produc-

tivity and high performance has led to considerable ISS design complexity. Highly productive

ISSs have adopted architecture description languages (ADLs) as a means to enable abstract spec-

ification of instruction semantics and simplify the addition of new instruction set features. The

ADLs in these frameworks are domain specific languages constructed to be sufficiently expres-

sive for describing traditional architectures, yet restrictive enough for efficient simulation (e.g.,

ArchC [RABA04, ARB+05], LISA [vPM96, PHM00], LIS [Pen11], MADL [QRM04, QM05],

SimIt-ARM ADL [DQ06,QDZ06]). In addition, high-performance ISSs use dynamic binary trans-

lation (DBT) to discover frequently executed blocks of target instructions and convert these blocks

into optimized sequences of host instructions. DBT-ISSs often require a deep understanding of the

target instruction set in order to enable fast and efficient translation. However, promising recent

work has demonstrated sophisticated frameworks that can automatically generate DBT-ISSs from

ADLs [PC11, WGFT13, QM03b].

Meanwhile, designers working on interpreters for general-purpose dynamic programming lan-

guages (e.g., Javascript, Python, Ruby, Lua, Scheme) face similar challenges balancing produc-

tivity of interpreter developers with performance of the interpreter itself. The highest perfor-

mance interpreters use just-in-time (JIT) trace- or method-based compilation techniques. As the

sophistication of these techniques have grown so has the complexity of interpreter codebases.

For example, the WebKit Javascript engine currently consists of four distinct tiers of JIT com-

pilers, each designed to provide greater amounts of optimization for frequently visited code re-

gions [Piz14]. In light of these challenges, one promising approach introduced by the PyPy project

uses meta-tracing to greatly simplify the design of high-performance interpreters for dynamic lan-

guages. PyPy’s meta-tracing toolchain takes traditional interpreters implemented in RPython, a

restricted subset of Python, and automatically translates them into optimized, tracing-JIT com-

pilers [BCF+11, BCFR09, AACM07, pyp11, Pet08]. The RPython translation toolchain has been

previously used to rapidly develop high-performance JIT-enabled interpreters for a variety of dif-

ferent languages [BLS10, BKL+08, BPSTH14, Tra05, Tho13, top15, hip15]. A key observation is

that similarities between ISSs and interpreters for dynamic programming languages suggest that

the RPython translation toolchain might enable similar productivity and performance benefits when

applied to instruction set simulator design.

61

This chapter introduces Pydgin1, a new approach to ISS design that combines an embedded-

ADL with automatically-generated meta-tracing JIT interpreters to close the productivity-performance

gap for future ISA design. The Pydgin library provides an embedded-ADL within RPython for

succinctly describing instruction semantics, and also provides a modular instruction set interpreter

that leverages these user-defined instruction definitions. In addition to mapping closely to the

pseudocode-like syntax of ISA manuals, Pydgin instruction descriptions are fully executable within

the Python interpreter for rapid code-test-debug during ISA development. The RPython transla-

tion toolchain is adapted to take Pydgin ADL descriptions as input, and automatically convert them

into high-performance DBT-ISSs. Building the Pydgin framework required approximately three

person-months worth of work, but implementing two different instruction sets (a simple MIPS-

based instruction set and a more sophisticated ARMv5 instruction set) took just a few weeks and

resulted in ISSs capable of executing many of the SPEC CINT2006 benchmarks at hundreds of mil-

lions of instructions per second. More recently, a third ISS implementation for the 64-bit RISC-V

ISA was also created using Pydgin. This ISS implemented the entirety of the M, A, F, and D

extensions of the RISC-V ISA and yet was completed in under two weeks, further affirming the

productivity of constructing instruction set simulators in Pydgin.

4.2 The RPython Translation Toolchain

The increase in popularity of dynamic programming languages has resulted in a significant in-

terest in high-performance interpreter design. Perhaps the most notable examples include the nu-

merous JIT-optimizing JavaScript interpreters present in modern browsers today. Another example

is PyPy, a JIT-optimizing interpreter for the Python programming language. PyPy uses JIT com-

pilation to improve the performance of hot loops, often resulting in considerable speedups over

the reference Python interpreter, CPython. The PyPy project has created a unique development

approach that utilizes the RPython translation toolchain to abstract the process of language inter-

preter design from low-level implementation details and performance optimizations. The RPython

translation toolchain enables developers to describe an interpreter in a restricted subset of Python

(called RPython) and then automatically translate this RPython interpreter implementation into
1Pydgin loosely stands for [Py]thon [D]SL for [G]enerating [In]struction set simulators and is pronounced the same

as “pigeon”. The name is inspired by the word “pidgin” which is a grammatically simplified form of language and
captures the intent of the Pydgin embedded-ADL.

62

a C executable. With the addition of a few basic annotations, the RPython translation toolchain

can also automatically insert a tracing-JIT compiler into the generated C-based interpreter. In this

section, we briefly describe the RPython translation toolchain, which we leverage as the founda-

tion for the Pydgin framework. More detailed information about RPython and the PyPy project in

general can be found in [Bol12, BCF+11, BCFR09, AACM07, pyp11, Pet08].

Python is a dynamically typed language with typed objects but untyped variable names. RPython

is a carefully chosen subset of Python that enables static type inference such that the type of both

objects and variable names can be determined at translation time. Even though RPython sacrifices

some of Python’s dynamic features (e.g., duck typing, monkey patching) it still maintains many

of the features that make Python productive (e.g., simple syntax, automatic memory management,

large standard library). In addition, RPython supports powerful meta-programming allowing full-

featured Python code to be used to generate RPython code at translation time.

Figure 4.1 shows a simple bytecode interpreter and illustrates how interpreters written in RPython

can be significantly simpler than a comparable interpreter written in C (example adapted from [BCFR09]).

The example is valid RPython because the type of all variables can be determined at translation

time (e.g., regs, acc, and pc are always of type int; bytecode is always of type str). Fig-

ure 4.2(a) shows the RPython translation toolchain. The elaboration phase can use full-featured

Python code to generate RPython source as long as the interpreter loop only contains valid RPython

prior to starting the next phase of translation. The type inference phase uses various algorithms

to determine high-level type information about each variable (e.g., integers, real numbers, user-

defined types) before lowering this type information into an annotated intermediate representation

(IR) with specific C datatypes (e.g., int, long, double, struct). The back-end optimization

phase leverages standard optimization passes to inline functions, remove unnecessary dynamic

memory allocation, implement exceptions efficiently, and manage garbage collection. The code

generation phase translates the optimized IR into C source code, before the compilation phase

generates the C-based interpreter.

The RPython translation toolchain also includes support for automatically generating a trac-

ing JIT compiler to complement the generated C-based interpreter. To achieve this, the RPython

toolchain uses a novel meta-tracing approach where the JIT compiler does not directly trace the

bytecode but instead traces the interpreter interpreting the bytecode. While this may initially seem

counter-intuitive, meta-tracing JIT compilers are the key to improving productivity and perfor-

63

jd = JitDriver(greens = [’bytecode’, ’pc’],
reds = [’regs’, ’acc’])

def interpreter(bytecode):
regs = [0]*256 # vm state: 256 registers
acc = 0 # vm state: accumulator
pc = 0 # vm state: program counter

while True:
jd.jit_merge_point(bytecode, pc, regs, acc)
opcode = ord(bytecode[pc])
pc += 1

if opcode == JUMP_IF_ACC:
target = ord(bytecode[pc])
pc += 1
if acc:

if target < pc:
jd.can_enter_jit(bytecode, pc, regs, acc)

pc = target

elif opcode == MOV_ACC_TO_REG:
rs = ord(bytecode[pc])
regs[rs] = acc
pc += 1

... handle remaining opcodes ...

Figure 4.1: Simple Bytecode Interpreter Written in RPython – bytecode is string of bytes
encoding instructions that operate on 256 registers and an accumulator. RPython enables suc-
cinct interpreter descriptions that can still be automatically translated into C code. Basic anno-
tations (shown in blue) enable automatically generating a meta-tracing JIT compiler. Adapted
from [BCFR09].

mance. This approach decouples the design of the interpreter, which can be written in a high-level

dynamic language such as RPython, from the complexity involved in implementing a tracing JIT

compiler for that interpreter. A direct consequence of this separation of concerns is that interpreters

for different languages can all leverage the exact same JIT compilation framework as long as these

interpreters make careful use of meta-tracing annotations.

Figure 4.1 highlights the most basic meta-tracing annotations required to automatically gen-

erate reasonable JIT compilers. The JitDriver object instantiated on lines 1–2 informs the

JIT of which variables identify the interpreter’s position within the target application’s bytecode

(greens), and which variables are not part of the position key (reds). The can_enter_jit an-

notation on line 19 tells the JIT where an application-level loop (i.e., a loop in the actual bytecode

application) begins; it is used to indicate backwards-branch bytecodes. The jit_merge_point

64

Python Source

RPython Source

Type Inference

Back-End Opt

Code Gen

Compilation

RPython Source

Annotated IR

Optimized IR

C Source

JIT Generator

jitcodes

Compiled Interpreter

Meta-Tracing
until can_enter_jit

JIT Optimizer

JIT IR

Assembler

Opt JIT IR

Interpreter
until can_enter_jit

bytecode

jitcode

Native Execution

Assembly

G
ua

rd
 F

ai
li

ur
e

(b) Meta-Tracing JIT Compiler

JIT
Runtime

(a) Static Translation Toolchain

Elaboration

Figure 4.2: RPython Translation Toolchain – (a) the static translation toolchain converts an
RPython interpreter into C code along with a generated JIT compiler; (b) the meta-tracing JIT
compiler traces the interpreter (not the application) to eventually generate optimized assembly for
native execution.

annotation on line 10 tells the JIT where it is safe to move from the JIT back into the interpreter;

it is used to identify the top of the interpreter’s dispatch loop. As shown in Figure 4.2(a), the

JIT generator replaces the can_enter_jit hints with calls into the JIT runtime and then serial-

izes the annotated IR for all code regions between the meta-tracing annotations. These serialized

IR representations are called “jitcodes” and are integrated along with the JIT runtime into the C-

based interpreter. Figure 4.2(b) illustrates how the meta-tracing JIT compiler operates at runtime.

When the C-based interpreter reaches a can_enter_jit hint, it begins using the corresponding

jitcode to build a meta-trace of the interpreter interpreting the bytecode application. When the

same can_enter_jit hint is reached again, the JIT increments an internal per-loop counter. Once

this counter exceeds a threshold, the collected trace is handed off to a JIT optimizer and assem-

bler before initiating native execution. The meta-traces include guards that ensure the dynamic

65

isa.py

sim.py

./pydgin-isa-jit elf

Application
Output & Statistics

ELF Application
Binary

./pydgin-isa-nojit elf

pypy sim.py elf

python sim.py elf

(a) CPython Interpreter

(c) Pydgin ISS Executable

(b) PyPy Interpreter

(d) Pydgin DBT-ISS Executable

(Pydgin ADL)

(RPython)

RPython
Translation
Toolchain

Figure 4.3: Pydgin Simulation – Pydgin ISA descriptions are imported by the Pydgin simu-
lation driver which defines the top-level interpreter loop. The resulting Pydgin ISS can be ex-
ecuted directly using (a) the reference CPython interpreter or (b) the higher-performance PyPy
JIT-optimizing interpreter. Alternatively, the interpreter loop can be passed to the RPython trans-
lation toolchain to generate a C-based executable implementing (c) an interpretive ISS or (d) a
DBT-ISS.

conditions under which the meta-trace was optimized still hold (e.g., the types of application-level

variables remain constant). If at any time a guard fails or if the optimized loop is finished, then the

JIT returns control back to the C-based interpreter at a jit_merge_point.

Figure 4.3 illustrates how the RPython translation toolchain is leveraged by the Pydgin frame-

work. Once an ISA has been specified using the Pydgin embedded-ADL (described in Section 4.3)

it is combined with the Pydgin simulation driver, which provides a modular, pre-defined inter-

preter implementation, to create an executable Pydgin instruction set simulator. Each Pydgin ISS

is valid RPython that can be executed in a number of ways. The most straightforward execution

is direct interpretation using CPython or PyPy. Although interpreted execution provides poor sim-

ulation performance, it serves as a particularly useful debugging platform during early stages of

ISA development and testing. Alternatively, the Pydgin ISS can be passed as input to the RPython

66

1 class State(object):
2 _virtualizable_ = ['pc', 'ncycles']
3 def __init__(self, memory, debug, reset_addr=0x400):
4 self.pc = reset_addr
5 self.rf = ArmRegisterFile(self, num_regs=16)
6 self.mem = memory
7

8 self.rf[15] = reset_addr
9

10 # current program status register (CPSR)
11 self.N = 0b0 # Negative condition
12 self.Z = 0b0 # Zero condition
13 self.C = 0b0 # Carry condition
14 self.V = 0b0 # Overflow condition
15

16 # simulator/stats info, not architecturally visible
17 self.status = 0
18 self.ncycles = 0
19

20 def fetch_pc(self):
21 return self.pc

Figure 4.4: Simplified ARMv5 Architectural State Description

translation toolchain in order to generate a compiled executable implementing either an interpretive

ISS or a high-performance DBT-ISS (described in Section 4.4).

4.3 The Pydgin Embedded-ADL

To evaluate the capabilities of the Pydgin framework, Pydgin was used to implement instruc-

tion set simulators for three ISAs: a simplified version of MIPS32 called SMIPS, a subset of the

ARMv5 ISA, and the 64-bit RISC-V ISA. This process involves using the Pydgin embedded-ADL

to describe the architectural state, instruction encoding, and instruction semantics of each ISA. No

special parser is needed to generate simulators from Pydgin ISA definitions, and in fact these def-

initions can be executed directly using a standard Python interpreter. In this section, we describe

the various components of the Pydgin embedded-ADL using the ARMv5 ISA as an example.

4.3.1 Architectural State

Architectural state in Pydgin is implemented using Python classes. Figure 4.4 shows a sim-

plified version of this state for the ARMv5 ISA. Library components provided by the Pydgin

67

1 encodings = [
2 ['nop', '00000000000000000000000000000000'],
3 ['mul', 'xxxx0000000xxxxxxxxxxxxx1001xxxx'],
4 ['umull', 'xxxx0000100xxxxxxxxxxxxx1001xxxx'],
5 ['adc', 'xxxx00x0101xxxxxxxxxxxxxxxxxxxxx'],
6 ['add', 'xxxx00x0100xxxxxxxxxxxxxxxxxxxxx'],
7 ['and', 'xxxx00x0000xxxxxxxxxxxxxxxxxxxxx'],
8 ['b', 'xxxx1010xxxxxxxxxxxxxxxxxxxxxxxx'],
9 ...

10 ['teq', 'xxxx00x10011xxxxxxxxxxxxxxxxxxxx'],
11 ['tst', 'xxxx00x10001xxxxxxxxxxxxxxxxxxxx'],
12]

Figure 4.5: Partial ARMv5 Instruction Encoding Table

embedded-ADL such as RegisterFile and Memory classes can be used as provided or subclassed

to suit the specific needs of a particular architecture. For example, the ArmRegisterFile on line 5

subclasses the RegisterFile component (not shown) and specializes it for the unique idiosyn-

crasies of the ARM architecture: within instruction semantic definitions register 15 must update

the current PC when written but return PC+8 when read. The fetch_pc accessor on line 20 is

used to retrieve the current instruction address, which is needed for both instruction fetch and

incrementing the PC in instruction semantic definitions (discussed in Section 4.3.3). Users may

also implement their own data structures, however, these data structures must conform to the re-

strictions imposed by the RPython translation toolchain. The class member _virtualizable_ is

an optional JIT annotation used by the RPython translation toolchain. We discuss this and other

advanced JIT annotations in more detail in Section 4.4.

