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Abstract
Cheaper and more accurate sequencing technologies have

led to a large volume of genetic data that poses significant
computational challenges and requires novel computing solu-
tions to keep pace. This increased volume has also enabled
the use of pangenome graph references, which provide better
quality alignments because they represent variation, but they
require new algorithms that are usually slower than those
using a traditional reference genome, and exhibit different
computational characteristics.

We introduce PangenomicsBench, the first benchmark
suite targeting computational pangenomics, with six CPU and
two GPU kernels extracted from popular tools, designed to
guide future research in pangenomics software and hardware
acceleration. We characterize these workloads to reveal the
following key insights: (a) Seq2Graph mapping algorithms are
limited by control complexity rather than memory access to
the reference graph because they process small, cache-friendly
subgraphs. (b) GPUs have the potential for large speedups,
but are limited by control divergence for mapping workloads.
(c) Pangenomics introduces computational patterns different
from traditional genomics like stochastic gradient descent.
(d) Pangenomic mapping algorithms are highly sensitive to
reference graph structures. (e) There are opportunities for
optimizing existing software.

1. Introduction
Genome sequencing is a key component of precision

health, allowing us to tailor treatment to individuals based
on their genetics. Decreased sequencing costs have resulted
in a large volume of sequencing data and assembled
genomes, which have given rise to the new subfield of
computational pangenomics.

A traditional reference genome is represented as a se-
quence of base pairs (A, T , C, and G); a pangenome contains
many genomes, often represented as a sequence graph with
directed edges. Each node contains a subsequence of base
pairs, and each path represents a sequence (Figure 1.1).

Most genomes today are sequenced with a single
reference, but reference genomes can miss up to 10% of
the basepairs in under-represented populations [1] leading
to decreased sequencing accuracy and missed variants. For

example, recent work suggests pangenomics could have
been used to more efficiently discover a critical genetic
variant associated with increased heart attack risk [1].
Pangenomes can be used to make comparisons within
a population, draw out new biological insights [2], and
provide more accurate alignments [3].

Compared to traditional genomics, Pangenomics poses
distinct computational challenges due to its reliance on
graph representations. The same pangenome can be mod-
eled differently with distinct graphs, each offering unique in-
sights. These graphs demand more computational resources
because they are larger and more complex than sequences.
For example, standard sequence-to-sequence mapping tech-
niques, like coordinate-based distance estimation, are inef-
fective for graphs which require path finding. Common dy-
namic programming algorithms have to incorporate graph
nodes and edges. Building and visualizing pangenomic
graphs also introduce uncommon computational patterns
not typically seen in genomics. These complexities make
software development and optimization more demanding,
and introduce new bottlenecks like low SIMD utilization,
low GPU occupancy, and, high branch misprediction rate.

Previous work has characterized the behavior of ge-
nomics kernels, and curated benchmarks to guide hard-
ware and software performance optimization [4–8], but
pangenomics requires new benchmarks to guide hardware
and software optimization and evaluate new software.
Building such a benchmark suite requires comprehensive
understanding of pangenomics workflows and their usage in
the field including tools, configurations, and representative
datasets. Identifying bottlenecks and sourcing appropriately-
sized genomic data also requires considerable effort.

In this paper, we examine two pangenomic workflows:
the Seq2Graph mapping pipeline, which significantly changes
compute patterns to enable mapping to pangenome graphs,
and the graph-building pipeline, a new workflow specific to
pangenomics. We evaluate these workflows because they
are time consuming, distinct from traditional genomics, and
common to most pangenomics tasks. Other downstream
pangenomics analyses like variant calling and genome wide
association studies (GWAS) depend on graph building and
Seq2Graph mapping as preliminary steps.
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Figure 1: Sequence To Graph Mapping Pipeline.

We analyze four tools—GraphAligner [9], Vg Map [10],
Vg Giraffe [11], and Minigraph [12]—that implement the
end-to-end Seq2Graph mapping pipeline, along with the
Minigraph-Cactus [13], and PGGB suites [14], which are
used for graph construction. These tools can take days
to process real-world datasets and are mainly used in an
iterative manner. Computational biologists use the tools to
produce initial alignments or pangenome graphs, analyze
the results, and then rerun the tools to produce more
biologically useful output. For benchmarking, we extract
and characterize computationally intensive regions of code
(kernels) from each workload.

In summary, this paper makes the following contribu-
tions:

• We examine five widely adopted pangenomics
tools from two key workflows in pangenomics:
Seq2Graph mapping and graph construction.

• We identify eight computationally intensive and
representative kernels from these workflows to
develop PangenomicsBench, the first open-source
benchmark suite designed for pangenomics.

• We carry out a timing and thread-scaling analysis of
the workflows and perform microarchitectural and
source code-level analyses on the extracted kernels.
Furthermore, we present case studies comparing
Seq2Seq with Seq2Graph mapping and exploring
the impact of reference graph variation.

• Our characterization yields several insights: (a) We
find Seq2Graph algorithms have good memory local-
ity because they operate on smaller, cache-friendly
local subgraphs, but their performance is limited by
the control complexity required to support graph
references. (b) GPUs can show large speedups, but
performance varies by workload, and is limited by
control divergence for mapping workloads. (c) We
observe novel pangenomics computational patterns,
such as PGSGD, distinct from traditional genomics.
(d) Pangenomic mapping algorithms are sensitive
to the reference graph structure. (e) Our analysis
indicates potential opportunities for software opti-
mization of existing code.

2. Pangenomics Pipelines
In this section, we describe two common pangenomics

pipelines, Sequence to Graph Mapping and Graph Building.

We select six tools from these pipelines and analyze the
time spent in each workflow.

2.1. Sequence to Graph Mapping

Sequence to Graph (Seq2Graph) Mapping follows the
same algorithmic steps as Sequence to Sequence Mapping
(Seq2Seq) as illustrated in Figure 1. First, a fast heuristic
is used to find exact matches, seeds, between the query
sequence (usually a read) and the reference graph. Next,
seeds are grouped into clusters and chains by locality in
the graph and query. Some algorithms also implement a
filtering step to reduce the number of clusters/chains sent
to alignment. Lastly, seed hits are aligned to the reference
using dynamic programming algorithms. More aggressive
pruning in the first three steps results in less work during
alignment.

