
Scalable, Programmable and Dense:
The HammerBlade Open-Source RISC-V Manycore

Dai Cheol Jung1, Max Ruttenberg1, Paul Gao1, Scott Davidson1, Daniel Petrisko1, Kangli Li1,
Aditya K Kamath1, Lin Cheng2, Shaolin Xie1, Peitian Pan2, Zhongyuan Zhao2, Zichao Yue2,

Bandhav Veluri1, Sripathi Muralitharan1, Adrian Sampson2, Andrew Lumsdaine1,3, Zhiru Zhang2,
Christopher Batten2, Mark Oskin1, Dustin Richmond4, Michael Bedford Taylor1

1University of Washington, 2Cornell University, 3PNNL, 4University of California, Santa Cruz

Abstract—Existing tiled manycore architectures propose to
convert abundant silicon resources into general-purpose par-
allel processors with unmatched computational density and
programmability. However, as we approach 100K cores in one
chip, conventional manycore architectures struggle to navigate
three key axes: scalability, programmability, and density. Many
manycores sacrifice programmability for density; or scalability
for programmability. In this paper, we explore HammerBlade,
which simultaneously achieves scalability, programmability and
density. HammerBlade is a fully open-source RISC-V manycore
architecture, which has been silicon-validated with a 2048-core
ASIC implementation using a 14/16nm process. We evaluate the
system using a suite of parallel benchmarks that captures a broad
spectrum of computation and communication patterns.

Index Terms—manycore architecture, parallel programming,
open-source hardware, RISC-V

I. MOTIVATION

Tiled manycore architectures propose to convert abundant
silicon resources into parallel processors with unmatched
computational density and programmability. Building such a
processor involves stamping out identically shaped tiled pro-
cessors interconnected by a Network-on-Chip (NoC). Due to
their simplicity, tiled multicores can be designed, implemented
and verified by a small engineering team, lowering the time
and cost to deploy a new system [5], [43]. Manycore architec-
ture resonates with a growing demand for flexible, rather than
specialized, parallel hardware to accelerate innovative ideas in
next-gen AI and ML [18], [25], [29], [32], [39], and in other
emerging domains.

Modern manycore chips already pack hundreds, and occa-
sionally more than a thousand cores into a single die [21],
[27], [55]. Even with modest projected technology scaling
over the next few years, 100K+ cores will fit on a full-reticle
chip. However, general-purpose parallel manycore chips were
conceived when 100 cores seemed far off, and scalability by
another 1,000X is not assured. Current manycore architectures
contain built-in scalability, programmability, and density lim-
iters that must be re-examined and refined to make the next
leap. This paper illuminates a path to 100K cores.

We outline key limitations of existing manycore designs:
Density. Many mechanisms in multicore designs are inherited
directly from multi-chip processors, that were constructed
by gluing together expensive single-core optimized chips.

Memory

tiles

(a) Flat

Memory

caches
Memory

Memory

Memory

L2

L1

Level 1 
Router

Level 2
Router

(b) Hierarchical

L1

Level 1 
Router

L1

Level 1 
Router

L1

Level 1 
Router

Level 2
Router

Memory

L2

Fig. 1: Resource organization in conventional manycore
architectures. High-diameter network topology in flat many-
core is prone to massive network congestion. Hierarchical
manycore provides fast communication between cores within a
cluster, but the communication between clusters is complicated
by the multi-level cache and hierarchical network topology.

These single-core chips focused on peak-performance, and
multiprocessor support was a value-added feature that brought
a high price and justified die area increases even if relatively
large. Now that a chip holds many cores, total raw compute
is inversely proportional to the area (or power) used by the
compute tile, since it determines how many cores fit on-die.

Stripping down the cores so more of them fit has become the
prime directive. Large private L2 caches are the easiest to let
go, since the geomean performance impact of halving cache
size is often a small percentage, and the resulting core count
increase high. Beyond “right-sizing” the memory system,
there are two other classes of optimizations: first, replacing
expensive sequential processor mechanisms with cheaper ones,
or throwing them out altogether; and second, revisiting parallel
programming mechanisms we have for concepts like memory-
level parallelism, synchronization, and communication, and
replacing with more parsimonious yet equally effective ones.
In this paper, we show how all three can be optimized.
Scalability. There are many kinds of scalability; and tiled
manycores usually exhibit physical scalability; i.e. the ability
to scale without frequency being disproportionately affected by
growing logic depths or wire lengths. But logical scalability
describes the degree to which resource consumption and

1

Appears in the Proceedings of the ACM/IEEE Int’l Symp. on Computer Architecture (ISCA-51), June 2024



latencies of basic operations are controlled as core count
grows. The first flat manycores, shown in Figure 1a, generally
posited a large uniform tile array interconnected by 2-D
mesh; with memory or I/O interfaces on the edge of the
chip. For nearest-neighbor communication, this scales quite
effectively, but for random/non-local communication, or all-
to-edge communication as typical in DRAM accesses, the
network quickly fills up, because each message must occupy
O(sqrt(N)) cycle-hops of resources and time. In an N ⇥ N
mesh, each tile can only inject packets at the average rate of
2/N per cycle before edge network channels become com-
pletely saturated [50]. And interestingly, mesh networks tend
to underutilize available wiring bandwidth unless they assume
very wide packets and thus block level memory accesses.
Hierarchical manycores, shown in Figure 1b, a more recent
phenomenon, seek to address this logical scalability problem
by comprising clusters of cores in a rigid network hierarchy.
Cores in the clusters are often connected with low-latency
crossbars, designed to share some common resources. These
clusters are then connected by the network in another level of
hierarchy, usually with wider channel width. This works well
for transferring cache-line sized data, but is inefficient for fine-
grained, random access, which is common in graph and sparse
data. Sharing data between clusters requires coordination of
L1 and L2 caches, which adds cache-coherency complexities
and overheads. Paradoxically, clustering reduces cross-network
bandwidth, and to address this bandwidth shortage, will re-
quire larger ops per byte computational intensity at the node
level; resulting in larger local memory, larger tile sizes, and
reduced density.
Parallel Programmability. Parallel architecture choices that
attempt to optimize density and scalability often come at a
cost to parallel programmability. GPUs, for example, scale to
reticle sizes using Streaming Multiprocessors (SM), but those
SMs have extremely restricted communication between each
other. GPUs seek to attain density through SIMT-abstracted
SIMD units, which are infamous for their performance prob-
lems when memory accesses or control flow diverges. Message
passing architectures are plagued by area-overheads of receive
queues, challenges with deadlock and difficulty in expressing
computations efficiently that pull rather than push data.

These programmability constraints, caused by density/scala-
bility compromises in the architecture, add many people-years
of effort to program, and even may lead the programmer to
select suboptimal algorithms that happen to work within the
constraints. This research shows that with the right combi-
nation of architectural techniques, all three can be attained –
scalability, programmability, and density. The result is an ultra-
optimized, more ideal general-purpose parallel architecture
enabling programming models that can express a broad range
of parallel algorithms in the most performant ways, for both
regular and irregular data access and control flow [35].

II. CONTRIBUTIONS & INSIGHTS

This paper has the following contributions:

• We present HammerBlade, a new kind of manycore
architecture that explicitly optimizes the three key criteria
for realizing 100K-core manycore processors: scalability,
programmability, and density.

• We demonstrate the effectiveness of this architecture by
drawing on data from our open-source, silicon imple-
mentation, which implements 2048 RISC-V cores in a
manycore processor using a fraction of the reticle in a
14/16 nm process, and breaks world records for RISC-V
performance. The hardware is up and running in our lab.

• We rigorously evaluate the system using a suite of parallel
benchmarks that captures a broad spectrum of compu-
tation and communication patterns to demonstrate its
parallel programmability. Our RTL simulation integrates
DRAMSim3 [36] to accurately model a modern High-
bandwidth Memory (HBM) 2.0 [26]. We analyze the
hardware resource utilization and discuss the bottlenecks
observed in each kernel (Figure 11).

• Using the post-APR gate-level power analysis, we
demonstrate that our area-optimized RISC-V cores are
3.6–15.1⇥ more energy-efficient than a prior leading
manycore chip on a per-instruction, process-normalized
basis (Figure 13).

This paper makes the following key insights:

• Relative to prior manycore designs, aggressive densifi-
cation – i.e. focusing on more area-efficient realizations
of single-threaded execution, parallel coordination mech-
anisms, and memory resources – stands out as a key
contributor of performance uplift (Figure 10, 16).

• HammerBlade’s Cellular Manycore approach provides an
effective alternative to flat and hierarchical manycores,
diffusing cache banks into a large manycore array. It
provides (1) constant bandwidth and latency even as
the system scales, (2) explicit optimization of data and
computation placement, (3) chip-wide PGAS-style pro-
gramming in a global memory system, and (4) coherence
without need for coherence hardware.

• Ruche Networks [30] allow for increased logical scaling,
enabling larger collections of cores to co-communicate
with larger collections of cache banks without being
impacted by bandwidth or latency (Figure 15), handily
beating 2-D meshes (Figure 14).

• Networks oriented around single-word data messages can
be implemented efficiently and are more effective at
transferring high quantities of sparse data across clusters
of cores than block-level messages that are endemic to
hierarchical or mesh manycores (Figure 3, 16).

The rest of the paper is organized as follows: Section III
describes the HammerBlade (HB) architecture. Section IV
describes the programming model and the parallel kernels
used for evaluation. Section V evaluates the key architectural
optimizations, and explores different scaling strategies. Section
VI surveys the related work.

