
41

Implementing the Scale Vector-Thread
Processor

RONNY KRASHINSKY, CHRISTOPHER BATTEN, and KRSTE ASANOVIĆ

Massachusetts Institute of Technology

The Scale vector-thread processor is a complexity-effective solution for embedded computing which

flexibly supports both vector and highly multithreaded processing. The 7.1-million transistor chip

has 16 decoupled execution clusters, vector load and store units, and a nonblocking 32KB cache.

An automated and iterative design and verification flow enabled a performance-, power-, and area-

efficient implementation with two person-years of development effort. Scale has a core area of

16.6 mm2 in 180 nm technology, and it consumes 400 mW–1.1 W while running at 260 MHz.

Categories and Subject Descriptors: C.5.3 [Computer System Implementation]: Microcom-

puters—Microprocessors; B.7.1 [Integrated Circuits]: Types and Design Styles—VLSI (very
large scale integration); C.1.2 [Processor Architectures]: Multiple Data Stream Architectures—

Single-instruction-stream, multiple-data-stream processors; multiple-instruction-stream, multiple-
data-stream processors; array and vector processors

General Terms: Design, Verification

Additional Key Words and Phrases: Vector processors, multithreaded processors, vector-thread

processors, iterative VLSI design flow, hybrid C++/Verilog simulation, procedural datapath pre-

placement

ACM Reference Format:
Krashinsky, R., Batten, C., and Asanović, K. 2008. Implementing the scale vector-thread pro-

cessor. ACM Trans. Des. Autom. Electron. Syst. 13, 3, Article 41 (July 2008), 24 pages, DOI =
10.1145/1367045.1367050 http://doi.acm.org/10.1145/1367045.1367050

1. INTRODUCTION

As embedded computing applications become more sophisticated, there is a
growing demand for high-performance, low-power information processing. Full

This work was funded in part by DARPA PAC/C award F30602-00-2-0562, NSF CAREER award

CCR-0093354, and NSF graduate fellowship, donations from Infineon Corporation, and an equip-

ment donation from Intel Corporation.

Authors’ addresses: R. Krashinsky; email: ronny@alum.mit.edu; C. Batten, Computer Science and

Artificial Intelligence Laboratory, Massachusetts Institute of Technology; email: cbatten@mit.edu;

K. Asanović, Department of Electrical Engineering and Computer Science, University of California,

Berkeley; email: krste@eecs.berkeley.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or direct commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,

to redistribute to lists, or to use any component of this work in other works requires prior specific

permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn

Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2008 ACM 1084-4309/2008/07-ART41 $5.00 DOI 10.1145/1367045.1367050 http://doi.acm.org/

10.1145/1367045.1367050

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 3, Article 41, Pub. date: July 2008.

41:2 • R. Krashinsky et al.

Fig. 1. Vector-thread programming model.

systems often require a heterogeneous mix of general-purpose processors,
programmable domain-specific processors, and hardwired application-specific
chips. The resulting devices are costly, difficult to program, and inefficient when
the application workload causes load imbalance across the cores. We propose
the Scale vector-thread (VT) processor as an “all-purpose” programmable solu-
tion to the embedded computing challenge.

Figure 1 illustrates the VT programming model. A control processor uses
vector-fetch commands to broadcast atomic instruction blocks (AIBs) to a vector
of virtual processors (VPs), or each VP can use a thread-fetch to request its next
AIB. A VP thread persists as long as each of its AIBs executes a fetch instruc-
tion, and fetches may be predicated to provide conditional branching. Vector
loads and stores efficiently move blocks of data in and out of VP registers, while
VP loads and stores provide indexed accesses. VT allows software to succinctly
expose loop-level parallelism, using vector commands when the control flow
is uniform across loop iterations, or threads when the iterations have inde-
pendent control flow. A cross-VP ring network also enables support for loops
with cross-iteration dependencies. By interleaving vector and threaded control
at a fine granularity, VT can parallelize more codes than a traditional vector
architecture, and can amortize overheads more efficiently than a traditional
multithreaded architecture.

The Scale VT processor exploits the parallelism and locality exposed by
the VT architectural paradigm to provide high performance with low power
and small area. In our prior work we presented detailed descriptions of the
Scale architecture [Krashinsky et al. 2004; Batten et al. 2004] and demon-
strated through simulation that Scale provides competitive performance across

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 3, Article 41, Pub. date: July 2008.

Implementing the Scale Vector-Thread Processor • 41:3

a wide range of applications. When executing a vectorized IEEE 802.11a wire-
less transmitter, Scale sustains 9.7 compute operations per cycle. For ADPCM
speech decoding, a nonvectorizable kernel with cross-iteration loop dependen-
cies, Scale exploits the available parallelism between loop iterations using de-
coupled lane execution and vector-loads to achieve 6.5 operations per cycle.
For pointer-chasing code like Internet routing-table lookups, Scale uses fine-
grained multithreaded execution to achieve 6.1 operations per cycle, while still
using efficient vector-loads to feed the threads. These results represent hand-
optimized code, but a parallelizing vector-thread compiler has also been devel-
oped [Hampton and Asanovic 2008].

Although we had already conducted many simulation studies to evaluate
VT, we decided to implement Scale in hardware. Our goals in building the
Scale chip are to prove the plausibility of the vector-thread architecture and to
demonstrate the performance, power, and area efficiency of the design. Mea-
suring power and area in particular led us to build an ASIC-style chip rather
than emulating the design using an FPGA.

The Scale VT architecture is complexity effective, but it is still a relatively
complicated processor to build. It includes a scalar control processor; a four-
lane vector-thread unit with 16 decoupled execution clusters together with in-
struction fetch, load/store, and command-management units; a vector-memory
access unit with support for unit-stride, strided, and segment loads and stores;
and a four-port, nonblocking, 32-way set-associative, 32 KB cache. Scale has
7.14-million transistors, around the same number as the Intel Pentium II, the
IBM/Motorola PowerPC 750, or the MIPS R14000. However, as part of a uni-
versity research project, we could not devote industry-level design effort to the
chip-building task. In this article, we describe the implementation and verifi-
cation flow that enabled us to build an area- and power-efficient prototype with
only two person-years of effort.