Extending the steps used in Seq2Seq mapping to work
with a graph reference introduces new design trade-offs,
increases complexity, adds dependencies, and causes control
divergence. For instance, Seq2Seq clustering and chaining
techniques typically calculate distance between seeds as the
difference between coordinate locations on the reference.
In graph mapping, however, this distance is the shortest
path length, which is complicated by the presence of cycles
and requires graph traversal or memoization in large data
structures. Additionally, graph references introduce new
dependencies in alignment, as discussed in Section 3. These
complexities make Seq2Graph algorithms slow.

To estimate the runtime to assemble a full human
genome, we time four Seq2Graph tools and one Seq2Seq
tool using the datasets in Section 4.2, and scale by the
number of reads needed for 30x coverage, Table 1. Figure 2
shows a further breakdown of time spent in the seeding,
clustering/chaining, filtering, and alignment steps for the
Seq2Graph tools. Vg Giraffe and Vg Map are characterized
for short reads while GraphAligner and Minigraph
are characterized for long reads (Minigraph-lr). We also
characterize Minigraph for the mapping of assemblies
to graphs (Minigraph-cr) as it is used in graph building.
Dataset details are found in section 4.2. We discuss a few
observations below.

Most of the Seq2Graph algorithms we review use mini-
mizer based seeding, which does the same computation as
Seq2Seq minimizers, but with larger memory requirements.
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Figure 2: Seq2Graph Timing Breakdown Extracted With
Vtune: Yellow arcs show kernel mapping step and fraction of
runtime. Absolute tool timing is shown beside the toolname.
These times should be compared with caution as the tools
operate on different data (see Sec 4.2).

Seq2Graph Seq2Seq
VG Map VG Giraffe GraphAligner Minigraph-lr BWA-MEM2
67.1h 4.8h 9.1h 20.5h 1.3h

TABLE 1: Estimated Full Genome Assembly Runtime

As a result, subsequent steps that become more complex
in Seq2Graph mapping dominate the runtime.

In the clustering/chaining and filtering steps, some tools
employ advanced heuristics to minimize the computational
burden on downstream alignment. Minigraph, designed for
long sequences where alignment is particularly slow, thus
uses 2D dynamic programming within the chaining stage
to reduce the number of downstream alignments. From
this stage, we extract the Graph Wavefront Alignment
(GWFA) kernel, which accounts for 75% of the total cluster-
ing/chaining step when aligning chromosomal assemblies,
and 47% when aligning long reads. The difference is caused
by different default parameters and the alignment of longer
sequences for chromosomes. In Figure 2, the run time of
the kernels (e.g., GWFA), within their respective tools (e.g.,
Minigraph) is represented by the yellow arc.

Vg Giraffe also features a sophisticated and time-
consuming filtering step, which performs light-weight seed
extension through the graph using operations on the
Graph Burrows-Wheeler Transform (GBWT) Index. For our
benchmark suite, we select a single representative operation
as the GBWT kernel.

In contrast, GraphAligner uses lightweight clustering (5%
of runtime), and spends the remaining 90% on alignment. To
make this feasible for long reads, GraphAligner uses aggres-
sive heuristics (non affine-gap scoring) in the alignment step
which trade accuracy to make performance manageable. We
extract the graph bitvector (GBV) kernel from the alignment
stage of GraphAligner for our benchmark suite.

Vg Map falls between these extremes, with significant
time distributed across all stages. From the alignment stage,
we extract the Graph SIMD Smith-Waterman (GSSW) kernel,
as it is dominated by a single hot function. In contrast,
the clustering and chaining stages are fragmented across
numerous shorter function calls.

In summary, the mapping tools we analyzed make
distinct trade-offs between accuracy and performance across
various stages. While we might expect similar tools to
allocate comparable proportions of time to each stage, we
instead observe that different tools prioritize different stages.
No single step or computational pattern stands out as a
clear bottleneck, suggesting that all stages could benefit
from optimization and acceleration.

2.2. Graph Building
There are two popular graph-building pipelines in

pangenomics research. Both are commonly used and have
different merits. While Minigraph-Cactus’s (MC) [13] run
time scales linearly with the number of input genomes, the
PanGenome Graph Builder (PGGB) [14] prioritizes eliminat-
ing reference bias. Both pipelines begin with a collection
of sequences and construct a graph in four computational
stages (see Figure 3): (1) Alignment identifies matching
sub-sequences within the input reference sequences; (2)
Graph induction constructs a pangenome graph from the
matches; (3) Polishing refines the pangenome graph, for
instance, by filtering out short variations; (4) Visualization
constructs a 2D representation of the graph for evaluation.
These four steps are part of an interactive, iterative, and
time-consuming process where scientists build the graph,
evaluate its 2D representation, manually update the graph-
building parameters, and repeat. The run times in Figure 3
are collected for 14 chromosome 20 assemblies, but the
HPRC [15] graph contains 47 diploid human genomes. We
scaled runtime by the ratio of the HPRC dataset size to our
dataset size to estimate it would take 2 weeks to build the
HPRC graph on our server.

The alignment stage differs significantly between the
two pipelines. MC iteratively grows a pangenome start-
ing from a single reference using Minigraph Seq2Graph
mapping which includes the GWFA kernel. This is shown in
in Figure 3.1. The choice of this starting sequence affects
the final quality, resulting in potential reference bias. PGGB
removes reference bias by computing pairwise alignments
for all combinations of input sequences. The all-to-all align-
ments are generated using wfmash [16], which combines the
WaveFront Algorithm (WFA) [17] with MashMap [18]. We
include TSU as a recent GPU implementation of WFA [19].
CPU versions have been included in prior benchmarks [7].
Although all-to-all alignment scales quadratically with the
number of sequences, wfmash can be faster than MC for
few inputs, depending on the configuration parameters such
as identity threshold and alignment block size.

