
IEEE SOLID-STATE CIRCUITS LETTERS, VOL. 6, 2023 229

CIFER: A Cache-Coherent 12-nm 16-mm2 SoC With Four 64-Bit RISC-V
Application Cores, 18 32-Bit RISC-V Compute Cores,

and a 1541 LUT6/mm2 Synthesizable eFPGA
Ang Li , Ting-Jung Chang, Fei Gao , Tuan Ta, Georgios Tziantzioulis, Yanghui Ou , Moyang Wang,

Jinzheng Tu , Kaifeng Xu, Paul Jackson , August Ning, Grigory Chirkov , Marcelo Orenes-Vera, Shady Agwa,
Xiaoyu Yan, Eric Tang, Jonathan Balkind , Member, IEEE, Christopher Batten , Member, IEEE,

and David Wentzlaff, Member, IEEE

Abstract—This letter presents CIFER, the world’s first open-source,
fully cache-coherent, heterogeneous many-core, CPU-FPGA system-on-
chips. The 12 nm, 16-mm2 chip integrates four 64-bit, OS-capable,
RISC-V application cores; three TinyCore clusters that each contain
six 32-bit, RISC-V compute cores (18 in total); and an electronic design
automation-synthesized, standard-cell-based eFPGA. CIFER enables the
decomposition of real-world applications and tailored execution (paral-
lelization or specialization) per decomposed task. Our evaluation shows
that: 1) the TinyCore clusters increase the throughput and energy effi-
ciency of data- and thread-parallel tasks by up to 7.95× and 7.75×
over one 64-bit core, respectively; 2) the eFPGA increases the through-
put and energy efficiency of hardware-accelerable tasks by up to 9.29×
and 10.62×, respectively; and 3) using coherent caches for data transfer
between the processors and the eFPGA increases the throughput and
energy efficiency by up to 11.1× and 10.5×, respectively.

Index Terms—Cache memory, computer architecture, parallel architec-
tures, programmable logic arrays, reconfigurable architectures, system-
on-chip (SoC).

I. INTRODUCTION

The drive for performance and energy efficiency in the post-Moore
era has given rise to hardware acceleration and heterogeneous inte-
gration. However, the high design cost and programming complexity
impede the broad adoption of heterogeneous system-on-chips (SoC).

This work presents CIFER [1] (Fig. 1), the world’s first open-
source, fully cache-coherent, heterogeneous many-core, CPU-FPGA
SoC. By integrating OS-capable processors, parallel compute cores,
and an embedded FPGA (eFPGA), CIFER enables efficient execution
of various workloads across the parallelism-specialization spectrum.

Manuscript received 9 July 2023; accepted 3 August 2023. Date of publi-
cation 8 August 2023; date of current version 7 September 2023. This work
was supported in part by the Air Force Research Laboratory (AFRL) and
in part by the Defense Advanced Research Projects Agency (DARPA) under
Agreement FA8650-18-2-7852. This article was approved by Associate Editor
Ningyuan Cao. (Corresponding author: Ang Li.)

Ang Li, Fei Gao, Georgios Tziantzioulis, Jinzheng Tu, Kaifeng Xu,
Paul Jackson, August Ning, Grigory Chirkov, and David Wentzlaff are with
the Department of Electrical and Computer Engineering, Princeton University,
Princeton, NJ 08544 USA (e-mail: angl@princeton.edu).

Ting-Jung Chang was with the Department of Computer Science, Princeton
University, Princeton, NJ 08544 USA. She is now with the Miin Wu School
of Computing, National Cheng Kung University, Tainan 701, Taiwan.

Tuan Ta, Yanghui Ou, Moyang Wang, Xiaoyu Yan, Eric Tang, and
Christopher Batten are with the Department of Electrical and Computer
Engineering, Cornell University, Ithaca, NY 14850 USA.

Marcelo Orenes-Vera is with the Department of Computer Science,
Princeton University, Princeton, NJ 08544 USA.

Shady Agwa was with the Department of Electrical and Computer
Engineering, Cornell University, Ithaca, NY 14850 USA. He is now with the
School of Engineering, The University of Edinburgh, EH8 9YL Edinburgh,
U.K.