4.3.2 Instruction Encoding

Pydgin maintains encodings of all instructions in a centralized data structure for easy mainte-

nance and quick lookup. A partial encoding table for the ARMv5 instruction set can be seen in

Figure 4.5. While some ADLs keep this encoding information associated with the each instruc-

tion’s semantic definition (e.g., SimIt-ARM’s definitions in Figure 4.8), we have found that this

distributed organization makes it more difficult to quickly assess available encodings for introduc-

ing ISA extensions. However, ISA designers preferring this distributed organization can easily

implement it using Python decorators to annotate instruction definitions with their encoding. This

illustrates the power of using an embedded-ADL where arbitrary Python code can be used for

68

metaprogramming. Encodings and instruction names provided in the instruction encoding table

are used by Pydgin to automatically generate decoders for the simulator. Unlike some ADLs, Pyd-

gin does not require the user to explicitly specify instruction types or mask bits for field matching

because Pydgin can automatically infer field locations from the encoding table.

4.3.3 Instruction Semantics

Pydgin instruction semantic definitions are implemented using normal Python functions with

the special signature execute_<inst_name> (s,inst). The function parameters s and inst re-

fer to the architectural state and the instruction bits, respectively. An example of a Pydgin instruc-

tion definition is shown for the ARMv5 ADD instruction in Figure 4.6. Pydgin allows users to create

helper functions that refactor complex operations common across many instruction definitions. For

example, condition_passed on line 2 performs predication checks, while shifter_operand on

line 4 encapsulates ARMv5’s complex rules for computing the secondary operand b and computes

a special carry out condition needed by some instructions (stored in cout). This encapsulation

provides the secondary benefit of helping Pydgin definitions better match the instruction seman-

tics described in ISA manuals. Note that the Pydgin definition for ADD is a fairly close match

to the instruction specification pseudocode provided in the official ARM ISA manual, shown in

Figure 4.7.

Figure 4.8 shows another description of the ADD instruction in the SimIt-ARM ADL, a custom,

lightweight ADL used by the open-source SimIt-ARM simulator to generate both interpretive and

DBT ISSs [DQ06]. In comparison to the SimIt-ARM ADL, Pydgin is slightly less concise as a

consequence of using an embedded-ADL rather than implementing a custom parser. The SimIt-

ARM description implements ADD as four separate instructions in order to account for the S and I

instruction bits. These bits determine whether condition flags are updated and if a rotate immediate

addressing mode should be used, respectively. This multi-instruction approach is presumably done

for performance reasons as splitting the ADD definition into separate instructions results in simpler

decode and less branching behavior during simulation. However, this approach incurs additional

overhead in terms of clarity and maintainability. Pydgin largely avoids the need for these optimiza-

tions thanks to its meta-tracing JIT compiler that can effectively optimize away branching behavior

for hot paths. This works particularly well for decoding instruction fields such as the ARM condi-

tional bits and the S and I flags: for non-self modifying code an instruction at a particular PC will

69

1 def execute_add(s, inst):
2 if condition_passed(s, inst.cond()):
3 a = s.rf[inst.rn()]
4 b, cout = shifter_operand(s, inst)
5

6 result = a + b
7 s.rf[inst.rd()] = trim_32(result)
8

9 if inst.S():
10 if inst.rd() == 15:
11 raise Exception('Writing SPSR not implemented!')
12 s.N = (result >> 31)&1
13 s.Z = trim_32(result) == 0
14 s.C = carry_from(result)
15 s.V = overflow_from_add(a, b, result)
16

17 if inst.rd() == 15:
18 return
19

20 s.rf[PC] = s.fetch_pc() + 4

Figure 4.6: ADD Instruction Semantics: Pydgin

1 if ConditionPassed(cond) then
2 Rd = Rn + shifter_operand
3 if S == 1 and Rd == R15 then
4 if CurrentModeHasSPSR() then CPSR = SPSR
5 else UNPREDICTABLE else if S == 1 then
6 N Flag = Rd[31]
7 Z Flag = if Rd == 0 then 1 else 0
8 C Flag = CarryFrom(Rn + shifter_operand)
9 V Flag = OverflowFrom(Rn + shifter_operand)

Figure 4.7: ADD Instruction Semantics: ARM ISA Manual

always have the same instruction bits, enabling the JIT to completely optimize away this complex

decode overhead.

An ArchC description of the ADD instruction can be seen in Figure 4.9. Note that some debug

code has been removed for the sake of brevity. ArchC is an open-source, SystemC-based ADL

popular in system-on-chip toolflows [RABA04,ARB+05]. ArchC has considerably more syntactic

overhead than both the SimIt-ARM ADL and Pydgin embedded-ADL. Much of this syntactic

overhead is due to ArchC’s C++-style description which requires explicit declaration of complex

templated types. One significant advantage ArchC’s C++-based syntax has over SimIt-ARM’s

ADL is that it is compatible with existing C++ development tools. Pydgin benefits from RPython’s

70

1 op add(----00001000:rn:rd:shifts) {
2 execute="
3 WRITE_REG(rd, READ_REG(rn) + $shifts$);
4 "
5 }
6

7 op adds(----00001001:rn:rd:shifts) {
8 execute="
9 tmp32 = $shifts$; val32 = READ_REG(rn);

10 rslt32 = val32 + tmp32;
11 if (rd==15) WRITE_CPSR(SPSR);
12 else ASGN_NZCV(rslt32, rslt32<val32,
13 (val32^tmp32^-1) & (val32^rslt32));
14 WRITE_REG(rd, rslt32);
15 "
16 }
17

18 op addi(----00101000:rn:rd:rotate_imm32) {
19 execute="
20 WRITE_REG(rd, READ_REG(rn) + $rotate_imm32$);
21 "
22 }
23

24 op addis(----00101001:rn:rd:rotate_imm32) {
25 execute="
26 tmp32 = $rotate_imm32$; val32 = READ_REG(rn);
27 rslt32 = val32 + tmp32;
28 if (rd==15) WRITE_CPSR(SPSR);
29 else ASGN_NZCV(rslt32, rslt32<val32,
30 (val32^tmp32^-1) & (val32^rslt32));
31 WRITE_REG(rd, rslt32);
32 "
33 }

Figure 4.8: ADD Instruction Semantics: SimIt-ARM

dynamic typing to produce a comparatively cleaner syntax while also providing compatibility with

Python development tools.

4.3.4 Benefits of an Embedded-ADL

While the dynamic nature of Python enables Pydgin to provide relatively concise, pseudo-

code-like syntax for describing instructions, it could be made even more concise by implementing

a DSL which uses a custom parser. From our experience, embedded-ADLs provide a number of

advantages over a custom DSL approach: increased language familiarity and a gentler learning

curve for new users; access to better development tools and debugging facilities; and easier main-

71

1 inline void ADD(arm_isa* ref, int rd, int rn, bool s,
2 ac_regbank<31, arm_parms::ac_word,
3 arm_parms::ac_Dword>& RB,
4 ac_reg<unsigned>& ac_pc) {
5

6 arm_isa::reg_t RD2, RN2;
7 arm_isa::r64bit_t soma;
8

9 RN2.entire = RB_read(rn);
10 if(rn == PC) RN2.entire += 4;
11 soma.hilo = (uint64_t)(uint32_t)RN2.entire +
12 (uint64_t)(uint32_t)ref->dpi_shiftop.entire;
13 RD2.entire = soma.reg[0];
14 RB_write(rd, RD2.entire);
15 if ((s == 1)&&(rd == PC)) {
16 #ifndef FORGIVE_UNPREDICTABLE
17 ...
18 ref->SPSRtoCPSR();
19 #endif
20 } else {
21 if (s == 1) {
22 ref->flags.N = getBit(RD2.entire,31);
23 ref->flags.Z = ((RD2.entire==0) ? true : false);
24 ref->flags.C = ((soma.reg[1]!=0) ? true : false);
25 ref->flags.V = (((getBit(RN2.entire,31)
26 && getBit(ref->dpi_shiftop.entire,31)
27 && (!getBit(RD2.entire,31)))
28 || ((!getBit(RN2.entire,31))
29 && (!getBit(ref->dpi_shiftop.entire,31))
30 && getBit(RD2.entire,31))) ? true : false);
31 }
32 }
33 ac_pc = RB_read(PC);
34 }

Figure 4.9: ADD Instruction Semantics: ArchC

tenance and extension by avoiding a custom parser. Additionally, we have found that the ability

to directly execute Pydgin ADL descriptions in a standard Python interpreter such as CPython or

PyPy significantly helps debugging and testing during initial ISA exploration.

4.4 Pydgin JIT Generation and Optimizations

It is not immediately obvious that a JIT framework designed for general-purpose dynamic

languages will be suitable for constructing fast instruction set simulators. In fact, a DBT-ISS

generated by the RPython translation toolchain using only the basic JIT annotations shown in

72

Figure 4.10 provides good but not exceptional performance. This is because the JIT must often

use worst-case assumptions about interpreter behavior. For example, the JIT must assume that

functions might have side effects, variables are not constants, loop bounds might change, and

object fields should be stored in memory. These worst-case assumptions reduce opportunities for

JIT optimization and thus reduce the overall JIT performance.

Existing work on the RPython translation toolchain has demonstrated the key to improving

JIT performance is the careful insertion of advanced annotations that provide the JIT high-level

hints about interpreter behavior [BCFR09, BCF+11]. We use a similar technique by adding anno-

tations to the Pydgin framework specifically chosen to provide ISS-specific hints. Most of these

advanced JIT annotations are completely self-contained within the Pydgin framework itself. An-

notations encapsulated in this way can be leveraged across any instruction set specified using the

Pydgin embedded-ADL without any manual customization of instruction semantics by the user.

Figure 4.10 shows a simplified version of the Pydgin interpreter with several of these advanced JIT

annotations highlighted.

We use several applications from SPEC CINT2006 compiled for the ARMv5 ISA to demon-

strate the impact of six advanced JIT annotations key to producing high-performance DBT-ISSs

with the RPython translation toolchain. These advanced annotations include: (1) elidable instruc-

tion fetch; (2) elidable decode; (3) constant promotion of memory and PC; (4) word-based target

memory; (5) loop unrolling in instruction semantics; and (6) virtualizable PC. Figure 4.11 shows

the speedups achieved as these advanced JIT annotations are gradually added to the Pydgin frame-

work. Speedups are normalized against a Pydgin ARMv5 DBT-ISS using only basic JIT anno-

tations. Figures 4.12 and 4.13 concretely illustrate how the introduction of these advanced JIT

annotations reduce the JIT IR generated for a single LDR instruction from 79 IR nodes down to

only 7 IR nodes. In the rest of this section, we describe how each advanced annotation specifi-

cally contributes to this reduction in JIT IR nodes and enables the application speedups shown in

Figure 4.11.

Elidable Instruction Fetch RPython allows functions to be marked trace elidable using the

@elidable decorator. This annotation guarantees a function will not have any side effects and

therefore will always return the same result if given the same arguments. If the JIT can determine

that the arguments to a trace elidable function are likely constant, then the JIT can use constant

73

1 jd = JitDriver(greens = [’pc’], reds = [’state’],
2 virtualizables = [’state’])
3

4 class State(object):
5 _virtualizable_ = [’pc’, ’ncycles’]
6 def __init__(self, memory, reset_addr=0x400):
7 self.pc = reset_addr
8 self.ncycles = 0
9 # ... more architectural state ...

10

11 class Memory(object):
12 def __init__(self, size=2**10):
13 self.size = size << 2
14 self.data = [0] * self.size
15

16 def read(self, start_addr, num_bytes):
17 word = start_addr >> 2
18 byte = start_addr & 0b11
19 if num_bytes == 4:
20 return self.data[word]
21 elif num_bytes == 2:
22 mask = 0xFFFF << (byte * 8)
23 return (self.data[word] & mask) >> (byte * 8)
24 # ... handle single byte read ...
25

26 @elidable
27 def iread(self, start_addr, num_bytes):
28 return self.data[start_addr >> 2]
29

30 # ... rest of memory methods ...
31

32 def run(state, max_insts=0):
33 s = state
34 while s.status == 0:
35 jd.jit_merge_point(s.fetch_pc(), max_insts, s)
36

37 pc = hint(s.fetch_pc(), promote=True)
38 old = pc
39 mem = hint(s.mem, promote=True)
40

41 inst = mem.iread(pc, 4)
42 exec_fun = decode(inst)
43 exec_fun(s, inst)
44

45 s.ncycles += 1
46

47 if s.fetch_pc() < old:
48 jd.can_enter_jit(s.fetch_pc(), max_insts, s)
49

Figure 4.10: Simplified Instruction Set Interpreter Written in RPython – Although only basic
annotations (shown in blue) are required by the RPython translation toolchain to produce a JIT,
more advanced annotations (shown in red) are needed to successfully generate efficient DBT-ISSs.

74

bzip2 mcf gobmk hmmr sjeng libquantum h264ref omnetpp astar GMEAN
1
5

10

15

20

25

30

35

Sp
ee

du
p

54 58

no jit hints
+ elidable inst fetch
+ elidable decode

+ const. prom. mem & pc
+ word memory

+ unrolled inst semantics
+ virtualizable pc & stats

Figure 4.11: Impact of JIT Annotations – Including advanced annotations in the RPython in-
terpreter allows our generated ISS to perform more aggressive JIT optimizations. However, the
benefits of these optimizations varies from benchmark to benchmark. Above we show how incre-
mentally combining several advanced JIT annotations impacts ISS performance when executing
several SPEC CINT2006 benchmarks. Speedups are normalized against a Pydgin ARMv5 DBT-
ISS using only basic JIT annotations.

folding to replace the function with its result and a series of guards to verify that the arguments

have not changed. When executing programs without self-modifying code, the Pydgin ISS benefits

from marking instruction fetches as trace elidable since the JIT can then assume the same instruc-

tion bits will always be returned for a given PC value. While this annotation, seen on line 26 in

Figure 4.10, can potentially eliminate 10 JIT IR nodes on lines 1–4 in Figure 4.12, it shows negli-

gible performance benefit in Figure 4.11. This is because the benefits of elidable instruction fetch

are not realized until combined with other symbiotic annotations like elidable decode.

Elidable Decode Previous work has shown efficient instruction decoding is one of the more

challenging aspects of designing fast ISSs [KA01,QM03a,FMP13]. Instruction decoding interprets

the bits of a fetched instruction in order to determine which execution function should be used to

properly emulate the instruction’s semantics. In Pydgin, marking decode as trace elidable allows

the JIT to optimize away all of the decode logic since a given set of instruction bits will always

map to the same execution function. Elidable decode can potentially eliminate 20 JIT IR nodes

on lines 6–18 in Figure 4.12. The combination of elidable instruction fetch and elidable decode

shows the first performance increase for many applications in Figure 4.11.

75

1 # Byte accesses for instruction fetch
2 i1 = getarrayitem_gc(p6, 33259)
3 i2 = int_lshift(i1, 8)
4 # ... 8 more JIT IR nodes ...
5

6 # Decode function call
7 p1 = call(decode, i3)
8 guard_no_exception()
9 i4 = getfield_gc_pure(p1)

10 guard_value(i4, 4289648)
11

12 # Accessing instruction fields
13 i5 = int_rshift(i3, 28)
14 guard_value(i5, 14)
15 i6 = int_rshift(i3, 25)
16 i7 = int_and(i6, 1)
17 i8 = int_is_true(i7)
18 # ... 11 more JIT IR nodes ...
19

20 # Read from regfile
21 i10 = getarrayitem_gc(p2, i9)
22

23 # Register offset calculation
24 i11 = int_and(i10, 0xffffff)
25 i12 = int_rshift(i3, 16)
26 i13 = int_and(i12, 15)
27 i14 = int_eq(i13, 15)
28 guard_false(i14)
29

30 # Read from regfile
31 i15 = getarrayitem_gc(p2, i13)

32 # Addressing mode
33 i15 = int_rshift(i3, 23)
34 i16 = int_and(i15, 1)
35 i17 = int_is_true(i16)
36 # ... 13 more JIT IR nodes ...
37

38 # Access mem with byte reads
39 i19 = getarrayitem_gc(p6, i18)
40 i20 = int_lshift(i19, 8)
41 i22 = int_add(i21, 2)
42 # ... 13 more JIT IR nodes ...
43

44 # Write result to regfile
45 setarrayitem_gc(p2, i23, i24)
46

47 # Update PC
48 i25 = getarrayitem_gc(p2, 15)
49 i26 = int_add(i25, 4)
50 setarrayitem_gc(p2, 15, i26)
51 i27 = getarrayitem_gc(p2, 15)
52 i28 = int_lt(i27, 33256)
53 guard_false(i28)
54 guard_value(i27, 33260)
55

56 # Update cycle count
57 i30 = int_add(i29, 1)
58 setfield_gc(p0, i30)

Figure 4.12: Unoptimized JIT IR for ARMv5 LDR Instruction – When provided with only
basic JIT annotations, the meta-tracing JIT compiler will translate the LDR instruction into 79 JIT
IR nodes.