2



H
B

M

H
B

M

H
B

M

H
B

M

c

$

Skipped Wormhole Channels to HBM2
(Bandwidth-Matched to HBM2)

2D mesh augmented with
Horizontal Ruche Channels

Instr. Cache
1442 um2

32.1%

Scratchpad
1149 um2

25.6%

Router
675 um2, 15.0%

Register File
464 um2, 

10.3%

FPU
395 um2, 

8.8%

A
LU

Pipeline 
Logic,

273 um2,
5.5%

3 nm Area Breakdown

Total: 4495.65 um2

Cellular Manycore

Cell

Cache Bank Strips

Compute Core Array

Cellular On-Chip Networks
RISC-V Compute Tile

Cache Bank Tile

Cache 
SRAM

NoC
Router

Wormhole
Router

Write-Valid
SRAM

Atomic
Execute

Unit

Instr.
Cache Scratchpad

NoC
Router

tile groups

Fig. 2: Overview of HB Cellular Manycore Architecture. HB synthesizes a set of novel features that enable maximum
scalability and density while maintaining programmable SPMD/PGAS abstractions. Cache banks are embedded in a homoge-
neously networked array of compute tiles, and associated with Cells, groups of nearby tiles, to provide locality as the system
scales. The Ruche Networks provide 4⇥ the bisection bandwidth over meshes and enable larger Cell sizes. The right side of
the figure shows the area breakdown of a single HB tile scaled down to the 3 nm node [61]. With the tile area of 4496 um2,
100K+ cores can fit on a 600 mm2 die, orders of magnitude beyond any previous manycore designs in Section VI.

III. ARCHITECTURE

This section describes the architectural features and mech-
anism of the HammerBlade Manycore.

A. The HammerBlade (HB) Cellular Manycore Architecture

In the broader picture, we envision that general-purpose
chips of the future (and indeed the mobile phone chips of
today) will have three classes of computational blocks, as
envisioned by the tiered accelerator fabric (TAF) architectural
pattern [19]. These chips will have general-purpose Linux-
capable cores for hosting the OS, a manycore for general
purpose parallel computation, and one or more highly spe-
cialized accelerators, such as tensor cores for ML. Pulling the
OS-capable hardware, and support for single-threaded OoO
execution out of the manycore array, and into separate Linux-
capable cores is the first step of densification, eliminating
the need to have privileged-mode and OS-support specific
hardware as well as hefty BTB’s, caches and reorder buffers
in every tile in the manycore array. This paper focuses on the
design and analysis of the manycore part of these systems.

HammerBlade, as is to be expected of a tiled manycore, has
a physical design hierarchy which are the units of replication
that allow the chip to be efficiently composed by repeatedly
stamping out VLSI layout. In order to scale to large number
of cores in reasonable CAD flow time, HammerBlade is
assembled by VLSI CAD tools hierarchically as shown in the
build-up diagram in Figure 2, using compute and cache bank
blocks, a Cell block that replicates the compute and cache
block, and then a top-level block which replicates the Cell
block and off-chip I/O and memory resources. HammerBlade’s
logical hierarchy (i.e. the architectural or programmer’s view),

on the other hand, allows the programmer to name resources
at different scales (i.e. within a tile group, within a cell, across
a group of cells, and across the chip), facilitating both logical
scalability (e.g., tile groups in a Cell can use load and store
instructions to communicate through a contiguous region of
address space that is striped across nearby cache banks to
avoid the scalability challenges of flat manycores) and PGAS
(Partitioned Global Address Space) simultaneously.

A HB Cell is a 2-D array of compute tiles and two 1-D
arrays of cache banks, as depicted in Figure 2. Tiles and caches
are all interconnected with the Ruche Network [30], [45], a
2-D mesh augmented with uniform, long-range links that pass
through tiles. These extra links increase bisection bandwidth
and reduce the network diameter without disrupting the mesh’s
ability to map easily onto a silicon substrate. As the distance of
these links grows, more wires pass through the tiles. This can
effectively utilize all VLSI wiring resources, which are largely
unused by 2-D mesh-based architectures, without adding much
hardware overhead. In HB implementation, the Ruche links
that skip three tiles horizontally boost the peak bisection
bandwidth by 4⇥ greater than 2-D mesh. This increases the
router area by 40%, and the overall tile area by 4%.

HB has a flat, uniform network hierarchy, so the Ruche Net-
work extends beyond the Cell boundary to make connections
with adjacent Cells. This allows network packets to reach any
location on the chip without changing the packet format. By
doing so, we avoid additional hardware for de/serialization and
arbitrary network bottleneck. By software default, the cores
within the same Cell work together on a common problem,
using the Cell’s shared cache banks. Later, we describe how
PGAS is set up for this affinity (Section IV).

3



The HB cache hierarchy is also flat. Cache banks are the
last-level cache to DRAM. Each cache bank is independent
and mapped to an exclusive range of DRAM address space
to avoid coherence problem. Cache banks implement a write-
validate policy [28], as used in most GPUs [31]. This es-
sentially eliminates unnecessary DRAM reads for cache write
misses, which is helpful in typical workloads that write out
results in large blocks. Cache banks are also non-blocking,
and provide enough buffering to ensure that primary and
secondary misses are drained out of the network to allow
other hit requests to proceed. All miss status holding registers
(MSHR) are consolidated in the last level of cache hierarchy
to be shared by all tiles for better utilization, rather than
scattered across the hierarchy. RISC-V cores can remotely
perform atomic operations (e.g. atomic-swap, OR, add) on
these cache banks with acquire/release semantics [59], which
enables many synchronization primitives necessary for parallel
programmability.

A strip of cache banks includes the 1-D wormhole flow-
controlled channels, which are only used for the process of
cache refill and eviction. As shown in Figure 2, each strip of
cache banks contains multiple pairs of skipped channels, which
improve fairness and latency for cache banks in the middle.
The skip distance and the channel width can be adjusted to
match the HBM2 bandwidth.

B. HB RISC-V Core

Each HB core is a high-frequency, area-optimized, single-
issue, in-order, 5-stage, RISC-V processor with atomic and
floating-point extensions, enabling SPMD execution. Each
core contains 4 KB scratchpad memory (SPM) and 4 KB
instruction cache (icache). Smaller SRAMs enable more cores
but lower bit densities. We select the size that maximizes cores
under the constraint of sufficient size to hold sizeable kernel
inner loops. This is one of the major sources of the improved
compute density. SPMD’s independent program execution is
its major advantage over SIMT, where every thread must
execute in lockstep. HB cores try to minimize the associated
cost in its frontend logic. The core implements a simple branch
predictor with a 2-cycle miss penalty. The core predicts ‘taken’
for a backward branch and ‘not taken’ for a forward branch,
which is sufficient for a wide range of data-parallel kernels.
The icache is direct-mapped with 4-instruction cache line and
12-bit tags. This provides 16 MB of program space, which
is practically ‘unlimited’ for many data-parallel kernels. The
tag bits and instructions are combined in a single SRAM
block with only 25% area increase over 4 KB IMEM used in
Celerity [19]. When branch and jump instructions are stored in
the icache, the lower part of the target address is pre-computed
and stored in the immediate field, effectively serving as a zero-
area branch target buffer.

HB provides more efficient mechanisms for MLP than
other throughput-oriented architectures. HB cores are explicitly
interfaced with the on-chip network, where each individual
RISC-V memory operation addressing remote resources turns
into a network packet. In most architectures, data transfer is

implicitly done by cache refill and evict mechanism at block-
level granularity. For fine-grained accesses, this may waste
bandwidth resources by moving unwanted data as well. HB
remote memory operations are non-blocking, enabled by a
bit-vector styled scoreboard, which costs less than 1% of the
tile area. GPU multithreading, on the other hand, requires a
massive register file to keep every thread context readily avail-
able, which amounts to a significant portion of GPU area and
energy [33]. A single HB tile can launch up to 63 outstanding
requests, each of which may potentially generate a cache miss
and a DRAM request in the shared LLC banks and provide an
ample source of MLP. Remote loads can be pipelined in the
network to create a load-use distance and hide latency (Figure
7). Unlike in HB, SIMD execution models create a restriction
that every memory request generated by an instruction must
complete before moving on to a next instruction. Uncoalesced
accesses in GPU have to be replayed for multiple cycles, which
further degrades the pipeline utilization [14], [44].

C. HB Network-on-Chip

HB’s simplified NoC design plays a crucial role in maxi-
mizing compute density and network scalability. It is a major
departure from the previous manycore designs, which often
integrate multiple NoCs for various traffic types. Epiphany-
V tiles [42] include routers for not only the on-chip traffic,
but also the off-chip (DRAM) traffic. HB’s separation of the
off-chip routers from the compute tile keeps the tile area low.
Raw [58] and Tilera [12] implement fast register-to-register
scalar transfer networks, but their routing rules need to be pre-
configured at compile-time, using a specialized compiler [34].
Raw adds a dynamic wormhole-routed message network, but
it is prone to deadlock, so an extra identical network is added
for deadlock recovery [56]. Tilera provides dedicated networks
used only for I/O and kernel-level traffic to guard it from the
user code [60]. Since most workloads may not make use of
all these various networks, there are always some unutilized
network resources. HB addresses these issues with the NoC
design that provides only the fundamental functionalities.
HB Global Network All core traffic travels on two physically
separate Half-Ruche Networks: one for requests, and the other
for responses. Each RISC-V memory operation is injected into
the network as a single-flit packet that contains the destination
(X,Y) coordinate and the offset address, which is translated
from the memory address using the PGAS mapping (described
in Section IV). Because the frequently accessed cache banks
are placed on the top and bottom sides of the Cell, using static
X!Y dimension-ordered routing for the request network and
Y!X order for the response network is best for the network
throughput [4]. As the size of the Cell grows, horizontal
channels that cross the bisection become the bottleneck. Half-
Ruche Network [30], which adds additional channels in the
horizontal direction, relieves this problem.