Jonathan Balkind is with the Department of Computer Science, University
of California at Santa Barbara, Santa Barbara, CA 93106 USA.

Digital Object Identifier 10.1109/LSSC.2023.3303111

Fig. 1. CIFER package and die photos.

Fig. 2. CIFER SoC architecture.

CIFER lowers the design cost and the programming barrier with
the following novelties. First, it demonstrates agile hardware devel-
opment facilitated by open-source hardware. CIFER was designed
in seven months during the pandemic by a team of graduate stu-
dents and postdocs collaborating across two institutions, due in part
to the use of many open-source projects, including OpenPiton [2],
BYOC [3], PyMTL3 [4], PyOCN [5], Ariane [6], and PRGA [7].
Second, the eFPGA is synthesized with off-the-shelf electronic design
automation (EDA) tools and standard cell libraries. Compared to
the conventional, full-custom FPGAs, CIFER’s synthesizable eFPGA
is customizable in architecture, technology-agnostic, and flexible in
physical layout. Third, CIFER implements different cache coherence
schemes that are optimal for each processing unit and unifies them
within a global, bi-directionally coherent cache system.

II. ARCHITECTURE

The CIFER architecture (Fig. 2) integrates a 2×4 mesh of tiles
and an eFPGA into the distributed, coherent, OpenPiton [2] P-Mesh

2573-9603 c© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Cornell University Library. Downloaded on August 19,2024 at 15:48:08 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-7458-063X
https://orcid.org/0000-0002-5191-4430
https://orcid.org/0000-0001-9481-9882
https://orcid.org/0000-0003-4080-1876
https://orcid.org/0000-0003-4417-0047
https://orcid.org/0000-0002-9313-3085
https://orcid.org/0000-0003-1443-1373
https://orcid.org/0000-0002-2835-667X

230 IEEE SOLID-STATE CIRCUITS LETTERS, VOL. 6, 2023

cache system over three packet-switched, on-chip networks (OCNs)
designed with PyOCN [5]. Each tile consists of a shard of the coher-
ence system and one of the following: an Ariane core, a TinyCore
cluster, or an eFPGA controller. Each coherence shard contains a
private, 8 kB, L2 cache and a 64-kB slice of the shared, 512 kB, last-
level cache (LLC). Coherence between the L2 caches and the LLC
is maintained in hardware with a directory-based MESI protocol.

A. Ariane: OS-Capable Processor

Ariane [6] is an OS-capable, 64-bit, RISC-V processor with a six-
stage in-order pipeline, a 16-kB L1 instruction (L1I) cache, an 8-
kB L1 data (L1D) cache, and a double-precision floating-point unit
(FPU). Coherence between Ariane’s L1 caches and the L2 cache is
maintained in hardware through adaptation to BYOC’s transaction
response interface (TRI) [3]. CIFER is the first silicon instantiation
of BYOC.

B. TinyCore Cluster: Thread-Level Parallel Array

Each TinyCore cluster contains six 32-bit, RISC-V cores organized
into three pairs. The six cores use an MIMD execution model, where
each core executes an independent stream of instructions. Each core
has a six-stage, in-order issue, out-of-order write-back, late-commit,
and scalar pipeline. To address write-after-write and write-after-read
hazards during out-of-order execution, each core supports limited
register renaming with more physical registers (40 integers and 40
floating-point) than the 32 architectural registers specified in the
RISC-V ISA.

Each core has a private, 4-kB L1D cache, while a pair of cores
share a 4-kB L1I cache, an integer multiply-divide unit (MDU),
and a single-precision FPU. A small L0 instruction buffer is added
to each core’s front-end to minimize the latency impact of shar-
ing the L1I cache. Coherence between the L1D caches and the L2
cache is managed explicitly in software by inserting special cache
flush and invalidation instructions. In particular, a cache flush tra-
verses the L1D cache to write back each dirty cache line, while
a cache invalidation clears the valid bits of the clean cache lines.
Cache invalidation requests from the L2 cache are not propagated to
the L1D caches. Sharing long-latency arithmetic units and reduc-
ing coherence hardware maximize computation density in each
cluster.