1 i1 = getarrayitem_gc(p2, 0) # register file read
2 i2 = int_add(i1, i8) # address computation
3 i3 = int_and(i2, 0xffffffff) # bit masking
4 i4 = int_rshift(i3, 2) # word index
5 i5 = int_and(i3, 0x00000003) # bit masking
6 i6 = getarrayitem_gc(p1, i4) # memory access
7 i7 = int_add(i8, 1) # update cycle count

Figure 4.13: Optimized JIT IR for ARMv5 LDR Instruction – Pydgin’s advanced JIT anno-
tations enable the meta-tracing JIT compiler to optimize the LDR instruction to just seven JIT IR
nodes.

76

Constant Promotion of PC and Target Memory By default, the JIT cannot assume that the

pointers to the PC and the target memory within the interpreter are constant, and this results in

expensive and potentially unnecessary pointer dereferences. Constant promotion is a technique

that converts a variable in the JIT IR into a constant plus a guard, and this in turn greatly increases

opportunities for constant folding. The constant promotion annotations can be seen on lines 37–39

in Figure 4.10. Constant promotion of the PC and target memory is critical for realizing the benefits

of the elidable instruction fetch and elidable decode optimizations mentioned above. When all

three optimizations are combined the entire fetch and decode logic (i.e., lines 1–18 in Figure 4.12)

can truly be removed from the optimized trace. Figure 4.11 shows how all three optimizations work

together to increase performance by 5× on average and up to 25× on 429.mcf. Only 464.h264ref

has shown no performance improvements up to this point.

Word-Based Target Memory Because modern processors have byte-addressable memories the

most intuitive representation of this target memory is a byte container, analogous to a char array in

C. However, the common case for most user programs is to use full 32-bit word accesses rather than

byte accesses. This results in additional access overheads in the interpreter for the majority of load

and store instructions. As an alternative, we represent the target memory using a word container.

While this incurs additional byte masking overheads for sub-word accesses, it makes full word

accesses significantly cheaper and thus improves performance of the common case. Lines 11–24

in Figure 4.10 illustrates our target memory data structure which is able to transform the multiple

memory accesses and 16 JIT IR nodes in lines 38–42 of Figure 4.12 into the single memory access

on line 6 of Figure 4.13. The number and kind of memory accesses performed influence the

benefits of this optimization. In Figure 4.11 most applications see a small benefit, outliers include

401.bzip2 which experiences a small performance degradation and 464.h264ref which receives a

large performance improvement.

Loop Unrolling in Instruction Semantics The RPython toolchain conservatively avoids inlin-

ing function calls that contain loops since these loops often have different bounds for each function

invocation. A tracing JIT attempting to unroll and optimize such loops will generally encounter a

high number of guard failures, resulting in significant degradation of JIT performance. The stm

and ldm instructions of the ARMv5 ISA use loops in the instruction semantics to iterate through

77

a register bitmask and push or pop specified registers to the stack. Annotating these loops with

the @unroll_safe decorator allows the JIT to assume that these loops have static bounds and can

safely be unrolled. One drawback of this optimization is that it is specific to the ARMv5 ISA and

currently requires modifying the actual instruction semantics, although we believe this requirement

can be removed in future versions of Pydgin. The majority of applications in Figure 4.11 see only

a minor improvement from this optimization, however, both 462.libquantum and 429.mcf receive

a significant improvement from this optimization suggesting that they both include a considerable

amount of stack manipulation.

Virtualizable PC and Statistics State variables in the interpreter that change frequently during

program execution (e.g., the PC and statistics counters) incur considerable execution overhead be-

cause the JIT conservatively implements object member access using relatively expensive loads

and stores. To address this limitation, RPython allows some variables to be annotated as virtual-

izable. Virtualizable variables can be stored in registers and updated locally within an optimized

JIT trace without loads and stores. Memory accesses that are needed to keep the object state syn-

chronized between interpreted and JIT-compiled execution is performed only when entering and

exiting a JIT trace. The virtualizable annotation (lines 2 and 5 of Figure 4.10) is able to eliminate

lines 47–58 from Figure 4.12 resulting in an almost 2× performance improvement for 429.mcf

and 462.libquantum. Note that even greater performance improvements can potentially be had

by also making the register file virtualizable, however, a bug in the RPython translation toolchain

prevented us from evaluating this optimization.

Maximum Trace Length Although not shown in Figure 4.11, another optimization that must be

specifically tuned for instruction set simulators is the maximum trace length threshold. The max-

imum trace length does not impact the quality of JIT compiled code as the previously discussed

optimizations do, rather, it impacts if and when JIT compiliation occurs at all. This parameter de-

termines how long of an IR sequence the JIT should trace before giving up its search for hot loops

to optimize. Longer traces may result in performance degradation if they do not lead to the dis-

covery of additional hot loops because the considerable overheads of tracing cannot be amortized

unless they ultimately result in the generation of optimized, frequently executed assembly. Instruc-

tions executed by an instruction set simulator are simpler than the bytecode of a dynamic language,

78

200 400 800
1500

3000
6000

12000
24000

48000
96000

200000
400000

800000

maximum trace length

0

2

4

6

8

10

12
sp

ee
du

p

Figure 4.14: Impact of Maximum Trace Length – The plot above shows the performance impact
of changing the JIT’s maximum trace length in a Pydgin ISS. Each line represents a different
SPEC CINT2006 benchmark; each benchmark is normalized to its own performance when using
RPython translation toolchain’s default maximum trace length of 6000 (light blue line). For some
benchmarks, Pydgin ISSs may experience extremely poor performance when using this default
trace length; occasionally this performance is even worse than a Pydgin ISS generated without
the JIT at all. This was found to be true for the SPEC CINT2006 benchmarks 464.h264ref and
401.bzip2. Increasing the JIT’s maximum trace length up to 400000 (dark blue line) resulted in
considerable performance improvements in both of these benchmarks.

resulting in large traces that occassionally exceed the default threshold. Figure 4.14 demonstrates

how the value of the maximum trace length threshold impacts Pydgin ISS performance for a num-

ber of SPEC CINT2006 benchmarks. Two benchmarks in particular, 464.h264ref and 401.bzip2,

benefit considerably from a significantly larger threshold.

4.5 Performance Evaluation of Pydgin ISSs

We evaluate Pydgin by implementing three ISAs using the Pydgin embedded-ADL: a simplified

version of MIPS32 (SMIPS), a subset of ARMv5, and RISC-V RV64G. These embedded-ADL

descriptions are combined with RPython optimization annotations, including those described in

Section 4.4, to generate high-performance, JIT-enabled DBT-ISSs. Traditional interpretive ISSs

without JITs are also generated using the RPython translation toolchain in order to help quantify

79

Simulation Host

CPU Intel Xeon E5620
Frequency 2.40GHz
RAM 48GB @ 1066 MHz

Target Hosts

ISA Simplified MIPS32 ARMv5 RISC-V RV64G
Compiler Newlib GCC 4.4.1 Newlib GCC 4.3.3 Newlib GCC 4.9.2
Executable Linux ELF Linux ELF Linux ELF64
System Calls Emulated Emulated Emulated or Proxied
Floating Point Soft Float Soft Float Hard Float

Table 4.1: Simulation Configurations – All experiments were performed on an unloaded target
machine described above. The ARMv5, Simplified MIPS (SMIPS), and RISC-V ISSs all used
system call emulation, except for spike which used a proxy kernel. SPEC CINT2006 benchmarks
were cross-compiled using SPEC recommended optimization flags (-02). ARMv5 and SMIPS
binaries were compiled to use software floating point.

the performance benefit of the meta-tracing JIT. We compare the performance of these Pydgin-

generated ISSs against several reference ISSs.

To quantify the simulation performance of each ISS, we collected total simulator execution

time and simulated MIPS metrics from the ISSs running SPEC CINT2006 applications. All appli-

cations were compiled using the recommended SPEC optimization flags (-O2) and all simulations

were performed on unloaded host machines. SMIPS and ARMv5 binaries were compiled with

software floating point enabled, while RISC-V binaries used hardware floating point instructions.

Complete compiler and host-machine details can be found in Table 4.1. Three applications from

SPEC CINT2006 (400.perlbench, 403.gcc, and 483.xalancbmk) would not build successfully due

to limited system call support in our Newlib-based cross-compilers. When evaluating the high-

performance DBT-ISSs, target applications were run to completion using datasets from the SPEC

reference inputs. Simulations of most interpretive ISSs were terminated after 10 billion simulated

instructions since the poor performance of these simulators would require many hours, in some

cases days, to run these benchmarks to completion. Total application runtimes for the truncated

simulations (labeled with Time* in Tables 4.2, 4.3, and 4.4) were extrapolated using MIPS mea-

surements and dynamic instruction counts. Experiments on a subset of applications verified the

simulated MIPS computed from these truncated runs provided a good approximation of MIPS

measurements collected from full executions. This matches prior observations that interpretive

80

ISSs demonstrate very little performance variation across program phases. Complete information

on the SPEC CINT2006 application input datasets and dynamic instruction counts can be found in

Tables 4.2, 4.3, and 4.4.

Reference simulators for SMIPS include a slightly modified version of the gem5 MIPS atomic

simulator (gem5-smips) and a hand-written C++ ISS used internally for teaching and research pur-

poses (cpp-smips). Both of these implementations are purely interpretive and do not take advan-

tage of any JIT-optimization strategies. Reference simulators for ARMv5 include the gem5 ARM

atomic simulator (gem5-arm), interpretive and JIT-enabled versions of SimIt-ARM (simit-arm-

nojit and simit-arm-jit), as well as QEMU. Atomic models from the gem5 simulator [BBB+11]

were chosen for comparison due their wide usage amongst computer architects. SimIt-ARM [DQ06,

QDZ06] was selected because it is currently the highest performance ADL-generated DBT-ISS

publicly available. QEMU has long been held as the gold-standard for DBT simulators due to its

extremely high performance [Bel05]. Note that QEMU achieves its excellent performance at the

cost of observability. Unlike QEMU, all other simulators in this study faithfully track architectural

state at an instruction level rather than block level. The only reference simulator used to compare

RISC-V was spike, a hand-written C++ ISS and golden model for the RISC-V ISA specification.

4.5.1 SMIPS

Table 4.2 shows the complete performance evaluation results for each SMIPS ISS while Fig-

ure 4.15 shows a plot of simulator performance in MIPS. Pydgin’s generated interpretive and

DBT-ISSs are able to outperform gem5-smips and cpp-smips by a considerable margin: around

a factor of 8–9× for pydgin-smips-nojit and a factor of 25–200× for pydgin-smips-jit. These

speedups translate into considerable improvements in simulation times for large applications in

SPEC CINT2006. For example, whereas 471.omnetpp would have taken eight days to simulate on

gem5-smips, this runtime is drastically reduced down to 21.3 hours on pydgin-smips-nojit and an

even more impressive 1.3 hours on pydgin-smips-jit. These improvements significantly increase

the applications researchers can experiment with when performing design-space exploration.

The interpretive ISSs tend to demonstrate relatively consistent performance across all bench-

marks: 3–4 MIPS for gem5-smips and cpp-smips, 28–36 MIPS for pydgin-smips-nojit. Unlike

DBT-ISSs, which optimize away many overheads for frequently encountered instruction paths,

interpretive ISSs must perform both instruction fetch and decode for every instruction simulated.

81

bzip2 mcf gobmk hmmer sjeng libquantum h264ref omnetpp astar WHMEAN1

10

100

1000
M
IP
S

gem5 smips-cpp pydgin-nojit pydgin-jit

Figure 4.15: SMIPS Instruction Set Simulator Performance

These overheads limit the amount of simulation time variability, which is primarily caused by

complexity differences between instruction implementations.

Also interesting to note are the different implementation approaches used by each of these

interpretive simulators. The cpp-smips simulator is completely hand-coded with no generated

components, whereas the gem5-smips decoder and instruction classes are automatically generated

from what the gem5 documentation describes as an “ISA description language” (effectively an ad-

hoc and relatively verbose ADL). As mentioned previously, pydgin-smips-nojit is generated from a

high-level embedded-ADL. Both the generated gem5-smips and pydgin-smips-nojit simulators are

able to outperform the hand-coded cpp-smips, demonstrating that generated simulator approaches

can provide both productivity and performance advantages over simple manual implementations.

In addition to providing significant performance advantages over gem5-smips, both Pydgin

simulators provide considerable productivity advantages as well. Because the gem5 instruction

descriptions have no interpreter, they must be first generated into C++ before testing. This leaves

the user to deduce whether the source of an implementation bug resides in the instruction definition,

the code generator, or the gem5 simulator framework. In comparison, Pydgin’s embedded-ADL is

fully compliant Python that requires no custom parsing and can be executed directly in a standard

Python interpreter. This allows Pydgin ISA implementations to be tested and verified using Python

82

pydgin pydgin
gem5 cpp nojit jit

Benchmark Dataset Inst (B) Ti
m

e*

M
IP

S

Ti
m

e*

M
IP

S

vs
.g

5

Ti
m

e*
M

IP
S

vs
.g

5

Ti
m

e

M
IP

S

vs
.g

5

401.bzip2 chicken.jpg 198 15.1h 3.7 17.2h 3.2 0.87 1.6h 34 9.3 19.3m 171 47
429.mcf inp.in 337 1.1d 3.7 1.2d 3.2 0.87 3.3h 28 7.8 15.0m 373 102
445.gobmk 13x13.tst 290 21.7h 3.7 1.1d 3.1 0.83 2.6h 31 8.4 29.0m 167 45
456.hmmer nph3.hmm 1212 3.8d 3.7 4.5d 3.2 0.84 10.4h 32 8.7 26.5m 761 204
458.sjeng ref.txt 2757 8.5d 3.7 10.2d 3.1 0.83 1.0d 31 8.4 2.3h 337 90
462.libquantum 1397 8 2917 8.9d 3.8 10.9d 3.1 0.81 23.3h 35 9.1 1.3h 629 165
464.h264ref foreman_ref 679 2.2d 3.5 2.5d 3.2 0.90 5.7h 33 9.4 2.2h 87 25
471.omnetpp omnetpp.ini 2708 8.3d 3.8 10.0d 3.1 0.84 21.2h 36 9.4 1.3h 572 152
473.astar BigLakes2048.cfg 472 1.5d 3.8 1.7d 3.2 0.85 4.1h 32 8.4 16.5m 476 127

Table 4.2: Detailed SMIPS Instruction Set Simulator Performance Results – Benchmark
datasets taken from the SPEC CINT2006 reference inputs. Time is provided in either minutes
(m), hours (h), or days (d) where appropriate. Time* indicates runtime estimates that were extrap-
olated from simulations terminated after 10 billion instructions. DBT-ISSs (pydgin-smips-jit) were
simulated to completion. vs. g5 = simulator performance normalized to gem5.

debugging tools prior to RPython translation into a fast C implementation, leading to a much more

user-friendly debugging experience.

Enabling JIT optimizations in the RPython translation toolchain results in a considerable im-

provement in Pydgin-generated ISS performance: from 28–36 MIPS for pydgin-smips-nojit up to

87–761 MIPS for pydgin-smips-jit. Compared to the interpretive ISSs, pydgin-smips-jit demon-

strates a much greater range of performance variability that depends on the characteristics of the

application being simulated. The RPython generated meta-tracing JIT is designed to optimize hot

loops and performs best on applications that execute large numbers of frequently visited loops with

little branching behavior. As a result, applications with large amounts of irregular control flow can-

not be optimized as well as more regular applications. For example, although 445.gobmk shows

decent speedups on pydgin-smips-jit when compared to the interpretive ISSs, its performance in

MIPS lags that of some other applications. Some of this performance lag is due to the use of the

default maximimum trace length threshold; as discussed in Section 4.4 increasing this threshold

should greatly improve the performance of benchmarks like 464.h264ref. However, improving

DBT-ISS performance on challenging irregular applications is still an open area of research in the

tracing-JIT community.

