
DEC 5 - 9, 2021 SAN FRANCISCO, CALIFORNIA

UMOC: Unified Modular Ordering Constraints to
Unify Cycle- and Register-Transfer-Level Modeling

Shunning Jiang, Yanghui Ou, Peitian Pan, Christopher Batten
Computer Systems Laboratory

Cornell University

• Hardware Specialization!
• Heterogeneous System-on-Chips (SoC)

Hardware Design Trend

• Hardware Specialization!
• Heterogeneous System-on-Chips (SoC)

Hardware Design Trend

A12 Bionic – Apple

• Hardware Specialization!
• Heterogeneous System-on-Chips (SoC)

Hardware Design Trend

A12 Bionic – Apple Exynos 990 – Samsung

• Hardware Specialization!
• Heterogeneous System-on-Chips (SoC)

Hardware Design Trend

A12 Bionic – Apple Exynos 990 – Samsung

Jacinto – Texas Instrument

• Hardware Specialization!
• Heterogeneous System-on-Chips (SoC)

Hardware Design Trend

A12 Bionic – Apple Exynos 990 – Samsung

Jacinto – Texas Instrument

• Hardware Specialization!
• Heterogeneous System-on-Chips (SoC)

Hardware Design Trend

A12 Bionic – Apple Exynos 990 – Samsung

Jacinto – Texas Instrument

• Hardware Specialization!
• Heterogeneous System-on-Chips (SoC)

Hardware Design Trend

A12 Bionic – Apple Exynos 990 – Samsung

Jacinto – Texas Instrument

• Hardware Specialization!
• Heterogeneous System-on-Chips (SoC)

Hardware Design Trend

A12 Bionic – Apple Exynos 990 – Samsung

Jacinto – Texas Instrument

Cycle-Level Simulators/Models for Design Space Exploration

RTL IP RTL IP

RTL IP
RTL IP

RTL IP

RTL IP RTL IP RTL IP

RTL IP

RTL IPRTL IP

Cycle-Level Simulators/Models for Design Space Exploration

RTL IP RTL IP

RTL IP
RTL IP

RTL IP

RTL IP RTL IP RTL IP

RTL IP

RTL IPRTL IP

Choice#1: $80,000
Choice#2: $90,000

Choice#1: $......
Choice#2: $......Choice#1: $......

Choice#2: $......

Choice#1: $......
Choice#2: $......

Cycle-Level Simulators/Models for Design Space Exploration

RTL IP RTL IP

RTL IP
RTL IP

RTL IP

RTL IP RTL IP RTL IP

RTL IP

RTL IPRTL IP

Cycle-level (CL) modeling:
- Approximate timing

behaviors
- Analytical area, energy,

timing models
CL models provide
valuable insights to help
make first-order design
decisions
(e.g., cycle-level “N-cycle
hit-latency cache”)

Choice#1: $80,000
Choice#2: $90,000

Choice#1: $......
Choice#2: $......Choice#1: $......

Choice#2: $......

Choice#1: $......
Choice#2: $......

Cycle-level
Simulator/Model

Cycle-level
Simulator/Model

Cycle-level
Simulator/Model

Cycle-level
Simulator/Model

Composing Cycle-Level/RTL Models for Design Space Exploration

RTL IP RTL IP

RTL IP
RTL IP

RTL IP

RTL IP RTL IP RTL IP

RTL IP

RTL IPRTL IP

Composing Cycle-Level/RTL Models for Design Space Exploration

RTL IP RTL IP

RTL IP
RTL IP

RTL IP

RTL IP RTL IP RTL IP

RTL IP

RTL IPRTL IP

Cycle-level
Simulator/Model

Cycle-level
Simulator/Model

Cycle-level
Simulator/Model

Cycle-level
Simulator/Model

CL/RTL Composition:
- Use some CL models for

faster overall simulation
- Gradually replacing CL

models with RTL models

Challenge #1: Trade-off between model fidelity
and scheduling modularity in cycle-level modeling

Challenge #1: Trade-off between model fidelity
and scheduling modularity in cycle-level modeling