The graph induction stage constructs an (initial)
pangenome graph using the previously created alignments.
Cactus, from the MC pipeline, converts the previously
generated minigraph alignments into a cactus graph. Here,
performance is constrained by the Adaptive Banded Partial
Order Alignment algorithm (abPOA) [20], a variation of
which is found in previous benchmark suites [4]. Se-
qwish [21], the tool used by PGGB, utilizes wfmash’s all-to-
all alignments and performs a transclosure step on them,
mapping matching nucleotides to pangenome graph nodes.
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Figure 3: Pangenome Graph Building Pipeline: Run time was measured for both pipelines for processing a small pangenome
consisting of 14 high-quality, whole-chromosome chromosome 20 assemblies (see Sec. 4.2).

Subsequently, seqwish compresses multiple non-branching
nodes into a single node and inserts the corresponding
paths through the graph. We extract the transclosure step
as the TC kernel, as it accounts for more than 75% of the
compute time.

The initial graphs contain complex local structures
like poorly aligned regions which are removed in the
polishing step. MC removes these and redundant paths
using GFAffix [22] and other algorithms. SmoothXG [23],
from the PGGB pipeline, similarly removes small cyclic
regions within the graph. Its compute time is dominated
by Partial Order Alignment (POA), which takes about 80%
of run time. POA, a dynamic programming kernel, is part
of prior benchmarks [4] and has been a target of hardware
acceleration [24].

As modern pangenome graphs are large and complex
datasets, researchers use visualizations to explore their in-
herent structure. ODGI [25], a software toolkit for exploring
pangenome graphs, includes a subcommand to generate
layouts for 2D visualizations of pangenome graphs in both
pipelines. It employs the iterative Path-Guided Stochastic
Gradient Descent (PGSGD) [26, 27] algorithm to compute
the layout by defining it as an optimization problem. This
step is dominated by the PGSGD kernel.

3. PangenomicsBench Benchmark Suite
We extract hot snippets of code from our six tools and

release them as a benchmark suite. We discuss these kernels
in depth here.
Graph SIMD Smith-Waterman (GSSW): Graph SIMD
Smith-Waterman [28] is a dynamic programming algorithm
used in Vg Map to map read fragments (≈ 150 base pairs)
to acyclic subgraphs extracted around seed hit locations
from the pangenome reference graph.

It is based on the Seq2Seq algorithm, Smith-Waterman
[29], which fills in an n × m dynamic programming (DP)
matrix where m is the length of the query, and n is the
length of a reference substring. Farrar’s algorithm finds strip
mined SIMD parallelism by speculating away dependencies
between cells and recomputing mispeculated cells [30]. This

is illustrated in Figure 4a for a word size of three, where
cells of the same color are packed into a SIMD word.

GSSW uses SIMD Smith-Waterman, but instead of a single
genome reference on the i-axis, it aligns to a topological sort
of a subgraph of the reference with directed edges between
nodes. Cells within the body of a node are computed with
SIMD Smith-Waterman, but cells in the first row of a
node depend on the node’s parents, as shown in Figure 4a
with red arrows. This node initialization is done separately,
causing the algorithm to alternate between dense SIMD
regions and indirect graph accesses.

GSSW vectorizes well, but it scales poorly with read
length because it computes many cells in the DP matrix
which do not contribute to the final solution.
Graph Myers’s Bitvector (GBV): Graph Myers’s Bitvector
[31] is a dynamic programming algorithm used to align long
reads in GraphAligner. As shown in Figure 2, GraphAligner
exerts little effort filtering seed hits, which results in many
alignments. This, and the presence of long reads create
abundant work for the alignment stage. GBV manages this
by trading alignment quality for computational efficiency.

Myers’s bitvector [32], does not support the sophisti-
cated affine gap scoring method used in Smith-Waterman
which allows it to store rows as bitvectors. This removes
cell dependencies, allowing rows to be processed in parallel
with SIMD width equal to the word size of the machine,
64 by default.

In Graph Myers’s bitvector, each row represents a one-
base pair node with directed edges to its children, Figure
4b. This makes each row dependent on its parent rows (i.e.
nodes), shown with red arrows in Figure 4b.

Since GBV aligns to cyclic graphs, the current row being
computed, Ri, may change the value of its parent Rp. Thus,
some rows will need to be recomputed until the score
stabilizes. To keep track of the nodes that need to be
recomputed, GBV pushes rows to a priority queue when
their parent changes, and processes them in the queue order.
These changes to the algorithm made to accommodate
graphs introduce unpredictable branching behavior to GBV.
Graph Burrows-Wheeler Transform (GBWT): Vg Giraffe
uses the GBWT Index [33] in the filtering step of the
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mapping pipeline, Figure 1.3, to extend clustered seed hits
along graph paths. Many paths lead to unrealistic results,
so we only follow paths that correspond to subsequences
of a single reference sequence, i.e. haplotypes. For example,
in Figure 4c there is a haplotype 1 → 3 → 5, and another
haplotype 2 → 3 → 4, but since the seed exension has
already gone through 1 → 3, it cannot go to 4 because
there is no haplotype 1 → 3 → 4.

More generally, this is accomplished with the GBWT
Index function, find that takes a sequence of nodes, S =
(s1, s2, . . . , sn) as input and returns all possible next nodes.
This function is representative of operations using GBWT
Index, and so we extract it as a kernel, even though Vg
Giraffe actually makes use of many GBWT Index functions.

The GBWT Index is a haplotype-aware graph FM-
Index [34] that uses last-first mapping to look up nodes.
It is built from a multi-string Burrows-Wheeler Transform
(BWT) applied to haplotype paths through the graph. Unlike
the FM-Index used in Seq2Seq mapping, which applies the
BWT to a single string composed of base pairs, the GBWT
Index is based on multiple sequences (haploytpe paths)
of node IDs in the graph, which enables graph specific
optimizations to the index.
Tsunami (TSU): Tsunami [19] (TSU) is a GPU-accelerated
variant of the Wavefront Algorithm (WFA) [17] for Seq2Seq
alignment. Minigraph uses WFA to improve mapping quality
after applying GWFA, and PGGB’s wfmash uses WFA to
generate all-to-all alignments. The CPU-based WFA kernel
used in Minigraph and wfmash is already included in a
prior benchmark suite [7], so we include a more recent
GPU variant, TSU [19].