83

bzip2 mcf gobmk hmmer sjeng libquantum h264ref omnetpp astar WHMEAN1

10

100

1000
M
IP
S

gem5
pydgin-nojit

simit-nojit
pydgin-jit

simit-jit
qemu

Figure 4.16: ARMv5 Instruction Set Simulator Performance

4.5.2 ARMv5

The ARMv5 ISA demonstrates significantly more complex instruction behavior than the rel-

atively simple SMIPS ISA. Although still a RISC ISA, ARMv5 instructions include a number of

interesting features that greatly complicate instruction processing such as pervasive use of condi-

tional instruction flags and fairly complex register addressing modes. This additional complex-

ity makes ARMv5 instruction decode and execution much more difficult to emulate efficiently

when compared to SMIPS. This is demonstrated in the relative performance of the two gem5 ISA

models shown in Tables 4.2 and 4.3: gem5-arm performance never exceeds 2.6 MIPS whereas

gem5-smips averages 3.7 MIPS. Note that this trend is also visible when comparing pydgin-arm-

nojit (20–25 MIPS) and pydgin-smips-nojit (28–36 MIPS). Complete performance results for all

ARMv5 ISSs can be found in Table 4.3 and Figure 4.16.

To help mitigate some of the additional decode complexity of the ARMv5 ISA, ISS imple-

menters can create more optimized instruction definitions that deviate from the pseudo-code form

described in the ARMv5 ISA manual (as previously discussed in Section 4.3). These optimizations

and others enable the SimIt-ARM ISS to achieve simulation speeds of 49–68 MIPS for simit-arm-

nojit and 230–459 MIPS for simit-arm-jit. In comparison, Pydgin’s more straightforward ADL

84

simit simit pydgin pydgin
gem5 nojit jit nojit jit qemu

Benchmark Inst (B) Ti
m

e*

M
IP

S

Ti
m

e*
M

IP
S

vs
.g

5

Ti
m

e

M
IP

S

vs
.g

5

Ti
m

e*
M

IP
S

vs
.g

5

vs
.s

0

Ti
m

e

M
IP

S

vs
.g

5

vs
.s

J

Ti
m

e

M
IP

S

401.bzip2 195 23.4h 2.3 52.2m 62 27 7.3m 445 192 2.5h 22 9.4 0.35 5.9m 548 236 1.23 3.0m 1085
429.mcf 374 1.9d 2.3 2.0h 52 23 19.9m 314 135 5.0h 21 9.0 0.40 12.7m 489 211 1.56 9.8m 637
445.gobmk 324 1.7d 2.2 1.8h 50 22 23.5m 230 103 4.5h 20 8.9 0.40 52.0m 104 46 0.45 14.0m 386
456.hmmer 1113 6.0d 2.1 5.9h 52 24 46.3m 400 187 14.6h 21 9.9 0.41 29.4m 631 295 1.58 16.7m 1108
458.sjeng 2974 15.1d 2.3 16.7h 49 22 2.9h 287 126 1.7d 20 8.8 0.41 4.1h 200 88 0.70 1.8h 447
462.libquantum 3070 14.4d 2.5 15.6h 55 22 1.9h 459 186 1.6d 22 8.9 0.40 1.3h 668 271 1.46 41.9m 1220
464.h264ref 753 3.8d 2.3 4.2h 50 22 31.7m 396 173 10.2h 21 9.0 0.42 17.3m 726 317 1.83 16.2m 773
471.omnetpp 1282 5.8d 2.6 5.3h 68 26 1.5h 233 90 14.1h 25 9.8 0.37 52.8m 405 157 1.74 1.5h 240
473.astar 434 2.0d 2.5 2.2h 55 22 23.3m 310 126 5.5h 22 8.8 0.40 20.7m 350 142 1.13 13.8m 526

Table 4.3: Detailed ARMv5 Instruction Set Simulator Performance Results – Benchmark
datasets taken from the SPEC CINT2006 reference inputs (shown in Table 4.2). Time is provided
in either minutes (m), hours (h), or days (d) where appropriate. Time* indicates runtime estimates
that were extrapolated from simulations terminated after 10 billion instructions. DBT-ISSs (simit-
arm-jit, pydgin-arm-jit, and QEMU) were simulated to completion. vs. g5 = simulator performance
normalized to gem5. vs. s0 = simulator performance normalized to simit-arm-nojit. vs. sJ =
simulator performance normalized to simit-arm-jit.

descriptions of the ARMv5 ISA result in an ISS performance of 20–25 MIPS for pydgin-arm-nojit

and 104–726 MIPS for pydgin-arm-jit.

Comparing the interpretive versions of the SimIt-ARM and Pydgin generated ISSs reveals that

simit-arm-nojit is able to outperform pydgin-arm-nojit by a factor of 2× on all applications. The

fetch and decode overheads of interpretive simulators make it likely much of this performance

improvement is due to SimIt-ARM’s decode optimizations. However, decode optimizations should

have less impact on DBT-ISSs which are often able to eliminate decode entirely.

The DBT-ISS versions of SimIt-ARM and Pydgin exhibit comparatively more complex per-

formance characteristics: both pydgin-arm-jit and simit-arm-jit are able to provide good speedups

across all applications, however, pydgin-arm-jit has a greater range in performance variability

(104–726 MIPS for pydgin-arm-jit compared to 230–459 MIPS for simit-arm-jit). Overall pydgin-

arm-jit is able to outperform simit-arm-jit on seven out of nine applications, speedups for these

benchmarks ranged from 1.13–1.83×. The two underperforming benchmarks, 445.gobmk and

458.sjeng, observed slowdowns of 0.45× and 0.70× compared to simit-arm-jit. Despite the excep-

tional top-end performance of pydgin-arm-jit (726 MIPS) and its ability to outperform simit-arm-

jit on all but two benchmarks tested, it only slightly outperformed simit-arm-jit when comparing

85

the weighted-harmonic mean results for the two simulators: 340 MIPS versus 332 MIPS. This is

largely due to the poor performance on 458.sjeng, which is a particularly large benchmark both in

terms of instructions and runtime.

The variability differences displayed by these two DBT-ISSs is a result of the distinct JIT ar-

chitectures employed by Pydgin and SimIt-ARM. Unlike pydgin-arm-jit’s meta-tracing JIT which

tries to detect hot loops and highly optimize frequently taken paths through them, simit-arm-jit

uses a page-based approach to JIT optimization that partitions an application binary into equal

sized bins, or pages, of sequential program instructions. Once visits to a particular page exceed

a preset threshold, all instructions within that page are compiled together into a single optimized

code block. A page-based JIT provides two important advantages over a tracing JIT: first, pages

are constrained to a fixed number of instructions (on the order of 1000) which prevents unbounded

trace growth for irregular code; second, pages enable JIT-optimization of code that does not con-

tain loops. While this approach to JIT design prevents SimIt-ARM from reaching the same levels

of optimization as a trace-based JIT on code with regular control flow, it allows for more consistent

performance across a range of application behaviors.

QEMU also demonstrates a wide variability in simulation performance depending on the appli-

cation (240–1220 MIPS), however it achieves a much higher maximum performance and manages

to outperform simit-arm-jit and pydgin-arm-jit on nearly every application except for 471.omnetpp.

Although QEMU has exceptional performance, it has a number of drawbacks that impact its us-

ability. Retargeting QEMU simulators for new instructions requires manually writing blocks of

low-level code in the tiny code generator (TCG) intermediate representation, rather than automat-

ically generating a simulator from a high-level ADL. Additionally, QEMU sacrifices observability

by only faithfully tracking architectural state at the block level rather than at the instruction level.

These two limitations impact the productivity of researchers interested in rapidly experimenting

with new ISA extensions.

4.5.3 RISC-V

RISC-V is another RISC-style ISA that lies somewhere between SMIPS and ARMv5 in terms

of complexity. The decoding and addressing modes of RISC-V are considerably simpler than

ARMv5, however, RISC-V has several extensions that add instructions for advanced features like

atomic memory accesses and floating-point operations. Our RISC-V ISS implements the RV64G

86

bzip2 mcf gobmk hmmer sjeng libquantum h264ref omnetpp astar WHMEAN1

10

100

1000
M
IP
S

spike pydgin-nojit pydgin-jit

Figure 4.17: RISC-V Instruction Set Simulator Performance

variant of the RISC-V ISA; this includes 64-bit instructions and the full collection of “standard”

extensions: integer multiplication and division (M), atomics (A), single-precision floating-point

(F), and double-precision floating-point (D). The Pydgin SMIPS and ARMv5 ISSs discussed pre-

viously implement only 32-bit instructions.

One significant challenge of building the RISC-V ISS was implementing the full collection

of single- and double-precision floating-point instructions defined in the RISC-V F and D exten-

sions. The SMIPS and ARMv5 ISSs currently only include basic conversion instructions between

floating-point and integer register values; these conversions are relatively simple to perform in

RPython. IEEE-compliant arithmetic floating-point instructions are much more complex and re-

quire extensive logic to handle rounding modes and overflow behavior. Rather than re-writing this

complex logic in Pydgin, existing C implementations provided by the open-source softfloat library

were used via a foreign-function interface (FFI). Ensuring these FFI calls could be translated by

the RPython toolchain was non-trivial, however, once this work was completed softfloat was fully

wrapped in a Pydgin library and available for reuse in future ISSs.

The simulation performance of pydgin-riscv-nojit, pydgin-riscv-jit, and spike can be seen in

Figure 4.17 and Table 4.4. The spike simulator demonstrates impressive performance that ranges

from 38–177 MIPS. Although spike does not advertise itself as a DBT-ISS, its performance vari-

ation hints at the use of JIT-optimization strategies; comparatively, purely interpretive ISSs show

87

pydgin pydgin
spike nojit jit

Benchmark Dataset Inst (B) Time MIPS Time* MIPS vs. sp Inst (B) Time MIPS vs. sp

401.bzip2 chicken.jpg 202 25.0m 135 4.3h 13 0.10 203 8.9m 382 2.8
429.mcf inp.in 292 45.1m 108 7.4h 11 0.10 290 14.6m 331 3.1
445.gobmk 13x13.tst 271 2.0h 38 6.1h 12 0.32 271 35.5m 127 3.3
456.hmmer nph3.hmm 966 1.5h 177 20.9h 13 0.07 967 35.4m 455 2.6
458.sjeng ref.txt 2852 15.9h 50 2.7d 13 0.26 2953 4.4h 187 3.8
462.libquantum 1397 8 2141 3.4h 176 2.1d 12 0.07 2142 46.8m 763 4.3
464.h264ref foreman_ref 606 1.6h 105 13.4h 13 0.12 609 1.8h 92 0.87
471.omnetpp omnetpp.ini 561 3.4h 46 11.7h 13 0.29 558 53.3m 174 3.8
473.astar rivers.cfg 801 1.3h 169 17.9h 12 0.07 803 41.7m 321 1.9

Table 4.4: Detailed RISC-V Instruction Set Simulator Performance Results – Benchmark
datasets taken from the SPEC CINT2006 reference inputs. Time is provided in either minutes (m),
hours (h), or days (d) where appropriate. Time* indicates runtime estimates that were extrapolated
from simulations terminated after 10 billion instructions. Both spike and pydgin-riscv-jit were
executed to completion, but instruction counts differ since spike uses a proxy kernel rather than
syscall emulation. vs. sp = simulator performance normalized to spike.

fairly consistent MIPS from application to application. Some optimizations implemented in spike

which are potentially responsible for this variability include the caching of decoded instruction

execution functions and the aggressive unrolling of the interpreter loop into a switch statement

with highly predictable branching behavior. The interpretive pydgin-riscv-nojit only achieves

11–13 MIPS, which is significantly slower than spike. It is also surprisingly slower than both

pydgin-nojit-smips and pydgin-nojit-arm by a fair margin; this is likely related to the use of hard-

ware floating-point in the RISC-V binaries rather than software floating-point and the fact that

these floating-point instructions are implemented using FFI calls.

The JIT-enabled pydgin-riscv-jit handily outperforms spike with a weighted-harmonic mean

performance of 270 MIPS versus 80 MIPS. The one exception where spike outperformed pydgin-

riscv-jit was 464.h264ref ; this is because the maximum trace length threshold was not changed

from the default value. As shown in Section 4.4, increasing this threshold value should signifi-

cantly improve the performance of 464.h264ref on pydgin-riscv-jit. Excluding 464.h264ref, the

performance of pydgin-riscv-jit ranged from 127–763 MIPS. This impressive performance was

achieved in fewer than two weeks of work, clearly demonstrating the power of the Pydgin frame-

work.

88

bzip2 mcf gobmk hmmer sjeng libquantum h264ref omnetpp astar GMEAN
0.90

0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30
Sp

ee
du

p

2.2 (2013-11-14) 2.3 (2014-05-08) 2.4 (2014-09-22) 2.5.1 (2015-03-24)

Figure 4.18: RPython Performance Improvements Over Time – Pydgin instruction set simula-
tors can benefit from enhancements made to the RPython translation toolchain’s meta-tracing JIT
compiler by simply downloading updated releases and recompiling. The impact of these RPython
enhancements on the performance of the pydgin-arm-jit ISS are shown above. Four versions
of pydgin-arm-jit were generated from different releases of the RPython translation toolchain
from 2.2–2.5.1; these releases, occuring over a 16 month time span, incrementally led to a 16%
performance boost on the SPEC benchmark suite.

4.5.4 Impact of RPython Improvements

A considerable benefit of building Pydgin on top of the RPython translation toolchain is that it

benefits from improvements made to the toolchain’s JIT compiler generator. PyPy and the RPython

translation toolchain used to construct PyPy are both open-source projects under heavy active

development. Several of the developers are experts in the field of tracing-JIT compilers, these

developers often use RPython as a platform to experiment with optimizations for Python and other

languages. Successful optimizations are frequently integrated into the PyPy and RPython source

code and are made available to the public via regular version releases.

Figure 4.18 shows how these advances impact the performance of Pydgin instruction set sim-

ulators. The pydgin-arm-jit ISS was recompiled with several snapshots of the RPython trans-

lation toolchain that come distributed with PyPy releases. Each successive release we tested since

2.2 resulted in an overall performance improvement across the benchmarks, although some individ-

ual benchmarks saw minor performance regressions between versions. A Pydgin user upgrading

their RPython toolchain from version 2.2 to 2.5.1, released approximately 16 months apart, would

achieve an impressive 16% performance improvement on our benchmarks by simply recompiling.

89

4.6 Related Work

A considerable amount of prior work exists on improving the performance of instruction set

simulators through dynamic optimization. Foundational work on simulators leveraging dynamic

binary translation (DBT) provided significant performance benefits over traditional interpretive

simulation [May87,CK94,WR96,MZ04]. These performance benefits have been further enhanced

by optimizations that reduce overheads and improve code generation quality of JIT compila-

tion [TJ07, JT09, LCL+11]. Current state-of-the-art ISSs incorporate parallel JIT-compilation task

farms [BFT11], multicore simulation with JIT-compilation [QDZ06,ABvK+11], or both [KBF+12].

These approaches generally require hand modification of the underlying DBT engine in order to

achieve good performance for user-introduced instruction extensions. Prior work also exists on

instruction-set simulators that utilize static binary translation, such as SyntSim [BG04]; a primary

limitation of such static approaches is their inability to easily handle self-modifying code.

In addition, significant research has been spent on improving the usability and retargetability of

ISSs, particularly in the domain of application-specific instruction set processor (ASIP) toolflows.