2. CHIP ARCHITECTURE

Figure 2 shows a block-diagram overview of the Scale VT architecture that
we set out to implement. The control processor (CP) is a single-issue pipelined
RISC core that is custom designed to interface with the vector-thread unit
(VTU). The VTU includes a parallel array of four lanes, each with four execution
clusters (C0–C3), a store-data cluster (SD), and a command management unit
(CMU). Software is mapped to the VTU using a virtual processor abstraction of
a lane. The physical registers in each lane are partitioned among the VPs, and
the number of VPs (i.e., the vector length) depends on the software-configured
number of registers per VP. With 32 registers per cluster and four lanes, Scale
can support up to 128 VP threads.

The virtual processors mapped onto the VTU execute atomic instruction
blocks, and the lanes each contain a small 32-entry cluster-partitioned AIB
cache. A lane’s command-management unit manages the cache and orches-
trates refills with the shared AIB-fill unit. Once an AIB is cached, the CMU
sends compact execute directives (EDs) to the clusters in the lane. An ED in-
structs a cluster to execute an AIB for either a particular VP or for all the
VPs mapped to the lane, and the cluster issues instructions in the same way

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 3, Article 41, Pub. date: July 2008.

41:4 • R. Krashinsky et al.

Fig. 2. Scale microarchitecture overview.

of whether regardless, it is executing a vector- or thread-fetched AIB. The clus-
ters in a lane issue instructions independently, and each contains decoupled
transport and writeback units to send and receive data to/from other clusters.
Some clusters are specialized: C0 can execute loads and stores, C1 can execute
thread-fetches, and C3 can execute 16 × 16-bit multiplies and iterative 32-bit
multiplies and divides.

In addition to fetch commands, the control processor can also issue unit-
stride and segment-strided vector-memory commands to the VTU. Segments
group together several contiguous memory elements for each VP, and segment
buffers allow multiple elements from a single cache access to be sent to or from

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 3, Article 41, Pub. date: July 2008.

Implementing the Scale Vector-Thread Processor • 41:5

a lane over several cycles. Scale’s decoupled vector-load unit (VLU) and vector-
store unit (VSU) process vector-memory commands from the control processor
and manage the interface between VTU lanes and the memory system. They
each include an address generator for unit-stride accesses, and per-lane address
generators for segment-strided accesses. The per-lane portions of the vector-
load and -store units are organized as lane-vector memory units (LVMUs). The
vector-refill unit (VRU) preprocesses vector-load commands to bring data into
the cache [Batten et al. 2004].

The Scale memory system includes four 8 KB cache banks which can each
read or write a 128-bit word every cycle. An arbiter chooses between 11 re-
questers at each cycle, selecting up to four simultaneous accesses to the inde-
pendent banks. Read and write crossbars transfer data between requesters and
data banks. In the basic testing mode for the chip, there are no cache misses,
and load and store addresses directly index the RAM.

When caching is enabled, a tag search for an address determines whether
the line is present, and, if so, the correct RAM index. The tags in each bank
are divided into eight 32-entry CAM subbanks, making the cache 32-way set-
associative. The miss-status-handling registers (MSHRs) track outstanding
cache misses to enable nonblocking operation. Each of the 32 MSHR entries
includes the primary miss address and destination information, and a queue
of replay entries to track up to 4 secondary misses to the in-flight cache line.
The external memory-interface block arbitrates between cache-bank misses
and sends cache-line refill and writeback requests over the chip I/O pins.

Finally, Scale includes a host interface block (HTIF) which uses a low-
bandwidth asynchronous protocol to communicate with an external host over
the chip I/O pins. This block allows the host to read and write memory and to
interact with the Scale control processor. We use this interface to download and
run programs and to service operating-system calls (e.g., file I/O).

3. CHIP IMPLEMENTATION

The Scale design contains about 1.4 million gates, a number around 60 times
greater than that of a simple RISC processor. To implement Scale with limited
manpower, we leverage Artisan standard cells and RAM blocks in an ASIC-style
flow targeting TSMC’s 180 nm 6 metal-layer process technology (CL018G). We
use Synopsys Design Compiler for synthesis and Cadence SoC Encounter for
place-and-route.

In establishing a tool flow to build the Scale chip, we strove to make the pro-
cess as automated as possible. A common design approach is to freeze blocks
at RTL level and then push them through to lower levels of implementation
using hand-tweaked optimizations along the way. Instead, our automated flow
enables an iterative chip-building approach more similar to software compi-
lation. After a change in the top-level RTL, we simply run a new iteration of
synthesis and place-and-route to produce an updated full chip layout, even in-
cluding power and ground routing. Despite this level of automation, the tool
flow still allows us to preplace datapath cells in regular arrays, to incorporate
optimized memories and custom circuit blocks, and to easily and flexibly provide
a custom floorplan for the major blocks in the design.

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 3, Article 41, Pub. date: July 2008.

41:6 • R. Krashinsky et al.

With our iterative design flow, we repeatedly build the chip and optimize
the source RTL or floorplan based on the results. We decided to use a single-
pass flat tool flow in order to avoid the complexities involved in creating and
instantiating hierarchical design blocks. As the design grew, the end-to-end
chip-build time approached two days. We are satisfied with this methodology,
but we would use a hierarchical design flow to avoid prohibitive runtimes for a
design larger than Scale.

3.1 RTL Development

Our early research studies on Scale included the development of a detailed
microarchitecture-level simulator written in C++. This simulator is flexible
and parameterizable, allowing us to easily evaluate the performance impact
of many design decisions. The C++ simulator is also modular with a design
hierarchy that we carried over to our hardware implementation.

We use a hybrid C++/Verilog simulation approach for the Scale RTL. After
implementing the RTL for a block of the design, we use Tenison VTOC to trans-
late the Verilog into a C++ module with input and output ports and a clock-tick
evaluation method. We then wrap this module with the necessary glue logic to
connect it to the C++ microarchitectural simulator. Using this methodology
we are able to avoid constructing custom Verilog test harnesses to drive each
block as we develop the RTL. Instead, we leverage our existing set of test pro-
grams as well as our software infrastructure for easily compiling and running
directed test programs. This design approach allowed us to progressively ex-
pand the RTL code base from the starting point of a single cluster, to a single
lane, to four lanes; and then to add the AIB-fill unit, the vector-memory unit,
the control processor, and the memory system.We did not reach the milestone of
having an all-RTL model capable of running test programs until about fourteen
months into the hardware implementation effort, five months before tapeout.
The hybrid C++/Verilog approach was crucial in allowing us to incrementally
test and debug the RTL throughout the development.