In WFA, cells are computed along diagonals (purple,
blue and orange strips in Figure 4d). WFA alternates
between the Next step, where it pushes the diagonals one
cell further to the green cells, and the Extend step where
it pushes diagonals as far as possible along exact matches.

TSU allocates one 32-thread block to each alignment.
In Next it assigns each diagonal to a thread, but in Extend
diagonals will push different depths resulting in control
divergence. E.g. in Figure 4d-right, the center diagonal
doesn’t extend at all, but the diagonal to its left extends
two matches. In more realistic examples, this difference can
be thousands of base pairs long. To improve warp utilization
TSU speculates that the diagonal will have many matches,
and each thread processes one cell in the diagonal (pink
highlighted cells in Figure 4d-right).
Graph Wavefront Algorithm (GWFA): The Graph Wave-
front Algorithm [35] is used in Minigraph to bridge gaps
between seed hits (also called anchors) in different nodes.
Given two anchors, it finds a path (sequence of nodes)
connecting them, Figure 4e-right. This requires less accuracy
than base-level alignment, so GWFA uses non-affine gap
scoring.

GWFA is a direct extension of WFA. Each node has its
own dynamic programming matrix with the query sequence
on one axis, and the node on the other axis (Figure 4e).
The matrices are connected by edges corresponding to the
edges between nodes. When a diagonal reaches the end
of a node, it expands the digaonals into each child node
as shown by the blue diagonal in Figure 4e. This leads to
more diagonals to process scattered across different nodes
resulting in irregular accesses. Despite this, prior work
shows GWFA is the fastest alignment algorithm reviewed
[35] because it computes far fewer cells of the DP-Matrix.
Transclosure (TC): PGGB [14] utilizes Seqwish [21]
to induce pangenome graphs from input sequences and
their respective all-to-all alignments. Seqwish’s run time is
dominated by its transclosure (TC) kernel, which generates
the set of pangenome graph nodes: each pairwise alignment
from the all-to-all alignments specifies matching characters
in their sequences. For instance, the match M0 between
sequences S0 and S1 in Figure 4f creates the Transitive



Closure set TC0. These sets are extended via the transitive
property. For example, M1 matches S1 to S2, so S2’s
character is added to TC0. To generate all closures, TC
iterates over the set of input characters and locates their
matches, as well as matches connected via the transitive
property. Connected matches are found using a binary
search on the sorted seqeunces. Each transitive closure is
then mapped to a graph node.

TC introduces new, heterogenous compute patterns to
the genomics space that leverage clever data structures, such
as implicit interval trees [36], which are used for efficient
union-find operations but require high-performance sorting
steps [37] for efficient data access. These data structures
require 100s of GBs of memory space, for real-world
pangenomes. To enable memory-limited systems to perform
the TC computation, TC memory-maps these structures to
files. The TC kernel is slightly modified from seqwish’s
implementation to enable single threaded execution.
Path-Guided Stochastic Gradient Descent (PGSGD):
ODGI [25] employs Path-Guided Stochastic Gradient De-
scent (PGSGD) [26, 27] to generate 2D layouts of pangenome
graphs in the visualization step. PGSGD iteratively optimizes
the layout to match the distances between nodes in the
pangenome graph. Figure 4g demonstrates this. In the initial
Layout 1, the line lengths poorly match the corresponding
sequence lengths, and the pangenome is twisted. In each
update step, two anchors within the layout are randomly
selected, and their coordinates are adjusted to better match
the corresponding path-distance in the pangenome graph
(Figure 4g, left). In Layout 1, the left anchor of N0 and
the anchor between N1 and N2 are chosen. Since they are
too far apart, PGSGD moves them closer together, resulting
in layout 2. After numerous update steps, the distances
within the layout converge to path distances in the graph,
as shown by Layout 4. As PGSGD contains millions of update
steps, they are parallelized across threads using the lock-
free Hogwild! approach [38]. In the rare case that a race
condition occurs, future iterations will quickly correct the
incorrect update. In this benchmark suite, we investigate
both the CPU and GPU variants of the PGSGD kernel [27].
Like the CPU implementation, the GPU implementation
utilizes the lock-free Hogwild! approach. Thus, each thread
within a warp randomly picks a pair of anchors to update in
parallel. To improve performance, the GPU kernel contains
methods to reduce branch divergence within a warp and
an optimized data layout for the random number generator
states to enable coalesced memory accesses.

PGSGD introduces an entirely new task to the pange-
nomics workflow utilizing stochastic gradient descent. It
also requires pseudo-random memory accesses to the graph
and uses the Hogwild! parallelization method, which dis-
tinguishes it from other workloads.

4. Methodology
4.1. Procedure and Tools

We first use VTune [39] hotspot analysis and timers to
identify hotspots within tools using all available threads. We

then isolate kernels from the hotspots for our benchmark
suite and perform three single threaded analyses for each
kernel using VTune and PIN: microarchitecture explo-
ration to understand hardware utilization, cache miss
rates to find misses per kilo instruction, and a customized
version of MICA PIN [40] [41] to get a dynamic instruction
count. Additionally, we use NVIDIA Nsight Compute (NCU)
to get GPU utilization statistics. The scripts for running
these analyses, benchmarks, and datasets are open-sourced
in our github repository. Lastly, we perform three case
studies on selected kernels, described in section 6.