Numerous frameworks have proposed using a high-level architectural description language (ADL)

to generate software development artifacts such as cross compilers [HSK+04, CHL+04, CHL+05,

ARB+05, FKSB06, BEK07] and software decoders [KA01, QM03a, FMP13]. Instruction set sim-

ulators generated using an ADL-driven approach [ARB+05, QRM04, QM05], or even from def-

initions parsed directly from an ISA manual [BHJ+11], provide considerable productivity bene-

fits but suffer from poor performance when using a purely interpretive implementation strategy.

ADL-generated ISSs have also been proposed that incorporate various JIT-compilation strate-

gies, including just-in-time cache-compiled (JIT-CCS) [NBS+02, BNH+04], instruction set com-

piled (ISCS) [RDM06,RBMD03,RMD03], and hybrid-compiled [RMD09,RD03]. More recently,

dynamic-compiled [QDZ06,BFKR09,PKHK11], multicore/distributed dynamic-compiled [DQ06],

and parallel DBT [WGFT13] have become the more popular techniques.

Penry et al. introduced the orthogonal-specification principle as an approach to functional sim-

ulator design that proposes separating simulator specification from simulator implementation [Pen11,

PC11]. This work is very much in the same spirit as Pydgin, which aims to separate JIT im-

plementation details from architecture implementation descriptions by leveraging the RPython

translation toolchain. RPython has previously been used for emulating hardware in the PyGirl

90

project [BV09]. PyGirl is a whole-system VM (WSVM) that emulates the processor, peripherals,

and timing-behavior of the Game Boy and had no JIT, whereas our work focuses on JIT-enabled,

timing-agnostic instruction set simulators.

4.7 Conclusion

In an era of rapid development of increasingly specialized system-on-chip platforms, instruc-

tion set simulators can sacrifice neither designer productivity nor simulation performance. How-

ever, constructing ISS toolchains that are both highly productive and high performance remains

a significant research challenge. Pydgin as been introduced as a novel approach to address these

multiple challenges by enabling the automatic generation of high-performance DBT-ISSs from a

Python-based embedded-ADL. Pydgin’s automatic DBT-generation capabilities are made possible

by creatively adapting the RPython translation toolchain, an existing meta-tracing JIT compilation

framework designed for general-purpose dynamic programming languages.

The Pydgin framework and the Pydgin SMIPS, ARMv5, and RISC-V ISSs have been publicly

released under an open-source software license. My hope is that the productivity and performance

benefits of Pydgin will make it a useful framework for the broader computer architecture research

community and beyond.

91

CHAPTER 5
EXTENDING THE SCOPE OF VERTICALLY

INTEGRATED DESIGN IN PYMTL

The previous two chapters introduced PyMTL and Pydgin, two frameworks I have developed

to simplify the process of hardware modeling. PyMTL and Pydgin were created in order to fa-

cilitate the implementation of three particular model classes widely used in computer architecture

research: functional-, cycle-, and register-transfer level models. While Pydgin was designed to

ease the implementation of a specific, performance-critical class of FL models (i.e., instruction

set simulators), PyMTL was intended to be a more general-purpose framework that enables the

creation of many different types of hardware models.

With that in mind, this chapter explores additional mechanisms that further extend the capa-

bilities of PyMTL for hardware design. The first mechanism, high-level synthesis (HLS), is a

technique for reducing the complexity of RTL design through the direct, software automated con-

version of FL models into RTL models. The second mechanism, gate-level (GL) modeling and

floorplanning, aims to extend PyMTL’s modeling capabilities down the stack into the realm of

physical design. Both mechanisms aim to augment and enhance the modeling towards layout phi-

losophy of PyMTL by providing a unified environment that fosters many different modeling styles

and hardware implementation techniques.

5.1 Transforming FL to RTL: High-Level Synthesis in PyMTL

High-level synthesis (HLS) is an RTL design process which takes a high-level algorithm, usu-

ally in C++ or SystemC, and attempts to infer a hardware-implementation based on the algorithm

structure and user-provided annotations. Due to the rapid improvement in HLS algorithms and the

growing demand for specialization, HLS is becoming increasingly popular as a means to accelerate

RTL development and as a tool for rapid design-space exploration. A comparison of HLS with the

modeling towards layout (MTL) methodology promoted by PyMTL reveals that HLS and MTL are

orthogonal approaches to hardware design: MTL encourages the manual, incremental refinement

of a design from FL, to CL, to RTL, whereas HLS enables an automatic transformation from FL

to RTL. These methodologies each have their strengths and weaknesses, and the more productive

approach largely depends on the design task at hand.

92

In this section, I describe some basic experiments with a prototype tool for performing high-

level synthesis on PyMTL FL models. I see this as a promising future direction for a number of

reasons. Supporting both HLS and MTL design methodologies within PyMTL would allow de-

signers to choose the most suitable design approach on a component by component basis, without

requiring the need to change development environments. Unifying HLS and MTL under PyMTL

would also address many of the integration problems associated with current HLS toolflows: HLS

tools cannot easily utilize user-provided infrastructure for automatic verification within existing

test benches or for co-simulation with existing FL, CL, and RTL models. Finally, the more ab-

stract algorithm implementations provided by productivity-level languages like Python may pro-

vide additional information to HLS tools, enabling powerful scheduling and logic optimizations

not inferable from equivalent C++ code.

5.1.1 HLSynthTool Design

An experimental PyMTL tool called HLSynthTool was created to enable the automated gen-

eration of RTL from PyMTL functional-level models. Rather than implementing a full Python-

to-HDL synthesis flow from scratch, HLSynthTool converts PyMTL FL code into Vivado HLS

compatible C++. This C++ code can then be passed into the Xilinx Vivado HLS tool in order to

generate Verilog RTL. Currently this flow is not entirely automated: HLSynthTool generates only

the input C++. Users are responsible for manually creating the TCL script driver for Vivado HLS

and the VerilogModel wrapper for testing the Vivado HLS generated Verilog within PyMTL.

Automatic generation of these components is future work; however, creation of a fully automated

flow encapsulated in PyMTL may not be desirable due to the non-negligible latency of the Vivado

HLS synthesis process.

The HLSynthTool tool prototype currently only supports a very limited subset of PyMTL FL

code for translation into C++. Specifically, it requires FL models to use the FLQueueAdapter

interface proxy to communicate with external models. The FLQueueAdapter interface proxy is

designed to have blocking semantics. This allows designers writing FL models to implement in-

ternal logic in a straightforward manner without needing to worry about latency-insensitive com-

munication protocols or concurrency. These interface proxies are translated into the Vivado HLS

hls::stream class, which also has blocking semantics. All complexity of converting these block-

ing, method-based interfaces into synthesizable hardware is contained within the Vivado HLS tool.

93

5.1.2 Synthesis of PyMTL FL Models

An example PyMTL FL model that can be converted to Verilog RTL via high-level synthesis is

shown in Figure 5.1. Note that this model is a normal PyMTL FL model and does not require any

modification to force compatibility with the HLSynthTool. This is made possible by the explicit

model/tool split provided by the PyMTL framework. Also note that this FL implementation makes

use of the blocking, queue-based port adapters. These adapters proxy method-calls into latency-

insensitive communication over the model’s port interface. In addition to hiding the complexity of

port-based communication protocols, these adapters significantly simplify the configuration logic

for setting up the greatest-common divisor (GCD) accelerator. Concurrent execution semantics are

hidden by the blocking behavior of the proxy method calls.

Once the correctness of this GcdXcelFL model has been verified using the usual py.test

testing flow, the elaborated model can be passed into the HLSynthTool for conversion into Vivado

HLS compatible C++. This generated-C++ is passed into Vivado HLS along with a TCL script

for specifying synthesis parameters; the output of Vivado HLS is Verilog RTL. VerilogModel

wrappers are used to wrap Verilog source in PyMTL port-based interfaces. This Vivado HLS

generated, PyMTL-wrapped Verilog can now be imported and validated using the same py.test

testing harness mentioned previously. With the addition of the HLSynthTool flow, PyMTL now

has three ways to generate and interact with Verilog: (1) writing PyMTL RTL that is translated into

Verilog HDL; (2) writing Verilog directly and importing it into PyMTL using a VerilogModel

wrapper; and (3) generating RTL from PyMTL FL using the HLSynthTool and importing it with

VerilogModel. Future work aims to further automate this process so that it becomes possible to

verify the correctness of HLS-generated RTL with a simple command-line flag.

5.1.3 Algorithmic Experimentation with HLS

In order to demonstrate the opportunities for high-level synthesis in the context of PyMTL, the

functional-level accelerator model shown in Figure 5.1 was used to explore several algorithms for

computing the greatest-common divisor (GCD) of two integers. For this experiment, the acceler-

ator configuration logic of the model in lines 8–44 is unchanged; only the implementation of the

GCD function itself in lines 1–7 is modified. The benefit of this approach is that it allows the user

to easily tweak the core algorithm in Python and experiment with various optimizations, verify the

94

1 # GCD algorithm under test.
2 def gcd(a, b):
3 while a != b:
4 if (a > b): a = a - b
5 else: b = b - a
6 return a
7

8 # Functional-level greatest-common divisor accelerator model.
9 class GcdXcelFL(Model):

10

11 def __init__(s):
12

13 s.xcelreq = InValRdyBundle (XcelReqMsg())
14 s.xcelresp = OutValRdyBundle(XcelRespMsg())
15

16 s.req_queue = InQueuePortProxy (s.xcelreq)
17 s.resp_queue = OutQueuePortProxy(s.xcelresp)
18

19 @s.tick_fl
20 def PyGcdXcelHLS():
21

22 # receive message containing data A, send ack
23 req = s.req_queue.popleft()
24 a = req.data
25 resp = XcelRespMsg().mk_msg(req.opaque, req.type_, 0, req.id)
26 s.resp_queue.append(resp)
27

28 # receive message containing data B, send ack
29 req = s.req_queue.popleft()
30 b = req.data
31 resp = XcelRespMsg().mk_msg(req.opaque, req.type_, 0, req.id)
32 s.resp_queue.append(resp)
33

34 # receive message containing go signal, send ack
35 req = s.req_queue.popleft()
36 resp = XcelRespMsg().mk_msg(req.opaque, req.type_, 0, req.id)
37 s.resp_queue.append(resp)
38

39 result = gcd(a, b)
40

41 # receive message requesting result, send ack
42 req = s.req_queue.popleft()
43 resp = XcelRespMsg().mk_msg(req.opaque, req.type_, result, req.id)
44 s.resp_queue.append(resp)

Figure 5.1: PyMTL GCD Accelerator FL Model – An example PyMTL FL model that can
automatically be translated to Verilog HDL using the experimental HLSynthTool and the Xilinx
Vivado HLS tool. Proxy interfaces provide a programmer-friendly, method-based interface with
blocking semantics. These interfaces are translated into blocking hls::stream classes provided
by the Vivado HLS library.

95

1 def gcd(a, b):
2 while b != 0:
3 if a < b:
4 # a, b = b, a
5 t = b; b = a; a = t
6 a = a - b
7 return a

(a)

1 def gcd(a, b):
2 while b != 0:
3

4 # a, b = b, a % b
5 t = b; b = a % b; a = t
6

7 return a

(b)

1 def gcd(a, b):
2 while a != b:
3 if a > b:
4 a = a - b
5 else:
6 b = b - a
7 return a

(c)

Figure 5.2: Python GCD Implementations – Three distinct implementations of the GCD algo-
rithm in Python. The PyMTL GCD Accelerator FL model shown in Figure 5.1 was augmented
with each of these implementations and passed into the prototype HLSynthTool. Although Python
enables concise swap operations without temporaries using tuple syntax (see commented lines
above), HLSynthTool does not currently support this and users must rewrite such logic using tem-
porary variables. Performance characteristics of hardware synthesized from these implementations
are shown in Table 5.1.

correctness of these algorithms using existing py.test harnesses, and then obtain performance

estimates for hardware implementations of these algorithms using HLSynthTool. This process

enables rapid iteration of algorithmic-level optimizations without requiring an investment to man-

ually implement RTL for each alternative. This is particularly advantageous when one considers

that the greatest leverage for achieving large performance improvements generally comes from

more efficient algorithms rather than from optimizations further down the stack.

Three different Python implementations of the GCD algorithm, shown in Figure 5.2, were

used to perform the GcdXcelFL accelerator GCD computation on line 39 of Figure 5.1. These

three implementations were passed into the HLSynthTool and targetted for synthesis in a Xilinx

Zynq-7020 with a target clock frequency of 5 nanoseconds. The performance of each of these

implementations as reported by simulations of HLSynthTool-generated RTL and synthesis reports

emitted by Vivado HLS are shown in Table 5.1. Despite minor differences in the algorithms,

there is considerable variance in the performance of the three implementations. Algorithm (b)

has by far the worst timing, area, and performance characteristics by a large margin. This is

because the modulo operator used by this algorithm on line 5 in Figure 5.2b gets synthesized into

a complex divider unit which the other two implementations do not need. Algorithms (a) and (c),

shown in Figures 5.2a and 5.2b, have identical timing and very similar characteristics, although

(a) uses slightly more flip-flops (FFs) and fewer look-up tables (LUTS) than (c). However, (c) has

considerably better execution performance than (a) demonstrating 2× better performance on the

96

Execution Cycles Timing Area

Algorithm small0 small1 small2 small3 large ns FFs LUTs

(a) 116 203 179 165 23388 3.89 196 293
(b) 668 755 731 717 67267 4.62 2375 2157
(c) 63 157 128 114 11695 3.89 131 325

Table 5.1: Performance of Synthesized GCD Implementations – Performance characteristics
of RTL generated from the GCD implementations shown in Figure 5.2. Performance for five input
data sets is measured in executed cycles; area of the FPGA mapped design is shown in terms of flip-
flops (FFs) and look-up tables (LUTs) used. Different implementations show a huge variance in the
performance and physical characteristics depending on the complexity of the design synthesized.

large input dataset. This is due to the fact that the synthesized RTL for algorithm (a) includes an

extra state in the controller finite-state machine which results in two cycles for each iteration of the

algorithm rather than the one needed by (b).

A hand-written RTL implementation of (a) could optimize the extra cycle of latency away,

making algorithms (a) and (b) more comparable. This highlights one current drawbacks of HLS:

synthesis algorithms cannot always generate optimal implementations of a given algorithm without

programmer help provided in the form of annotations. Future work for the HLSynthTool is adding

the ability to insert annotations into PyMTL FL models in order to provide synthesis algorithms

with these optimization hints.

5.2 Completing the Y-Chart: Physical Design in PyMTL

While many computer architects have no need to work at modeling abstractions lower than

the register-transfer-level, there are an equal number of “VLSI architects” who are interested in

exploring the system-level impact of physical-level optimizations. These researchers often forego

automated synthesis and place-and-route tools for explicit specification of gate-level (GL) logic

and manual, fine-grained placement of physical blocks. Use cases for these capabilities and tech-

niques for enabling them in PyMTL are described below.

5.2.1 Gate-Level (GL) Modeling

RTL descriptions can be further refined to gate-level descriptions where each leaf model is

equivalent to a simple boolean gate (e.g., standard cells, datapath cells, memory bit cell). For many

97

1 class OneBitFullAdderGL(Model):
2 def __init__(s):
3

4 s.in0 = InPort (1)
5 s.in1 = InPort (1)
6 s.cin = InPort (1)
7 s.sum = OutPort(1)
8 s.cout = OutPort(1)
9

10 @s.combinational
11 def logic():
12 a = s.in0
13 b = s.in1
14 c = s.cin
15

16 s.sum.value = (a ^ b) ^ c
17 s.cout.value = (a & b) |
18 (a & c) |
19 (b & c)

1 class OneBitFullAdderGLStruct(Model):
2 def __init__(s):
3

4 s.in0 = InPort (1)
5 s.in1 = InPort (1)
6 s.cin = InPort (1)
7 s.sum = OutPort(1)
8 s.cout = OutPort(1)
9

10 s.xors = [Xor(1) for _ in range(2)]
11

12 s.connect_pairs(
13 s.in0, s.xors[0].in[0],
14 s.in1, s.xors[0].in[1],
15 s.xors[0].out, s.xors[1].in[0],
16 s.cin, s.xors[1].in[1],
17 s.xors[1].out, s.sum,
18)
19

20 s.ands = [And(1) for _ in range(3)]
21 s.ors = [Or (1) for _ in range(2)]
22

23 s.connect_pairs(
24 s.in0, s.ands[0].in[0],
25 s.in1, s.ands[0].in[1],
26 s.in0, s.ands[1].in[0],
27 s.cin, s.ands[1].in[1],
28 s.in1, s.ands[2].in[0],
29 s.cin, s.ands[2].in[1],
30

31 s.ands[0].out, s.ors [0].in[0],
32 s.ands[1].out, s.ors [0].in[1],
33 s.ors [0].out, s.ors [1].in[0],
34 s.ands[2].out, s.ors [1].in[1],
35)

Figure 5.3: Gate-Level Modeling – Two
implementations of a gate-level, one-bit full-
adder: behaviorally using boolean equations
and structurally by instantiating gates and in-
terconnecting them. Behavioral are often more
concise as in the above example, but structural
approaches can be more parameterizable and
may be a more natural fit for extremely regular
structures.