C. Embedded FPGA: Reconfigurable Hardware Accelerator

The eFPGA (Fig. 3) is designed with PRGA [7]. It has 6720 mul-
timode LUT6s and 18 24 kbit, dual-port, block RAMs (BRAMs).
Hard-wired adder/carry chains are used for efficient emulation of
arithmetic operations. The BRAMs support different word sizes,
e.g., 512 × 48b, 1024 × 24b, . . . , 24K × 1b. eFPGA-emulated, “soft”
accelerators can be built with an open-source, RTL-to-bitstream
toolchain consisting of Yosys [8], VPR [9], and PRGA’s bitstream
assembler.

The eFPGA contains three key novelties: First, the switch blocks
implement a cycle-free connection pattern [10], facilitating auto-
mated, constraint-driven, area and timing optimization at the array
level using off-the-shelf EDA tools. In comparison to the conventional
FPGA design flow in which locally optimized blocks are tessellated
in a predefined grid, this approach improves the power, performance,
and area (PPA) of the synthesized FPGA by letting the EDA tools
explore a larger design space. Second, the eFPGA is designed as
a three-level hierarchy to balance PPA optimization and EDA run-
time. The eFPGA is partitioned into two types of subarrays, namely,
logic array and IO/BRAM array, which are then composed of logic
blocks. Third, the eFPGA uses a hierarchical configuration network

Fig. 3. CIFER eFPGA architecture.

clocked by a multisource clock mesh. This enables fast and partial
reconfiguration of the eFPGA at GHz clock frequency. In particular,
each subarray contains a bitstream router and a single-bit scanchain
that connects all the configuration cells with minimum routing metal
usage. Bitstream segments are first sent to the bitstream routers over
an 8-bit, packet-switched network, then buffered and shifted into the
scanchains.

The eFPGA is integrated with the system through the eFPGA con-
troller, the first silicon instantiation of Duet [11], which contains
the following two interfaces. The control register interface allows
the processors to access the eFPGA via memory-mapped I/O. The
coherent memory interface is configurable at runtime to enable non-
coherent, IO-coherent, or bi-directionally coherent memory accesses
of the eFPGA. In bi-directionally coherent mode, cache invalidation
requests from the L2 cache are forwarded into the eFPGA, allow-
ing the accelerator to include a soft cache. Atomic requests from the
eFPGA are also supported, enabling low-overhead synchronization
in user mode. Both interfaces contain asynchronous FIFOs for clock
domain crossing and are equipped with timers and parity checks to
protect the OCN and the memory system from software or accelerator
bugs.

D. Heterogeneous Cache Coherence

One key contribution of CIFER is that it unifies the heterogeneous
cache coherence schemes of each processing unit within a global,
fully coherent cache system. This minimizes the communication over-
head and maximizes the programmability of the SoC. For example,
a task-parallel work-stealing runtime [12] facilitates parallel execu-
tion across the Ariane cores and the TinyCore clusters, leveraging
the coherent caches and automating the insertion of cache manage-
ment instructions. An eFPGA-emulated accelerator can be efficiently
invoked by passing the memory addresses of the data to be processed.
Depending on the computation, the accelerator can either copy a
continuous chunk of data into its BRAM scratchpad or read/write
memory in a random, byte-granular manner. This saves CPU cycles
from explicitly managing data movement and prevents over-fetching
from the eFPGA.

Authorized licensed use limited to: Cornell University Library. Downloaded on August 19,2024 at 15:48:08 UTC from IEEE Xplore. Restrictions apply.

LI et al.: CIFER: A CACHE-COHERENT 12-nm 16-mm2 SoC 231

Fig. 4. Lab evaluation setup.

Fig. 5. Max. operating frequency versus supply voltage.

Fig. 6. Area breakdown.