3.2 Datapath Preplacement

Manually organizing cells in bit-sliced datapaths improves timing, area, and
routing efficiency compared to automated placement [Chinnery and Keutzer
2002]. However, to maintain an iterative design flow, a manual approach must
still easily accommodate changes in the RTL or chip floorplan. We used a C++-
based procedural datapath tiler which manipulates standard cells and creates
design databases using the OpenAccess libraries. The tool allows us to write
code to instantiate and place standard cells in a virtual grid and create nets
to connect them together. After constructing a datapath, we export a Verilog
netlist together with a DEF file with relative placement information.

We incorporate datapath preplacement into our CAD tool flow by separating
out the datapath modules in the source RTL. For example, the cluster datapaths
for Scale include the ALU, shifter, and many 32-bit muxes and latches. We then
write tiler code to construct these datapaths and generate cell netlists. During
synthesis we provide these netlists in place of the source RTL for the datapath

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 3, Article 41, Pub. date: July 2008.

Implementing the Scale Vector-Thread Processor • 41:7

Fig. 3. Datapath preplacement code example.

modules, and we flag the preplaced cells as dont touch. In this way, Design
Compiler can correctly optimize logic which interfaces with the datapath blocks.
During the floorplanning step before place-and-route, we use scripts to flexibly
position each datapath wherever we want on the chip. These scripts process the
relative placement information in the datapath DEF files, combining these into
a unified DEF file with absolute placement locations. We again use dont touch
to prevent Encounter from modifying the datapath cells during placement and
optimization.

As a simple example of the ease with which we can create preplaced datapath
arrays, Figure 3(a) shows a small snippet of Verilog RTL from Scale which
connects a 32-bit mux with a 32-bit latch. Figure 3(b) shows the corresponding
C++ code which creates the preplaced datapath diagrammed in Figure 3(c). The
placement code is simple and very similar to the RTL; the only extra information
is the output drive strength of each component. The supporting component-
builder libraries (dpMux2 and dpLatch h en) each add a column of cells to the
virtual grid in the tiler (tl). By default, the components are placed from left to
right. In this example, the dpMux2 builder creates each two-input multiplexer
using three NAND gates. The component builders also add the necessary clock-
gating and driver cells on top of the datapath, and the code automatically sets
the size of these based on the bit-width of the datapath.

We used our datapath preplacement infrastructure to create parameteriz-
able builders for components like muxes, latches, queues, adders, and shifters.
It is relatively straightforward to assemble these components into datapaths,
and easy to modify the datapaths as necessary. Figure 4 highlights the pre-
placed cells in a plot of a Scale cluster. In the end, we preplaced 230-thousand
cells, 58% of all standard cells in the Scale chip.

3.3 Memory Arrays

Wherever possible, we use single-port and two-port (read/write) RAMs cre-
ated by the Artisan memory generators. These optimized memories provide
high-density layout and routing with six or eight transistors per bit-cell. To

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 3, Article 41, Pub. date: July 2008.

41:8 • R. Krashinsky et al.

Fig. 4. Plot of basic cluster implementation (cluster 2). The register file and datapath use preplaced

cells, and the AIB cache is a generated RAM block.

incorporate the RAM blocks into our CAD tool flow, we use behavioral RTL
models for simulation. These are replaced by the appropriate RAM data files
during synthesis and place-and-route.

Artisan does not provide memory generators suitable for Scale’s register
files and CAM arrays. We considered using custom circuit design for these, but
decided to reduce design effort and risk by building these components out of
Artisan standard cells. The two-read-port two-write-port register file bit-cell is
constructed by attaching a mux cell to the input of a latch cell with two tri-state
output ports. We found that the read ports could effectively drive 8 similar bit-
cells. Since our register file has 32 entries, we made the read ports hierarchical
by adding a second level of tri-state drivers. For the CAM bit-cell we use a
latch cell combined with an XOR gate for the match. The OR reduction for the
match comparison is implemented using a two-input NAND/NOR tree which
is compacted into a narrow column next to the multibit CAM entry. For the
cache-tag CAMs, which have a read port in addition to the match port, we add
a tri-state buffer to the bit-cell and use hierarchical bit-lines similar to those
in the register file.

We pay an area penalty for building the register file and CAM arrays out of
standard cells. We estimate that our constructed bit-cells are 3–4 times larger
than a custom bit-cell. However, since these arrays occupy about 17% of the
core chip area, the overall area impact is limited to around 12%. We found
that these arrays are generally fast enough to be off of the critical path. For
example, a register-file read only takes around 1.4 ns (16 fan-out-of-four gate

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 3, Article 41, Pub. date: July 2008.

Implementing the Scale Vector-Thread Processor • 41:9

Fig. 5. Routing of read bit-lines in a register file. The section shown covers 32 bits in the vertical

direction and 16 registers in the horizontal. Each bit-line connects to a group of 8 registers. Top-level

hierarchical bit-lines are not shown.

Fig. 6. Routing of cluster transport data-busses in a lane. Each cluster broadcasts data on a 32-bit

bus that connects to every other cluster in the lane. These busses are shown in Figure 2 (in the

vertical direction).

delays), including the decoders. The power consumption should also be com-
petitive with custom design, especially since our arrays use fully static logic
instead of precharged dynamic bit-lines and matchlines.

3.4 Routing

We use Encounter to do all routing automatically, including the preplaced
datapaths. This avoids the additional effort of routing by-hand, and we have
found that the tool does a reasonable job after the datapath arrays have been
preplaced. Figure 5 shows local routing of read bit-lines in a register file,
and Figure 6 shows global routing of the cluster transport data-busses in a

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 3, Article 41, Pub. date: July 2008.

41:10 • R. Krashinsky et al.

lane. Local routes are relatively direct, while global routes can be somewhat
meandering due to congestion.

3.5 Clocking

Scale uses a traditional two-phase clocking scheme which supports both latches
and flip-flops. The datapaths primarily use latches to enable time-borrowing
across clock phases, as eliminating hard clock-edge boundaries makes timing
optimization easier. Also, the preplaced register file, CAM, and RAM arrays
use latches to reduce area. A standard-cell latch optimized for memory arrays
with a tri-state output is around 41% smaller than a flip-flop. The control logic
for Scale primarily uses flip-flops, as this makes the logic easier to design and
reason about.