ASIC designers, this refinement step is usually handled automatically by synthesis and place-and-

route tools. However, adding support for gate-level models within PyMTL enables designers to

create parameterized cell tilers which can be useful when implementing optimized datapaths and

memory arrays. The functionality of these gate-level designs can potentially be implemented via

structural composition or by writing behavioral logic in concurrent blocks.

Figure 5.3 illustrates behavioral and structural implementations of a single-bit full-adder. Gate-

level behavioral representations use simple single-bit operators to implement boolean logic equa-

tions. In this implementation temporary variables are used to significantly shorten the boolean

equations. Gate-level structural representations instantiate and connect simple boolean gates. This

98

structural representation is considerably more verbose than the equivalent behavioral implemen-

tation, however, in cases where highly-parameterizable designs are needed, PyMTL’s powerful

structural elaboration cannot be emulated by behavioral logic.

The slice notation of PyMTL module lists, port lists, and bit-slices are particularly powerful

when constructing parameterized bit-sliced datapaths. For example, composing an n-bit ripple-

carry adder from n one-bit full-adders would use for loops and slicing to connect the n-bit inputs

and outputs of the n-bit adder with the one-bit inputs and outputs of the each one-bit adder.

Gate-level modeling is supported naturally in PyMTL by the use of single-bit datatypes and

boolean logic in behavioral logic. Structural gate-level modeling requires the creation of models

for simple boolean gates such as ands, ors, and xors.

5.2.2 Physical Placement

The gate-level modeling described above is often used in tandem with manually implemented

layout algorithms and physical placement. The use of these placement algorithms to introduce

structured wiring in a custom or semi-custom design can greatly improve the power, performance,

and area of an ASIC chip [DC00]. The PyMTL framework does not currently support these capa-

bilities. This section describes an experimental LayoutTool that extracts placement information

directly from PyMTL models annotated with parameterizable layout generators. The realization

of this placement is shown in the form of SVG images output by the LayoutTool. In practice this

geometry would be output into TCL files for consumption by an EDA tool.

The LayoutTool works by using introspection to first detect the existence of a create_layout

method on elaborated models. If this method exists, the LayoutTool augments physical struc-

tures (e.g., submodules, wires) with placeholders for placement information and then executes the

create_layout method. This method fills in these these placeholders with actual positioning in-

formation based on the layout algorithm and the size of submodules. Note that the LayoutTool

and create_layout method take advantage of the signal, submodule, and parameter information

already present on existing PyMTL models.

Figure 5.4 shows an example create_layout method for performing gate-level layout. Gate-

level layout involves custom placement of individual cells, and can be particularly useful when

developing parameterized array structures like arithmetic units, register files, and queues. The

99

1 class QueueGL(Model):
2

3 def __init__(s, nbits, entries):
4 s.regs = [Reg(nbits) for _ in range(entries)]
5 ...
6

7 def create_layout(s):
8

9 entries = len(s.regs)
10 nbits = s.regs[0].in_.nbits
11

12 for i in range(entries):
13 for j in range(nbits):
14 reg = s.regs[i * nbits + j]
15 reg.dim.x = i * reg.dim.w
16 reg.dim.y = j * reg.dim.h
17

18 s.dim.w = entries * reg.dim.w
19 s.dim.h = nbits * reg.dim.h

Num
Entries

N
um

 B
it

s

Figure 5.4: Gate-Level Physical Placement – Cell placement for one-bit register cells; creates
an nbits-by-entries register array as shown in inset for use as the datapath in a small queue.

layout generator in Figure 5.4 creates parameterizable layout for register bit-cells which might be

used to implement the datapath of a network queue.

Physical layout is also useful at coarser granularities than gate-level. Unit-level floorplanning,

or micro-floorplanning, is useful for datapath tiling since datapaths often include structure that is

destroyed by automated place-and-route tools. Figure 5.5 illustrates a structural implementation

and simple datapath tiler for a n-ary butterfly router. Note that the tiler is able to leverage the

component instances generated in the structural description during static elaboration. This unified

approach simplifies building highly parameterized cross-domain designs.

At an even coarser granularity, macro-floorplans describe the placement of the top-level units.

This is particularly important when determining the arrangement of components such as caches

and processors in a multicore system. Figure 5.6 illustrates a floorplan generator for a simple ring

network. The floorplan places routers in two rows and makes use of parameters passed to the parent

(e.g., link_len) as well as parameters derived from the submodels (e.g., the router width/height).

This enables parameterized floorplans which adapt to different configurations (e.g., larger routers,

longer channels).

100

1 from math import log
2 class BFlyRouterDatapathRTL(Model):
3 def __init__(s, nary, nbits):
4

5 # ensure nary is > 1 and a power of 2
6 assert nary > 1
7 assert (nary & (nary - 1)) == 0
8

9 sbits = int(log(nary, 2))
10 N = range(nary)
11

12 s.in_ = [InPort (nbits) for _ in N]
13 s.val = [InPort (1) for _ in N]
14 s.sel = [InPort (sbits) for _ in N]
15 s.out = [OutPort(nbits) for _ in N]
16

17 s.reg = [RegEn(nbits) for _ in N]
18 s.mux = [Mux(nary, nbits) for _ in N]
19

20 for i in range(nary):
21 s.connect(s.in_[i], s.reg[i].in_)
22 s.connect(s.val[i], s.reg[i].en)
23 s.connect(s.sel[i], s.mux[i].sel)
24 s.connect(s.out[i], s.mux[i].out)
25 for j in range(nary):
26 s.connect(s.reg[i].out,
27 s.mux[j].in[i])

27 def create_layout(s):
28 offset = max(s.reg[0].dim.h,
29 s.mux[0].dim.h)
30 nary = len(s.reg)
31 for i in range(nary):
32 s.reg[i].dim.x = 0
33 s.mux[i].dim.x = s.reg[i].dim.w
34 s.reg[i].dim.y = i * offset
35 s.mux[i].dim.y = i * offset
36 s.dim.w = reg[0].dim.w + mux[0].dim.w
37 s.dim.h = offset * nary

R
eg

 1

M
ux

 1

R
eg

 2

M
ux

 2

R
eg

 0

M
ux

 0
Figure 5.5: Micro-Floorplan Physical Placement – Naive tiling algorithm for n-bit register and
n-bit mux models in a butterfly router datapath.

R R R

RRR

1 class RingNetwork(Model):
2 ...
3 def create_layout(s):
4 max = len(s.routers)
5 for i, r in enumerate(s.routers):
6 if i < (max / 2):
7 r.dim.x = i * (r.dim.w + s.link_len)
8 r.dim.y = 0
9 else:

10 r.dim.x = (max - i - 1) * (r.dim.w + s.link_len)
11 r.dim.y = r.dim.h + s.link_len
12

13 s.dim.w = max/2 * r.dim.w + (max/2 - 1) * s.link_len
14 s.dim.h = 2 * r.dim.h + s.link_len

Figure 5.6: Macro-Floorplan Physical Placement – Floorplanning algorithm for a parameteriz-
able ring network. Algorithm places routers in two rows as shown in the diagram. This example
illustrates the hierarchical propagation of geometry information.

101

Figure 5.7: Example Network Floorplan – Post place-and-
route chip plot for a 16 node network; floorplan was derived
from the prototype PyMTL LayoutTool applied to a param-
eterized RTL model of the network. A more comprehensive
physical model would include floorplanning for individual
processors, memories, and routers as well.

A demonstration of a simple macro-floorplanner in action can be seen in Figure 5.7, which

shows a post place-and-route chip plot of a sixteen node network. The top-level floorplan of this

design was generated by applying the LayoutTool to an instantiated and elaborated PyMTL RTL

model. The generated TCL file containing placement and geometry information and Verilog RTL

for the network were then passed into a Synopsys EDA toolflow to synthesize, place, and route

the design. A significant benefit of this approach is that floorplanning information and RTL logic

is specified in a single location and parameterized using a unified mechanism. This ensures the

physical floorplanning information stays synchronized with the behavioral RTL logic as parameters

to the design are changed.

Physical placement is typically described in a significantly different environment from what

is used RTL modeling, complicating the creation of a single unified and parameterizable design

description. Using the LayoutTool, PyMTL allows physical layout to be described alongside the

RTL specification of a given component. In addition to providing the ability to utilize information

generated from static elaboration of the RTL model for physical layout, this configuration enables

a hierarchical approach to layout specification: starting at the leaves of a design each model places

their children, then uses this information to set their own dimensions. As a physical layout al-

gorithm progresses up the hierarchy, placement information from lower-level models is used to

inform layout decisions in higher-level models.

102

CHAPTER 6
CONCLUSION

The work presented in this thesis has aimed to address a critical need for future hardware system

design: productive methodologies for exploring and implementing vertically integrated computer

architectures. Possible solutions to the numerous challenges associated with vertically integrated

computer architecture research were investigated via the construction of two prototype frame-

works named PyMTL and Pydgin. Each of these frameworks proposed a novel design philosophy

that combined embedded domain-specific languages (EDSLs) with just-in-time (JIT) optimization

techniques. Used in tandem, EDSLs and JIT optimization can enable both improved designer

productivity and high-performance simulation.

To conclude, the following sections will summarize the contents of this thesis, discuss its pri-

mary contributions, and end with a presentation of possible directions for future work.

6.1 Thesis Summary and Contributions

This thesis began by discussing abstractions used in hardware modeling and several taxonomies

used to categorize models based on these abstractions. To address some of the limitations of these

existing taxonomies, I proposed a new hardware modeling taxonomy that classifies models based

on their behavioral, timing, and resource accuracy. Three model classes commonly used in com-

puter architecture research — functional-level (FL), cycle-level (CL), and register-transfer-level

(RTL) — were qualitatively introduced within the structure of this taxonomy. Computer research

methodologies built around each of the FL, CL, and RTL model classes were discussed, before

describing the challenges of the methodology gap that arises from the distinct modeling languages,

patterns, and tools used by each of these methodologies. Several approaches to close this method-

ology gap were suggested, and a new vertically integrated research methodology called modeling

towards layout was proposed as a way to enable productive, vertically integrated, computer archi-

tecture research for future systems.

The remainder of this thesis introduced several tools I constructed to enable the modeling to-

wards layout research methodology and promote more productive hardware design in general.

Each of these tools utilized a common design philosophy based on the construction of embedded

domain-specific languages within Python. This design approach serves the dual purpose of (1) sig-

nificantly reducing the design time for constructing novel hardware modeling frameworks and (2)

103

providing a familiar, productive modeling environment for end users. Two of these tools, PyMTL

and Pydgin, additionally incorporate just-in-time (JIT) optimization techniques as a means to ad-

dress the simulation performance disadvantages associated with implementing hardware models in

a productivity-level language such as Python.

The major contributions of this thesis are summarized below:

• The PyMTL Framework – The core of PyMTL is a Python-based embedded-DSL for

concurrent-structural modeling that allows users to productively describe hardware models at

the FL, CL, and RTL levels of abstraction. The PyMTL framework exposes an API to these

models that enables a model/tool split, which in turn facilitates extensibility and modular

construction of tools such as simulators and translators. A provided simulation tool enables

verification and performance analysis of user-defined PyMTL models, while additionally al-

lowing the co-simulation of FL, CL and RTL models.

• The PyMTL to Verilog Translation Tool – The PyMTL Verilog translation tool gives users

the ability to automatically convert their PyMTL RTL into Verilog HDL; this provides a

path to EDA toolflows and enables the collection of accurate area, energy, and timing esti-

mates. This tool leverages the open-source Verilator tool to compile generated Verilog into

a Python-wrapped component for verification withhin existing PyMTL test harnesses and

co-simulation with PyMTL FL and CL models. The Verilog translation tool is a consider-

able piece of engineering work that makes the modeling towards layout vision possible, and

is also the target of ongoing research in providing higher-level design abstractions that are

Verilog-translatable.

• The SimJIT Specializer – SimJIT performs just-in-time specialization of PyMTL CL and

RTL models into optimized, high-performance C++ implementations, greatly improving the

performance of PyMTL simulations. While SimJIT-CL was only a proof-of-concept that

worked on a very limited subset of models, this prototype showed that this is a promising

approach for achieving high-performance simulators from high-level language specifications.

SimJIT-RTL is a mature specializer that takes advantage of the open-source Verilator tool,

and is in active use in research.

• The Pydgin Framework – Pydgin implements a Python-based, embedded architecture de-

scription language that can be used to concisely describe ISAs. These embedded-ADL de-

104

scriptions provide a productive interface to the RPython translation toolchain, an open-source

framework for constructing JIT-enabled dynamic language interpreters, and creatively repur-

poses this toolchain to produce instruction set simulators with dynamic binary translation.

The Pydgin framework also provides numerous library components to ease the process of

implementing new ISSs. Pydgin separates the process of specifying new ISAs from the per-

formance optimizations needed to create fast ISSs, enabling cleaner implementations and

simpler verification.

• ISS-Specific Tracing-JIT Optimizations – In the process of constructing Pydgin, signifi-

cant analysis was performed to determine which JIT optimizations improve the performance

of Pydgin-generated instruction set simulators. Several optimizations were found that were

unique to ISSs; this thesis described these various optimizations and characterized their per-

formance impact on Pydgin ISSs.

• Practical Pydgin ISS Implementations – In addition to creating the Pydgin framework

itself, three ISSs were constructed to help evaluate the productivity and performance of Py-

dgin. The SMIPS ISA is used internally by my research group for teaching and research;

the Pydgin SMIPS implementation handily outperformed our existing ISS and has now been

adopted as an actively used replacement. The ARMv5 ISA is widely used in the greater ar-

chitecture research and hardware design community. My hope is that these communities will

build upon our initial partial implementation in Pydgin. There has already been some recent

activity in this direction. The RISC-V ISA is quickly gaining traction in both academia and

industry. Like the Pydgin ARMv5 implementation, my hope is that the Pydgin RISC-V ISS

will find use in the computer architecture research community. Outside researchers have be-

gun using Pydgin to build simulators for other ISAs. This is especially encouraging, and I

hope that this trend continues.

• Extensions to the Scope of Design in PyMTL – Chapter 5 introduced two experimental

tools for expanding the scope of hardware design in PyMTL. The first tool, HLSynthTool

provides a very basic demonstration of high-level synthesis from PyMTL FL models. Al-

though this tool is just an initial proof-of-concept, it proves that PyMTL FL models can un-

dergo automated synthesis to Verilog RTL, and this generated RTL can be wrapped and tested

within the PyMTL framework. The second tool, LayoutTool demonstrates how PyMTL

105

models can be annotated with physical placement information, enabling the creation of pow-

erful, parameterizable layout generators. This helps close the methodology gap between

logical design and physical design, and better couples gate-level logic design and layout.

6.2 Future Work

The work in this thesis serves as a launching point for many possible future directions in con-

structing productive hardware design methodologies. A few areas of future work are listed below:

• More Productive Modeling Abstractions in PyMTL – PyMTL has added a number of

library components key to improving the productivity of designers in PyMTL. These compo-

nents range from simple encapsulation classes that simplify the organization and accessing

of data (e.g., PortBundles, BitStructs), to complex proxies that abstract away latency-

insensitive interfaces with user-friendly syntax (e.g., QueueAdapters, ListAdapters). How-

ever, these examples only scratch the surface of possibilities for improving higher-level mod-

eling abstractions for hardware designers. Just a few ideas include: embedded-DSL exten-

sions for specifying state machines and control-signal tables, Verilog-translatable method-

based interfaces, alternative RTL specification modes such as guarded atomic actions or

Chisel-like generators, embedded-ADLs for processor specification, and special datatypes

for floating-point and fixed-point computations.