III. EVALUATION

Fig. 4 shows our chip testing setup. Fig. 5 shows each component’s
maximum operating frequency (Fmax) across the range of functional
supply voltages. The eFPGA’s Fmax depends on the emulated design,
and Fig. 5 shows the Fmax of a 64-bit LFSR. Fig. 6 shows the area
breakdown of the chip. The eFPGA’s logic and routing resources only
make up a quarter of the eFPGA’s total area, while the configuration
memory consumes another quarter. The eFPGA’s low area utilization
is due in part to the hierarchical design and can be improved with
abutted or narrow-channel macro-placement strategies.

Table I compares CIFER with other state-of-the-art CPU-FPGA
SoCs targeting the edge/IoT domain. Due to tooling issues, we did
not implement explicit clock-gating on the eFPGA‘s configuration
clock, which should be disabled except when loading the bitstream.
Post-layout power analysis shows that the configuration clock subtree
consumes about 90% of the chip’s total clock power due to the high
total capacitance and short-circuit current of the clock meshes. We
estimate the total power with proper clock gating by subtracting the
analyzed configuration clock power from the measured total power.
Estimated numbers are shown in brackets, next to their measured
counterparts in the table.

CIFER runs up to 1195 MHz at 1.1 V. The processors provide high
aggregate performance with good energy efficiency, totaling 15.54
GFLOPS at 1.1 V and 53.18 GFLOPS/W (estimated as explained

Fig. 7. CPU-FPGA communication throughput and energy efficiency at
different system clock frequency.

Fig. 8. Performance and efficiency gains from offloading.

above) at 0.7 V, outperforming the next best SoC by 8.0× and
1.4×. The eFPGA’s area efficiency is 1541 LUT6/mm2, outperform-
ing the other synthesizable eFPGAs by 11.2×, and is only 1.3× worse
than the best full-custom eFPGA. The eFPGA’s peak performance
(1.92 MOPS/LUT, 126 MHz at 1.1 V) and energy efficiency (148.1
GOPS/W at 0.7 V) are measured with a 64-point FFT that uti-
lizes 97% of the logic blocks and 75% of the BRAMs. The 3.4×
performance gap and the 2.1× energy efficiency gap between the
full-custom eFPGA and this work can be attributed to three fac-
tors: 1) CIFER is synthesized with standard cells; 2) our eFPGA
has no hardware multiply-accumulate units; and 3) this work uses an
open-source RTL-to-bitstream toolchain.

Fig. 7 shows the throughput improvements and energy savings
when data are transferred through the coherent caches instead of
memory-mapped I/O. The improvements are due to two reasons:
1) memory-mapped I/O accesses are strictly serialized in the pro-
cessor’s pipeline, while coherent caches may hide the latency of
consecutive memory accesses, e.g., by buffering memory requests in
the asynchronous FIFOs and 2) the eFPGA can use the L2 cache co-
located in the eFPGA controller tile which runs in the fast, processors’
clock domain.

Fig. 8 shows the throughput and energy efficiency gains by offload-
ing four representative edge applications to their preferred compute
unit. SORT and SHA-256 use eFPGA-emulated accelerators, while
GEMM and JACOBI2D use the TinyCore clusters. The execution
time is measured from when an Ariane core initiates a task to when

Authorized licensed use limited to: Cornell University Library. Downloaded on August 19,2024 at 15:48:08 UTC from IEEE Xplore. Restrictions apply.

232 IEEE SOLID-STATE CIRCUITS LETTERS, VOL. 6, 2023

TABLE I
COMPARISON TO THE STATE OF THE ART

the same core reads back all the results. All the control overhead is
included, while the data transfer overhead is mitigated by overlap-
ping compute with ad hoc, coherent memory accesses. At nominal
voltage (0.8 V), the eFPGA outperforms the Ariane-only baseline
by up to 9.29× in throughput and 10.62× in energy efficiency; the
TinyCore clusters improve the performance and energy efficiency by
up to 7.95× and 7.75×, respectively.

IV. CONCLUSION

This letter presents CIFER. Through cache-coherent integration of
OS-capable processors, parallel many-core arrays, and an eFPGA,
CIFER improves performance and energy efficiency on a wide
range of workloads across the parallelism-specialization spectrum.
The heterogeneous cache coherence scheme minimizes communi-
cation overhead and maximizes the programmability of the SoC.
The EDA-synthesized, standard-cell-based eFPGA’s area efficiency,
peak performance, and energy efficiency are approaching those of
full-custom eFPGAs.