4.2. Datasets

Tool # Seqs Avg. Seq Len Input Type Size
Vg Map 7284888 149 Short Read 8.5GB
Vg Giraffe 7284888 149 Short Read 2.7GB

GraphAligner 158643 14950 Long Read 1.3GB
Minigraph-lr 158643 14950 Long Read 1.3GB
Minigraph-cr 1 67156117 Chromosome 2.3GB
Mini-Cactus 14 67939604 Chromosome 0.9GB

PGGB 14 67939604 Chromosome 0.9GB

TABLE 2: Tool Dataset Information For Chrom 20

Kernel Parent Tool # Inputs Input Type Size
GSSW Vg Map 146105 Read Fragment 3.4GB
GBWT Vg Giraffe 9986857 GBWT Query 6.0GB
GBV GraphAligner 8240 Clusters 3.7GB

GWFA-lr Minigraph 104205 Read Gaps 1.2GB
GWFA-chr MC 291650 Chrom Gaps 1.2GB

TC PGGB 32677 Alignments 0.9GB
Pgsgd PGGB 588480 Pangenome 0.3GB

Tsunami PGGB/MC 50000 10K long seqs 3.0GB

TABLE 3: Kernel Dataset Information For Chrom 20

GBV GSSW GBWT GWFA-cr GWFA-lr PGSGD TC
192s 35s 23s 16657s 720s 285s 755s

TABLE 4: Kernel Measured Execution Time (Machine B)

Table 2 shows the dataset we used for each tool. We
used BWA-MEM2 and minimap2 [42] to filter chromosome
20 short and long reads respectively by aligning to HG002
[43] thus limiting analysis to chromosome 20. Seq2Graph
tools map Illumina HiSeq short reads (150bp) and PacBio
HiFi long reads (15000bp and 20000bp) from sample HG002
of HPRC to the Minigraph-Cactus constructed HPRC graph
[15] [44]. BWA-MEM2 [45] in Table 1 maps the same short
reads to HG002. Graph Building tools used 14 chromosome
20 assemblies including T2T CHM13 [43] and 13 from
HPRC [46].

Table 3 shows kernel datasets. We generate GBWT inputs
by randomly sampling subsequences from the haplotypes
in the graph with lengths between 1 and 100. We use
the full graph (not just chromosome 20) because GBWT
cache behavior is especially sensitive to graph size. TSU
runs on pairs of 10K base pair sequences with error rate
1% generated with the TSU script (see github). We also
evaluate performance for different lengths. All other kernel
datasets are produced by running the tool with datasets in
table 2 up until the kernel and then storing the inputs to



the kernel in a file, sometimes downsampling to keep the
dataset size reasonable. We include this code to generate
new kernel datasets so researchers can analyze their own
workloads. Note for TC and PGSGD, human data is too slow
for PIN analysis, so we use Yeast [47] and DRB1-3123 [48]
datasets for PIN analysis only. Table 4 shows the measured
runtime for our kernels on these datasets using Machine
B (see section 4.3). Increasing the size of datasets will
increase these runtimes, but we expect the microarchitecture
characteristics to remain the same.

4.3. Machine Configuration

Machine A (2 sockets) Machine B (2 sockets)
CPU Intel Xeon E5-2697 v3 Intel Xeon Gold 6326

Base frequency 2.6GHz 2.9GHz
Core/thread count 14/28 16/32

L1 I cache 32KB, 8-way 32KB, 8-way
L1 D cache 32KB, 8-way 48KB, 12-way
L2 cache 256KB, 8-way 1.25MB, 20-way
L3 cache 35MB 24MB, 12-way
Memory 176GB DDR4 2400MHz 128GB DDR4 3200MHz
GPU - Nvidia RTX A6000

GPU-Mem - 48GB GDDR6
GPU-Mem BW - 768GB/s

TABLE 5: System configuration (core/thread count and L3
cache size are per socket).

We evaluated the tools and kernels using Machine A
and Machine B from Table 5. Both machines are dual-socket
systems. Machine A, with its larger memory capacity, was
used to evaluate the tools with full datasets, while Machine
B was used for the microarchitectural analysis of CPU and
GPU kernels.

5. Results
In this section, we first evaluate the end-to-end thread-

scaling capabilities of the selected tools. We then perform a
detailed microarchitecture analysis of the extracted kernels.
Finally, we evaluate the performance of the two GPU
implementations.

5.1. Thread Scaling
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Figure 5: Thread Scaling: Runs executed on Machine A of
Table 5 with hyperthreading for 4, 14, 28, and 56 threads.
Results displayed as speedup relative to 4 threads.

Seq2Graph mapping tools process reads independently
on different threads which results in good thread scaling up
to 28 cores where hyperthreading reduces scaling potential
(Figure 5). This performance drop is likely due to resource
contention between threads because Seq2Graph kernels
generally have high core utilization for a single thread.

We show Minigraph-lr operating on a single batch
of 158K reads in Figure 5 because memory usage is low
(below 60GB), and tail latency limits performance at smaller
batches.

Minigraph-cr, in contrast, exausts the 176GB memory
on our server (Machine A) for our downsized 14-genome
dataset. We therefore evaluate for a single chromosome. Min-
igraph doesn’t extract intra chromosome/read parallelism,
so this only achieves single threaded execution. Even for
large datasets and servers, we expect thread parallelism
to be limited. HPRC for example uses 47 diploid human
genomes and a multinode system consisting of 6 machines,
each having 28 cores and 384GB of RAM [15].

PGSGD uses the Hogwild! parallelization approach
[38], which enables near linear scaling with thread count.
However, in Figure 5, the end-to-end scaling of Odgi Layout
deviates from this linear behavior due to a sequential pre-
processing step that generates the path-index. Its processing
time becomes increasingly prominent as PGSGD’s paral-
lelization increases. Beyond this deviation, we observe near
linear scaling efficiency below the theoretical optimum,
which we attribute to the memory bottleneck caused by
PGSGD’s random access pattern. Synchronization barriers
between the kernel’s 30 iterations further limit paralleliza-
tion, as faster threads must wait for slower threads to
complete their iteration before proceeding.

For seqwish (v0.7.11), performance gains beyond four
threads appear to be negligible. Closer inspection reveals
that the latency-hiding method utilized within the TC
loop limits potential performance gains. This method starts
the graph emission for the current chunk in a separate
thread while initiating the parallelized main transclosure
computation of the next chunk. However, graph emission of
the next chunk can only begin once the previous emission
completes. Consequently, parallelizing the main transclosure
computation shifts the bottleneck to the graph emission
logic.

Furthermore, even if graph emission was additionally
accelerated, thread scaling within the transclosure operation
remains limited, partially due to load balancing between
threads in the overlap-collect and union-find operation.
Moreover, seqwish contains significant setup and teardown
code with varying scalability characteristics. While some
components scale well (such as unpacking the PAF align-
ments), others (like the final GFA file generation) contain
significant sequential code segments. However, achieving
high end-to-end thread scalability requires parallelization
of all components.

