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Abstract—Technology trends prompting architects to con-
sider greater heterogeneity and hardware specialization have
exposed an increasing need for vertically integrated research
methodologies that can effectively assess performance, area, and
energy metrics of future architectures. However, constructing
such a methodology with existing tools is a significant challenge
due to the unique languages, design patterns, and tools used
in functional-level (FL), cycle-level (CL), and register-transfer-
level (RTL) modeling. We introduce a new framework called
PyMTL that aims to close this computer architecture research
methodology gap by providing a unified design environment
for FL, CL, and RTL modeling. PyMTL leverages the Python
programming language to create a highly productive domain-
specific embedded language for concurrent-structural modeling
and hardware design. While the use of Python as a modeling
and framework implementation language provides considerable
benefits in terms of productivity, it comes at the cost of signif-
icantly longer simulation times. We address this performance-
productivity gap with a hybrid JIT compilation and JIT special-
ization approach. We introduce SimJIT, a custom JIT special-
ization engine that automatically generates optimized C++ for
CL and RTL models. To reduce the performance impact of the
remaining unspecialized code, we combine SimJIT with an off-
the-shelf Python interpreter with a meta-tracing JIT compiler
(PyPy). SimJIT+PyPy provides speedups of up to 72x for CL
models and 200x for RTL models, bringing us within 4-6x of
optimized C++ code while providing significant benefits in terms
of productivity and usability.

I. INTRODUCTION

Limitations in technology scaling have led to a growing
interest in non-traditional system architectures that incorpo-
rate heterogeneity and specialization as a means to improve
performance under strict power and energy constraints. Un-
fortunately, computer architects exploring these more exotic
architectures generally lack existing physical designs to val-
idate their power and performance models. The lack of vali-
dated models makes it challenging to accurately evaluate the
computational efficiency of these designs [7,8,15-17,19]. As
specialized accelerators become more integral to achieving
the performance and energy goals of future hardware, there is
a crucial need for researchers to supplement cycle-level simu-
lation with algorithmic exploration and RTL implementation.

Future computer architecture research will place an in-
creased emphasis on a methodology we call modeling to-
wards layout (MTL). While computer architects have long
leveraged multiple modeling abstractions (functional level,
cycle level, register-transfer level) to trade off simulation time
and accuracy, an MTL methodology aims to vertically inte-
grate these abstractions for iterative refinement of a design
from algorithm, to exploration, to implementation. Although
an MTL methodology is especially valuable for prototyping
specialized accelerators and exploring more exotic architec-

tures, it has general value as a methodology for more tradi-
tional architecture research as well.

Unfortunately, attempts to implement an MTL methodol-
ogy using existing publicly-available research tools reveals
numerous practical challenges we call the computer architec-
ture research methodology gap. This gap is manifested as
the distinct languages, design patterns, and tools commonly
used by functional level (FL), cycle level (CL), and register-
transfer level (RTL) modeling. We believe the computer ar-
chitecture research methodology gap exposes a critical need
for a new vertically integrated framework to facilitate rapid
design-space exploration and hardware implementation. Ide-
ally such a framework would use a single specification lan-
guage for FL, CL, and RTL modeling, enable multi-level sim-
ulations that mix models at different abstraction levels, and
provide a path to design automation toolflows for extraction
of credible area, energy, and timing results.

This paper introduces PyMTL!, our attempt to construct
such a unified, highly productive framework for FL, CL,
and RTL modeling. PyMTL leverages a common high-
productivity language (Python2.7) for behavioral specifica-
tion, structural elaboration, and verification, enabling a rapid
code-test-debug cycle for hardware modeling. Concurrent-
structural modeling combined with latency-insensitive design
allows reuse of test benches and components across abstrac-
tion levels while also enabling mixed simulation of FL, CL,
and RTL models. A model/tool split provides separation of
concerns between model specification and simulator genera-
tion letting architects focus on implementing hardware, not
simulators. PyMTL’s modular construction encourages ex-
tensibility: using elaborated model instances as input, users
can write custom tools (also in Python) such as simulators,
translators, analyzers, and visualizers. Python’s glue lan-
guage facilities provide flexibility by allowing PyMTL mod-
els and tools to be extended with C/C++ components or
embedded within existing C/C++ simulators [42]. Finally,
PyMTL serves as a productive hardware generation language
for building synthesizable hardware templates thanks to an
HDL translation tool that converts PyMTL RTL models into
Verilog-2001 source.

Leveraging Python as a modeling language improves
model conciseness, clarity, and implementation time [11,33],
but comes at a significant cost to simulation time. For
example, a pure Python cycle-level mesh network simu-
lation in PyMTL exhibits a 300x slowdown when com-
pared to an identical simulation written in C++. To ad-

IPyMTL loosely stands for [Py]thon framework for [M]odeling
[T]owards [L]ayout and is pronounced the same as “py-metal”.



dress this performance-productivity gap we take inspiration
from the scientific computing community which has increas-
ingly adopted productivity-level languages (e.g., MATLAB,
Python) for computationally intensive tasks by replacing
hand-written efficiency-level language code (e.g., C, C++)
with dynamic techniques such as just-in-time (JIT) compi-
lation [12, 27, 38] and selective-embedded JIT specializa-
tion [5, 10].

We introduce SimJIT, a custom just-in-time specializer
which takes CL and RTL models written in PyMTL and
automatically generates, compiles, links, and executes fast,
Python-wrapped C++ code seamlessly within the PyMTL
framework. SimJIT is both selective and embedded pro-
viding much of the benefits described in previous work on
domain-specific embedded specialization [10]. SimJIT de-
livers significant speedups over CPython (up to 34x for CL
models and 63 x for RTL models), but sees even greater ben-
efits when combined with PyPy, an interpreter for Python
with a meta-tracing JIT compiler [6]. PyPy is able to opti-
mize unspecialized Python code as well as hot paths between
Python and C++, boosting the performance of SimJIT simu-
lations by over 2x and providing a net speedup of 72x for
CL models and 200x for RTL models. These optimizations
mitigate much of the performance loss incurred by using a
productivity-level language, closing the performance gap be-
tween PyMTL and C++ simulations to within 4-6x.

The contributions of this paper are the following:

1. We introduce PyMTL, a novel, vertically-integrated
framework for concurrent-structural modeling and hard-
ware design (Section III). PyMTL provides a unified
environment for FL, CL, and RTL modeling and enables
a path to EDA toolflows via generation of Verilog HDL.

2. We introduce and evaluate SimJIT, a selective em-
bedded just-in-time specializer for PyMTL CL and
RTL models (Section IV). SimJIT significantly im-
proves the execution time of PyMTL simulations, pro-
viding near efficiency-level-language performance from
productivity-level-language models.

II. BACKGROUND

We consider three modeling abstractions of primary im-
portance to computer architects, each with a distinct design
methodology consisting of preferred languages, design pat-
terns, and tools. These methodologies are summarized in Ta-
ble I and described in greater detail below.

Functional-Level — FL models implement the functional-
ity but not the timing constraints of a target. FL. models are
useful for exploring algorithms, performing fast emulation
of hardware targets, and creating golden models for valida-
tion of CL and RTL models. The FL methodology usually
has a data structure and algorithm-centric view, leveraging
productivity-level languages such as MATLAB or Python to
enable rapid implementation and verification. FL. models of-
ten make use of open source algorithmic packages or tool-
boxes to aid construction of golden models where correctness

TABLE I. MODELING METHODOLOGIES

FL CL RTL
Modeling  Productivity Efficiency Hardware
Languages Level Level Description
(PLL) (ELL) (HDL)
MATLAB/Python C/C++ Verilog/VHDL
Modeling Functional: Object Oriented:  Concurrent-Structural:
Patterns Data Structures, Classes, Methods, Combinational Logic,
Algorithms Ticks and/or Clocked Logic,
Events Port Interfaces
Modeling  Third-party Computer Simulator
Tools Algorithm Architecture Generators,
Packages and Simulation Synthesis Tools,
Toolboxes Frameworks Verification Tools

is of primary concern. Performance-oriented FL. models may
use efficiency-level languages such as C or C++ when simu-
lation time is the priority (e.g., instruction-set simulators).