The Scale design employs aggressive clock-gating to reduce power consump-
tion. The architecture contains many decoupled units, and typically several
are idle at any single point in time. Control signals for operation liveness and
stall conditions are used to determine which pipeline registers must be clocked
at each cycle. In many cases, these enable signals can become critical paths,
especially when gating the clock for low latches and negative-edge triggered
flip-flops and RAMs. We make the enable condition conservative where neces-
sary in order to avoid slowing down the clock frequency. We considered adding
global clock-gating for entire clusters in Scale, but abandoned this idea, due to
the critical timing and complexity of ensuring logical correctness of the enable
signal.

We incorporate clock-gating logic into the preplaced datapath components.
Typically, an enable signal is latched and used to gate the clock before it is
buffered and broadcast to each cell of a multibit flip-flop or latch. This reduces
the clock load by a factor approximately equal to the width of the datapath, for
example, 32× for a 32-bit latch. We implement similar gating within each entry
in the register file and CAM arrays, but we also add a second level of gating
which only broadcasts the clock to all entries when a write operation is live.

For clock-gating within the synthesized control logic, we use Design Com-
piler’s automatic insert clock gating command. To enable this gating, we sim-
ply make the register updates conditional, based on the enable condition in the
source Verilog RTL. Design Compiler aggregates common enable signals and
implements the clock-gating in a similar manner to our datapath blocks. Out
of 19,800 flip-flops in the synthesized control logic, 93% are gated, with an av-
erage of about 11 flip-flops per gate. This gating achieves a 6.5 times reduction
in clock load for the synthesized logic when the chip is idle.

In addition to gating the clock, we use data gating to eliminate unnecessary
toggling in combinational logic and on long buses. For example, where a single
datapath latch sends data to the shifter, adder, and logic unit, we add combina-
tional AND gates to the bus so as to only enable the active unit at each cycle.

3.6 Clock Distribution

The clock on the Scale chip comes from a custom-designed voltage-controlled
oscillator that we have used successfully in previous chips. The VCO frequency

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 3, Article 41, Pub. date: July 2008.

Implementing the Scale Vector-Thread Processor • 41:11

Fig. 7. Chip clock-skew. All of the clocked cells are highlighted.

is controlled by the voltage setting on an analog input pad, and has its own
power pad for improved isolation. We can also optionally select an external
clock input, and divide the chosen root clock by any integer from 1–32. There
are a total of around 94,000 flip-flops and latches in the design. An 11-stage
clock tree is built automatically by Encounter using 688 buffers (not counting
those buffers in the preplaced datapaths and memory arrays). The delay is
around 1.5–1.9 ns, the maximum trigger-edge skew is 233 ps, and the maximum
transition time at a flip-flop or latch is 359 ps. We use Encounter to detect and
fix any hold-time violations.

Figure 7 highlights all of the clocked cells in Scale and shows their relative
clock-skew. A regular cell layout in the preplaced datapaths and memory arrays
makes it easier for the clock-tree generator to route the clock while minimizing
skew. Those few cells with high skew have an intentionally delayed clock edge
to allow time-borrowing across pipeline stages.

3.7 Power Distribution

Standard-cell rows in Scale have a height of nine metal-3 or metal-5 tracks.
The cells get power and ground from metal-1 strips that cover two tracks, in-
cluding the spacing between tracks. The generated RAM blocks have power and
ground rings on either metal-3 (for two-port memories) or metal-4 (for single-
port SRAMs).

A power distribution network should supply the necessary current to transis-
tors while limiting the voltage drop over resistive wires. We experimented with
some power-integrity analysis tools while designing Scale, but mainly we relied
on conservative analysis and an overdesigned power distribution network to
avoid problems. We tried running fat power strips on the upper metal-layers of
the chip, but these create wide horizontal routing blockages where vias connect

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 3, Article 41, Pub. date: July 2008.

41:12 • R. Krashinsky et al.

Fig. 8. Chip power grid. A small section of two standard-cell rows is shown.

Fig. 9. Plot and corresponding photomicrograph showing chip power grid and routing. Metal layers

5 (horizontal) and 6 (vertical) are visible, and the height is seven standard-cell rows (about 35 μm).

down to the standard-cell rows. These wide blockages cause routing problems,
especially when falling within the preplaced datapath arrays.

We settled on a fine-grained power distribution grid over the entire Scale
chip; a diagram is shown in Figure 8. In the horizontal direction we route al-
ternating power and ground strips on metal-5, directly over the metal-1 strips
in the standard-cell rows. These use two routing tracks, leaving seven metal-3
and metal-5 tracks unobstructed for signal routing. In the vertical direction, we
route alternating power and ground strips on metal-6. These cover three metal-
2 and metal-4 tracks, leaving nine unobstructed for signal routing. Figure 9
shows a plot and photomicrograph of the power grid, including some data sig-
nals that are routed on metal layers 5 and 6. Overall, the power distribution
uses 21% of the available metal-6 area and 17% of metal-5. We estimate that
this tight power grid can provide more than enough current for Scale, and we
have found the automatic router to deal well with the small blockages.

Another power-supply concern is the response time of the network to fast
changes in current (di/dt). At frequencies on the order of a few 100 MHz, the
main concern is that the chip has enough on-chip decoupling capacitance to
supply the necessary charge after a clock edge. Much of the decoupling capac-
itance comes from filler cells which are inserted into otherwise unused space
on the chip. Around 20% of standard-cell area on the chip is unused, and filler
cells with decoupling capacitance are able to fit into 80% of this unused area, a

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 3, Article 41, Pub. date: July 2008.

Implementing the Scale Vector-Thread Processor • 41:13

Fig. 10. Block diagram of Scale test infrastructure.

total of 1.99 mm2. Scale uses a maximum of around 2.4 nC (nano-coulombs) per
cycle, and we estimate that the total on-chip charge storage is around 21.6 nC.
This means that even with no response from the external power pads, a single
cycle can only cause the on-chip voltage to drop by around 11%. We deemed this
an acceptable margin, and we rely on the external power pads to replenish the
supply before the next cycle.

3.8 System Interface

In order to reduce design effort, we decided to reuse an existing test platform to
evaluate the Scale chip. This allowed us to avoid building a custom test-board,
but as a consequence Scale’s memory system is limited by the capabilities of sur-
rounding components. Although low memory bandwidth can limit application
performance, we can still fully evaluate the Scale chip by running test programs
that do not stress the external memory system.