Unlike the wide channels that connect the clusters in hi-
erarchical manycores, Cellular manycore’s globally uniform
network is efficient at transferring sparse, random data be-
tween Cells. In HB, the wiring density (e.g. bit per mm) is

4



Fig. 3: The utilization of bisection links between two 16⇥8
Cells over time, while 1 MB of sparse, random data
is being transferred to the adjacent Cell (vertical and
horizontal). Cellular manycore’s globally uniform network
and word-access per packet allow high bandwidth utilization
(80⇠90%) even for completely sparse, random data transfer
between Cells, which is not possible with 1024-bit wide
channels used in a representative hierarchical manycore [49].

21.6⇥ higher horizontally and 7.0⇥ higher vertically than the
representative hierarchical manycore, which has a 1024-bit
wide 2-D mesh network [49]. Figure 3 plots the utilization
of bisection links between two Cells, while 1 MB of sparse
data is being transferred to the random locations in an adjacent
Cell’s cache banks (assuming no cache miss).

While word-access per packet is very effective for sparse,
random data transfer, it can easily overwhelm the network,
when every tile tries to read a large sequential block. HB
implements Load Packet Compression to utilize the on-chip
bandwidth more efficiently. When the processor detects con-
secutive remote loads in the instruction stream that are sequen-
tial and destined to the same location in the network, instead
of sending four separate packets each with a register ID and
an address, it sends one packet with four register IDs and one
base address. This combined with the Ruche Network greatly
improves the bisection bottleneck, enabling larger Cells.
Hardware (HW) Barrier Compute tiles can synchronize with
low latency using the 1-bit wide network with the same Ruche
Network topology (Figure 4). HW barrier has two configura-
tion registers: (1) the input directions (if any) from which a
tile must wait for the barrier signals before it can send out
its own barrier signal, and (2) the output direction to send its
barrier signal when the tile joins the barrier. A group of cores
can form a tree-like structure [63], where the barrier signals
converge at a single root node. Using these configurations,
barriers with varying group sizes can be implemented. Once
the signal has reached the root, it propagates a wake-up signal
back to the leaf nodes. HW barrier costs extremely low area,
and, as core count increases, its latency scales much better
than the software-implemented barriers.

D. Open-Source Hardware

HammerBlade Manycore1 is freely available under Solder-
pad Hardware License [3]. The synthesizable RTL source

1Available at https://bsg.ai/hammerblade/

8 7 6 5 4

3

2

1

0

16x8 Barrier

Fig. 4: Using the Ruche links that skip three tiles hor-
izontally, the barrier signal from the remotest tile can
reach the root node in only 8 clock cycles. HW Barrier is
more scalable than the software-implemented barriers, which
enables the scalability of larger Cells.

code is written in SystemVerilog with highly configurable and
composable interfaces [57]. It has been tested for portability
to various commercial and open-source EDA tools. Most im-
portantly, it provides an extensive set of custom performance
debugging and visualization tools, which analyze where and
why the processors spend most of the time during the kernel
execution and the utilization of DRAM, cache, processors, and
network routers to identify the bottlenecks in the system.

IV. PARALLEL PROGRAMMING MODEL

This section describes HB’s programming model and PGAS
mapping that brings logically-defined hierarchy to the flat
hardware. We provide the basic programming primitives that
higher abstractions can build upon. We introduce the parallel
benchmark suite for evaluating the system in Section V.

A. HB Programming Model

HB’s programming model is SPMD at the Cell-level, which
is more well-suited for irregular data access and control
flow. A tile array in a Cell can be logically divided into
smaller rectangular groups, called tile groups (Figure 2), for
finer-grained thread management than in SIMT architecture,
where threads are managed in a coarse-grained unit (e.g.
warp, wavefront). There is a trade-off between latency and
throughput when choosing the tile group size. On certain
workloads, latency of a task can be reduced by adding more
tiles to the group. If latency is less of a concern, many smaller
tile groups can work on individual tasks in parallel to improve

5



Global DRAM

Group DRAM

Local 
DRAM

Local 
DRAM

Local 
DRAM

Local 
DRAM

Local SPM
Group SPM

Fig. 5: HB’s PGAS mapping allows programmers to map
data into the best place in the memory hierarchy to exploit
physical locality. PGAS mapping logically defines how tiles
group together and share data in HB’s physically flat cache
and network hierarchy.

throughput. However, some workloads, such as graph and
sparse applications, may not benefit linearly from more tiles
in a tile group. In such case, smaller tile groups can be used
to enable task-level parallelism. A task, in this context, refers
to a coarse-grained unit of computation with data-dependent
control flow that shares a common data structure and can
be executed in parallel. For example, tasks can be different
queries on a common graph or multiplying a stationary sparse
weight matrix with different activation matrices. Tile groups
can leverage the reconfigurable HW Barrier to synchronize
in smaller groups. At the chip-level, every Cell could be
running the same kernels, each working on a portion of a large
problem, or running different kernels in a producer-consumer
fashion (Figure 6).

The kernel code can be written in C/C++ and compiled with
RISC-V GNU/LLVM toolchain [2] and with the support of
domain-specific languages [13], [16], [17]. The host runtime
code is responsible for memory management and data transfer.
The host launches the kernel on the Cells by passing the
pointers to the data. Tiles have distinct IDs like the block
and thread IDs in CUDA [41].

Kernels execute in the PGAS, which is divided into five
major address spaces to reflect the different levels of mem-
ory hierarchy in the HB system (Figure 5). This allows
programmers to have full control of data management to
exploit physical locality. Translation from a virtual address to
a network address is done with a low-cost combinational logic
without involving any expensive address translation hardware,
such as a TLB. A few upper bits of an address determine
which major address space it belongs in. Depending on address
space: X,Y coords are either directly encoded in the address
or produced by an address hashing scheme.

(1) Local SPM gives access to the local 4 KB scratchpad.
Addresses (0x0 ⇠ 0xfff) are private to each tile. Stack
is often allocated here. Tiles can copy a block of data from
DRAM to Local SPM for fast local processing.

(2) Group SPM can be used to remotely access other tiles’
scratchpads. This is a shared address space for all tiles. The
X,Y coordinates of the target tile and the SPM address offset is
encoded in the address. This is particularly useful for spatially
distributing data, when communication is structured and well-
defined (e.g. nearest-neighbor and systolic-array patterns).

// HOST PROGRAM;
// Instantiate two Cells at (X,Y) location (0,0) and (1,0)
auto cell0 = new Cell(0,0);
auto cell1 = new Cell(1,0);
// Load different kernels on two Cells;
cell0.load_kernel("producer.riscv");
cell1.load_kernel("consumer.riscv");
// Allocate memory on Cells’ Local DRAM;
float* input0, input1, output2;
cell0.malloc(4096*sizeof(float), &input0);
cell1.malloc(4096*sizeof(float), &input1);
cell1.malloc(4096*sizeof(float), &output2);
// Launch kernels;
// group_dram() produces a pointer to
// Cell1’s Local DRAM in Group DRAM space;
cell0.launch(input0, cell0.group_dram(cell1,input1));
cell1.launch(input1, output0);

Fig. 6: An example of a host program launching producer-
consumer kernels on two Cells. Using Group DRAM pointer,
Cell0 can directly write the results in Cell1’s Local DRAM
space to minimize data movement.

(3) Local DRAM can be used to access DRAM memory
space exclusively allocated for each Cell, where the majority
of computation is done. This address space is private to a
Cell, but shared by its constituent tiles. The access is done
via the local cache banks within the Cell. Regional IPOLY
hashing [47] pseudo-randomly distributes the address space
among the cache banks at cache-line granularity. This prevents
the partition camping problem with 2n-stride access patterns
prevalent in many parallel applications [6], [31].

(4) Group DRAM can be used to access another Cell’s Local
DRAM space. This is useful for broadcasting or gathering
new results among Cells before the next program phase. As
shown in Figure 3, Cellular Manycore’s inter-Cell connections
allow efficient transfers of both sparse and sequential data.
This address space can be also used in a producer-consumer
model, where one Cell produces and writes the results directly
into another Cell’s Local DRAM space. Figure 6 shows an
example of a host code setting up this model.

(5) Global DRAM is shared by all tiles on the chip, and
distributed on all cache banks on the chip using a custom
hash function. This provides a convenient space for all Cells
to combine the partial results at the end of kernel execution.
The host can use this space to transfer a large block of data
to the chip using the full DRAM bandwidth. In a 100K-core
chip, all-to-all communication can become unsustainable. In
such case, the chip can be divided into grids, a rectangular
group of Cells to add a layer of locality. The most significant
bits of the address are then used to select the grid, and the
remaining bits are used for hashing within the grid.