Cycle-Level — CL models capture the cycle-approximate
behavior of a hardware target. CL models attempt to strike a
balance between accuracy, performance, and flexibility while
exploring the timing behavior of hypothetical hardware or-
ganizations. The CL methodology places an emphasis on
simulation speed and flexibility, leveraging high-performance
efficiency-level languages like C++. Encapsulation and reuse
is typically achieved through classic object-oriented software
engineering paradigms, while timing is most often mod-
eled using the notion of ticks or events. Established com-
puter architecture simulation frameworks (e.g., ESESC [1],
gem5 [4]) are frequently used to increase productivity as they
typically provide libraries, simulation kernels, and parame-
terizable baseline models that allow for rapid design-space
exploration.

Register-Transfer-Level — RTL models are cycle-
accurate, resource-accurate, and bit-accurate representations
of hardware. RTL models are built for the purpose of verifi-
cation and synthesis of specific hardware implementations.
The RTL methodology uses dedicated hardware description
languages (HDLs) such as SystemVerilog and VHDL to cre-
ate bit-accurate, synthesizable hardware specifications. Lan-
guage primitives provided by HDLs are designed specifi-
cally for describing hardware: encapsulation is provided us-
ing port-based interfaces, composition is performed via struc-
tural connectivity, and logic is described using combinational
and synchronous concurrent blocks. These HDL specifica-
tions are passed to simulators for evaluation/verification and
EDA toolflows for collection of area, energy, timing estimates
and construction of physical FPGA/ASIC prototypes. Orig-
inally intended for the design and verification of individual
hardware instances, traditional HDLs are not well suited for
extensive design space exploration [2,40,41].

The distinct languages, design patterns, and tools utilized
by each abstraction create a computer architecture research
methodology gap. This methodology gap introduces intellec-
tual and technical barriers that make it challenging to transi-
tion between modeling abstractions and even more challeng-



ing to create an integrated flow across modeling abstractions.
Industry is able to bridge this gap by utilizing their consider-
able resources to build large design teams. For academic re-
search groups with limited resources and manpower, bridging
this gap can be exceedingly difficult often resulting in over
emphasis on a single level of abstraction.

A. Mechanisms for Closing the Methodology Gap

The design of PyMTL has received considerable inspira-
tion from mechanisms introduced in prior work. We list these
mechanisms below and briefly discuss how each can address
challenges contributing to the methodology gap.

Concurrent-Structural Frameworks - Concurrent-
structural frameworks provide hardware-inspired constructs
for modeling port-based interfaces, concurrent execution, and
structural composition. Vachharajani et. al have shown these
constructs address the mapping problem inherent to CL mod-
els written in sequential, object-oriented languages, greatly
improving clarity, accuracy, and component reuse [46].
HDLs for RTL design generally provide these constructs na-
tively, however, a few general-purpose language, cycle-level
simulation frameworks have adopted similar features (e.g.,
Liberty [46,47], Cascade [18], and SystemC [29]).

Unified Modeling Languages — Unified modeling lan-
guages enable specification of multiple modeling abstrac-
tions using a single description language. The use of a sin-
gle specification language greatly reduces cognitive over-
head for designers who would otherwise need expertise in
multiple design languages. SystemC was proposed as a
C++ language for multiple modeling tasks [29] including
FL/CL/transaction-level modeling and RTL design (using a
synthesizable subset), but has primarily seen wide adoption
for virtual system prototyping and high-level synthesis.

Hardware Generation Languages — Hardware genera-
tion languages (HGLs) are hardware design languages that
enable the construction of highly-parameterizable hardware
templates [40]. HGLs facilitate design space exploration at
the register-transfer level, and some HGLs additionally im-
prove the productivity of RTL design through the introduc-
tion of higher-level design abstractions. Examples of HGLs
include Genesis II [41], Chisel [2], and Bluespec [26]

HDL Integration — HDL integration provides mechanisms
for native cosimulation of Verilog/VHDL RTL with FL/CL
models written in more flexible general-purpose languages.
Such integration accelerates RTL verification by supporting
fast multilevel simulation of Verilog components with CL
models, and enabling embedding of FL/CL golden mod-
els within Verilog for test bench validation. Grossman et
al. noted that the unique HDL integration techniques in the
Cascade simulator, such as interface binding, greatly assisted
hardware validation of the Anton supercomputer [18].

SEJITS - Selective embedded just-in-time specializa-
tion (SEJITS) pairs domain-specific embedded languages
(DSELs) [21] with DSEL-specific JIT compilers to pro-
vide runtime generation of optimized, platform-specific im-
plementations from high-level descriptions. SEJITS en-

1 class MyModel( Model ):

2 def __init__( s, constructor_params ):
3

4 # input port declarations

5 # output port declarations

6 # other member declarations

5

8

wire declarations
submodule declarations
connectivity statements
concurrent logic specification

)
* W OH

13 # more connectivity statements
14 # more concurrent logic specification

Figure 1. PyMTL Model Template — A basic skeleton of a PyYMTL model.
Elaboration logic allows mixing of wire declarations, submodule declara-
tions, structural connectivity, and concurrent logic definitions.

ables efficiency-level language (ELL) performance from
productivity-level language (PLL) code, significantly closing
the performance-productivity gap for domain specific compu-
tations [10]. As an additional benefit, SEJITS greatly simpli-
fies the construction of new domain-specific abstractions and
high-performance JIT specializers by embedding specializa-
tion machinery within PLLs like Python.

Latency-Insensitive Interfaces — While more of a best-
practice than explicit mechanism, consistent use of latency-
insensitive interfaces at module boundaries is key to con-
structing libraries of interoperable FL, CL, and RTL mod-
els. Latency-insensitive protocols provide control abstrac-
tion through module-to-module stall communication, signifi-
cantly improving component composability, design modular-
ity, and facilitating greater test re-use [9,47].

III. PYMTL: A UNIFIED FRAMEWORK
ENABLING MODELING TOWARDS LAYOUT

PyMTL is a proof-of-concept framework designed to pro-
vide a unified environment for constructing FL, CL, and RTL
models. The PyMTL framework consists of a collection of
classes implementing a concurrent-structural DSEL within
Python for hardware modeling, as well as a collection of tools
for simulating and translating those models. The dynamic
typing and reflection capabilities provided by Python enable
succinct model descriptions, minimal boilerplate, and expres-
sion of flexible and highly parameterizable behavioral and
structural components. The use of a popular, general-purpose
programming language provides numerous benefits including
access to mature numerical and algorithmic libraries, tools for
test/development/debug, as well as access to the knowledge-
base of a large, active development community.