The chip test infrastructure includes three primary components: a host
computer, a general test baseboard, and a daughter card with a socket for
the Scale chip (see Figure 10). To plug into this socket, Scale uses a 121-pin
ceramic package (PGA-121M). The test baseboard includes a host interface
and a memory controller implemented on a Xilinx FPGA, as well as 24MB of
SDRAM, adjustable power supplies with current measurement, and a tunable
oscillator. Using this test setup, the host computer is able to download and
run programs on Scale while monitoring the power consumption at various
voltages and frequencies.

The Scale chip has 32-bit input and output ports to connect to an off-chip
memory controller. This interface runs synchronously with the Scale clock, at
a configurable divided frequency. Along with the data, Scale sends a clock for
the memory controller, and Scale’s clock generator can digitally tune the rela-
tive frequency and phase alignments between the internal chip clock, external
memory-controller clock, and data bus. We designed the input and output ports
to operate in 8-, 16-, or 32-bit modes, depending on the capabilities of the sur-
rounding system. The existing test infrastructure limits the memory interface
to 16-bits in each direction.

With its nonblocking cache, the Scale chip itself has the ability to drive a high-
bandwidth memory system. However, the SDRAM in the test infrastructure is

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 3, Article 41, Pub. date: July 2008.

41:14 • R. Krashinsky et al.

only 12-bits wide and the frequency of the memory controller is limited by
the outdated FPGA. The few bits of memory bandwidth per Scale clock cycle
will certainly limit performance for applications with working sets that do not
fit in Scale’s 32 KB cache. However, for prototyping purposes we can emulate
systems with higher memory bandwidths. To accomplish this, we use Scale’s
configurable clock generator to run the processor at a lower frequency so that
the memory system becomes relatively faster. The chip also supports a special
DDR mode in which data is transferred on both edges of the Scale clock. This
allows us to emulate a memory bandwidth of up to 4 bytes in and out per Scale
cycle.

For testing purposes, the Scale chip supports an on-chip RAM mode in which
cache misses are disabled, and the memory system is limited to the 32 KB of
RAM on chip. In this mode, the cache arbiter and datapaths are still operational,
but all accesses are treated as hits. As the tapeout deadline approached, it be-
came apparent that the frequency of the design was limited by some long paths
through the cache tags and cache-miss logic, which we did not have time to op-
timize. Since the primary goal for the chip is to demonstrate the performance
potential of the vector-thread unit, and given the memory-system limitations
imposed by the testing infrastructure, we decided to optimize timing for the
on-chip RAM mode of operation. Unfortunately, this meant that the tools es-
sentially ignore some of the cache paths during the timing optimization and, as
a result, the frequency when the cache is enabled is not as fast as it could be.

4. CHIP VERIFICATION

We ensure correct operation of the Scale chip using a three-step process: First,
we establish that the source RTL model is correct. Second, we prove that the
chip netlist is equivalent to the source RTL. Third, we verify that the chip layout
matches the netlist.

4.1 RTL Verification

Our overall strategy for verifying the Scale RTL model is to compare its behav-
ior to the high-level Scale ISA simulator. We use the full chip VTOC-generated
RTL model, and the C++ harness downloads programs over the chip I/O pins
through the host interface block. After the program runs to completion, the
output is read from memory using this same interface and then compared to
reference outputs from the Scale ISA simulator. In addition to a suite of custom-
directed tests and the set of application benchmarks for Scale, we developed
VTorture, a random-test-program generator. The challenge in generating ran-
dom tests is to create legal programs that also stress different corner cases
in the design. VTorture randomly generates relatively simple instruction se-
quences of various types, and then randomly interleaves these sequences to
construct complex, yet correct, programs. By tuning parameters which control
the breakdown of instruction-sequence types, we can stress different aspects of
Scale. Although our full chip RTL simulator runs at a modest rate on the order
of 100 cycles per second, we used a compute farm to simulate over a billion
cycles of the chip running test programs.

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 3, Article 41, Pub. date: July 2008.

Implementing the Scale Vector-Thread Processor • 41:15

In addition to running test programs on the full RTL model, we also developed
a test harness to drive the Scale cache on its own. We use both directed tests
and randomly generated load and store requests to trigger the many possible
corner cases in the cache design.

The VTOC-based RTL simulator models the design using two-state logic.
This is sufficient for most testing; however, we must be careful not to rely on
uninitialized state after the chip comes out of reset. To complete the verification,
we use Synopsys VCS as a four-state simulator. We did not construct a new test
harness to drive VCS simulations. Instead, we use the VTOC simulations to
generate value-change-dump (VCD) output which tracks the values on chip I/O
pins at every cycle. Then we drive a VCS simulation with these inputs, and
verify that the outputs are correct at every cycle. Any use of uninitialized state
will eventually propagate to X’s on the output pins, and in practice we did not
find it very difficult to track down the source.

Unfortunately, the semantics of the Verilog language allow unsafe logic in
which uninitialized X values can propagate to valid 0/1 values [Turpin 2003].
In particular, X’s are interpreted as 0’s in conditional if or case statements.
We dealt with this by writing the RTL to carefully avoid these situations when
possible, and by inserting assertions (error messages) to ensure that important
signals are not X’s. For additional verification that the design does not rely on
uninitialized state, we run two-state VTOC simulations with the state initial-
ized with all 0’s, all 1’s, and random values.

4.2 Netlist Verification

The preplaced datapaths on Scale are constructed by-hand, and therefore error
prone. We had great success using formal verification to compare the netlists
from preplaced datapaths to corresponding datapath modules in the source
RTL. The verification is done in seconds using Synopsys Formality.

As a double-check on the tools, we also use formal verification to prove equiv-
alence of the source RTL to both the postsynthesis netlist and final netlist after
place-and-route. These Formality runs take many hours and use many giga-
bytes of memory, but remove the need for gate-level simulation.

4.3 Layout Verification

The final verification step is to check the GDSII layout for the chip. We convert
the final chip netlist from Verilog to a SPICE format and use Mentor Graphics
Calibre to run a layout-versus-schematic (LVS) comparison. This check ensures
that the transistors on the chip match the netlist description. LVS can catch
errors such as routing problems which incorrectly short nets together. We also
use Calibre to run design-rule checks (DRC) and to extract a SPICE netlist from
the layout.

We use Synopsys Nanosim to simulate the extracted netlist as a final ver-
ification that the chip correctly operates. This is the only step which actually
tests the generated Artisan RAM blocks, so it serves as an important check on
our high-level Verilog models for these blocks. The Nanosim setup uses VCD
traces to drive inputs and to check outputs at every cycle (as in VCS simulation,

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 3, Article 41, Pub. date: July 2008.