• PyMTL Simulator Performance Optimizations – SimJIT was an initial attempt at ad-

dressing the considerable performance challenges of using productivity-level languages for

hardware modeling. The prototype implementation of SimJIT-CL only generated vanilla

C++ code and did not explore advanced performance optimizations. Two specific opportuni-

ties for improving simulator performance include generating parallel simulators for PyMTL

models and replacing the combinational logic event queue with a linearized execution sched-

ule. The concurrent execution semantics of @tick annotated blocks and the double-buffering

of next signals provide the opportunity for all sequential blocks to be executed in parallel;

however, determining the granularity of parallel execution and co-scheduling of blocks are

open areas of research. Execution of combinational blocks is implemented using sensitivity

lists and a dynamic event queue, this could alternatively be done by statically determining

106

an execution schedule based on signal dependencies. Although this approach would add an

additional burden on users to not create blocks with false combinational loops, it could create

opportunities for inter-block statement reordering and logic optimization.

• Improvements to the Pydgin Embedded-ADL – The embedded-ADL in Pydgin provides

a concise way to specify the semantics for most instruction operations, however, there are a

number of areas for improvement. Currently, no bit-slicing syntax exists for instructions and

instruction fields requiring verbose shifting and masks to access particular bits. Another chal-

lenge is communicating bit-widths to the RPython translation toolchain: RPython provides

datatypes for specifying which C datatypes a value should fit into. This is not as fine-grained

or as clean as it should be. Finally, specifying the semantics of floating-point instructions is

rather difficult to do in Pydgin, and the addition of a specific floating-point datatype could

help considerably.

• Toolchain Generation from the Pydgin Embedded-ADL – Perhaps the most difficult task

when creating a Pydgin ISS for a new ISA is the development of the corresponding cross-

compiler and binutils toolchain. Prior work has leveraged ADLs as a specification language

not only for instruction set simulators, but for automatically generating toolchains as well.

The addition of such a capability to Pydgin would considerably accelerate the process of

implementing new ISAs, and greatly ease the burden of adding new instructions to existing

ISAs. A primary challenge is determining how to encode microarchitectural details of im-

portance to the compiler without introducing significant additional complexity to the ADL.

• Pydgin JIT Performance Optimizations – One significant area of potential improvement

for Pydgin DBT-ISSs is reducing the performance variability from application to application.

While Pydgin’s tracing-JIT performs exceptionally well on some benchmarks, it occasionally

achieves worse performance than page-based JITs. Improving the performance of the tracing-

JIT on highly-irregular applications, reducing the JIT warm-up time, and adding explicit

RPython optimizations for bit-specific types are several opportunities for future work.

• PyMTL-based High-Level Synthesis – Another promising avenue for improving the pro-

ductivity of RTL designers is high-level synthesis (HLS), which can take untimed or partially

timed algorithm specifications as input and directly generate Verilog HDL. There are a num-

ber of potential advantages of using PyMTL as an input language to HLS rather than C or

107

C++, particularly with respect to integration challenges associated with verifying and co-

simulating generated RTL. The experimental HLSynthTool introduced in this thesis is only

an initial step towards a full PyMTL HLS solution. An ideal PyMTL-based HLS flow would

be able to automatically translate PyMTL FL models directly into PyMTL (rather than Ver-

ilog) RTL, and perform this synthesis without relying on commerical 3rd-party synthesis

tools. Three possible areas for future work on PyMTL-based HLS include the following:

conversion of PyMTL FL models into LLVM IR, conversion of IR into PyMTL RTL, and a

pure Python tool for scheduling and logic optimization of hardware-aware IR.

• Productive Physical Design in PyMTL – PyMTL is designed to provide a productive en-

vironment for FL, CL, and RTL modeling, however, PyMTL does not currently provide

support for the physical design processes used in my ASIC design flows. Section 5 dis-

cussed some initial experiments into implementing parameterizable and context-dependent

floorplanners using PyMTL. However, there are many more opportunities for facilitating pro-

ductive physical design with PyMTL, including memory compilers, verification tools, design

rule checkers, and specification of crafted datapath cells.

108

BIBLIOGRAPHY
[AACM07] D. Ancona, M. Ancona, A. Cuni, and N. D. Matsakis. RPython: A Step Towards

Reconciling Dynamically and Statically Typed OO Languages. Symp. on Dynamic
Languages, Oct 2007.

[ABvK+11] O. Almer, I. Böhm, T. E. von Koch, B. Franke, S. Kyle, V. Seeker, C. Thompson,
and N. Topham. Scalable Multi-Core Simulation Using Parallel Dynamic Binary
Translation. Int’l Conf. on Embedded Computer Systems: Architectures, Modeling,
and Simulation (SAMOS), Jul 2011.

[ALE02] T. Austin, E. Larson, and D. Ernst. SimpleScalar: An Infrastructure for Computer
System Modeling. IEEE Computer, 35(2):59–67, Feb 2002.

[AR13] E. K. Ardestani and J. Renau. ESESC: A Fast Multicore Simulator Using Time-
Based Sampling. Int’l Symp. on High-Performance Computer Architecture (HPCA),
Feb 2013.

[ARB+05] R. Azevedo, S. Rigo, M. Bartholomeu, G. Araujo, C. Araujo, and E. Barros. The
ArchC Architecture Description Language and Tools. Int’l Journal of Parallel Pro-
gramming (IJPP), 33(5):453–484, Oct 2005.

[BBB+11] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hestness,
D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D.
Hill, and D. A. Wood. The gem5 Simulator. SIGARCH Computer Architecture News,
39(2):1–7, Aug 2011.

[BCF+11] C. F. Bolz, A. Cuni, M. Fijałkowski, M. Leuschel, S. Pedroni, and A. Rigo. Allocation
Removal by Partial Evaluation in a Tracing JIT. Workshop on Partial Evaluation and
Program Manipulation (PEPM), Jan 2011.

[BCFR09] C. F. Bolz, A. Cuni, M. Fijałkowski, and A. Rigo. Tracing the Meta-Level: PyPy’s
Tracing JIT Compiler. Workshop on the Implementation, Compilation, Optimization
of Object-Oriented Languages and Programming Systems (ICOOOLPS), Jul 2009.

[BDM+07] S. Belloeil, D. Dupuis, C. Masson, J. Chaput, and H. Mehrez. Stratus: A Procedural
Circuit Description Language Based Upon Python. Int’l Conf. on Microelectronics
(ICM), Dec 2007.

[BEK07] F. Brandner, D. Ebner, and A. Krall. Compiler Generation from Structural Architec-
ture Descriptions. Int’l Conf. on Compilers, Architecture, and Synthesis for Embed-
ded Systems (CASES), Sep 2007.

[Bel05] F. Bellard. QEMU, A Fast and Portable Dynamic Translator. USENIX Annual Tech-
nical Conference (ATEC), Apr 2005.

[BFKR09] F. Brandner, A. Fellnhofer, A. Krall, and D. Riegler. Fast and Accurate Simulation
using the LLVM Compiler Framework. Workshop on Rapid Simulation and Perfor-
mance Evalution: Methods and Tools (RAPIDO), Jan 2009.

109

[BFT11] I. Böhm, B. Franke, and N. Topham. Generalized Just-In-Time Trace Compilation
Using a Parallel Task Farm in a Dynamic Binary Translator. ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation (PLDI), Jun 2011.

[BG04] M. Burtscher and I. Ganusov. Automatic Synthesis of High-Speed Processor Simu-
lators. Int’l Symp. on Microarchitecture (MICRO), Dec 2004.

[BGOS12] A. Butko, R. Garibotti, L. Ost, and G. Sassatelli. Accuracy Evaluation of GEM5 Sim-
ulator System. Int’l Workshop on Reconfigurable Communication-Centric Systems-
on-Chip, Jul 2012.

[BHJ+11] F. Blanqui, C. Helmstetter, V. Jolobok, J.-F. Monin, and X. Shi. Designing a CPU
Model: From a Pseudo-formal Document to Fast Code. CoRR arXiv:1109.4351, Sep
2011.

[BKL+08] C. F. Bolz, A. Kuhn, A. Lienhard, N. D. Matsakis, O. Nierstrasz, L. Renggli, A. Rigo,
and T. Verwaest. Back to the Future in One Week — Implementing a Smalltalk VM
in PyPy. Workshop on Self-Sustaining Systems (S3), May 2008.

[BLS10] C. F. Bolz, M. Leuschel, and D. Schneider. Towards a Jitting VM for Prolog Execu-
tion. Int’l Symp. on Principles and Practice of Declarative Programming (PPDP),
Jul 2010.

[BMGA05] B. Bailey, G. Martin, M. Grant, and T. Anderson. Taxonomies for the Development
and Verification of Digital Systems. Springer, 2005.
URL http://books.google.com/books?id=i04n_I4EOMAC

[BNH+04] G. Braun, A. Nohl, A. Hoffmann, O. Schliebusch, R. Leupers, and H. Meyr. A Uni-
versal Technique for Fast and Flexible Instruction-Set Architecture Simulation. IEEE
Trans. on Computer-Aided Design of Integrated Circuits and Systems, Jun 2004.

[Bol12] C. F. Bolz. Meta-Tracing Just-In-Time Compilation for RPython. Ph.D. Thesis,
Mathematisch-Naturwissenschaftliche Fakultät, Heinrich Heine Universität Düssel-
dorf, 2012.

[BPSTH14] C. F. Bolz, T. Pape, J. Siek, and S. Tobin-Hochstadt. Meta-Tracing Makes a Fast
Racket. Workshop on Dynamic Languages and Applications (DYLA), Jun 2014.

[BTM00] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A Framework for Architectural-
Level Power Analysis and Optimizations. Int’l Symp. on Computer Architecture
(ISCA), Jun 2000.

[BV09] C. Bruni and T. Verwaest. PyGirl: Generating Whole-System VMs from High-Level
Prototypes Using PyPy. Int’l Conf. on Objects, Components, Models, and Patterns
(TOOLS-EUROPE), Jun 2009.

[BVR+12] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Avizienis, J. Wawrzynek,
and K. Asanović. Chisel: Constructing Hardware in a Scala Embedded Language.
Design Automation Conf. (DAC), Jun 2012.

[BXF13] P. Birsinger, R. Xia, and A. Fox. Scalable Bootstrapping for Python. Int’l Conf. on
Information and Knowledge Management, Oct 2013.

110

[CBHV10] M. Chevalier-Boisvert, L. Hendren, and C. Verbrugge. Optimizing MATLAB
through Just-In-Time Specialization. Int’l Conf. on Compiler Construction, Mar
2010.

[CHL+04] J. Ceng, M. Hohenauer, R. Leupers, G. Ascheid, H. Meyr, and G. Braun. Modeling
Instruction Semantics in ADL Processor Descriptions for C Compiler Retargeting.
Int’l Conf. on Embedded Computer Systems: Architectures, Modeling, and Simula-
tion (SAMOS), Jul 2004.

[CHL+05] J. Ceng, M. Hohenauer, R. Leupers, G. Ascheid, H. Meyr, and G. Braun. C Compiler
Retargeting Based on Instruction Semantics Models. Design, Automation, and Test
in Europe (DATE), Mar 2005.

[CK94] B. Cmelik and D. Keppel. Shade: A Fast Instruction-Set Simulator for Execution
Profiling. Int’l Conf. on Measurement and Modeling of Computer Systems (SIGMET-
RICS), May 1994.

[CKL+09] B. Catanzaro, S. Kamiland, Y. Lee, K. Asanović, J. Demmel, K. Keutzer, J. Shalf,
K. Yelick, and A. Fox. SEJITS: Getting Productivity and Performance With Selec-
tive Embedded JIT Specialization. Workshop on Programming Models for Emerging
Architectures, Sep 2009.

[CLSL02] H. W. Cain, K. M. Lepak, B. A. Schwartz, and M. H. Lipasti. Precise and Accu-
rate Processor Simulation. Workshop on Computer Architecture Evaluation Using
Commercial Workloads, Feb 2002.

[CMSV01] L. P. Carloni, K. L. McMillan, and A. L. Sangiovanni-Vincentelli. Theory of Latency-
Insensitive Design. IEEE Trans. on Computer-Aided Design of Integrated Circuits
and Systems, Sep 2001.

[CNG+06] J. C. Chaves, J. Nehrbass, B. Guilfoos, J. Gardiner, S. Ahalt, A. Krishnamurthy,
J. Unpingco, A. Chalker, A. Warnock, and S. Samsi. Octave and Python: High-
level Scripting Languages Productivity and Performance Evaluation. HPCMP Users
Group Conference, Jun 2006.

[DBK01] R. Desikan, D. Burger, and S. W. Keckler. Measuring Experimental Error in Micro-
processor Simulation. Int’l Symp. on Computer Architecture (ISCA), Jun 2001.

[DC00] W. J. Dally and A. Chang. The Role of Custom Design in ASIC Chips. Design
Automation Conf. (DAC), Jun 2000.

[Dec04] J. Decaluwe. MyHDL: A Python-based Hardware Description Language. Linux
Journal, Nov 2004.

[DQ06] J. D’Errico and W. Qin. Constructing Portable Compiled Instruction-Set Simulators
— An ADL-Driven Approach. Design, Automation, and Test in Europe (DATE), Mar
2006.

[EH92] W. Ecker and M. Hofmeister. The Design Cube - A Model for VHDL Designflow
Representation. EURO-DAC, pages 752–757, Sep 1992.

111

[FKSB06] S. Farfeleder, A. Krall, E. Steiner, and F. Brandner. Effective Compiler Generation by
Architecture Description. International Conference on Languages, Compilers, Tools,
and Theory for Embedded Systems (LCTES), Jun 2006.

[FM11] S. H. Fuller and L. I. Millet. Computing Performance: Game Over or Next Level?
IEEE Computer, 44(1):31–38, Jan 2011.

[FMP13] N. Fournel, L. Michel, and F. Pétrot. Automated Generation of Efficient Instruc-
tion Decoders for Instruction Set Simulators. Int’l Conf. on Computer-Aided Design
(ICCAD), Nov 2013.

[GK83] D. D. Gajski and R. H. Kuhn. New VLSI Tools. IEEE Computer, 16(12):11–14, Dec
1983.

[GKB09] M. Govindan, S. W. Keckler, and D. Burger. End-to-End Validation of Architectural
Power Models. Int’l Symp. on Low-Power Electronics and Design (ISLPED), Aug
2009.

[GKO+00] J. Gibson, R. Kunz, D. Ofelt, M. Horowitz, J. Hennessy, and M. Heinrich. FLASH
vs. (Simulated) FLASH: Closing the Simulation Loop. Int’l Conf. on Architectural
Support for Programming Languages and Operating Systems (ASPLOS), Dec 2000.

[GPD+14] A. Gutierrez, J. Pusdesris, R. G. Dreslinski, T. Mudge, C. Sudanthi, C. D. Emmons,
M. Hayenga, N. Paver, and N. K. Jha. Sources of Error in Full-System Simulation.
Int’l Symp. on Performance Analysis of Systems and Software (ISPASS), Mar 2014.

[GTBS13] J. P. Grossman, B. Towles, J. A. Bank, and D. E. Shaw. The Role of Cascade, a
Cycle-Based Simulation Infrastructure, in Designing the Anton Special-Purpose Su-
percomputers. Design Automation Conf. (DAC), Jun 2013.

[HA03] J. C. Hoe and Arvind. Operation-Centric Hardware Description and Synthesis. Int’l
Conf. on Computer-Aided Design (ICCAD), Nov 2003.

[hip15] HippyVM PHP Implementation. Online Webpage, 2014 (accessed Jan 14, 2015).
http://www.hippyvm.com.