A. PYMTL Models

PyMTL models are described in a concurrent-structural
fashion: interfaces are port-based, logic is specified in con-
current logic blocks, and components are composed struc-
turally. Users define model implementations as Python
classes that inherit from Model. An example PyMTL class
skeleton is shown in Figure 1. The __init__ model con-
structor (lines 2—14) both executes elaboration-time config-
uration and declares run-time simulation logic. Elaboration-
time configuration specializes model construction based on



1 class Mux( Model ):
def __init__(s, nbits, nports):

1 class Register( Model ):
def init__(s, nbits):

def seq_logic():
s.out.next = s.in_

def comb_logic():
s.out.value = s.in_[s.sel]

2 2
3 type = Bits( nbits ) 3 s.in_ = InPort[nports] (nbits)
4 s.in_ = InPort ( type ) 4 s.sel = InPort (bw(nports))

5 s.out = OutPort( type ) 5 s.out = OutPort(nbits)

6 6

7 @s.tick_rtl 7 @s.combinational

8 8

9 9

class MuxReg( Model ):
def __init__( s, nbits=8, nports=4 ):

1

2

3 s.in_ = [ InPort( mnbits ) for x in range( nports ) ]
4 s.sel = InPort ( bw( nports ) )

5 s.out = OutPort( nbits )

6

7 s.reg_ = Register( nbits )

8 s.mux = Mux ( nbits )

©

10 s.connect( s.sel, s.mux.sel )

11 for i in range( nports ):

12 s.connect( s.in_[i], s.mux.in_[i] )
13 s.connect( s.mux.out, s.reg_.in_ )
14 s.connect( s.reg_.out, s.out )

Figure 2. PyMTL Example Models — Basic RTL models demonstrating se-
quential, combinational, and structural components in PyMTL. Powerful
construction and elaboration logic enables design of highly-parameterizable
components, while remaining fully Verilog translatable.

user-provided parameters.  This includes the model in-
terface (number, direction, message type of ports), inter-
nal constants, and structural hierarchy (wires, submodels,
connectivity). Run-time simulation logic is defined using
nested functions decorated with annotations that indicate
their simulation-time execution behavior. Provided decora-
tors include @s . combinational for combinational logic and
@s.tick_f1, @s.tick_cl, and @s.tick_rtl for FL, CL,
and RTL sequential logic, respectively. The semantics of sig-
nals (ports and wires) differ depending on whether they are
updated in a combinational or sequential logic block. Signals
updated in combinational blocks behave like wires; they are
updated by writing their .value attributes and the concur-
rent block enclosing them only executes when its sensitivity
list changes. Signals updated in sequential blocks behave like
registers; they are updated by writing their .next attributes
and the concurrent block enclosing them executes once every
simulator cycle. Much like Verilog, submodel instantiation,
structural connectivity, and behavioral logic definitions can
be intermixed throughout the constructor.

A few simple PYMTL model definitions are shown in Fig-
ure 2. The Register model consists of a constructor that
declares a single input and output port (lines 4-5) as well
as a sequential logic block using a s.tick_rtl decorated
nested function (lines 7-9). Ports are parameterizable by
message type, in this case a Bits fixed-bitwidth message of
size nbits (line 3). Due to the pervasive use of the Bits mes-
sage type in PyMTL RTL modeling, syntactic sugar has been
added such that InPort (4) may be used in place of the more
explicit InPort (Bits(4)). We use this shorthand for the re-
mainder of our examples. The Mux model is parameterizable
by bitwidth and number of ports: the input is declared as a
list of ports using a custom shorthand provided by the PyMTL
framework (line 3), while the select port bitwidth is calculated
using a user-defined function bw (line 4). A single combina-
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Model 7’Glaboratoa—' Instance Tool )—‘ Verilog — Flow
TS N T === 1
. User ' i User Tool |
Config :\ Tool 1 | Output i

Figure 3. PyMTL Methodology — A model and configuration are elaborated
into a model instance; tools manipulate the model instance to simulate or
translate the design.

tional logic block is defined during elaboration (lines 8-9).
No explicit sensitivity list is necessary as this is automatically
inferred during simulator construction. The MuxReg model
structurally composes Register and Mux models by instan-
tiating them like normal Python objects (lines 7-9) and con-
necting their ports via the s.connect () method (lines 10—
14). Note that it is not necessary to declare temporary wires
in order to connect submodules as ports can simply be di-
rectly connected. A list comprehension is used to instantiate
the input port list of MuxReg (line 3). This Python idiom is
commonly used in PyYMTL design to flexibly construct pa-
rameterizable lists of ports, wires, and submodules.

The examples in Figure 2 also provide a sample of PyMTL
models that are fully translatable to synthesizable Verilog
HDL. Translatable models must (1) describe all behavioral
logic within within s.tick_rtl and s.combinational
blocks, (2) use only a restricted, translatable subset of Python
for logic within these blocks, and (3) pass all data using
ports or wires with fixed-bitwidth message types (like Bits).
While these restrictions limit some of the expressive power of
Python, PyYMTL provides mechanisms such as BitStructs,
PortBundles, and type inference of local temporaries to im-
prove the succinctness and productivity of translatable RTL
modeling in PyMTL. Purely structural models like MuxReg
are always translatable if all child models are translatable.
This enables the full power of Python to be used during elabo-
ration. Even greater flexibility is provided to non-translatable
FL and CL models as they may contain arbitrary Python
code within their @s.tick_f1 and @s.tick_cl behavioral
blocks. However, SimJIT can only specialize CL models that
utilize a limited subset of the Python language (discussed in
Section IV). Examples of FL and CL models, shown in Fig-
ures 7, 8, and 10, will be discussed in further detail in Sec-
tions III-C and III-D.

B. PyMTL Tools

The software architecture of the PyMTL framework is
shown in Figure 3. User-defined models are combined
with their configuration parameters to construct and elabo-
rate model classes into model instances. Model instances
act as in-memory representations of an elaborated design
that can be accessed, inspected, and manipulated by vari-
ous tools, just like a normal Python object. For example,
the TranslationTool takes PyMTL RTL models, like those
in Figure 2, inspects their structural hierarchy, connectivity,



1 @pytest.mark.parametrize(

2 'mbits,nports', [( 8, 2), (8, 3), (8, 4), (8, 8)
3 (16, 2), (16, 3), (16, 4), (16, 8),
4 (32, 2), (32, 3), (32, 4), (32, 8)]
5)

6 def test_muxreg( nbits, nports, test_verilog ):

7 model = MuxReg( nbits, nports )

8 model.elaborate()

9 if test_verilog:

10 model = TranslationTool( model )

11

12 sim = SimulationTool( model )

13 for inputs, sel, output in gen_vectors(nbits,nports):

14 for i, val in enumerate( inputs ):
15 model.in_[i].value = val

16 model.sel.value = sel

17 sim.cycle()

18 assert model.out == output

Figure 4. PyMTL Test Harness — The PyMTL SimulationTool and py.test
package are used to simulate and verify the MuxReg module in Figure 2. A
command-line flag uses the TranslationTool to automatically convert the
MuxReg model into Verilog and test it within the same harness.

and concurrent logic, then uses this information to generate
synthesizable Verilog that can be passed to an EDA toolflow.
Similarly, the SimulationTool inspects elaborated models
to automatically register concurrent logic blocks, detect sen-
sitivity lists, and analyze the structure of connected ports to
generate optimized Python simulators. The modular nature of
this model/tool split encourages extensibility making it easy
for users to write their own custom tools such as linters, trans-
lators, and visualization tools. More importantly, it provides
a clean boundary between hardware modeling logic and sim-
ulator implementation logic letting users focus on hardware
design rather than simulator software engineering.

The PyMTL framework uses the open-source testing pack-
age py.test [34] along with the provided SimulationTool to
easily create extensive unit-test suites for each model. One
such unit-test can be seen in Figure 4. After instantiating and
elaborating a PyMTL model (lines 7-8), the test bench con-
structs a simulator using the SimulationTool (line 12) and
tests the design by setting input vectors, cycling the simula-
tor, and asserting outputs (lines 14-18). A number of pow-
erful features are demonstrated in this example: the py.test
@parametrize decorator instantiates a large number of test
configurations from a single test definition (lines 1-5), user
functions are used to generate configuration-specific test vec-
tors (line 13), and the model can be automatically trans-
lated into Verilog and verified within the same test bench by
simply passing the --test-verilog flag at the command
line (lines 9-10). In addition, py.test can provide test cov-
erage statistics and parallel test execution on multiple cores
or multiple machines by importing additional py.test plug-
ins [35,36].