B. Parallel Benchmark Suite

In order to demonstrate parallel programmability of HB, we
introduce a parallel benchmark suite, inspired by Berkeley’s
parallel computing dwarfs [7]. Dwarfs represent a broad set
of parallel computing and communication patterns, which
has persisted through time and will remain relevant in the
foreseeable future. Covering these bases lends confidence that
HB can adapt to rapidly evolving workloads as a general-
purpose parallel architecture. Our benchmark suite provides

6



better coverage of these dwarfs than the previous suites. For
instance, GAP Benchmark Suite [11] specializes in graph
processing, but lacks sparse and dense LA. Parboil [53]
lacks spectral and N-body methods. Table I summarizes the
benchmarks and the corresponding dwarfs. These benchmarks
generally fall into one of three categories:

Benchmarks (Abbrev.) Dwarfs Input Data
AES (AES) Combinational Logic 16384⇥1KB messages
Barnes-Hut (BH) N-Body 16K, 32K, 64K bodies
Black-Scholes (BS) MapReduce 10M options
Breadth-First Search (BFS) Graph Traversal See Table Ib
2-D FFT (FFT) Spectral Method 16K/32K points (64/512⇥)
Jacobi (Jacobi) Structured Grid 256/512⇥512⇥64
PageRank (PR) Graphical Model See Table Ib
Smith-Waterman (SW) Dynamic Programm. 64K sequences
MatMult (SGEMM) Dense LA 512⇥512⇥512 (256⇥)
Sparse MatMult (SpGEMM) Sparse LA See Table Ib

(a) List of benchmarks and their corresponding Dwarfs from [7].

Name (Abbrev.) Type Edges Vertices
wiki-Vote (WV) Social 103689 8297
offshore (OS) Scientific 4242673 259789
roadNet-CA (CA) Road 5533214 1971281
road-central (RC) Road 33866826 14081816
road-usa (US) Road 57708624 23947347
ljournal-2008 (LJ) Social 79023142 5363260
hollywood-2009 (HW) Social 113891327 1139905

(b) List of sparse matrix, graphs in Compressed Sparse Row
format used in the evaluation (Source: [20])

TABLE I: Ten parallel benchmarks used to demonstrate
HB’s parallel programmability.

(1) Compute-intensive, Low-communication: AES, BS, and
SW have high operational intensity and require very little
memory access. In these kernels, it is crucial to take advantage
of the local scratchpad for frequently accessed data. In AES,
tiles keep their own copies of S-box in Local SPM. BS is
characterized by the heavy use of the FP divider and square-
root unit, which is included in each HB tile. SW is an example
of dynamic programming, which tends to have a high branch-
miss rate. These kernels are easy to accelerate by adding cores.

(2) Compute-intensive, Sequential-access: SGEMM, FFT,
and Jacobi are characterized by different phases of the pro-
gram, where all tiles initially load large, sequential blocks
of data, compute for a long time, and then dump out the
results. Load Packet Compression helps the initial loading,
and the write-validate cache helps write out the result. Jacobi
stencil method makes use of the Group SPM space most
effectively. Each tile loads 1⇥1⇥512 vector on its Local SPM,
and synchronize by using the memory fence, followed by the
fast HW barrier. Tiles can access neighboring pixels from
the nearest tiles (even the ones in another Cell) with low
latency using the Group SPM pointers (Figure 7). This can
be difficult in hierarchical manycore, where the bandwidth
between clusters is limited, and accessing another cluster may
involve another level of network or memory hierarchy.

(3) Memory-intensive, Irregular-access: SpGEMM, PR,
BFS, and BH operate on sparse and irregular data structures
that are difficult to partition. Each Cell replicates the whole
or part of the data structure in its Local DRAM for faster
access. There are usually multiple iterations in the algorithm,
and the Cells need to synchronize at the end of each iteration

// Each tile has 1x1x514 buffer on local SPM;
#define Z 512
float data[Z+2];
// Pointers to neighbor SPMs using group SPM pointer;
// __tile_x,y is this tile’s coordinate;
float *p_left = group_spm(__tile_x-1,__tile_y,&data[1]);
float *p_right = group_spm(__tile_x+1,__tile_y,&data[1]);
float *p_up = group_spm(__tile_x,__tile_y+1,&data[1]);
float *p_down = group_spm(__tile_x,__tile_y-1,&data[1]);
for (int i = 0; i < Z; i+=4) {
// Load 22-points in register file;
register float self[6];
register float left[4];
register float right[4];
register float up[4];
register float down[4];
// Local loads; unrolled by compiler...
for (int j = 0; j < 6; j++) {

self[j] = data[i-1+j];
}
// Remote loads; unrolled by compiler...
for (int j = 0; j < 4; j++) {

left[j] = p_left[i+j];
right[j] = p_right[i+j];
up[j] = p_up[i+j];
down[j] = p_down[i+j];

}
// Compute and store 1x1x4 output...

}

Fig. 7: Jacobi kernel snippet demonstrating the use of
Group SPM pointers to remotely access nearby scratch-
pads. if the communication pattern is well-defined, as in
Jacobi (nearest-neighbor), data can be spatially distributed in
Group SPM for fast access and persistent storage. Remote
loads are non-blocking and can be pipelined in the network to
create a load-use distance and hide latency.

to exchange the partial results necessary for the next iteration.
Cells can either broadcast the data using the Group DRAM
pointers, or combine the data in the Global DRAM space.

Workload imbalance is a major challenge for these types of
kernels [37], [51], [52], [54], [62]. Although this is beyond the
scope of this paper, we describe the basic mechanisms used in
the evaluation that more advanced methods can build upon. To
split the work among the Cells, the nodes to process are first
statically split among the Cells. For example, in the direction-
switching BFS [10], each Cell is assigned a subset of frontier
nodes for the forward direction, or a subset of unvisited
nodes for backward direction. In SpGEMM, implementing
Gustavson’s algorithm [24], each Cell is given a subset of
output rows to compute. Then, the tiles can use the atomic-
add to implement parallel for-loop (Figure 8).

V. EVALUATION

In this section, we evaluate the HB architecture using the
parallel kernels, described in Section IV.

A. Experimental Setup

HB’s performance has been measured by the cycle-accurate
simulation of its silicon-validated open-source RTL. We simu-
late four 16 GB stacks of HBM2 [26] operating at 1.0 GHz for
1 TB/s peak bandwidth. DRAMSim3 [36] has been integrated
with the RTL model using the SystemVerilog DPI interface
to accurately model HBM2 pseudo-channel timing. From the
2048-core ASIC, we measure that it can achieve 1.35 GHz at

7



#define NUM_FRONTIER 1000000
// These point to buffers in Local DRAM;
int* q0; // Initialized to 0 by host;
int* offset, nonzeros, distance;
int* curr_frontier, next_dense_frontier;
// Parallel for-loop using amoadd;
for (int i=amoadd(1,q0); i<NUM_FRONTIER; i=amoadd(1,q0)) {

int src = curr_frontier[i];
int start = offset[src];
int end = offset[src+1];
for (int j = start; j < end; j++) {
int nz = nonzeros[j];
if (distance[nz] == -1) {

// node hasn’t been visited;
int word_idx = nz / 32;
int bit_idx = nz % 32;
amoor(1<<bit_idx, &next_dense_frontier[word_idx]);

}
}

}

Fig. 8: BFS kernel snippet demonstrating the use of atomic
add to implement a simple parallel for-loop. The runtime of
each subtask in graph applications can vary greatly depending
on the graph input. SPMD model’s independent thread execu-
tion is its major advantage, which is well-suited for kernels
with severe data access and control flow irregularity.

the nominal voltage with passive air cooling. The parameters
are listed in Table II. Due to excessively long simulation time,
a multi-Cell simulation has been modeled by using multiple
single-Cell simulations running in parallel and conservatively
estimated data transfer time between program phases based on
data transfer size and network bandwidth.

Configurations 16⇥8 16⇥16 32⇥8 2⇥16⇥8
Area (mm2) 311 539 620 620
Cell Array 8⇥8 8⇥8 8⇥8 16⇥8
Core Array 16⇥8 16⇥16 32⇥8 16⇥8
Scratchpad Size (KB) 4
Cache Sets 64
Cache Ways 8
Cache Block Size (B) 64
Cell Cache Banks 32 32 64 32
Cell Cache Size (MB) 1 1 2 1
Total On-chip Storage (MB) 96 128 192 192
Core Frequency 1.35 GHz
Memory Frequency 1.0 GHz
Core / mm2 26.4 30.3 26.4 26.4

TABLE II: HB Machine Configurations. We explore different
strategies to double the hardware resources, while the HBM2
bandwidth remains constant (Figure 9).

Our baseline HB design has 8⇥8 Cell array, and 16⇥8 core
array, totaling 8192 cores. In this setup, each Cell is mapped
to one HBM2 pseudo-channel. Based on our 14/16 nm imple-
mentation, Baseline HB area is measured at 310 mm2, which
is less than half of the contemporary GPGPU die area [40]. We
explore different strategies to double the compute resources,
while keeping the HBM2 bandwidth constant (Figure 9):

(1) Doubling the size of each Cell vertically (16⇥16): this
simply doubles the number of compute tiles, but reduces the
cache capacity per tile by half. Larger Cell generally increases
the average hop latency to the cache banks.

(2) Doubling the size of each Cell horizontally (32⇥8): this
doubles the number of compute tiles, the cache bank capacity,
and also the cache bandwidth. The increased cache capacity

allows working on larger datasets more efficiently by reducing
the cache miss rate. However, a wider Cell dimension puts
more pressure on the bisection bandwidth.

(3) Doubling the number of Cells (2⇥16⇥8): this achieves
the similar effect as 32⇥8, but the key difference is that it
creates two distinct Local Cell address spaces, and it avoids
the pressure on the bisection bandwidth. This is not a problem
for embarrassingly-parallel kernels, where data can be easily
split; however, data structures like graphs or octrees, which are
difficult to partition, may need to be duplicated in the Local
DRAM space of each Cell.