5.2. CPU Microarchitecture
In this section we analyze the microarchitectural bot-

tlenecks of the extracted benchmarks. Figure 6 shows a
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Figure 6: Top-Down Microarchitectural Analysis for Our
Benchmarks: The y-axis shows the fraction of superscalar
ways retiring or stalled for different reasons.

GSSW GBV GBWT GWFA-cr GWFA-lr PGSGD TC
1.77 2.22 1.92 2.67 2.90 0.88 3.14

TABLE 6: Kernel IPC (4-way CPU core)

breakdown of bottlenecks collected from top-down VTune
microarchitecture analysis [49]. The y-axis shows the
fraction of superscalar ways per cycle that are doing useful
work (Retiring), stalled for some reason (FrontEndBound,
CoreBound, or MemoryBound), or squashed due to mispec-
ulation, which is mostly due to branch misprediction in
our workloads (BadSpeculationBound). If an instruction was
not issued because the backend of the pipeline was stalled,
we classify the way as CoreBound or MemoryBound. If
the backend had free slots, but there was no micro-op to
dispatch, the way is classified as FrontEndBound. Table 6
shows the IPC for each kernel.

The results show that dynamic programming kernels
GSSW, GBV, and GWFA, are core bound. This is understandable
because these are compute-intensive kernels with complex
data dependencies on previous cells, but unlike GBV and
GWFA, GSSW uses affine gap scoring, which triples the
memory footprint. Because of this, and other memory
bottlenecks discussed in Section 6.1, GSSW is also memory
bound.

In contrast, GBV is limited by branch misprediction
attributed partly to the traceback step implemented within
the kernel and partly to the merge operations between
parent cells (Figure 4 b)). The merge operation is distinctly
a graph-based step, where data from incoming edges is
combined.

We notice that GWFA has a higher IPC when aligning
long reads compared to a single chromosome. This is likely
because the gaps to be aligned are larger for chromosomes
than long reads. The longer sequences cover more nodes in
the graph resulting in more control and memory divergence
seen in figure 6.

Prior work has found the traditional BWT-based FM-
Index to be memory bandwidth-intensive [4, 50], but GBWT is
not memory bound. Due to the limited alphabet of four base
pairs, substrings of the reference text are often repeated, so
for a short substring there are many possible prefixes, any
of which could be the next hop. This results in unpredictable
memory accesses to the compressed occurrence table [34].

In contrast, GBWT is a multistring BWT over haplotypes
(sequences of node IDs). These haplotypes are less likely
to repeat themselves, so for a given substring, there are
usually only a handful of prefixes. This limits the range
of lookups, making index search queries more likely to
access nearby nodes and therefore adjacent entries in the
occurrence table [33]. The lack of memory bottlenecks
exposes branch misses and frontend stalls from the data
dependent control flow in GBWT.

Unlike the alignment kernels which align reads to small
localized subgraphs, graph visualization is performed on the
entire graph, resulting in a much larger memory footprint
(1.7Gb for chromosome 20). To ensure the generation
of high-quality layouts, PGSGD performs uniform random
queries to this structure, independent of the graph structure.
This results in a memory bottleneck. Furthermore, the co-
ordinate update involves multiple divisions and square-root
operations (e.g., for computing the Pythagorean theorem).
Memory and core-boundness result in a low IPC.

TC also operates on a full chromosome dataset composed
of multiple pairwise alignments, but it’s accesses are much
more regular. TC performance is dominated by efficient
accesses to optimized data structures (like implicit interval
trees [36] and atomic bitvectors [51]), the simple appending
of data to files, and highly optimized sorting [37], resulting
in a high percentage of retiring superscalar ways and IPC.

Perhaps surprisingly, we do not observe memory bottle-
necks from indirect graph accesses in the kernels we have
reviewed. GSSW, GBV, and GWFA operate on subgraphs which
fit in the cache. GBWT exhibits good locality because of
its graph representation and cache-friendly optimizations.
PGSGD is memory bound because of its random sampling
method, not because of the graph structure, and TC utilizes
efficient data structures and can exploit some spatial locality,
e.g., during the bitvector accesses.

Figure 7 shows cache misses per kilo-instructions. We
note that the dynamic programming kernels rarely miss
the l3 indicating that they are not making many irregular
accesses to the full pangenome. Instead, they mostly miss
the l1. This is likely because they perform local alignment
on small subgraphs. In contrast, PGSGD stands out with a
high miss rate across all levels of the cache. This is because
PGSGD has completely random accesses to the graph, that
does not fit in any level of the cache, despite using a cache-
optimized data layout [27].

Figure 8 gives a dynamic instruction count for each
of the kernels. Because x86 is a CISC instruction set,
many instructions fit multiple categories, for instance an
instruction might be a vector control flow operation. We
chose to bin instructions hierarchically in the order they
appear in the legend (read top to bottom, left to right).
We classify mov instructions between registers as Register
instructions.

We analyze usage of vector instructions in the dynamic
programming benchmarks: GSSW, GBV, GWFA. Notice that
GWFA has fewest vector instructions. This is surprising
because previous work suggests that WFA is easily au-
tovectorized [17]. Our results indicate that graph related
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Figure 8: Dynamic Instruction Count for Our Benchmarks:
collected with Intel PIN.

modifications prevent the compiler (g++11) from autovector-
izing the code. Manually vectorizing the code could result
in performance gains for GWFA. In contrast, we see GSSW
has a significant fraction of vector and memory operations
because it is a memory-bound, hand-vectorized code. GBV
bitvectors are restricted to 64 bits in the code, so these
operations are classified as scalar. We also observe that
PGSGD makes heavy use of SSE instructions, which are
classified as vector, but a closer look reveals that these are
mostly SSE floating point scalar operations (e.g. MULSD)
used in distance calculations. The other kernels, GBWT and
TC, consist mostly of scalar operations. GBWT alternates
between scalar operations on compressed data and lookups
to find the next node, resulting in a mix of scalar and
memory operations.