[HMLT03] P. Haglund, O. Mencer, W. Luk, and B. Tai. Hardware Design with a Scripting
Language. Int’l Conf. on Field Programmable Logic, Sep 2003.

[HSK+04] M. Hohenauer, H. Scharwaechter, K. Karuri, O. Wahlen, T. Kogel, R. Leupers, G. As-
cheid, H. Meyr, G. Braun, and H. van Someren. A Methodology and Tool Suite for
C Compiler Generation from ADL Processor Models. Design, Automation, and Test
in Europe (DATE), Feb 2004.

[Hud96] P. Hudak. Building Domain-Specific Embedded Languages. ACM Comupting Sur-
veys, 28(4es), Dec 1996.

[JT09] D. Jones and N. Topham. High Speed CPU Simulation Using LTU Dynamic Binary
Translation. Int’l Conf. on High Performance Embedded Architectures and Compilers
(HiPEAC), Jan 2009.

[KA01] R. Krishna and T. Austin. Efficient Software Decoder Design. Workshop on Binary
Translation (WBT), Sep 2001.

112

[KBF+12] S. Kyle, I. Böhm, B. Franke, H. Leather, and N. Topham. Efficiently Parallelizing
Instruction Set Simulation of Embedded Multi-Core Processors Using Region-Based
Just-In-Time Dynamic Binary Translation. International Conference on Languages,
Compilers, Tools, and Theory for Embedded Systems (LCTES), Jun 2012.

[KLPS09] A. B. Kahng, B. Li, L.-S. Peh, and K. Samadi. ORION 2.0: A fast and accurate NoC
power and area model for early-stage design space exploration. Design, Automation,
and Test in Europe (DATE), Apr 2009.

[KLPS11] A. B. Khang, B. Li, L.-S. Peh, and K. Samadi. ORION 2.0: A Power-Area Simulator
for Interconnection Networks. IEEE Trans. on Very Large-Scale Integration Systems
(TVLSI), PP(99):1–5, Mar 2011.

[LAS+13] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P. Jouppi.
The McPAT Framework for Multicore and Manycore Architectures: Simultaneously
Modeling Power, Area, and Timing. ACM Trans. on Architecture and Code Opti-
mization (TACO), 10(1), Apr 2013.

[LB14] D. Lockhart and C. Batten. Hardware Generation Languages as a Foundation for
Credible, Reproducible, and Productive Research Methodologies. Workshop on Re-
producible Research Methodologies (REPRODUCE), Feb 2014.

[LCL+11] Y. Lifshitz, R. Cohn, I. Livni, O. Tabach, M. Charney, and K. Hazelwood. Zsim:
A Fast Architectural Simulator for ISA Design-Space Exploration. Workshop on
Infrastructures for Software/Hardware Co-Design (WISH), Apr 2011.

[LIB15] D. Lockhart, B. Ilbeyi, and C. Batten. Pydgin: Generating Fast Instruction Set Simu-
lators from Simple Architecture Descriptions with Meta-Tracing JIT Compilers. Int’l
Symp. on Performance Analysis of Systems and Software (ISPASS), Mar 2015.

[LM10] E. Logaras and E. S. Manolakos. SysPy: Using Python For Processor-centric SoC
Design. Int’l Conf. on Electronics, Circuits, and Systems (ICECS), Dec 2010.

[LZB14] D. Lockhart, G. Zibrat, and C. Batten. PyMTL: A Unified Framework for Verti-
cally Integrated Computer Architecture Research. Int’l Symp. on Microarchitecture
(MICRO), Dec 2014.

[Mad95] V. K. Madisetti. System-Level Synthesis and Simulation in VHDL – A Taxonomy
and Proposal Towards Standardization. VHDL International Users Forum, Spring
1995.

[Mas07] A. Mashtizadeh. PHDL: A Python Hardware Design Framework. M.S. Thesis, EECS
Department, MIT, May 2007.

[May87] C. May. Mimic: A Fast System/370 Simulator. ACM Sigplan Symp. on Interpreters
and Interpretive Techniques, Jun 1987.

[MBJ09] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi. CACTI 6.0: A Tool to
Model Large Caches, 2009.

[MZ04] W. S. Mong and J. Zhu. DynamoSim: A Trace-based Dynamically Compiled In-
struction Set Simulator. Int’l Conf. on Computer-Aided Design (ICCAD), Nov 2004.

113

[NBS+02] A. Nohl, G. Braun, O. Schliebusch, R. Leupers, H. Meyr, and A. Hoffmann. A
Universal Technique for Fast and Flexible Instruction-Set Architecture Simulation.
Design Automation Conf. (DAC), Jun 2002.

[Nik04] N. Nikhil. Bluespec System Verilog: Efficient, Correct RTL from High-Level Speci-
fications. Int’l Conf. on Formal Methods and Models for Co-Design (MEMOCODE),
Jun 2004.

[num14] Numba. Online Webpage, accessed Oct 1, 2014.
http://numba.pydata.org.

[Oli07] T. E. Oliphant. Python for Scientific Computing. Computing in Science Engineering,
9(3):10–20, 2007.

[PA03] D. A. Penry and D. I. August. Optimizations for a Simulator Construction System
Supporting Reusable Components. Design Automation Conf. (DAC), Jun 2003.

[Pan01] P. R. Panda. SystemC: A Modeling Platform Supporting Multiple Design Abstrac-
tions. Int’l Symp. on Systems Synthesis, Oct 2001.

[PC11] D. A. Penry and K. D. Cahill. ADL-Based Specification of Implementation Styles for
Functional Simulators. Int’l Conf. on Embedded Computer Systems: Architectures,
Modeling, and Simulation (SAMOS), Jul 2011.

[Pen06] D. A. Penry. The Acceleration of Structural Microarchitectural Simulation Via
Scheduling. Ph.D. Thesis, CS Department, Princeton University, Nov 2006.

[Pen11] D. A. Penry. A Single-Specification Principle for Functional-to-Timing Simulator
Interface Design. Int’l Symp. on Performance Analysis of Systems and Software (IS-
PASS), Apr 2011.

[Pet08] B. Peterson. PyPy. In A. Brown and G. Wilson, editors, The Architecture of Open
Source Applications, Volume II. LuLu.com, 2008.

[PFH+06] D. A. Penry, D. Fay, D. Hodgdon, R. Wells, G. Schelle, D. I. August, and D. Connors.
Exploiting Parallelism and Structure to Accelerate the Simulation of Chip Multi-
processors. Int’l Symp. on High-Performance Computer Architecture (HPCA), Feb
2006.

[PHM00] S. Pees, A. Hoffmann, and H. Meyr. Retargetable Compiled Simulation of Embedded
Processors Using a Machine Description Language. ACM Trans. on Design Automa-
tion of Electronic Systems (TODAES), Oct 2000.

[Piz14] F. Pizio. Introducing the WebKit FTL JIT. Online Article (accessed
Sep 26, 2014), May 2014. https://www.webkit.org/blog/3362/
introducing-the-webkit-ftl-jit.

[PKHK11] Z. Přikryl, J. Křoustek, T. Hruška, and D. Kolář. Fast Just-In-Time Translated Sim-
ulator for ASIP Design. Design and Diagnostics of Electronic Circuits & Systems
(DDECS), Apr 2011.

[Pre00] L. Prechelt. An Empirical Comparison of Seven Programming Languages. IEEE
Computer, 33(10):23–29, Oct 2000.

114

[pyp11] PyPy. Online Webpage, 2011 (accessed Dec 7, 2011).
http://www.pypy.org.

[pyt14a] PyTest. Online Webpage, accessed Oct 1, 2014).
http://www.pytest.org.

[pyt14b] PyTest Coverage Reporting Plugin. Online Webpage, accessed Oct 1, 2014. https:
//pypi.python.org/pypi/pytest-cov.

[pyt14c] PyTest Distributed Testing Plugin. Online Webpage, accessed Oct 1, 2014. https:
//pypi.python.org/pypi/pytest-xdist.

[pyt14d] Greenlet Concurrent Programming Package. Online Webpage, accessed Oct 1, 2014.
http://greenlet.readthedocs.org.

[QDZ06] W. Qin, J. D’Errico, and X. Zhu. A Multiprocessing Approach to Accelerate Retar-
getable and Portable Dynamic-Compiled Instruction-Set Simulation. Int’l Conf. on
Hardware/Software Codesign and System Synthesis (CODES/ISSS), Oct 2006.

[QM03a] W. Qin and S. Malik. Automated Synthesis of Efficient Binary Decoders for Retar-
getable Software Toolkits. Design Automation Conf. (DAC), Jun 2003.

[QM03b] W. Qin and S. Malik. Flexible and Formal Modeling of Microprocessors with Appli-
cation to Retargetable Simulation. Design, Automation, and Test in Europe (DATE),
Jun 2003.

[QM05] W. Qin and S. Malik. A Study of Architecture Description Languages from a Model-
based Perspective. Workshop on Microprocessor Test and Verification (MTV), Nov
2005.

[QRM04] W. Qin, S. Rajagopalan, and S. Malik. A Formal Concurrency Model Based Ar-
chitecture Description Language for Synthesis of Software Development Tools. In-
ternational Conference on Languages, Compilers, Tools, and Theory for Embedded
Systems (LCTES), Jun 2004.

[RABA04] S. Rigo, G. Araújo, M. Bartholomeu, and R. Azevedo. ArchC: A SystemC-Based
Architecture Description Language. Int’l Symp. on Computer Architecture and High
Performance Computing (SBAC-PAD), Oct 2004.

[RBMD03] M. Reshadi, N. Bansal, P. Mishra, and N. Dutt. An Efficient Retargetable Framework
for Instruction-Set Simulation. Int’l Conf. on Hardware/Software Codesign and Sys-
tem Synthesis (CODES/ISSS), Oct 2003.

[RD03] M. Reshadi and N. Dutt. Reducing Compilation Time Overhead in Compiled Simu-
lators. Int’l Conf. on Computer Design (ICCD), Oct 2003.

[RDM06] M. Reshadi, N. Dutt, and P. Mishra. A Retargetable Framework for Instruction-Set
Architecture Simulation. IEEE Trans. on Embedded Computing Systems (TECS),
May 2006.

[RHWS12] A. Rubinsteyn, E. Hielscher, N. Weinman, and D. Shasha. Parakeet: A Just-In-Time
Parallel Accelerator for Python. USENIX Workshop on Hot Topics in Parallelism,
Jun 2012.

115

[RMD03] M. Reshadi, P. Mishra, and N. Dutt. Instruction Set Compiled Simulation: A Tech-
nique for Fast and Flexible Instruction Set Simulation. Design Automation Conf.
(DAC), Jun 2003.

[RMD09] M. Reshadi, P. Mishra, and N. Dutt. Hybrid-Compiled Simulation: An Efficient
Technique for Instruction-Set Architecture Simulation. IEEE Trans. on Embedded
Computing Systems (TECS), Apr 2009.

[SAW+10] O. Shacham, O. Azizi, M. Wachs, W. Qadeer, Z. Asgar, K. Kelley, J. Stevenson,
A. Solomatnikov, A. Firoozshahian, B. Lee, S. Richardson, and M. Horowitz. Re-
thinking Digital Design: Why Design Must Change. IEEE Micro, 30(6):9–24,
Nov/Dec 2010.

[SCK+12] C. Sun, C.-H. O. Chen, G. Kurian, L. Wei, J. Miller, A. Agarwal, L.-S. Peh, and
V. Stojanovic. DSENT - A Tool Connecting Emerging Photonics with Electronics
for Opto-Electronic Networks-on-Chip Modeling. Int’l Symp. on Networks-on-Chip
(NOCS), May 2012.

[SCV06] P. Schaumont, D. Ching, and I. Verbauwhede. An Interactive Codesign Environment
for Domain-Specific Coprocessors. ACM Trans. on Design Automation of Electronic
Systems (TODAES), 11(1):70–87, Jan 2006.

[SIT+14] S. Srinath, B. Ilbeyi, M. Tan, G. Liu, Z. Zhang, and C. Batten. Architectural Special-
ization for Inter-Iteration Loop Dependence Patterns. Int’l Symp. on Microarchitec-
ture (MICRO), Dec 2014.

[SRWB14] Y. S. Shao, B. Reagen, G.-Y. Wei, and D. Brooks. Aladdin: A Pre-RTL, Power-
Performance Accelerator Simulator Enabling Large Design Space Exploration of
Customized Architectures. Int’l Symp. on Computer Architecture (ISCA), Jun 2014.

[SWD+12] O. Shacham, M. Wachs, A. Danowitz, S. Galal, J. Brunhaver, W. Qadeer, S. Sankara-
narayanan, A. Vassilev, S. Richardson, and M. Horowitz. Avoiding Game Over:
Bringing Design to the Next Level. Design Automation Conf. (DAC), Jun 2012.

[sys14] SystemC TLM (Transaction-level Modeling). Online Webpage, accessed Oct 1,
2014. http://www.accellera.org/downloads/standards/systemc/tlm.

[Tho13] E. W. Thomassen. Trace-Based Just-In-Time Compiler for Haskell with RPython.
M.S. Thesis, Department of Computer and Information Science, Norwegian Univer-
sity of Science and Technology, 2013.

[TJ07] N. Topham and D. Jones. High Speed CPU Simulation using JIT Binary Translation.
Workshop on Modeling, Benchmarking and Simulation (MOBS), Jun 2007.

[top15] Topaz Ruby Implementation. Online Webpage, 2014 (accessed Jan 14, 2015). http:
//github.com/topazproject/topaz.

[Tra05] L. Tratt. Compile-Time Meta-Programming in a Dynamically Typed OO Language.
Dynamic Languages Symposium (DLS), Oct 2005.

[ver13] Verilator. Online Webpage, 2013 (accessed July, 2013).
http://www.veripool.org/wiki/verilator.

116

[VJB+11] J. I. Villar, J. Juan, M. J. Bellido, J. Viejo, D. Guerrero, and J. Decaluwe. Python as
a Hardware Description Language: A Case Study. Southern Conf. on Programmable
Logic, Apr 2011.

[vPM96] V. Živojnović, S. Pees, and H. Meyr. LISA - Machine Description Language and
Generic Machine Model for HW/ SW CO-Design. Workshop on VLSI Signal Pro-
cessing, Oct 1996.

[VVA04] M. Vachharajani, N. Vachharajani, and D. I. August. The Liberty Structural Specifica-
tion Language: A High-Level Modeling Language for Component Reuse. ACM SIG-
PLAN Conference on Programming Language Design and Implementation (PLDI),
Jun 2004.

[VVP+02] M. Vachharajani, N. Vachharajani, D. A. Penry, J. A. Blome, and D. I. August.
Microarchitectural Exploration with Liberty. Int’l Symp. on Microarchitecture (MI-
CRO), Dec 2002.

[VVP+06] M. Vachharajani, N. Vachharajani, D. A. Penry, J. A. Blome, S. Malik, and D. I.
August. The Liberty Simulation Environment: A Deliberate Approach to High-Level
System Modeling. ACM Trans. on Computer Systems (TOCS), 24(3):211–249, Aug
2006.

[WGFT13] H. Wagstaff, M. Gould, B. Franke, and N. Topham. Early Partial Evaluation in a
JIT-Compiled, Retargetable Instruction Set Simulator Generated from a High-Level
Architecture Description. Design Automation Conf. (DAC), Jun 2013.

[WPM02] H. Wang, L.-S. Peh, and S. Malik. Orion: A Power-Performance Simulator for Inter-
connection Networks. Int’l Symp. on Microarchitecture (MICRO), Nov 2002.

[WR96] E. Witchel and M. Rosenblum. Embra: Fast and Flexible Machine Simulation. Int’l
Conf. on Measurement and Modeling of Computer Systems (SIGMETRICS), May
1996.

[ZHCT09] M. Zhang, G. Hu, Z. Chai, and S. Tu. Trilobite: A Natural Modeling Framework for
Processor Design Automation System. Int’l Conf. on ASIC, Oct 2009.

[ZTC08] M. Zhang, S. Tu, and Z. Chai. PDSDL: A Dynamic System Description Language.
Int’l SoC Design Conf., Nov 2008.

117