16x8

16x16

2x16x8

32x8

Fig. 9: Exploring different strategies to double the hard-
ware resources, while the HBM2 bandwidth remains con-
stant. The comparison is shown in Figure 15.

B. Incremental Feature Analysis

In Figure 10, we evaluate 16⇥8 single Cell performance
as we incrementally apply hardware features to our baseline
architecture (Cellular Baseline). We also compare against the
“Baseline Manycore”, which has the cache capacity, core
density, and NoC router bandwidth normalized to [12]. We
incrementally improve each parameters (router, cache, density
opt) to match the “Cellular Baseline”. We then add the archi-
tectural features in the following order: Non-blocking loads,
Ruche Network, Write-validate policy, Load Packet Com-
pression, Regional IPOLY, and finally Non-blocking cache.
Figure 10 shows these optimizations and features improve the
performance for a variety of kernels without greatly hurting
any particular kernel. Applying all optimizations yields 5.2⇥
geomean speedup vs. Baseline Manycore.

Looking at the progression of the geomean speedup, it is
worth noting that the higher core density is most beneficial
for all kernels. For the memory-intensive kernels, there has to
be an enough number of cores to generate memory requests
and keep the HBM2 channels saturated. The compute-intensive
kernels are easy to scale with more cores, arguing for maxi-
mizing compute density with area-optimized RISC-V cores.

BH has benefited from Regional IPOLY the most, because
each tile is given 4 KB private stack space allocated on Local
DRAM to keep track of the nodes to visit during the tree-
traversal; without the hashing, every tile would initially hit the
same cache bank, which would cause a massive traffic jam.
Jacobi has improved by 17–48⇥, which highlights the strength

8



of using Group SPM for the well-defined traffic patterns (e.g.
nearest-neighbor, systolic-array) in HB.

C. Core and HBM2 Utilization

Figure 11 analyzes the core and HBM2 utilization of the
most optimized HB Cell from Figure 10. The core utilization
graph shows the percentage of cycles that cores are either
executing (Int or FP instruction) or stalling. Int instructions
also include memory-access and control instructions. The stall
percentage is broken down into the stall types in Table III.

Stall Type Description
MemorySysStall Stalled on remote load responses from DRAM
NetworkStall Outgoing request packet is stalled due to network congestion
BypassStall Pipeline interlock due to back-to-back dependent instructions
BranchMiss Bubble cycles incurred by branch miss
DivStall Stalled on the iterative FP divide and square-root unit
FenceStall Stalled on all outstanding remote memory operations to complete
BarrierStall Stalled on the HW barrier to complete

TABLE III: List of core stall types used in Figure 11.

HBM2 utilization graph shows the % of cycles that HBM2
channel is either reading, writing, busy (i.e. one or more queue
requests exist, but HBM2 cannot accept any commands due
to DRAM timing parameters), or idle (i.e. queue is empty).
Refresh cycles have been subtracted from the denominator.

In Figure 11, kernels are ordered from memory-intensive to
compute-intensive. The broad spectrum suggests that the par-
allel kernels exercise different bottlenecks in the architecture,
which motivates building a balanced parallel architecture.

PR, BFS, and SpGEMM are memory-bound, mostly waiting
for the remote load responses from HBM2. If the HBM2 is
fully utilized, it is usually a good sign; performance cannot
improve further without more HBM2 bandwidth. Those with
low HBM2 utilization may be improved by having each
core generate more memory requests by unrolling the loop
further. Graphs like wiki-Vote (WV) that are small and have
high variance on degrees do not perform very well. BFS
for the road networks have relatively lower HBM utilization
because the frontier size remains relatively small throughout
the entire search. One remedy for this is to leverage the task-
level parallelism by dividing the Cell into two or more tile
groups, as mentioned above. Each tile group uses the same
graph data structure, but independently runs different graph
queries to generate more memory requests. High barrier stall
is usually indicative of high tail-latency problems, which may
be improved by better load balancing.

AES, SW, SGEMM, and BS are compute-bound, which
could easily benefit from having more tiles. SW is affected by
high branch miss rate, which can be fixed with RISC-V integer
min-max extension [1] or the fused add min-max functions
recently added in GPUs [22]. BH and BS could benefit from
the faster iterative FP divide and square-root unit, especially
for the back-to-back inverse square-root operation. SGEMM
has high core utilization, but does not fully utilize the HBM2
bandwidth, suggesting more cores, more speedup. BS has high
bypass stalls because of the FP polynomial calculation.

Some kernels (FFT, Jacobi, SGEMM) are stalled due to
the network congestion. Ruche Networks and Load Packet

Compression help by increasing the bisection bandwidth and
reducing the network load (Figure 14). Regional IPOLY also
helps by distributing the network traffic more randomly.

D. Scaling Irregular Workloads using Tile Group

Figure 12 highlights the use of tile groups to scale highly
irregular workloads, which result in poor resource utilization.
Using eight tile groups of 4⇥4 (vs a single tile group of 16⇥8)
improves the throughput of SpGEMM (WV) by 4⇥ and the
HBM2 utilization by 7.8⇥. Dividing further into smaller tile
groups has a diminishing return, since it increases working set
size, which then increases network traffic and cache miss rate.

E. NoC Bisection Utilization

Figure 14 shows the utilization of horizontal channels that
cross the bisection of the 16⇥8 Cell. Because IPOLY hashing
evenly distributes network traffics among all cache banks, the
horizontal bisection bandwidth becomes the bottleneck. Even
for a modestly sized 16⇥8 Cell, the bisection links on 2-
D mesh could be stalled as much as 50% of the time. HB
employs Ruche Networks and Load Packet Compression to
mitigate this problem. Ruche Networks boost the bisection
bandwidth by creating extra channels with unused wires. Load
Packet Compression reduces the network load by compressing
sequential accesses.

Figure 14 compares the bisection utilization of 16⇥8 Cell
with (1) 2-D mesh, (2) Ruche Network, and (3) Ruche Net-
work + Packet Compression. For 2-D mesh, PR (HW), Jacobi
(DRAM), FFT (64K) have particularly high stall percentages.
Ruche Networks significantly reduces the amount of time
packets are stalled at the bisection across all kernels, except
Jacobi ($), in which the nearest-neighbor communication is
majority. Load Packet Compression helps with most kernels
except SpGEMM, which has fewer sequential accesses.

F. Doubling HW Resources

Figure 15 evaluates three different ways to double the
number of cores, while the HBM2 bandwidth is held constant
(as described in Figure 9). 16⇥16, 32⇥8, and 2⇥16⇥8 achieve
geomean speedup of 1.25⇥, 1.39⇥, 1.34⇥ over Baseline
HB, respectively. Compute-intensive kernels are generally easy
to accelerate with more cores. Doubling the core without
doubling the cache capacity and bandwidth is not as effective.
The benefit of having larger Cells versus having more Cells
is evident in BH. In 2⇥16⇥8, the octree structure, which
has good temporal and spatial locality, is duplicated in the
Local DRAM space of both Cells, which wastes the HBM2
bandwidth and cache capacity. However, for data structures
with less locality, such as graphs in BFS or sparse matrices in
SpGEMM, duplicating the data does not impact performance.

G. Comparison with Hierarchical Manycore

Figure 16 compares 32⇥8 HB Cells against a manycore
model (ET), whose thread density, cache capacity, and network
bandwidth are based on [21]. Both designs have equal HBM2
bandwidth. The comparison is done on irregular workloads,

9



Fig. 10: HB physical and architectural optimizations improve single-Cell performance by 5.2⇥ over Baseline Manycore.
These optimizations improve a wide range of kernels without hurting the performance of any particular ones. Improving the
core density stands out as the key contributor to performance uplift, which is why HB has taken the route to optimize the
tile area as much as possible. Regional IPOLY improves programmability by eliminating the partition camping problem of
2n-stride access.

Fig. 11: Core and HBM2 Utilization graphs give insight into where the bottlenecks are and how each kernel can be
optimized further. Kernels are ordered from memory-intensive to compute-intensive (from left to right). A broad spectrum of
kernel characteristics tests bottlenecks in different parts of the architecture, which motivates creating a balanced architecture.

10



Fig. 12: A 16⇥8 Cell can be regrouped into smaller tile
groups to improve the throughput and DRAM utilization
of irregular applications. HB uses tile groups to manage
threads into smaller groups working on different tasks while
sharing the common data structure. Irregular workloads with
low resource utilization (Figure 11) can be scaled by exploiting
task-level parallelism that exists in large-scale applications.

Fig. 13: Comparison of “Energy per Instruction” (EPI)
with [38]. For HB, EPI has been broken down into different
parts. Energy figures from [38] have been normalized using
CV 2 scaling. HB’s EPI is 3.6–15.1⇥ more efficient.

which require data transfer between clusters to highlight the
impact of on-chip network on the overall performance.

Figure 16 breaks down the total run time into the execution
time and the data transfer time that occur between the pro-
gram phases. There are a few instances where ET’s higher
L2 capacity helps with the execution time, but the higher
independent thread density of HB has the clearer advantage for
the irregular workloads overall. It also shows that transferring

a large volume of sparse data over wide 2-D mesh channels
is inefficient and affects the overall program run time.

H. Energy Analysis

Figure 13 compares “Energy per Instruction” (EPI) with
[38], whose figures have been normalized to the same process
node using CV 2 scaling. For HB, EPI has been measured by
gathering switching activities with random operands on a post-
layout gate-level netlist and then running power analysis on
Synopsys PrimeTime with extracted parasitics.