5.3. GPU Utilization
Table 7 shows GPU utilization metrics for TSU and

PGSGD-GPU.
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Figure 9: GPU vs CPU WFA Timing

Occupancy Warp Util. Memory BW Util.
TSU 32.97% 69.72% 39.89%

PGSGD 53.85% 88.31% 41.91%

TABLE 7: GPU Microarchitecture Utilization

We find TSU is bottlenecked by thread divergence rather
than memory bandwidth. Although the warp utilization
is measured at 69.72%, many of these warps are not
contributing useful work. Furthermore, the achieved warp
utilizations comes from limiting the block size to 32. This
in turn leads to poor occupancy, limiting ability to mask
latency. On average, warps in TSU are issued only every
2.3 cycles instead of every cycle.

We evaluate the runtime of TSU over a range of read
lengths comparing to the state of the art CPU version,
WFA2-lib, Figure 9. For short reads TSU attains a speedup
of up to 3.7x, but for long reads, it gives a slowdown because
most diagonals don’t have enough work in the Extend step
to utilize the thread block. For 10K base pair reads, 74% of
diagonals use only a single thread of the block compared
to 0.3% for 128 base pair reads.

PGSGD-GPU achieved a 3.8x speedup over the CPU
variant running with 32 threads on Machine B. This speedup
is lower than the 8.9x speedup reported by Li et al. [27]
because we measure end-to-end performance including
setup/teardown, and we evaluate a smaller pangenome.

The achieved occupancy of 53.8% (see Table 7) is
constrained by two factors. First, the theoretical occupancy
is limited to 66.7%, establishing an upper bound. Second,
due to memory bottlenecks, warps are issued only every
41.7 cycles per scheduler rather than every cycle. Mem-
ory bandwidth utilization reaches only 41.9% of capacity,
attributed to low L1 and L2 cache hit rates of 31.5% and
49.3%, respectively. These low hit rates result from the
random access patterns required by PGSGD and the large
pangenome graph that cannot fit in cache. Furthermore, the
random access patterns of different threads within the same
warp lead to uncoalesced memory access, forcing sequential
memory operations to different regions for each thread.
Warps can only be issued once data from all threads within
the warp is received. Besides, the PGSGD-GPU’s warp
merging technique appears effective, as profiling shows
high warp utilization of 88.3%.

Theoretical occupancy improvements would directly
increase achieved occupancy. Full occupancy (100%) cannot
be achieved on the RTX A6000 because each PGSGD-
GPU thread requires 44 registers, exceeding the Streaming
Multiprocessor’s (SM) register capacity at full occupancy.
However, reducing the block size from 1024 to 256 threads
would improve the theoretical occupancy to 83.3% (+16.7%)
by enabling the GPU to schedule five thread blocks per
SM simultaneously. This modification increases achieved
occupancy by 20.8% and improves L1 and L2 hit rates by
10.3% and 6.4%, respectively, resulting in a modest 0.7%
memory throughput increase. Overall, reducing the block
size from 1024 to 256 accelerates the end-to-end run time
by 1.1x.
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Figure 10: Comparison of Seq2Seq and Seq2Graph Mapping:
Microarchitectural analysis of Graph SIMD Smith-Waterman
(GSSW) and Seq2Seq algorithm, Striped Smith-Waterman
(SSW) collected with Intel VTune.

6. Case Studies
6.1. Seq2Seq and Seq2Graph Comparison

In this case study, we compare GSSW with the Seq2Seq
algorithm it was developed from , Stripped Smith-Waterman
(SSW). We generate inputs for SSW by aligning our short
reads (Section 4) to reference HG002 with BWA-MEM [52].
The input traces to the alignment function are recorded and
subsequently used for SSW. For GSSW, we align the same
reads to the Minigraph-Cactus graph using Vg Map.

The microarchitectural analysis in Figure 10 shows GSSW
has ≈3× more memory stalls. VTune shows these stalls
result from swizzle writes to the Dynamic Programming
matrix from the packed SIMD buffers shown in Figure 4a,
which exhibits poor locality.

In Seq2Seq alignment, the computation of a row i
depends only on row i – 1. Therefore, SSW stores only the
previous row. In contrast, graph alignment algorithm GSSW
stores all rows of the dynamic programming matrix because
row i may access any nodes it depends on, resulting in more
swizzle writes (see incoming edges in Figure 4a). However,
we observe that within a node, the rows exhibit linear
dependencies, meaning these rows do not need to be stored.
This optimization could improve performance by avoiding
the costly writebacks from SIMD buffers to DP matrix.

6.2. Graph Variation
Reference genomes typically have only one represen-

tation, but the same pangenome can be represented by
many graphs with different computational behavior. To
explore this we compare GSSW performance on the Chr20
Minigraph-Cactus graph [15] (the M-Graph), and a graph
with smaller nodes, the Split-M-Graph. We produce the
Split-M-Graph by artificially splitting each node in the M-
Graph with more than 8 base pairs into a chain of nodes
with 8 base pairs each, reducing the average node length
from 27.22 to 6.89 base pairs. We run Vg Map on the
graphs and record the input traces to GSSW. The average
subgraph size in the M-Graph traces is 450 base pairs, but
in the Split-M-Graph it is only 233 base pairs because finer-
grained nodes enable the chaining, clustering, and filtering
steps to more precisely identify reference graph regions.

This explains the faster runtime shown in Figure 11 despite
similar microarchitectural utilization, and demonstrates how
different graphs of the same pangenome can have large
effects on performance.
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Figure 11: Comparison of M and Split-M Graph with
GSSW: GSSW runs on Minigraph-Cactus graph and modified
Minigraph-Cactus graph with split nodes. Left: microarchi-
tecture analysis. Right: number of cycles GSSW took.