C. PyMTL by Example: Accelerator Coprocessor

In this section, we demonstrate how PyMTL can be used to
model, evaluate, and implement a simple accelerator for dot
product computations. A modeling towards layout method-
ology is used to refine the accelerator from algorithm to im-
plementation. Computer architects are rarely concerned only
with the performance of a single component, rather we aim to
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Figure 5. Hypothetical Heterogeneous Architecture — (a) Accelerator-
augmented compute tiles interconnected by an on-chip network; (b) Syn-
thesized, placed, and routed layout of compute tile shown in (a). Processor,
cache, and accelerator RTL for this design were implemented and tested en-
tirely in PyMTL, automatically translated into Verilog HDL, then passed to
a Synopsys toolflow. Processor shown in blue, accelerator in orange, L1
caches in red and green, and critical path in black.

determine how a given mechanism may impact system per-
formance as a whole. With this in mind, we implement our
accelerator in the context of the hypothetical heterogeneous
system shown in Figure 5(a). This system consists of nu-
merous compute tiles interconnected by an on-chip network.
This section will focus on modeling a dot product accelerator
within the context of a tile containing a simple RISC pro-
cessor and L1 caches. The accelerator is implemented as a
coprocessor which shares a port to the L1 data cache with
the processor. Section III-D will investigate a simple mesh
network that might interconnect such tiles.

Functional Level — Architects build an FL model as a first
step in the design process to familiarize themselves with an
algorithm and create a golden model for validating more de-
tailed implementations. Figure 6 demonstrates two basic ap-
proaches to constructing a simple FL. model. The first ap-
proach (lines 1-2) manually implements the dot product al-
gorithm in Python. This approach provides an opportunity for
the designer to rapidly experiment with alternative algorithm
implementations. The second approach (lines 4-5) simply
calls the dot library function provided by the numerical pack-
age NumPy [28]. This approach provides immediate access
to a verified, optimized, high-performance golden reference.

Unfortunately, integrating such FL implementations into
an architecture framework can be a challenge. Our accel-
erator is designed as a coprocessor that interacts with both
a processor and memory, so the FL. model must implement
communication protocols to interact with the rest of the sys-
tem. This is a classic example of the methodology gap.

Figure 7 demonstrates a PyMTL FL model for the dot-
product accelerator capable of interacting with FL, CL,
and RTL models of the processor and memory. While
more verbose than the simple implementations in Figure 6,
the DotProductFL model must additionally control inter-
actions with the processor, memory, and accelerator state.
This additional complexity is greatly simplified by several
PyMTL provided components: ReqRespBundles encap-



1 def dot_product_manual( srcO, srcl ): 1 class DotProductRTL( Model ):

2 return sum( [x*y for x,y in zip(srcO, src1)] ) 2 def __init__( s, mem_ifc_types, cpu_ifc_types ):
3 3 s.cpu_ifc = ChildReqRespBundle ( cpu_ifc_types )
4 def dot_product_library( srcO, srcl ): 4 s.mem_ifc = ParentReqRespBundle( mem_ifc_types )
5 return numpy.dot( srcO, srcl ) 5
6 s.dpath = DotProductDpath( mem_ifc_types, cpu_ifc_types )
Figure 6. Functional Dot Product Implementation — A functional implemen- ; :(C:Zirlxec; zzziiogu;tggl ; 2§§i1§0'types’ cpu_ifc_types )
tation of the dot product operator. We show both a manual implementation in o ) - ~opath, 8-
Python, as well as a higher-performance library implementation. 10 class DotProductDpath( Model ):
11 def __init__( s, mem_ifc_types, cpu_ifc_types ):
1 class DotProductFL( Model ): 12 s.cpu_ifc = ChildReqRespBundle ( cpu_ifc_types )
2 def __init__( s, mem_ifc_types, cpu_ifc_types ): 13 s.mem_ifc = ParentReqRespBundle( mem_ifc_types )
3 s.cpu_ifc = ChildReqRespBundle ( cpu_ifc_types ) 14 s.cs = InPort ( CtrlSignals() )
4 s.mem_ifc = ParentReqRespBundle( mem_ifc_types ) 15 s.ss = OutPort( StatusSignals() )
5 16
6 s.cpu = ChildReqRespQueueAdapter( s.cpu_ifc ) 17 #--- Stage M: Memory Request ———-------mmmmmmmmmoo
7 s.srcO = ListMemPortAdapter ( s.mem_ifc ) 18 s.count = Wire( cpu_ifc_types.req .data.nbits )
8 s.srcl = ListMemPortAdapter ( s.mem_ifc ) 19 s.size = Wire( cpu_ifc_types.req .data.nbits )
9 20 s.srcO_addr_M = Wire( mem_ifc_types.req .addr.nbits )
10 O@s.tick_fl 21 s.srcl_addr_M = Wire( mem_ifc_types.req .addr.nbits )
1 def logic(): 2
12 s.cpu.xtick() 23 @s.tick_rtl
13 if not s.cpu.req_q.empty() and not s.cpu.resp_q.full(): 24 def stage_seq_M():
14 req = s.cpu.get_req() 25 ctrl_msg = s.cpu_ifc.req_msg .ctrl_msg
15 if req.ctrl_msg == 1: 26 cpu_data = s.cpu_ifc.req_msg .data
16 s.src0.set_size( req.data ) 27
17 s.srcl.set_size( req.data ) 28 if s.cs.update_M:
18 elif req.ctrl_msg == 2: s.srcO.set_base( req.data ) 29 if ctrl_msg 1: s.size .next = cpu_data
19 elif req.ctrl_msg == 3: s.srcl.set_base( req.data ) 30 elif ctrl_msg 2: s.srcO_addr_M.next = cpu_data
20 elif req.ctrl_msg == O: 31 elif ctrl_msg 3: s.srcl_addr_M.next = cpu_data
21 result = numpy.dot( s.srcO, s.srcl ) 32 elif ctrl_msg == 0: s.ss.go .next = True
2 s.cpu.push_resp( result ) 33
34 if s.cs.count_clear_M: s.count.next = 0
Figure 7. PyMTL DotProductFL Accelerator — Concurrent-structural mod- :Z elif s.cs.count_en M: s.count.next = s.count + 1
eling allows composition of FL models with CL and RTL models, but in- e @s. combinational
troduces the need to implement communication protocols. Proxies provide 33 def stage_comb_M():
programmer-friendly interfaces that hide the complexities of these protocols. 39 if s.cs.baddr_sel_M == srcO: base_addr_M = s.srcO_addr_M
40 else: base_addr_M = s.srcl_addr_M
1 class DotProductCL( Model ): 41
2 def __init__( s, mem_ifc_types, cpu_ifc_types ): 42 s.mem_ifc.req_msg.type.value = 0
3 s.cpu_ifc = ChildReqRespBundle ( cpu_ifc_types ) 43 s.mem_ifc.req_msg.addr.value = base_addr_M + (s.count<<2)
4 s.mem_ifc = ParentReqRespBundle( mem_ifc_types ) 44
5 45 s.ss.last_item_M.value = s.count == (s.size - 1)
6 s.cpu = ChildReqRespQueueAdapter ( s.cpu_ifc ) 46
7 s.mem = ParentReqRespQueueAdapter( s.mem_ifc ) 47 #--- Stage R: Memory Response -—------------—coooomooooo—__
8 48 s.srcO_data_R = Wire( mem_ifc_types.resp.data.nbits )
9 s.go = False 49 s.srcl_data_R = Wire( mem_ifc_types.resp.data.nbits )
10 s.size =0 50
11 s.src0 =0 51 @s.tick_rtl
12 s.srcl =0 52 def stage_seq_RQ):
13 s.data = [] 53 mem_data = s.mem_ifc.resp_msg.data
14 s.addrs = [] 54 if s.cs.srcO_en_R: s.srcO_data_R.next = mem_data
15 55 if s.cs.srcl_en_R: s.srcl_data_R.next = mem_data
16 @s.tick_cl 56
17 def logic(): 57 #--- Stage X: Execute Multiply -------------—-—-cooo——-
18 s.cpu.xtick() 58 s.result_X = Wire( cpu_ifc_types.req.data.nbits )
19 s.mem.xtick() 59 s.mul = IntPipelinedMultiplier(
20 60 nbits = cpu_ifc_types.req.data.nbits,
21 if s.go: 61 nstages = 4,
2 62 )
23 if s.addrs and not s.mem.req_q.full(): 63 s.connect_dict( { s.mul.op_a : s.srcO_data_R,
24 s.mem.push_req( mreq( s.addrs.pop() ) ) 64 s.mul.op_b : s.srcl_data_R,
25 if not s‘mem.resp_q.empty(): 65 s.mul.product : s.result_X })
26 s.data.append( s.mem.get_resp() ) 66
27 67 #--- Stage A: Accumulate ---------------------m
28 if len( s.data ) == s.size*2: 68 s.accum_A = Wire( cpu_ifc_types.resp.data.nbits )
29 result = numpy.dot( s.datal[0::2], s.data[1::2] ) 69 s.accum_out = Wire( cpu_ifc_types.resp.data.nbits )
30 s.cpu.push_resp( result ) 70
31 s.go = False 71 Q@s.tick_rtl
32 7 def stage_seq_AQ):
33 elif not s.cpu.req_q.empty() and not s.cpu.resp_q.full(): 73 if s.reset or s.cs.accum_clear_A:
34 req = s.cpu.get_req() 74 s.accum_A.next = 0
35 if req.ctrl_msg == 1: s.size = req.data 75 elif s.cs.accum_en_A:
36 elif req.ctrl_msg == 2: s.srcO = req.data 76 s.accum_A.next = s.accum_out
37 elif req.ctrl_msg == 3: s.srcl = req.data 77
38 elif req.ctrl_msg == O: 78 @s.combinational
39 s.addrs = gen_addresses( s.size, s.srcO, s.srcl ) 79 def stage_comb_A():
40 s.go = True 80 s.accum_out.value = s.result_X + s.accum_A
81 s.cpu_ifc.resp_msg.value = s.accum_A