ACKNOWLEDGMENT

The U.S. Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any copyright
notation thereon. The views and conclusions contained herein are
those of the authors and should not be interpreted as neces-
sarily representing the official policies or endorsements, either
expressed or implied, of Air Force Research Laboratory (AFRL) and
Defense Advanced Research Projects Agency (DARPA) or the U.S.
Government.

REFERENCES

[1] T.-J. Chang et al., “CIFER: A 12nm, 16mm2, 22-core SoC with a
1541 LUT6/mm2 1.92 MOPS/LUT, fully synthesizable, cachecoherent,
embedded FPGA,” in Proc. CICC, pp. 1–2.

[2] J. Balkind et al., “OpenPiton: An open source manycore research
framework,” in Proc. ASPLOS, pp. 217–232.

[3] J. Balkind et al., “BYOC: A “bring your own core” framework for
heterogeneous-ISA research,” in Proc. ASPLOS, pp. 699–714.

[4] S. Jiang, B. Ilbeyi, and C. Batten, “Mamba: Closing the performance
gap in productive hardware development frameworks,” in Proc. DAC,
pp. 1–6.

[5] C. Tan et al., “PyOCN: A unified framework for modeling, testing, and
evaluating on-chip networks,” in Proc. ICCD, pp. 437–445.

[6] F. Zaruba and L. Benini, “The cost of application-class process-
ing: Energy and performance analysis of a Linux-ready 1.7-GHz
64-bit RISC-V core in 22-nm FDSOI technology,” IEEE Trans. Very
Large Scale Integr. (VLSI) Syst., vol. 27, no. 11, pp. 2629–2640,
Nov. 2019.

[7] A. Li and D. Wentzlaff, “PRGA: An open-source FPGA research and
prototyping framework,” in Proc. FPGA, pp. 127–137.

[8] C. Wolf. “Yosys open SYnthesis suite.” 2020. [Online]. Available:
https://yosyshq.net/yosys/

[9] K. E. Murray et al., “VTR 8: High-performance CAD and customizable
FPGA architecture modelling,” ACM TRETS, vol. 13, no. 2, p. 9, 2020.

[10] A. Li, T.-J. Chang, and D. Wentzlaff, “Automated design of FPGAs
facilitated by cycle-free routing,” in Proc. FPL, pp. 208–213.

[11] A. Li, A. Ning, and D. Wentzlaff, “Duet: Creating harmony between
processors and embedded FPGAs,” in Proc. HPCA, pp. 745–758.

[12] M. Wang, T. Ta, L. Cheng, and C. Batten, “Efficiently supporting
dynamic task parallelism on heterogeneous cache-coherent systems,”
in Proc. ISCA, pp. 173–186.

[13] F. Renzini, C. Mucci, D. Rossi, E. F. Scarselli, and R. Canegallo, “A fully
programmable eFPGA-augmented SoC for smart power applications,”
IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 67, no. 2, pp. 489–501,
Feb. 2020.

[14] M. Natsui et al., “12.1 an FPGA-accelerated fully nonvolatile microcon-
troller unit for sensor-node applications in 40nm CMOS/MTJ-hybrid
technology achieving 47.14µW operation at 200MHz,” in Proc. ISSCC,
pp. 202–204.

[15] P. D. Schiavone et al., “Arnold: An eFPGA-augmented RISC-V SoC for
flexible and low-power IoT end nodes,” IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 29, no. 4, pp. 677–690, Apr. 2021.

[16] S. K. Lee, P. N. Whatmough, M. Donato, G. G. Ko, D. Brooks, and
G.-Y. Wei, “SMIV: A 16-nm 25-mm2 SoC for IoT with arm cortex-
A53, eFPGA, and coherent accelerators,” IEEE J. Solid-State Circuits,
vol. 57, no. 2, pp. 639–650, Feb. 2022.

Authorized licensed use limited to: Cornell University Library. Downloaded on August 19,2024 at 15:48:08 UTC from IEEE Xplore. Restrictions apply.