7. Background and Related Work
BioPerf and BioBench are some of the earliest genomics

benchmarks [5, 6]. These include a diverse set of kernels
for DNA and Protein analysis including alignment and
phylogenetic analysis. GenomicsBench profiles more recent
tools from de novo assembly, reference-based assembly, and
metagenomics on CPU and GPU [4]. GenArchBench ports
the kernels from GenomicsBench to ARM for HPC, and it
adds some new kernels, notably WFA and Myers’s Bitvector
Alignment [7]. Genomics-GPU is another benchmark suite
written specifically for GPU containing many kernels
from the mapping pipeline [8]. PangenomicsBench stands
apart from these as the first benchmark suite targeting
pangenomics, which we have shown to be an interesting
subfield with different computational characteristics.

8. Conclusion
In this work, we analyzed widely used tools from two

pangenomic workflows, including a thread-scaling analysis.
We identified key computational CPU and GPU kernels and
developed a new benchmark suite, PangenomicsBench. We
characterized the kernels based on their microarchitectural
bottlenecks and conducted two case studies to explore the
effects of input graph variation and the differences between
Seq2Seq and Seq2Graph alignment. We find new challenges
and opportunities for hardware software codesign in pange-
nomics that distinguish it from traditional genomics.
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Appendix

1. Abstract

The PangenomicsBench GitHub repository contains the
code for the CPU/GPU tools, extracted kernels, and profiling
scripts (run time, microarchitecture, and thread-scaling
analysis). Furthermore, the repository contains instructions
for the scripts and data access.

2. Artifact check-list (meta-information)
• Algorithm: Genomics, Pangenomics, Sequence Align-

ment, Pangenome Construction.
• Program: PGGB, Minigraph-Cactus, Vg, GraphAligner.
• Compilation: GNU, CUDA.
• Binary: x86.
• Data set: HPRC, VG, GFA, OG Graphs, Long Reads,

Short Reads, Assemblies.
• Hardware: NVIDIA GPU, Intel CPU.
• Metrics: Run time, VTune Uarch, VTune Hotspots, NCU

Profiles.
• Output: Run times, VTune and NCU Profiles.
• How much disk space required (approximately)?:

100GB of storage.
• How much time is needed to prepare workflow

(approximately)?: 2 hours (mostly automated).
• How much time is needed to complete experi-

ments (approximately)?: 2 hours for kernel timings. 1
day/overnight for all studies.

• Publicly available?: Github: https://github.com/
UM-mbit/pangenomicsBench and Zenodo: https://doi.org/
10.5281/zenodo.16907988Zenodo.

• Workflow automation framework used?: Toil for
Minigraph-Cactus.

• Archived (provide DOI)?: Zenodo: https://doi.org/10.
5281/zenodo.16907988

3. Description

The paper makes use of two kinds of studies: kernel
studies, and tool studies.

The kernel studies make up our benchmark suite and
running them is mostly automated. The user can change
configuration variables in the mainRun.py to enable or
disable profiling studies. By default, we only run timing
analysis. Data from these kernels can be used to produce
Figures 6, 8, and 7 and Table 6. We also include scripts for
running GPU experiments to gather the data for Figure 9
and Table 7. Documentation for running the kernel studies
can be found in the README of the GitHub repository.

The tool studies, including the thread-scaling analysis,
are also in the GitHub repository under ToolAnalysis.
These require building the full pangenomics tools, and
running through the steps of the ToolAnalysis/README.md.
This data is used for Figures 2, 3, and 5.

3.1. How to access. The code and documentationd
are available on GitHub: https://github.com/UM-mbit/
pangenomicsBench.

3.2. Hardware dependencies. An x86 CPU is required
to run the CPU kernels and tools. A GPU is needed for
the TSUNAMI and PGSGD-GPU kernels. Due to the profiling
tools (Intel VTune and NVIDIA Nsight compute) used in
this work, an Intel CPU and an NVIDIA GPU are required
for profiling.

3.3. Software dependencies. The benchmark suite is
tested for Ubuntu 24.04 and 22.04, and has the following
dependencies:

1) conda (tested with 24.7.1).
2) cmake (tested with 3.26.0)
3) gcc/g++ (We use gcc 9, 11, and 13).

Additional dependencies for each kernel can be found
in the READMEs of their submodules located in
<kernelName>/deps. This documentation is repeated in
the GitHub README.

3.4. Data sets. Kernel datasets can be found at https://
genomicsbench.eecs.umich.edu/Kernels.tar.gz. Tool datasets
can be found at https://genomicsbench.eecs.umich.edu/
ToolDataPangenomicsBench.tar.gz. They can be downloaded
following the instructions in the READMEs.

4. Installation
To install PangenomicsBench, run the following script.

Please do not forget the --recursive flag to ensure
submodules installed. Follow the instructions of the main
README afterwards.
git clone --recursive https :// github.com/UM-mbit/

pangenomicsBench

5. Experiment workflow
The kernel benchmarks can be built with a bash script,

and then run with a python script which is configurable
based on the studies you want to run. This workflow is
described in the GitHub README.

The tool analyses require each pangenomics tool to be
built seperately. Then the profiling analyses can be run
with one script, and the thread scaling can be run with
another. This workflow is described in the github README
in the ToolAnalysis directory.

6. Evaluation and expected results
6.1. CPU kernels. mainRun.py generates the direc-
tory AllRunsOut which includes data produced by each
kernel. Summary statistics are produced in the direc-
tory AllRunsOut/<KernelName>/Results. Execution logs,
VTune profiles, and VTune reports are also produced for
each kernel. The data created depends on the types of
profiling runs configured in the mainRun.py script. By
default, only the run time is produced. Microarchitecture,
cache, and dynamic instruction count profiling can be
activated.

6.2. GPU kernels. runGpu.sh produces run times and
nsight-compute profiling reports for the GPU kernels.



6.3. Tool-thread-scaling. ToolAnalysis/runScaling.sh
produces run times for each tool at different thread counts.

6.4. Tool-timing-breakdown. For each Seq2Graph
tool ToolAnalysis/runVtune.sh generates a VTune
Hotspot Analysis, which can be used to generate a timing
breakdown. For the graph building pipelines, we produce

run time breakdowns for each stage of the pipeline which
are printed to standard output and captured in log files
(ToolAnalysis/PipelineResults/MinigraphCactus,
ToolAnalysis/PipelineResults/Pggb/runPGGBBreakd-
own.sh).