Figure 8. PyMTL DotProductCL Accelerator — Python’s high-level lan-

guage features are used to rapid-prototype a cycle-approximate model with ~ Figure 9. PYMTL DotProductRTL Accelerator — RTL implementation of a
pipelined memory requests. Queue-based, latency insensitive interfaces pro- dot product accelerator in PyMTL, control logic is not shown for brevity.
vide backpressure which natura]ly imp]ements stall logic. PythOIl DSEL combines familiar HDL syntax with powerful elaboration.



sulate collections of signals needed for latency-insensitive
communication with the processor and memory (lines 3-4),
the ChildReqRespQueueAdapter provides a simple queue-
based interface to the ChildReqRespBundle and automati-
cally manages latency-insensitive communication to the pro-
cessor (lines 6, 12—14, 22), and the ListMemPortAdapter
provides a list-like interface to the ParentReqRespBundle
and automatically manages the latency-insensitive communi-
cation to the memory (lines 7-8).

Of particular note is the ListMemPortAdapter which al-
lows us to reuse numpy.dot from Figure 6 without mod-
ification. This is made possible by the greenlets concur-
rency package [37] that enables proxying array index ac-
cesses into memory request and response transactions over
the latency-insensitive, port-based model interfaces. The ex-
act mechanism of this functionality is beyond the scope of
this paper, but the effect is an ability to compose existing,
library-provided utility functions with port-based processors
and memories to quickly create a target for validation and
software co-development.

Cycle Level — Construction of a cycle-level model pro-
vides a sense of the timing behavior of a component, en-
abling architects to estimate system-level performance and
make first-order design decisions prior to building a detailed
RTL implementation. Figure 8 shows an implementation of
the DotProductCL model in PyMTL. Rather than faithfully
emulating detailed pipeline behavior, this model simply aims
to issue and receive memory requests in a cycle-approximate
manner by implementing a simple pipelining scheme. Like
the FL model, the CL model takes advantage of higher-level
PyMTL library constructs such as the ReqResponseBundles
and QueueAdapters to simplify the design, particularly with
regards to interfacing with external communication protocols
(lines 3-7). Logic is simplified by pre-generating all mem-
ory requests and storing them in a list once the go signal
is set (line 39), this list is used to issue requests to memory
as backpressure allows (lines 23-24). Data is received from
the memory in a pipelined manner and stored in another list
(lines 25-26). Once all data is received it is separated, passed
into numpy . dot, and returned to the processor (lines 28-31).

Because DotProductCL exposes an identical port-based
interface to DotProductFL, construction of the larger tile
can be created using an incremental approach. These steps
include writing unit-tests based on golden FL model behav-
ior, structurally composing the FL. model with the processor
and memory to validate correct system behavior, verifying
the CL model in isolation by reusing the FL unit tests, and
finally swapping the FL. model and the CL model for final
system-level integration testing. This pervasive testing gives
us confidence in our model, and the final composition of the
CL accelerator with CL or RTL memory and processor mod-
els allow us to evaluate system-level behavior.

To estimate the performance impact of our accelerator, a
more detailed version of DotProductCL is combined with
CL processor and cache components to create a CL tile. This
accelerator-augmented tile is used to execute a 1024x1024
matrix-vector multiplication kernel (a computation consisting

of 1024 dot products). The resulting CL simulation estimates
our accelerator will provide a 2.9 x speedup over a traditional
scalar implementation with loop-unrolling optimizations.

Register-Transfer Level — The CL model allowed us to
quickly obtain a cycle-approximate performance estimate for
our accelerator-enhanced tile in terms of simulated cycles,
however, area, energy, and cycle time are equally important
metrics that must also be considered. Unfortunately, accu-
rately predicting these metrics from high-level models is no-
toriously difficult. An alternative approach is to use an indus-
trial EDA toolflow to extract estimates from a detailed RTL
implementation. Building RTL is often the most appropri-
ate approach for obtaining credible metrics, particularly when
constructing exotic accelerator architectures.

PyMTL attempts to address many of the challenges asso-
ciated with RTL design by providing a productive environ-
ment for constructing highly parameterizable RTL implemen-
tations. Figure 9 shows the top-level and datapath code for
the DotProductRTL model. The PyMTL DSEL provides
a familiar Verilog-inspired syntax for traditional combina-
tional and sequential bit-level design using the Bits data-
type, but also layers more advanced constructs and powerful
elaboration-time capabilities to improve code clarity. A con-
cise top-level module definition is made possible by the use
of PortBundles and the connect_auto method, which au-
tomatically connects parent and child signals based on signal
name (lines 1-8). BitStructs are used as message types to
connect control and status signals (lines 14-15), improving
code clarity by providing named access to bitfields (lines 30,
36-37, 41). Mixing of wire declarations, sequential logic def-
initions, combinational logic definitions, and parameterizable
submodule instantiations (lines 58—61) enable code arrange-
ments that clearly demarcate pipeline stages. In addition,
DotProductRTL shares the same parameterizable interface
as the FL and CL models enabling reuse of unmodified FL
and CL test benches for RTL verification before automatic
translation into synthesizable Verilog.

Figure 5(b) shows a synthesized, placed, and routed im-
plementation of the tile in Figure 5(a), including a 5-stage
RISC processor, dot-product accelerator, instruction cache,
and data cache. The entire tile was implemented, simulated,
and verified in PYMTL before being translated into Verilog
and passed to a Synopsys EDA toolflow. Using this placed-
and-routed design we were able to extract area, energy, and
timing metrics for the tile. The dot-product accelerator added
an area overhead of 4% (0.02 mm?) and increased the cycle
time of the tile by approximately 5%. Fortunately, the im-
provement in simulated cycles resulted in a net execution time
speedup of 2.74x. This performance improvement must be
weighed against the overheads and the fact that the accelera-
tor is only useful for dot product computations.