41:16 • R. Krashinsky et al.

Table I. Scale Chip Statistics

process technology TSMC 180 nm, 6 metal layers

transistors 7.14M

gates (equivalent metric as reported by Encounter) 1.41M

standard cells 397K

flip-flops and latches 94K

RAM bits 300K

core area 16.61 mm2

chip area 23.14 mm2

frequency at 1.8 V (on-chip RAM mode) 260 MHz

frequency at 1.8 V (caching-enabled mode) 180 MHz

power at 1.8 V, 260 MHz 0.4–1.1 W

design time 19 months

design effort 24 person-months

the VCD is generated by simulations of the source RTL). To get the I/O-timing
correct, these simulations actually drive the core chip module, which does not
include the clock generator. We crafted separate Nanosim simulations to drive
the chip I/O pins and verify the clock-generator module. We also use Nanosim
simulations to estimate power consumption.

5. CHIP RESULTS AND MEASUREMENTS

We began RTL development for Scale in January of 2005, and taped-out the
chip on October 15, 2006. Subtracting 2 months during which we implemented
a separate test chip, the design time was 19 months, and we spent about 24
person-months of effort. We received chips back from fabrication on February
8, 2007, and were able to run test programs the same day. The off-chip memory
system was first operational on March 29, 2007. The first silicon has proven fully
functional with no known bugs after extensive lab testing. Figure 11 shows a
die photo of the fabricated chip and Table I summarizes the design statistics.

5.1 Area

Scale’s core area is 16.61 mm2 in 180 nm technology. If implemented in 45 nm
technology, Scale would only use around 1 square millimeter of silicon area,
allowing hundreds of cores to fit in a single chip. Even with the control over-
heads of vector-threading and its nonblocking cache, Scale’s 16 execution clus-
ters provide relatively dense computation. The core area is around the same
size as a single tile in the 16-tile RAW microprocessor [Taylor et al. 2003]. In
130 nm technology, around 40 Scale cores could fit within the area of the two-
core TRIPS processor [Sankaralingam et al. 2006]. In 90 nm technology, Scale
would be around 28% the size of a single 14.8 mm2 SPE from the 8-SPE cell
processor [Flachs et al. 2006]. These comparisons are not one-to-one, since the
various chips provide different compute capabilities (e.g., floating-point) and
have different amounts of on-chip RAM. Nonetheless, Scale’s compute density
is at least competitive with these other many-operation-per-cycle chips.

We initially estimated that the Scale core would be around 10 mm2

[Krashinsky et al. 2004]. This estimate assumed custom layout for cache tags

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 3, Article 41, Pub. date: July 2008.

Implementing the Scale Vector-Thread Processor • 41:17

Fig. 11. Scale die photo.

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 3, Article 41, Pub. date: July 2008.

41:18 • R. Krashinsky et al.

Table II. Scale Area Breakdown

Gates Gates Cells RAM

(thousands) percentage (thousands) bits

Scale (total) 1407.0 100.0 397.0 300032

Control Processor 28.8 2.0 100.0 10.9

Register File 9.8 34.0 3.0

Datapath 4.7 16.3 1.8

Mult/Div 2.5 8.7 1.2

VLMAX 1.4 4.9 0.8

Control Logic 10.3 35.8 4.1

Vector-Thread Unit 678.2 48.2 100.0 211.4 33792

VTU command queues 11.2 1.7 4.0

VLU 3.1 0.5 1.7

VSU 3.0 0.4 1.5

VRU 3.0 0.4 1.4

AIB Fill Unit 12.8 1.9 5.3

XVPSSQs 5.6 0.8 2.0

Lane (4×) 159.6 23.5 100.0 48.8 8448

CMU 13.4 8.4 4.2 896

C0 31.8 19.9 10.0 1472

C1 28.5 17.9 8.5 1472

C2 28.1 17.6 8.4 1472

C3 35.6 22.3 11.4 1472

SD 13.5 8.5 2.8 1664

LVMU 6.6 4.1 2.7

Memory System 688.7 48.9 100.0 171.2 266240

Data Arrays 287.6 41.8 266240

Tag Arrays 177.1 25.7 83.1

Tag Logic 61.6 8.9 33.0

MSHRs 43.5 6.3 15.2

Arbiter 1.7 0.2 0.9

Address Crossbar 1.1 0.2 0.6

Read Crossbar 50.7 7.4 13.0

Write Crossbar 27.1 3.9 11.7

Other 38.3 5.6 13.7

Host Interface 3.1 0.2 1.1

Memory Interface 2.1 0.1 0.8

The “Gates” metric is an approximation of the number of circuit gates in each block as reported by the Cadence

Encounter tool. Different subbreakdowns are shown in each column of the “Gates percentage” section. The

“Cells” metric reports the actual number of standard cells, and the “RAM bits” metric reports the bit count for

the generated RAM blocks.

and register files, whereas the actual Scale chip builds these structures out of
standard cells. The estimate was also based on a datapath-cell library which
was more optimized for area. Furthermore, the initial study was made before
any RTL was written for the Scale chip, and the microarchitecture has evolved
considerably since then. For example, we added the store-data cluster and
refined many details in the nonblocking cache design.

Tables II and III show the area breakdown for the Scale chip and for an
individual cluster, respectively. The area is split roughly evenly between the

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 3, Article 41, Pub. date: July 2008.

Implementing the Scale Vector-Thread Processor • 41:19

Table III. Cluster Area Breakdown

Gates

Gates percentage Cells

Cluster 2 (total) 28134 100.0 8418

AIB Cache RAM 4237 15.1

AIB Cache Control 376 1.3 129

Execute Directive Queue 908 3.2 351

Execute Directive Sequencers 1221 4.3 526

Writeback-op Queue, Bypass/Stall 1231 4.4 410

Writeback Control 582 2.1 227

Register File 10004 35.6 3013

Datapath 6694 23.8 2605

Datapath Control 2075 7.4 828

Transport Control 472 1.7 188

The data is for cluster 2, a basic cluster with no special operations. Columns are

as in Table II.

vector-thread unit and the memory system, with the control processor only
occupying around 2% of the total. As somewhat technology-independent refer-
ence points, the control processor uses a gate-equivalent area of around 3.3 KB
of SRAM, and the vector-thread unit uses the equivalent of around 76.6 KB of
SRAM. The actual area proportions on the chip are somewhat larger than this,
since standard-cell regions have lower area utilization than SRAM blocks.