The result shows that HB’s EPI is 3.6–15.1⇥ more efficient.
The observed efficiency can be attributed to several factors.
Smaller icache (4 KB) reduces the instruction fetch energy.
Using scratchpad instead of L1/L1.5 data caches reduces the
energy overhead on memory operations. Instruction latencies
are generally much lower for HB (3 cycles for fma, 2 cycles for
mul and load/store). Furthermore, process-independent wire
cap (0.2 pF/mm) prefers smaller HB tiles over Piton tiles
(16.6⇥), since the wires for clock tree and control/data signals
travel much less distance within the tile boundary.

VI. RELATED WORK

Related manycore architectures are shown in Table IV. We
summarize these and highlight the key differences.

A. Flat Manycore

Raw [58] is a 16-core, general-purpose, 32-bit manycore
architecture with RISC ISA. Although Raw supports a global
address space, it does not support load and store instructions
that could directly access other core’s memories; instead,
explicit dynamic messages have to be sent in software, and
the receiving core services this request either by triggering
an interrupt or by explicitly receiving the memory request.
HB attains much higher compute density by removing the
expensive scalar operand network [8], and provides simplified
mechanisms for accessing remote memory.
TILE64 [12] is a 3-wide VLIW 64-core Linux-capable many-
core. A DMA engine in each tile can facilitate block-oriented
data copy between caches and memory interfaces in the
background. Message-based communication between tiles is
prone to head-of-line blocking. In order to support out-of-
order processing of messages (e.g. different from the order
that messages arrived), messages can be tagged by the sender
to be sorted into one of many receiving queues in each tile.
Epiphany-V [42] is a 1024-core 64-bit dual-issue RISC pro-
cessor. It has three 136-bit wide 2-D mesh networks for read
requests, on-chip write, and off-chip write traffic. The off-chip
traffic is separated from the on-chip traffic to make the on-chip
latency more deterministic. Epiphany-V does not have any
L1 or L2 caches. Instead, each processor has a multi-ported
scratchpad that can service instruction fetch, local load/store,
and remote load/store simultaneously. A dual-issue core is
good at keeping multiple hardware units busy (e.g. scratchpad
and FPU every cycle), but the heavily-ported register file and
complex bypass paths can become area-consuming.

11



Fig. 14: Even for a modestly sized 16⇥8 Cell, the horizontal bisection links on the 2-D mesh can be stalled up to
50% of the time. Ruche Networks boost the bisection bandwidth by creating more channels. Load Packet Compression is
particularly useful for the kernels with sequential accesses. These allow building larger Cells, which have the benefit of larger
cache capacity and larger thread pool.

Fig. 15: Three different strategies of doubling hardware resources (16⇥16, 32⇥8, 2⇥16⇥8) achieve geomean speedup of
1.25⇥, 1.39⇥, 1.34⇥ respectively over Baseline HB. Compute-intensive kernels are relatively easy to accelerate with more
cores. Doubling the core without doubling the cache capacity is not as effective. The benefit of having larger Cells horizontally
(32⇥8) is more evident than having more Cells (2⇥16⇥8).

Celerity [19] is a 496-core RV32I manycore processor. As in
HB, all scratchpads in Celerity are globally addressable over
the 2-D mesh network with a PGAS system. Celerity lacks
remote load, cache banks, instruction cache, and FPU, which
makes it much less programmable.

OpenPiton [9] is a cache-coherent manycore architecture with
three 64-bit wide 2-D mesh networks to implement distributed,
directory-based MESI protocol. Like TILE64, OpenPiton fo-
cuses on Linux capability, so the compute density is low. Each
tile contains a private L1 and L1.5 cache, and a shared L2
cache with inclusive policy at every level, which proliferates

duplicate data across the hierarchy. By default, cache lines
are distributed among all L2 caches in the system. Although
Coherence Domain Restriction [23] can be used to map a
page to a specific subset of tiles to enable nearest-neighbor
or consumer-producer communication, this adds complexity
by requiring additional storage and hardware to maintain a
software-defined mapping from virtual page to physical L2.

B. Hierarchical Manycore

ET-SoC-1 [21] has 1088 RV64IMAF minion cores, with
configurable L1 data cache/scratchpad and FP vector units.
Eight minion cores are grouped into neighborhoods, which

12



Fig. 16: Performance comparison of irregular workloads between HB (32⇥8) and the manycore model (ET) based on
[21]. There are a few instances where ET benefits from having larger L2 capacity. However, in most cases, higher independent
thread density gives more advantage to HB. For ET, data transfer time is exacerbated by transferring a large amount of sparse
data over a wide concentrated mesh channel with poor utilization.

Related Work Category Networks Processor Cores FPUs Scaled Area Cores
mm2 Our ⇥ FPUs

mm2 Our ⇥
HammerBlade Cellular 2 ⇥ 2-D Ruche Single-issue 2048 2048 77.5 mm2 26.4 1.0 ⇥ 26.4 1.0 ⇥
TILE64 [12] Flat 5 ⇥ 2-D Mesh VLIW 64 0 19.4 mm2 3.3 8.0 ⇥ 0.0 –
RAW [58] Flat 4 ⇥ 2-D Mesh Single-issue 16 16 2.6 mm2 6.2 4.3 ⇥ 6.2 4.3 ⇥
Celerity [19], [48] Flat 2 ⇥ 2-D Mesh Single-issue 496 0 15.3 mm2 32.4 0.8 ⇥ 0.0 –
Epiphany V [42] Flat 3 ⇥ 2-D Mesh Dual-issue 1024 2048 117 mm2 8.8 3.0 ⇥ 17.5 1.5 ⇥
OpenPiton [9] Flat 3 ⇥ 2-D Mesh Single-issue 25 25 11.1 mm2 2.3 11.7 ⇥ 2.3 11.7 ⇥
ET-SoC-1 [21] Hierarchical Crossbar, 2 ⇥ 2-D CMesh Vector 1088 8704 1710 mm2 0.6 41.4 ⇥ 5.1 5.2 ⇥
MemPool [15] Hierarchical Crossbar, Radix-4 Butterfly Single-issue 256 0 8.6 mm2 29.9 0.9 ⇥ 0.0 –

TABLE IV: Comparison of manycore designs on network topology, processor type, and compute density. An area of
each manycore chip has been scaled to 14/16 nm node for comparison. HB’s area-optimized RISC-V cores and simplified
NoCs significantly improve the network scalability and compute density. HB provides as much as 41.4⇥ greater core density
and 5.2⇥ greater 32-bit FPU density over the previous manycore designs.

share a single large instruction cache. Four neighborhoods are
grouped by a crossbar into shires. The shires communicate
over a mesh network with 1024-bit links. Outside the shire,
communication is block-structured, which reduces the ability
to make fine-grained random accesses. All cores in HB have
global word-level access to every scratchpad and cache banks
on the chip on a globally uniform network.
MemPool [15] is a proposed architecture with 256 single-
cycle Snitch [64] cores implementing RV32IMA. Eight cores
are aggregated into a Tile that shares a 2 KB L1 instruction
cache, and a 16 KB data scratchpad via two fully-connected
crossbars. 16 Tiles are aggregated into Groups via two 16⇥16
crossbars, and four Groups are interconnected by a radix-4 but-
terfly network. In HB, the network routers are co-placed with
the processor logic in a tile using NoC Symbiosis [46], which
allows seamless integration of thousands of tiles. In MemPool,
however, the routers are placed between Tiles, which results
in inefficient area utilization and routing congestion.

VII. CONCLUSION

HammerBlade Manycore proposes a scalable approach to
integrate a massive array of scalar processors. These scalar
processors (i.e. MIMD) are generally easier to program for
both regular and irregular data-level parallelism (DLP) than
vector or SIMT processors. HB makes up for its inefficiency
with regular DLP (e.g. a single instruction acting on multiple
functional units or operands) with its extreme compute density.

Looking at Table IV, we see that HammerBlade attains
significant thread and FP compute density, exceeded only by
less scalable or less programmable alternatives such as Celerity
(our prior work).

HB programming interface exposes data placement and
thread management for better physical locality and resource
utilization. Simplified network and cache hierarchy provides
unprecedented on-chip bandwidth and highly parallel irregular
memory accesses. Our detailed analysis provides insights into
how this system can be scaled and how the bottlenecks can
be fixed for further improvement.

A 2048-core version of HB Manycore ASIC has been
validated in silicon with the 14/16 nm FinFET process, run-
ning at 1.35 GHz at the nominal voltage. The synthesizable
RTL source code is free and open-sourced with extensive
performance profiling tools. It is capable of 2.8 Tera RISC-V
instructions/s at its peak, and can be programmed for a wide
spectrum of parallel workloads using a familiar C++ / SPMD
interface.

ACKNOWLEDGMENTS

We thank the many contributors to HammerBlade. HammerBlade
was funded by DARPA SDH Award #FA8650-18-2-7863. The
U.S. Government is authorized to reproduce and distribute reprints
for Governmental purposes notwithstanding any copyright notation
thereon. The views and conclusions contained herein are those of the
authors and not of AFRL and DARPA or the U.S. Government.