D. PyMTL by Example: Mesh Network

The previous section evaluated adding an accelerator to a
single tile from Figure 5(a) in isolation, however, this tile is
just one component in a much larger multi-tile system. In this



1 class NetworkFL( Model ):

2 def __init__( s, nrouters, nmsgs,

3 data_nbits, nentries ):
4

5 # ensure nrouters is a perfect square
6 assert sqrt( nrouters ) % 1 ==

7

3

net_msg = NetMsg( nrouters, nmsgs, data_nbits )
9 s.in_ = InValRdyBundle [ nrouters ]( net_msg )

10 s.out OutValRdyBundle[ nrouters ]( net_msg )
11

12 s.nentries = nentries

13 s.output_fifos = [deque() for x in range(nrouters)]
14

15 @s.tick_f1l

16 def network_logic():

17

18 # dequeue logic

19 for i, outport in enumerate( s.out ):

20 if outport.val and outport.rdy:

21 s.output_fifos[ i ].popleft()

2

23 # enqueue logic

24 for inport in s.in_:

25 if inport.val and inport.rdy:

26 dest = inport.msg.dest

27 msg = inport.msg[:]

28 s.output_fifos[ dest ].append( msg )

29

30 # set output signals

31 for i, fifo in enumerate( s.output_fifos ):
32

33 is_full = len( fifo ) == s.nentries

34 is_empty = len( fifo ) == 0

35

36 s.out[ i ].val.next = not is_empty

37 s.in_[ i ].rdy.next = not is_full

38 if not is_empty:

39 s.out[ i ].msg.next = fifo[ 0 ]

Figure 10. FL Network — Functional-level model emulates the functionality
but not the timing of a mesh network. this is behaviorally equivalent to an
ideal crossbar. Resource constraints exist only on the model interface: mul-
tiple packets can enter the same queue in a single cycle, but only one packet
may leave per cycle.

section, we will briefly explore the design and performance of
as simple mesh network that might interconnect these tiles.

Functional Level — Verifying tile behavior in the context
of a multi-tile system can be greatly simplified by starting
with an FL network implementation. PyMTL’s concurrent-
structural modeling approach allows us to quickly write a
port-based FL. model of our mesh network (behaviorally
equivalent to a “magic” single-cycle crossbar) and connect
it with FL, CL, or RTL tiles in order to verify our tiles and to
provide a platform for multi-tile software development. Fig-
ure 10 shows a full PyMTL implementation of an FL network.

Cycle Level — A CL mesh network emulating realistic net-
work behavior is implemented to investigate network per-
formance characteristics. Figure 11 contains PyMTL code
for a structural mesh network. This model is designed to
take a PyMTL router implementation as a parameter (line
2) and structurally compose instances of this router into a
complete network (lines 16-39). This approach is particu-
larly powerful as it allows us to easily instantiate the network
with either FL, CL, or RTL router models to trade-off accu-
racy and simulation speed, or quickly swap out routers with
different microarchitectures for either verification or evalua-
tion purposes. To construct a simple CL network model, we
use MeshNetworkStructural to construct an 8x8 mesh net-

1 class MeshNetworkStructural( Model ):

2 def __init__( s, RouterType, nrouters, nmsgs,

3 data_nbits, nentries ):

4

5 # ensure nrouters is a perfect square

6 assert sqrt( nrouters ) % 1 ==

5

8 s.RouterType = RouterType

9 s.nrouters = nrouters

10 s.params = [nrouters, nmsgs, data_nbits, nentries]
11

12 net_msg = NetMsg( nrouters, nmsgs, data_nbits )

13 s.in_ = InValRdyBundle [ nrouters ]( net_msg )

14 s.out OutValRdyBundle[ nrouters ]( net_msg )

15

16 # instantiate routers

17 R = s.RouterType

18 s.routers = \

19 [ R(x, *s.params) for x in range(s.nrouters) ]

20

21 # connect injection terminals

2 for i in xrange( s.nrouters ):

23 s.connect( s.in_[i], s.routers[i].in_[R.TERM] )
24 s.connect( s.out[i], s.routers([i].out[R.TERM] )
25

26 # connect mesh routers

27 nrouters_1D = int( sqrt( s.nrouters ) )

28 for j in range( nrouters_1D ):

29 for i in range( nrouters_1iD ):

30 idx = i + j * nrouters_1D

31 cur = s.routers[idx]

32 if i + 1 < nrouters_1D:

33 east = s.routers[ idx + 1 ]

34 s.connect (cur.out [R.EAST], east.in_[R.WEST])
35 s.connect (cur.in_[R.EAST], east.out[R.WEST])
36 if j + 1 < nrouters_1D:

37 south = s.routers[ idx + nrouters_1iD ]

38 s.connect (cur.out [R.SOUTH], south.in_[R.NORTH])
39 s.connect (cur.in_[R.SOUTH], south.out[R.NORTH])

Figure 11. Structural Mesh Network — Structurally composed network pa-
rameterized by network message type, network size, router buffering, and
router type (a PYMTL model). ValRdyBundles significantly reduce struc-
tural connectivity complexity. Elaboration can use arbitrary Python while
still remaining Verilog translatable as long as RouterType is translatable.

work composed of routers using X'Y-dimension ordered rout-
ing and elastic-buffer flow control. Simulations of this model
allow us to quickly estimate this network has a zero-load la-
tency of 13 cycles and saturates at an injection rate of 32%.

Register-Transfer Level — Depending on our design goals,
we may want to estimate area, energy, and timing for a single
router, the entire network in isolation, or the network with the
tiles attached. An RTL network can be created using the same
top-level structural code as in Figure 11 by simply passing
in an RTL router implementation as a parameter. Structural
code in PyMTL is always Verilog translatable as long as all
leaf modules are also Verilog translatable.

IV. SIMJIT: CLOSING THE
PERFORMANCE-PRODUCTIVITY GAP

While the dynamic nature of Python greatly improves the
expressiveness, productivity, and flexibility of model code,
it significantly degrades simulation performance when com-
pared to a statically compiled language like C++. We address
this performance limitation by using a hybrid just-in-time op-
timization approach. We combine SimJIT, a custom just-in-
time specializer for converting PyMTL models into optimized
C++ code, with the PyPy meta-tracing JIT interpreter. Below
we discuss the design of SimJIT and evaluate its performance
on CL and RTL models.



A. SimJIT Design

SimJIT consists of two distinct specializers: SimJIT-CL
for specializing cycle-level PyMTL models and SimJIT-RTL
for specializing register-transfer-level PyMTL models. Fig-
ure 12 shows the software architecture of the SimJIT-CL and
SimJIT-RTL specializers. Currently, the designer must manu-
ally invoke these specializers on their models, although future
work could consider adding support to automatically traverse
the model hierarchy to find and specialize appropriate CL and
RTL models.

SimJIT-CL begins with an elaborated PyMTL model in-
stance and uses Python’s reflection capabilities to inspect the
model’s structural connectivity and concurrent logic blocks.
We are able to reuse several model optimization utilities from
the previously described SimulationTool to help in gener-
ating optimized C++ components. We also leverage the ast
package provided by the Python Standard Library to imple-
ment translation of concurrent logic blocks into C++ func-
tions. The translator produces both C++ source implement-
ing the optimized model as well as a C interface wrapper so
that this C++ source may be accessed via CFFI, a fast for-
eign function interface library for calling C code from Python.
Once code generation is complete, it is automatically com-
piled into a C shared library using LLVM, then imported into
Python using an automatically generated PyMTL wrapper.
This process gives the library a port-based interface so that
it appears as a normal PyMTL model to the user.

Similar to SimJIT-CL, the SimJIT-RTL specializer takes an
elaborated PyYMTL model instance and inspects it to begin the
translation process. Unlike SimJIT-CL, SimJIT-RTL does not
attempt to perform any optimizations, rather it directly trans-
lates the design into equivalent synthesizable Verilog HDL.
This translated Verilog is passed to Verilator, an open-source
tool for generating optimized C++ simulators from Verilog
source [48]. We combine the verilated C++ source with a
generated C interface wrapper, compile it into a C shared li-
brary, and once again wrap this in a generated PyMTL model.

While both SimJIT-CL and SimJIT-RTL can generate fast
C++ components that significantly improve simulation time,
the Python interface still has a considerable impact on simu-
lation performance. We leverage PyPy to optimize the Python
simulation loop as well as the hot-paths between the Python
and C++ call interface, significantly reducing the overhead
of using Python component wrappers. Compilation time of
the specializer can also take a considerable amount of time,
especially for SImJIT-RTL. For this reason, PyMTL includes
support for automatically caching the results from translation
for SimJIT-RTL. While not currently implemented, caching
the results from translation for SimJIT-CL should be rela-
tively straight-forward. In the next two sections, we examine
the performance benefits of SimJIT and PyPy in greater de-
tail, using the PyMTL models discussed in Sections III-C and
III-D as examples.