Support for vector-thread commands does not add undue complexity to the
control processor. The largest area overhead is the logic to compute the vector
length (vlmax), which takes up around 5% of the CP area. Even including the VT
overhead, the baseline architectural components of the control processor (i.e.,
the 32-entry register file, the adder, logic unit, shifter datapath components,
and the iterative multiply/divide unit) occupy around half of its total area.

The vector-thread unit area is dominated by the lanes. Together, the VTU
command queues, vector-load unit, vector-store unit, vector-refill unit, and AIB-
fill unit use less than 5% of VTU area. Within a lane, the compute clusters oc-
cupy 79% of the area, and the command-management unit, lane-vector memory
unit, and store-data cluster occupy the remainder. The area of a basic cluster
(c2) is dominated by the register file (36%), datapath (24%), and AIB cache
(15%). The execute-directive queue uses 3% of area, and the synthesized con-
trol logic makes up the remaining 22%.

It is also useful to consider a functional breakdown of the VTU area. Register
files in the VTU take up 26% of its area, and the arithmetic units, including clus-
ter adders, logic units, shifters, and multiply/divide units, take up 9%. Together,
these baseline compute and storage resources comprise 35% of the VTU area.
In a vector-thread processor with floating-point units or other special compute
operations, this ratio would be even higher. The vector memory-access units
(the LVMUs, and the VLU, VSU, VRU, and their associated command queues)
occupy 6% of the total, and the memory-access resources in cluster 0 and the
store-data cluster add another 3%. The AIB-caching resources, including the
AIB-cache RAMs, tags, control, and the AIB-fill unit, comprise 19% of the total.
The vector- and thread-command control overhead (the VTU command queue,
execute-directive queues and sequencers, the pending-thread-fetch queue, and

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 3, Article 41, Pub. date: July 2008.

41:20 • R. Krashinsky et al.

Fig. 12. Shmoo plot of frequency versus supply voltage.

other logic in the CMUs) together take up 11% of VTU area. The writeback-
decoupling resources in the VTU, including datapath latches and bypass/stall
logic for the writeback-op queue, take up 8% of the area, and the transport-
decoupling resources take up 4%. The cross-VP queues in the lanes and the
cross-VP start/stop queues together occupy 3%. The remaining 11% of VTU
area includes the cluster-chain registers, predicate registers, and other pipeline
latches, muxes, and datapath-control logic.

5.2 Frequency

Figure 12 shows a shmoo plot of frequency versus supply voltage for the Scale
chip. In the on-chip RAM testing mode, the chip operates at a maximum fre-
quency of 260 MHz at a nominal supply voltage of 1.8 V. The voltage can be
scaled down to 1.15 V, at which point the chip runs at 145 MHz. The frequency
continues to improve well beyond 1.8 V, and reaches 350 MHz at 2.9 V (not
shown in the shmoo plot). However, we have not evaluated the chip lifetime
when operating above the nominal supply voltage. Of 13 working chips (out
of 15), the frequency variation was generally less than 2%. We were surprised
to find that using an undivided external clock input (which may have an un-
even duty cycle) only reduced the maximum frequency by around 3% compared

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 3, Article 41, Pub. date: July 2008.

Implementing the Scale Vector-Thread Processor • 41:21

to using the VCO. When caching is enabled, Scale’s maximum frequency is
180 MHz at 1.8 V.

In the on-chip RAM operating mode, Scale’s cycle time is around 43 FO4
(fan-out-of-four gate delays) based on a 90 ps FO4 metric. This is relatively
competitive for an ASIC design flow, as clock periods for ASIC processors are
typically 40–65 FO4 [Chinnery and Keutzer 2002]. Our initial studies evaluated
Scale running at 400 MHz [Krashinsky et al. 2004], but this estimate assumed
a more custom design flow. We did previously build a test chip which ran at
450 MHz (25 FO4) using the same design flow and process technology [Batten
et al. 2007]. However, the test chip was a simple RISC core that was much
easier to optimize than the entire Scale design.

The timing optimization passes in the synthesis, and place-and-route tools
work to balance all paths around the same maximum latency; that is, paths
are not made any faster than need be. As a result, there are generally a very
large number of “critical” timing paths. Furthermore, different paths appear
critical at different stages of the timing optimization, and affect the final tim-
ing even if they become less critical at the end. Throughout the Scale imple-
mentation effort, we continuously improved the design timing by restructuring
logic to eliminate critical paths. A list of some of the critical paths is available
in Krashinsky [2007].

5.3 Power

The power consumption data in this section was recorded by measuring steady-
state average-current draw during operation. Power measurements are for the
core of the chip and do not include input and output pads. We measure the
idle-power draw when the clock is running but Scale is not fetching or execut-
ing any instructions. To estimate typical control-processor power consumption,
we use a simple test program which repeatedly calculates the absolute values
of integers in an input array and stores the results to an output array. To es-
timate typical power consumption for a program that uses the VTU, we use
an ADPCM speech decoder benchmark (adpcm dec) with a dataset that fits in
the cache. This test program executes around 6.5 VTU compute operations per
cycle.

Figure 13 shows how the power consumption scales with supply voltage with
the chip running at 100 MHz. At 1.8V, the idle power is 112 mW, the power with
the control processor running is 140 mW, and the power with the VTU also
active is 249 mW. The figure also shows the power for Scale operating in the
on-chip RAM testing mode. At 1.8 V the difference is only 3%, and the chip uses
241 mW. The power scaling is roughly linear, but the slope increases slightly
above the nominal supply voltage.

Figure 14 shows how energy scales with frequency when voltage scaling is
used. To calculate the average energy per cycle, we multiply average power
consumption by clock period. From the baseline operating point of 1.8 V and
260 MHz, the energy can be reduced by 57% (from 2.3 nJ per cycle to 1.0 nJ) if
the frequency is scaled down by 42% to 150 MHz and the voltage is reduced to
1.2 V. The frequency can also be increased by 23% to 320 MHz, but the supply

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 3, Article 41, Pub. date: July 2008.

41:22 • R. Krashinsky et al.

Fig. 13. Chip power consumption versus supply voltage at 100 MHz. Results are shown for idle

operation (clock only), the control processor absolute-value test program, and the VTU adpcm dec

test program.