13



REFERENCES

[1] “RISC-V Bit-manipulation,” 2021. [Online]. Available: https://github.
com/riscv/riscv-bitmanip

[2] “RISC-V GNU Compiler Toolchain,” 2023. [Online]. Available:
https://github.com/riscv-collab/riscv-gnu-toolchain

[3] “Solderpad Hardware License,” 2023. [Online]. Available: https:
//solderpad.org/licenses/

[4] D. Abts, N. D. Enright Jerger, J. Kim, D. Gibson, and M. H. Lipasti,
“Achieving predictable performance through better memory controller
placement in many-core cmps,” in Proceedings of the 36th Annual
International Symposium on Computer Architecture. New York, NY,
USA: Association for Computing Machinery, 2009, p. 451–461.

[5] T. Ajayi, K. Al-Hawaj, A. Amarnath, S. Dai, S. Davidson, P. Gao,
G. Liu, A. Rao, A. Rovinski, N. Sun, C. Torng, L. Vega, B. Veluri,
S. Xie, C. Zhao, R. Zhao, C. Batten, R. Dreslinski, R. Gupta, M. Taylor,
and Z. Zhang, “Experiences using the RISC-V ecosystem to design an
accelerator-centric SoC in TSMC 16nm,” in 1st Workshop on Computer
Architecture Research with RISC-V (CARRV 2017), 2017.

[6] A. M. Aji, M. Daga, and W. C. Feng, “Bounding the Effect of Partition
Camping in GPU Kernels,” ser. CF ’11. New York, NY, USA:
Association for Computing Machinery, 2011.

[7] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands,
K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf, S. W. Williams,
and K. A. Yelick, “The Landscape of Parallel Computing Research: A
View from Berkeley,” 2006.

[8] M. B. Taylor, W. Lee, S. Amarasinghe, and A. Agarwal, “Scalar operand
networks: on-chip interconnect for ILP in partitioned architectures,” in
The Ninth International Symposium on High-Performance Computer
Architecture, 2003. HPCA-9 2003. Proceedings., 2003, pp. 341–353.

[9] J. Balkind, M. McKeown, Y. Fu, T. Nguyen, Y. Zhou, A. Lavrov,
M. Shahrad, A. Fuchs, S. Payne, X. Liang, M. Matl, and D. Wentzlaff,
“OpenPiton: An Open Source Manycore Research Framework,” in
Proceedings of the Twenty-First International Conference on Archi-
tectural Support for Programming Languages and Operating Systems.
New York, NY, USA: Association for Computing Machinery, 2016, p.
217–232.

[10] S. Beamer, K. Asanovic, and D. Patterson, “Direction-optimizing
Breadth-First Search,” in SC ’12: Proceedings of the International
Conference on High Performance Computing, Networking, Storage and
Analysis, 2012, pp. 1–10.

[11] S. Beamer, K. Asanović, and D. A. Patterson, “The GAP Benchmark
Suite,” CoRR, vol. abs/1508.03619, 2015. [Online]. Available: http:
//arxiv.org/abs/1508.03619

[12] S. Bell, B. Edwards, J. Amann, R. Conlin, K. Joyce, V. Leung,
J. MacKay, M. Reif, L. Bao, J. Brown, M. Mattina, C.-C. Miao,
C. Ramey, D. Wentzlaff, W. Anderson, E. Berger, N. Fairbanks, D. Khan,
F. Montenegro, J. Stickney, and J. Zook, “TILE64 - Processor: A 64-
Core SoC with Mesh Interconnect,” in 2008 IEEE International Solid-
State Circuits Conference - Digest of Technical Papers, 2008, pp. 88–
598.

[13] A. Brahmakshatriya, E. Furst, V. A. Ying, C. Hsu, C. Hong, M. Rut-
tenberg, Y. Zhang, D. C. Jung, D. Richmond, M. B. Taylor, J. Shun,
M. Oskin, D. Sanchez, and S. Amarasinghe, “Taming the Zoo: The
Unified GraphIt Compiler Framework for Novel Architectures,” in
2021 ACM/IEEE 48th Annual International Symposium on Computer
Architecture (ISCA), 2021, pp. 429–442.

[14] M. Burtscher, R. Nasre, and K. Pingali, “A quantitative study of
irregular programs on GPUs,” in 2012 IEEE International Symposium
on Workload Characterization (IISWC), 2012, pp. 141–151.

[15] M. Cavalcante, S. Riedel, A. Pullini, and L. Benini, “MemPool: A
Shared-L1 Memory Many-Core Cluster with a Low-Latency Intercon-
nect,” in 2021 Design, Automation & Test in Europe Conference &
Exhibition (DATE), 2021, pp. 701–706.

[16] L. Cheng, P. Pan, Z. Zhao, K. Ranjan, J. Weber, B. Veluri, S. B. Ehsani,
M. Ruttenberg, D. C. Jung, P. Ivanov, D. Richmond, M. B. Taylor,
Z. Zhang, and C. Batten, “A Tensor Processing Framework for CPU-
Manycore Heterogeneous Systems,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, pp. 1620–1635, 2022.

[17] L. Cheng, M. Ruttenberg, D. C. Jung, D. Richmond, M. Taylor, M. Os-
kin, and C. Batten, “Beyond Static Parallel Loops: Supporting Dynamic
Task Parallelism on Manycore Architectures with Software-Managed
Scratchpad Memories,” in Proceedings of the 28th ACM International
Conference on Architectural Support for Programming Languages and

Operating Systems, Volume 3, ser. ASPLOS 2023. New York, NY,
USA: Association for Computing Machinery, 2023, p. 46–58.

[18] S. Dave, R. Baghdadi, T. Nowatzki, S. Avancha, A. Shrivastava, and
B. Li, “Hardware Acceleration of Sparse and Irregular Tensor Compu-
tations of ML Models: A Survey and Insights,” Proceedings of the IEEE,
vol. 109, no. 10, pp. 1706–1752, 2021.

[19] S. Davidson, S. Xie, C. Torng, K. Al-Hawai, A. Rovinski, T. Ajayi,
L. Vega, C. Zhao, R. Zhao, S. Dai, A. Amarnath, B. Veluri, P. Gao,
A. Rao, G. Liu, R. K. Gupta, Z. Zhang, R. Dreslinski, C. Batten, and
M. B. Taylor, “The Celerity Open-Source 511-Core RISC-V Tiered
Accelerator Fabric: Fast Architectures and Design Methodologies for
Fast Chips,” IEEE Micro, vol. 38, no. 2, pp. 30–41, 2018.

[20] T. A. Davis and Y. Hu, “The University of Florida Sparse Matrix
Collection,” ACM Trans. Math. Softw., vol. 38, no. 1, dec 2011.

[21] D. R. Ditzel and the Esperanto team, “Accelerating ML Recommen-
dation With Over 1,000 RISC-V/Tensor Processors on Esperanto’s ET-
SoC-1 Chip,” IEEE Micro, vol. 42, no. 3, pp. 31–38, 2022.

[22] A. C. Elster and T. A. Haugdahl, “Nvidia Hopper GPU and Grace CPU
Highlights,” Computing in Science & Engineering, vol. 24, no. 2, pp.
95–100, 2022.

[23] Y. Fu, T. M. Nguyen, and D. Wentzlaff, “Coherence Domain Restriction
on Large Scale Systems,” ser. MICRO-48. New York, NY, USA:
Association for Computing Machinery, 2015, p. 686–698.

[24] F. G. Gustavson, “Two fast algorithms for sparse matrices: Multiplica-
tion and permuted transposition,” ACM Transactions on Mathematical
Software (TOMS), vol. 4, no. 3, pp. 250–269, 1978.

[25] S. Hooker, “The Hardware Lottery,” Commun. ACM, vol. 64, no. 12, p.
58–65, nov 2021.

[26] JEDEC, Jan 2020. [Online]. Available: https://www.jedec.org/standards-
documents/docs/jesd235a

[27] Z. Jia, B. Tillman, M. Maggioni, and D. P. Scarpazza, “Dissecting
the graphcore ipu architecture via microbenchmarking,” arXiv preprint
arXiv:1912.03413, 2019.

[28] N. P. Jouppi, “Cache Write Policies and Performance,” SIGARCH
Comput. Archit. News, vol. 21, no. 2, p. 191–201, may 1993.

[29] N. P. Jouppi, D. Hyun Yoon, M. Ashcraft, M. Gottscho, T. B. Jablin,
G. Kurian, J. Laudon, S. Li, P. Ma, X. Ma, T. Norrie, N. Patil,
S. Prasad, C. Young, Z. Zhou, and D. Patterson, “Ten Lessons From
Three Generations Shaped Google’s TPUv4i : Industrial Product,” in
2021 ACM/IEEE 48th Annual International Symposium on Computer
Architecture (ISCA), 2021, pp. 1–14.

[30] D. C. Jung, S. Davidson, C. Zhao, D. Richmond, and M. B. Tay-
lor, “Ruche Networks: Wire-Maximal, No-Fuss NoCs,” in 2020 14th
IEEE/ACM International Symposium on Networks-on-Chip (NOCS),
2020, pp. 1–8.

[31] M. Khairy, Z. Shen, T. M. Aamodt, and T. G. Rogers, “Accel-Sim:
An Extensible Simulation Framework for Validated GPU Modeling,” in
2020 ACM/IEEE 47th Annual International Symposium on Computer
Architecture (ISCA), 2020, pp. 473–486.

[32] Y. LeCun, “Deep Learning Hardware: Past, Present, and Future,” in 2019
IEEE International Solid-State Circuits Conference - (ISSCC), 2019, pp.
12–19.

[33] S. Lee, K. Kim, G. Koo, H. Jeon, W. W. Ro, and M. Annavaram,
“Warped-compression: enabling power efficient GPUs through register
compression,” in Proceedings of the 42nd Annual International Sympo-
sium on Computer Architecture, ser. ISCA ’15. New York, NY, USA:
Association for Computing Machinery, 2015, p. 502–514.