B. SimJIT Performance: Accelerator Tile

We construct 27 different tile models at varying levels of
detail by composing FL, CL, and RTL implementations of the
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Figure 12. SimJIT Software Architecture — SimJIT consists of two special-
izers: one for CL models and one for RTL models. Each specializer can au-
tomatically translate PyMTL models into C++ and generate the appropriate
wrappers to enable these C++ implementations to appear as standard PyMTL
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Figure 13. Simulator Performance vs. LOD — Simulator performance us-
ing CPython and SimJIT+PyPy with the processor, memory, and accelerator
modeled at various levels of abstraction. Results are normalized against the
pure ISA simulator using PyPy. Level of detail (LOD) is measured by allo-
cating a score of one for FL, two for CL, and three for RTL and then summing
across the three models. For example, a FL processor composed with a CL
memory system and RTL accelerator would have an LOD of 14243 = 6.

processor (P), caches (C), and accelerator (A) for the com-
pute tile in Figure 5(a). Each configuration is described as
a tuple (P,C,A) where each entry is FL, CL, or RTL. Each
configuration is simulated in CPython with no optimizations
and also simulated again using both SimJIT and PyPy. For
this experiment, a slightly more complicated dot product ac-
celerator was used than the one described in Section III-C.
SimJIT+PyPy runs applied SimJIT-RTL specialization to all
RTL components in a model, whereas SimJIT-CL optimiza-
tions were only applied to the caches due to limitations of our
current proof-of-concept SimJIT-CL specializer. Figure 13
shows the simulation performance of each run plotted against
a “level of detail” (LOD) score assigned to each configura-
tion. LOD is calculated such that LOD = p+ ¢+ a where
p, ¢, and a have a value corresponding to the model com-
plexity: FL = 1, CL = 2, RTL = 3. Note that the LOD met-
ric is not meant to be an exact measure of model accuracy
but rather a high-level approximation of overall model com-
plexity. Performance is calculated as the execution time of a
configuration normalized against the execution time of a sim-
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Figure 14. SimJIT Mesh Network Performance — Simulation of 64-node FL, CL, and RTL mesh network models operating near saturation. Dotted lines indicate
total simulation-time speedup including all compilation and specialization overheads. Solid lines indicate speedup ignoring alloverheads shown in Figure 16.
For CL and RTL models, the solid lines closely approximate the speedup seen with caching enabled. No SimJIT optimization exists for FL. models, but PyPy is
able to provide good speedups. SimJIT+PyPy brings CL/RTL execution time within 4x/6x of hand-written C++/optimized Verilator simulation, respectively.

ple object-oriented instruction-set simulator implemented in
Python and executed using PyPy. This instruction-set simula-
tor is given an LOD score of 1 since it consists of only a single
FL component, and it is plotted at coordinate coordinate (1,1)
in Figure 13.

A general downward trend is observed in relative simula-
tion performance as LOD increases. This is due to the greater
computational effort required to simulate increasingly de-
tailed models, resulting in a corresponding increase in execu-
tion time. In particular, a significant drop in performance can
be seen between the simple instruction-set simulator (LOD =
1) and the (FL,FL,FL) configuration (LOD = 3). This gap
demonstrates the costs associated with modular modeling
of components, structural composition, and communication
overheads incurred versus a monolithic implementation with
a tightly integrated memory and accelerator implementation.
Occasionally, a model with a high LOD will take less exe-
cution time than a model with low LOD. For CPython data
points this is largely due to more detailed models taking ad-
vantage of pipelining or parallelism to reduce target execu-
tion cycles. For example, the FL model of the accelerator
does not pipeline memory operations and therefore executes
many more target cycles than the CL implementation. For
SimJIT+PyPy data points the effectiveness of each special-
ization strategy and the complexity of each component be-
ing specialized plays an equally significant role. FL compo-
nents only benefit from the optimizations provided by PyPy
and in some cases may perform worse than CL or RTL mod-
els which benefit from both SimJIT and PyPy, despite their
greater LOD. Section IV-C explores the performance charac-
teristics of each specialization strategy in more detail.

Comparing the SimJIT+PyPy and CPython data points we
can see that just-in-time specialization is able to significantly
improve the execution time of each configuration, resulting in
a vertical shift that makes even the most detailed models com-
petitive with the CPython versions of simple models. Even
better results could be expected if SimJIT-CL optimizations
were applied to CL processor and CL accelerator models as

well. Of particular interest is the (RTL,RTL,RTL) configu-
ration (LOD = 9) which demonstrates better simulation per-
formance than many less detailed configurations. This is be-
cause all subcomponents of the model can be optimized to-
gether as a monolithic unit, further reducing the overhead of
Python wrapping. More generally, Figure 13 demonstrates
the impact of two distinct approaches to improving PyMTL
performance: (1) improvements that can be obtained auto-
matically through specialization using SimJIT+PyPy, and (2)
improvements that can be obtained manually by tailoring sim-
ulation detail via multi-level modeling.

C. SimJIT Performance: Mesh Network

We use the mesh network discussed in Section III-D to ex-
plore in greater detail the performance impact and overheads
associated with SimJIT and PyPy. A network makes a good
model for this purpose, since it allows us to flexibly configure
size, injection rate, and simulation time to examine SimJIT’s
performance on models of varying complexity and under var-
ious loads. Figure 14 shows the impact of just-in-time spe-
cialization on 64-node FL, CL, and RTL mesh networks near
saturation. All results are normalized to the performance of
CPython. Dotted lines show speedup of fotral simulation time
while solid lines indicate speedup after subtracting the sim-
ulation overheads shown in Figure 16. These overheads are
discussed in detail later in this section. Note that the dotted
lines in Figure 14 are the real speedup observed when run-
ning a single experiment, while the solid line is an approxima-
tion of the speedup observed when caching is available. Our
SimJIT-RTL caching implementation is able to remove the
compilation and verilation overheads (shown in Figure 16)
so the solid line closely approximates the speedups seen when
doing multiple simulations of the same model instance.

The FL network plot in Figure 14(a) compares only PyPy
versus CPython execution since no embedded-specializer ex-
ists for FL. models. PyPy demonstrates a speedup between
2-25x depending on the length of the simulation. The bend
in the solid line represents the warm-up time associated with



PyPy’s tracing JIT. After 10M target cycles the JIT has com-
pletely warmed-up and almost entirely amortizes all JIT over-
heads. The only overhead included in the dotted line is elabo-
ration, which has a performance impact of less than a second.

The CL network plot in Figure 14(b) compares PyPy,
SimJIT-CL, SimJIT-CL+PyPy, and a hand-coded C++ im-
plementation against CPython. The C++ implementation is
implemented using an in-house concurrent-structural model-
ing framework in the same spirit as Liberty [47] and Cas-
cade [18]. It is designed to have cycle-exact simulation be-
havior with respect to the PyMTL model and is driven with an
identical traffic pattern. The pure C++ implementation sees
a speedup over CPython of up to 300x for a 10M-cycle sim-
ulation, but incurs a significant overhead from compilation
time (dotted line). While this overhead is less important when
model design has completed and long simulations are being
performed for evaluation, this time significantly impacts the
code-test-debug loop of the programmer, particularly when
changing a module that forces a rebuild of many dependent
components. An interpreted design language provides a sig-
nificant productivity boost in this respect as simulations of
less than 1K target cycles (often used for debugging) offer
quicker turn around than a compiled language. For long runs
of 10M target cycles, PyPy is able to provide a 12x speedup
over CPython, SimJIT a speedup of 30x, and the combina-
tion of SimJIT and PyPy provides a speedup of 75x bringing
us within 4 x of hand-coded C++.