Fig. 14. Chip energy versus frequency while running the adpcm dec test program in the on-chip

RAM operating mode. Each data point is measured at maximum operating frequency as the supply

voltage varies from 1.2 V (150 MHz) to 2.4 V (320 MHz) in 0.1 V increments.

voltage must be raised to 2.4 V, which increases the energy consumption by
83% (to 4.2 nJ).

5.4 Application Benchmarks

Figure 15 shows performance and power results for a variety of application
benchmarks running on the Scale chip. The data measurements were made

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 3, Article 41, Pub. date: July 2008.

Implementing the Scale Vector-Thread Processor • 41:23

Fig. 15. Power versus performance for various application benchmarks. Each data point repre-

sents the average results for one benchmark.

with caching enabled, then scaled to 260 MHz. Details about the benchmarks
and methodology are available in Krashinsky [2007].

At 260 MHz, Scale consumes 400 mW–1.1 W, achieving up to 5.3 Gops/W (bil-
lions of operations per-second per-watt) for 32-bit integer operations. The vari-
ation in power consumption corresponds well with the operations-per-cycle uti-
lization rates for the different benchmarks, a testament to the effectiveness of
clock-gating in the Scale chip. The benchmark results also demonstrate that in
addition to achieving large speedups, Scale typically consumes significantly less
energy than does a simple RISC processor. In comparison, other designs often
improve performance only at the cost of large increases in energy consumption.

6. CONCLUSION

Our tool and verification flow helped us to build a performance-, power-, and
area-efficient chip with limited resources. With a hybrid C++/Verilog simu-
lation approach, we were able to reuse test infrastructure and incrementally
transition from a C++ microarchitectural model to an RTL implementation.
A highly automated methodology allowed us to easily accommodate an evolv-
ing design. Indeed, we only added the nonblocking cache-miss logic to the chip
during the final two months before tapeout. Our iterative approach allowed
us to continuously optimize the design, and to add and verify new features up
until the last few days before tapeout. Even though we used a standard-cell-
based ASIC-style design flow, procedural datapath preplacement allowed us to
optimize timing and area. We reduced power consumption by using extensive
clock-gating in both the preplaced datapaths and synthesized control logic.

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 3, Article 41, Pub. date: July 2008.

41:24 • R. Krashinsky et al.

The prototype Scale VT processor demonstrates that vector-threading can be
implemented with compact and energy-efficient hardware structures. The Scale
chip provides relatively high compute density with its 16 execution clusters and
core area of 16.6 mm2 in 180 nm technology. Its clock frequency of 260 MHz is
competitive with other ASIC processors, and at this frequency the power con-
sumption of the core is typically less than 1 W. A modern 45 nm technology could
fit around 100 Scale cores per square centimeter of silicon area, making VT a
plausible, performance-efficient, and flexible architecture for future processor
arrays.

ACKNOWLEDGMENTS

The authors acknowledge and thank Albert Ma for designing the VCO and
providing extensive help with CAD tools, Mark Hampton for implementing
VTorture and the Scale compilation tools, Jaime Quinonez for the baseline dat-
apath tiler implementation, Asif Khan for implementing the DRAM controller
on the test baseboard, Jared Casper for work on an initial cache design and
documentation, and Jeffrey Cohen for initial work on VTorture.

REFERENCES

BATTEN, C., KRASHINSKY, R., AND ASANOVIC, K. 2007. Scale control processor test-chip. Tech. Rep.

MIT-CSAIL-TR-2007-003, CSAIL Technical Reports, Massachusetts Institute of Technology.

BATTEN, C., KRASHINSKY, R., GERDING, S., AND ASANOVIC, K. 2004. Cache refill/access decoupling for

vector machines. In Proceedings of the 37th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). IEEE Computer Society, 331–342.

CHINNERY, D. AND KEUTZER, K. 2002. Closing the Gap between ASIC and Custom: Tools and Tech-
niques for High-Performance ASIC Design. Kluwer Academic.

FLACHS, B., ASANO, S., DHONG, S. H., HOFSTEE, H. P., GERVAIS, G., KIM, R., LE, T., LIU, P., LEENSTRA, J.,

LIBERTY, J., MICHAEL, B., OH, H.-J., MUELLER, S. M., TAKAHASHI, O., HATAKEYAMA, A., WATANABE, Y.,

YANO, N., BROKENSHIRE, D. A., PEYRAVIAN, M., TO, V., AND IWATA, E. 2006. The microarchitecture

of the synergistic processor for a cell processor. IEEE J. Solid-State Circ. 41, 1 (Jan.), 63–70.

HAMPTON, M. AND ASANOVIC, K. 2008. Compiling for vector-thread architectures. In Proceedings of
the 6th International Symposium on Code Generation and Optimization (CGO). IEEE Computer

Society.

KRASHINSKY, R. 2007. Vector-Thread architecture and implementation. Ph.D. thesis, Mas-

sachusetts Institute of Technology, Cambridge, MA.

KRASHINSKY, R., BATTEN, C., HAMPTON, M., GERDING, S., PHARRIS, B., CASPER, J., AND ASANOVIC, K. 2004.

The vector-thread architecture. In Proceedings of the 31st Annual International Symposium on
Computer Architecture (ISCA). IEEE Computer Society, 52.

SANKARALINGAM, K., NAGARAJAN, R., GRATZ, P., DESIKAN, R., GULATI, D., HANSON, H., KIM, C., LIU, H.,

RANGANATHAN, N., SETHUMADHAVAN, S., SHARIF, S., SHIVAKUMAR, P., YODER, W., MCDONALD, R., KECKLER,

S., AND BURGER, D. 2006. The distributed microarchitecture of the TRIPS prototype processor.

In MICRO-39.

TAYLOR, M. B., KIM, J., MILLER, J., WENTZLAFF, D., GHODRAT, F., GREENWALD, B., HOFFMAN, H., JOHNSON,

P., LEE, W., SARAF, A., SHNIDMAN, N., STRUMPEN, V., AMARASINGHE, S., AND AGARWAL, A. 2003. A

16-issue multiple-program-counter microprocessor with point-to-point scalar operand network.

In Proceedings of the International Solid State Circuits Conference (ISSCC).
TURPIN, M. 2003. The dangers of living with an x (bugs hidden in your Verilog). In Synopsys Users

Group Meeting.

Received September 2007; revised March 2008; accepted March 2008

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 3, Article 41, Pub. date: July 2008.