[34] W. Lee, R. Barua, M. Frank, D. Srikrishna, J. Babb, V. Sarkar, and
S. Amarasinghe, “Space-time scheduling of instruction-level parallelism
on a raw machine,” in Proceedings of the Eighth International Confer-
ence on Architectural Support for Programming Languages and Oper-
ating Systems, ser. ASPLOS VIII. New York, NY, USA: Association
for Computing Machinery, 1998, p. 46–57.

[35] Y. Lee, R. Avizienis, A. Bishara, R. Xia, D. Lockhart, C. Batten, and
K. Asanović, “Exploring the Tradeoffs between Programmability and
Efficiency in Data-Parallel Accelerators,” in Proceedings of the 38th
Annual International Symposium on Computer Architecture, ser. ISCA
’11. New York, NY, USA: Association for Computing Machinery,
2011, p. 129–140.

[36] S. Li, Z. Yang, D. Reddy, A. Srivastava, and B. Jacob, “DRAMsim3: A
Cycle-Accurate, Thermal-Capable DRAM Simulator,” IEEE Computer
Architecture Letters, vol. 19, no. 2, pp. 106–109, 2020.

14



[37] A. Lumsdaine, D. Gregor, B. Hendrickson, and J. Berry, “Challenges in
parallel graph processing,” Parallel Processing Letters, vol. 17, no. 01,
pp. 5–20, 2007.

[38] M. McKeown, A. Lavrov, M. Shahrad, P. J. Jackson, Y. Fu, J. Balkind,
T. M. Nguyen, K. Lim, Y. Zhou, and D. Wentzlaff, “Power and Energy
Characterization of an Open Source 25-Core Manycore Processor,” in
HPCA, 2018, pp. 762–775.

[39] T. Nowatzki, V. Gangadhan, K. Sankaralingam, and G. Wright, “Pushing
the limits of accelerator efficiency while retaining programmability,” in
2016 IEEE International Symposium on High Performance Computer
Architecture (HPCA), 2016, pp. 27–39.

[40] NVIDIA, “NVIDIA Tesla V100 GPU Architecture,” 2017.
[41] NVIDIA, “CUDA C++ Progamming Guide,” 2023. [Online]. Available:

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
[42] A. Olofsson, “Epiphany-V: A 1024 processor 64-bit RISC System-on-

Chip,” arXiv preprint arXiv:1610.01832, 2016.
[43] A. Olofsson, T. Nordström, and Z. Ul-Abdin, “Kickstarting high-

performance energy-efficient manycore architectures with Epiphany,” in
2014 48th Asilomar Conference on Signals, Systems and Computers,
2014, pp. 1719–1726.

[44] M. A. O’Neil and M. Burtscher, “Microarchitectural performance char-
acterization of irregular GPU kernels,” in 2014 IEEE International
Symposium on Workload Characterization (IISWC), 2014, pp. 130–139.

[45] Y. Ou, S. Agwa, and C. Batten, “Implementing Low-Diameter On-
Chip Networks for Manycore Processors Using a Tiled Physical Design
Methodology,” in 2020 14th IEEE/ACM International Symposium on
Networks-on-Chip (NOCS), 2020, pp. 1–8.

[46] D. Petrisko, C. Zhao, S. Davidson, P. Gao, D. Richmond, and M. B.
Taylor, “NoC Symbiosis,” in 2020 14th IEEE/ACM International Sym-
posium on Networks-on-Chip (NOCS), 2020, pp. 1–8.

[47] B. R. Rau, “Pseudo-randomly interleaved memory,” in Proceedings of
the 18th Annual International Symposium on Computer Architecture,
1991, pp. 74–83.

[48] A. Rovinski, C. Zhao, K. Al-Hawaj, P. Gao, S. Xie, C. Torng, S. David-
son, A. Amarnath, L. Vega, B. Veluri, A. Rao, T. Ajayi, J. Puscar, S. Dai,
R. Zhao, D. Richmond, Z. Zhang, I. Galton, C. Batten, M. B. Taylor,
and R. G. Dreslinski, “A 1.4 GHz 695 Giga Risc-V Inst/s 496-Core
Manycore Processor With Mesh On-Chip Network and an All-Digital
Synthesized PLL in 16nm CMOS,” in 2019 Symposium on VLSI Circuits,
2019, pp. C30–C31.

[49] D. Schor, “A Look At The ET-SoC-1, Esperanto’s Massively
Multi-Core RISC-V Approach To AI,” 2021. [Online].
Available: https://fuse.wikichip.org/news/4911/a-look-at-the-et-soc-1-
esperantos-massively-multi-core-risc-v-approach-to-ai/

[50] D. Seo, A. Ali, W.-T. Lim, and N. Rafique, “Near-optimal worst-
case throughput routing for two-dimensional mesh networks,” in 32nd
International Symposium on Computer Architecture (ISCA’05), 2005,
pp. 432–443.

[51] X. Shi, Z. Zheng, Y. Zhou, H. Jin, L. He, B. Liu, and Q.-S. Hua, “Graph
Processing on GPUs: A Survey,” ACM Comput. Surv., vol. 50, no. 6,
jan 2018.

[52] J. Singh, C. Holt, T. Totsuka, A. Gupta, and J. Hennessy, “Load
Balancing and Data Locality in Adaptive Hierarchical N-Body Methods:
Barnes-Hut, Fast Multipole, and Radiosity,” Journal of Parallel and
Distributed Computing, vol. 27, no. 2, pp. 118–141, 1995.

[53] J. A. Stratton, C. Rodrigues, I.-J. Sung, N. Obeid, L.-W. Chang,
N. Anssari, G. D. Liu, and W.-m. W. Hwu, “Parboil: A revised
benchmark suite for scientific and commercial throughput computing,”
Center for Reliable and High-Performance Computing, vol. 127, p. 27,
2012.

[54] J. Sun, H. Vandierendonck, and D. S. Nikolopoulos, “GraphGrind:
Addressing Load Imbalance of Graph Partitioning,” in Proceedings of
the International Conference on Supercomputing, ser. ICS ’17. New
York, NY, USA: Association for Computing Machinery, 2017.

[55] E. Talpes, D. D. Sarma, D. Williams, S. Arora, T. Kunjan, B. Floering,
A. Jalote, C. Hsiong, C. Poorna, V. Samant, J. Sicilia, A. K. Nivarti,
R. Ramachandran, T. Fischer, B. Herzberg, B. McGee, G. Venkatara-
manan, and P. Banon, “The Microarchitecture of DOJO, Tesla’s Exa-
Scale Computer,” IEEE Micro, vol. 43, no. 3, pp. 31–39, 2023.

[56] M. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat, B. Greenwald,
H. Hoffman, P. Johnson, J.-W. Lee, W. Lee, A. Ma, A. Saraf, M. Seneski,
N. Shnidman, V. Strumpen, M. Frank, S. Amarasinghe, and A. Agarwal,
“The Raw microprocessor: a computational fabric for software circuits

and general-purpose programs,” IEEE Micro, vol. 22, no. 2, pp. 25–35,
2002.

[57] M. B. Taylor, “Basejump STL: SystemVerilog Needs a Standard Tem-
plate Library for Hardware Design,” in Proceedings of the 55th Annual
Design Automation Conference, ser. DAC ’18. New York, NY, USA:
Association for Computing Machinery, 2018.

[58] M. B. Taylor, W. Lee, J. Miller, D. Wentzlaff, I. Bratt, B. Greenwald,
H. Hoffmann, P. Johnson, J. Kim, J. Psota, A. Saraf, N. Shnidman,
V. Strumpen, M. Frank, S. Amarasinghe, and A. Agarwal, “Evaluation
of the Raw Microprocessor: An Exposed-Wire-Delay Architecture for
ILP and Streams,” in Proceedings of the 31st Annual International
Symposium on Computer Architecture, ser. ISCA ’04, USA, 2004, p. 2.

[59] A. Waterman, Y. Lee, D. A. Patterson, and K. Asanović, “The RISC-V
Instruction Set Manual, Volume I: User-Level ISA, Version 2.0,”
Tech. Rep. UCB/EECS-2014-54, May 2014. [Online]. Available: http:
//www2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-54.html

[60] D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards, C. Ramey,
M. Mattina, C.-C. Miao, J. F. Brown III, and A. Agarwal, “On-Chip
Interconnection Architecture of the Tile Processor,” IEEE Micro, vol. 27,
no. 5, pp. 15–31, 2007.

[61] WikiChip, “Lithography Scaling Database,” 2022. [Online]. Available:
https://en.wikichip.org/wiki/14 nm lithography process

[62] S. Yan, C. Li, Y. Zhang, and H. Zhou, “YaSpMV: Yet Another SpMV
Framework on GPUs,” SIGPLAN Not., vol. 49, no. 8, p. 107–118, feb
2014.

[63] J.-S. Yang and C.-T. King, “Designing tree-based barrier synchronization
on 2D mesh networks,” IEEE Transactions on Parallel and Distributed
Systems, vol. 9, no. 6, pp. 526–534, 1998.

[64] F. Zaruba, F. Schuiki, T. Hoefler, and L. Benini, “Snitch: A Tiny
Pseudo Dual-Issue Processor for Area and Energy Efficient Execution of
Floating-Point Intensive Workloads,” IEEE Transactions on Computers,
vol. 70, no. 11, pp. 1845–1860, 2021.

15