The RTL network plot in Figure 14(c) compares PyPy,
SimJIT-RTL, SimJIT-RTL+PyPy, and a hand-coded Verilog
implementation against CPython. For the Verilog network we
use Verilator to generate a C++ simulator, manually write a
C++ test harness, and compile them together to create a sim-
ulator binary. Again, the Verilog implementation has been
verified to be cycle-exact with our PyMTL implementation
and is driven using an identical traffic pattern. Due to the de-
tailed nature of RTL simulation, Python sees an even greater
performance degredation when compared to C++. For the
longest running configuration of 10M target cycles, C++ ob-
serves a 1200x speedup over CPython. While this perfor-
mance difference makes Python a non-starter for long run-
ning simulations, achieving this performance comes at a sig-
nificant compilation overhead: compiling Verilator-generated
C++ for the 64-node mesh network takes over 5 minutes us-
ing the relatively fast -O1 optimization level of GCC. PyPy
has trouble providing significant speedups over more compli-
cated designs, and in this case only achieves a 6x improve-
ment over CPython. SimJIT-RTL provides a 63x speedup
and combining SimJIT-RTL with PyPy provides a speedup of
200, bringing us within 6 x of verilated hand-coded Verilog.

To explore how simulator activity impacts our SimJIT
speedups, we vary the injection rate of the 64-node mesh net-
work simulations for both the CL and RTL models (see Fig-
ure 15). In comparison to CPython, PyPy performance is rel-
atively consistent across loads, while SimJIT-CL and SimJIT-
RTL see increased performance under greater load. SimJIT
speedup ranges between 23-49x for SimJIT-CL+PyPy and
77-192x for SimJIT-RTL+PyPy. The curves of both plots
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Figure 15. SimJIT Performance vs. Load — Impact of injection rate on a 64-
node network simulation executing for 100K cycles. Heavier load results in
longer execution times, enabling overheads to be amortized more rapidly for
a given number of simulated cycles as more time is spent in optimized code.
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Figure 16. SimJIT Overheads — Elaboration (elab), code generation (cgen),
verilation (veri), compilation (comp), Python wrapping (wrap) and sim cre-
ation (simc) all contribute overhead to run-time creation of specializers.
Compile time has the largest impact for both SimJIT-RTL and SimJIT-CL.
Verilation also has a significant impact for SimJIT-RTL, especially for larger
models. This step is not present in SimJIT-CL.

begin to flatten out at the network’s saturation point near an
injection rate of 30%. This is due to the increased amount of
execution time being spent inside the network model during
each simulation tick meaning more time is spent in optimized
C++ code for the SimJIT configurations.

The overheads incurred by SimJIT-RTL and SimJIT-CL
increase with larger model sizes due to the increased quan-
tity of code that must be generated and compiled. Figure 16
shows these overheads for 4x4 and 8x8 mesh networks.
These overheads are relatively modest for SimJIT-RTL at un-
der 5 and 20 seconds for the 16- and 64-node meshes, re-
spectively. The use of PyPy slightly increases the overhead
of SimJIT. This is because SimJIT’s elaboration, code gen-
eration, wrapping, and simulator creation phases are all too
short to amortize PyPy’s tracing JIT overhead. However, this



slowdown is negligible compared to the significant speedups
PyPy provides during simulation. SimJIT-RTL has an addi-
tional verilation phase, as well as significantly higher compi-
lation times: 22 seconds for a 16-node mesh and 230 seconds
for a 64-node mesh. Fortunately, the overheads for verilation,
compilation, and wrapping can be converted into a one-time
cost using SimJIT-RTL’s simple caching scheme.

V. RELATED WORK

A number of previous projects have proposed using Python
for hardware design. Stratus, PHDL, and PyHDL generate
HDL from parameterized structural descriptions in Python by
using provided library blocks, but do not provide simulation
capabilities or support for FL or CL modeling [3,20,23]. My-
HDL uses Python as a hardware description language that can
be simulated in a Python interpreter or translated to Verilog
and VHDL [14,49]. SysPy is a tool intended to aid processor-
centric SoC designs targeting FPGAs that integrates with ex-
isting IP and user-provided C source source [22]. PDSDL,
enables behavioral and structural description of RTL models
that can be simulated within a Python-based kernel, as well as
translated into HDL. PDSDL was used in the construction of
Trilobyte, a framework for refining behavioral processor de-
scriptions into HDL [52, 53]. Other than PDSDL, the above
frameworks focus primarily on structural or RTL hardware
descriptions and do not address higher level modeling. In ad-
dition, none attempt to address the performance limitations
inherent to using Python for simulation.

Hardware generation languages help address the need for
rapid design-space exploration and collection of area, energy,
and timing metrics by making RTL design more productive.
Genesis2 combined SystemVerilog with Perl scripts to cre-
ate highly parameterizable hardware designs for the creation
of chip generators [40,41]. Chisel is an HDL implemented
as an DSEL within Scala. Hardware descriptions in Chisel
are translated into to either Verilog HDL or C++ simulations.
There is no Scala simulation of hardware descriptions [2].
BlueSpec is an HGL built on SystemVerilog that describes
hardware using guarded atomic actions [26].

A number of other simulation frameworks have applied a
concurrent-structural modeling approach to cycle-level sim-
ulation. The Liberty Simulation Environment argued that
concurrent-structural modeling greatly improved understand-
ing and reuse of components, but provided no HDL integra-
tion or generation [45-47]. Cascade is a concurrent-structural
simulation framework used in the design and verification of
the Anton supercomputers. Cascade provides tight integra-
tion with an RTL flow by enabling embedding of Cascade
models within Verilog test harnesses as well as Verilog com-
ponents within Cascade models [18]. SystemC also leverages
a concurrent-structural design methodology that was origi-
nally intended to provide an integrated framework for multi-
ple levels of modeling and refinement to implementation, in-
cluding a synthesizable language subset. Unfortunately, most
of these thrusts did not see wide adoption and SystemC is
currently used primarily for the purposes of virtual system
prototyping and high level synthesis [29,43].

While significant prior work has explored generation of op-
timized simulators including work by Penry et al. [30-32], to
our knowledge there has been no previous work on using just-
in-time compilation to speed up CL and RTL simulations us-
ing dynamically-typed languages. SEJITS proposed just-in-
time specialization of high-level algorithm descriptions writ-
ten in dynamic languages into optimized, platform-specific
multicore or CUDA source [10]. JIT techniques have also
been previously leveraged to accelerate instruction-set simu-
lators (ISS) [13,24,25,44,50,51]. The GEZEL environment
combines a custom interpreted DSL for coprocessor design
with existing ISS, supporting both translation into synthesiz-
able VHDL and simulation-time conversion into C++ [39].
Unlike PYMTL, GEZEL is not a general-purpose language
and only supports C++ translation of RTL models; PyMTL
supports JIT specialization of CL and RTL models.

VI. CONCLUSION

This paper has presented PyMTL, a unified, vertically-
integrated framework for FL, CL, and RTL modeling. Small
case studies were used to illustrate how PyMTL can close
the computer architecture methodology gap by enabling pro-
ductive construction of composable FL, CL, and RTL mod-
els using concurrent-structural and latency-insensitive design.
While these small examples demonstrated some of the power
of PyMTL, we believe PyMTL is just a first step towards
enabling rapid design space exploration and construction of
flexible hardware templates to amortize design effort. Future
work plans to explore extending PyMTL with higher-level de-
sign abstractions that further increase designer productivity.

In addition, a hybrid approach to just-in-time optimization
was proposed to close the performance gap introduced by us-
ing Python for hardware modeling. SimJIT, a custom JIT spe-
cializer for CL and RTL models, was combined with the PyPy
meta-tracing JIT interpreter to bring PyMTL simulation of a
mesh network within 4x—-6x of optimized C++ code. We
hope to further develop SimJIT to support a wider variety of
PyMTL constructs and explore more advanced specialization
optimizations.
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