Challenge #1: Trade-off between model fidelity
and scheduling modularity in cycle-level modeling

modular
but inaccurate

Challenge #1: Trade-off between model fidelity
and scheduling modularity in cycle-level modeling

modular
but inaccurate

accurate
but flat

Challenge #1: Trade-off between model fidelity
and scheduling modularity in cycle-level modeling

modular
but inaccurate

accurate
but flat

• No seamless CL/RTL
compositions

Challenge #2: Seamless General-Purpose CL/RTL
Composition Methodologies

• No seamless CL/RTL
compositions
• PyMTL: manually CL ordering

mixed with event-driven RTL

Challenge #2: Seamless General-Purpose CL/RTL
Composition Methodologies

• No seamless CL/RTL
compositions
• PyMTL: manually CL ordering

mixed with event-driven RTL
• SystemC: RTL/CL

communication need to go
through a clock edge

Challenge #2: Seamless General-Purpose CL/RTL
Composition Methodologies

• No seamless CL/RTL
compositions
• PyMTL: manually CL ordering

mixed with event-driven RTL
• SystemC: RTL/CL

communication need to go
through a clock edge
• … other ad-hoc approaches

Challenge #2: Seamless General-Purpose CL/RTL
Composition Methodologies

• No seamless CL/RTL
compositions
• PyMTL: manually CL ordering

mixed with event-driven RTL
• SystemC: RTL/CL

communication need to go
through a clock edge
• … other ad-hoc approaches

Challenge #2: Seamless General-Purpose CL/RTL
Composition Methodologies

Unified abstraction for signal-based RTL modeling and method-based
CL modeling

Unified Modular Ordering Constraints (UMOC)

Unified abstraction for signal-based RTL modeling and method-based
CL modeling

Unified Modular Ordering Constraints (UMOC)

Unified abstraction for signal-based RTL modeling and method-based
CL modeling

Unified Modular Ordering Constraints (UMOC)

Unified abstraction for signal-based RTL modeling and method-based
CL modeling

Unified Modular Ordering Constraints (UMOC)

Unified abstraction for signal-based RTL modeling and method-based
CL modeling

Unified Modular Ordering Constraints (UMOC)

• We insert a queue with deq<enq to accelerator

Pipeline Queue
deq < enq

CL Model Fidelity & Schedule Modularity

• We insert a queue with deq<enq to accelerator
• The interface process invokes deq

Pipeline Queue
deq < enq

CL Model Fidelity & Schedule Modularity

• We insert a queue with deq<enq to accelerator
• The interface process invokes deq
• Expose its enq method to the parent tile

Pipeline Queue
deq < enq

CL Model Fidelity & Schedule Modularity

• We insert a queue with deq<enq to accelerator
• The interface process invokes deq
• Expose its enq method to the parent tile
• Pass the enq method to processor

Pipeline Queue
deq < enq

CL Model Fidelity & Schedule Modularity

• We insert a queue with deq<enq to accelerator
• The interface process invokes deq
• Expose its enq method to the parent tile
• Pass the enq method to processor
• The decode process invokes enq

Pipeline Queue
deq < enq

CL Model Fidelity & Schedule Modularity

• We insert a queue with deq<enq to accelerator
• The interface process invokes deq
• Expose its enq method to the parent tile
• Pass the enq method to processor
• The decode process invokes enq

• Global scheduler: interface before decode

Pipeline Queue
deq < enq

CL Model Fidelity & Schedule Modularity

Seamless CL/RTL Composition

Seamless CL/RTL Composition

• Creating the Unified Directed Graph (UDG)
• Edges include implicit and explicit ordering constraints

Seamless CL/RTL Composition

• Creating the Unified Directed Graph (UDG)
• Edges include implicit and explicit ordering constraints
• Loops between RTL processes are allowed

Seamless CL/RTL Composition

• Creating the Unified Directed Graph (UDG)
• Edges include implicit and explicit ordering constraints
• Loops between RTL processes are allowed
• CL processes are not allowed to appear in any loop

Scheduling the Unified Directed Graph
• Some properties of the UDG:
• CL processes execute exactly once per cycle
• RTL processes need to execute until value stabilize

Scheduling the Unified Directed Graph
• Some properties of the UDG:
• CL processes execute exactly once per cycle
• RTL processes need to execute until value stabilize

§ If the UDG has no cycle
• Topological sort that statically schedules

all processes in the DAG

Scheduling the Unified Directed Graph
• Some properties of the UDG:
• CL processes execute exactly once per cycle
• RTL processes need to execute until value stabilize

§ If the UDG has no cycle
• Topological sort that statically schedules

all processes in the DAG
§ If the UDG has cycle

• Strongly connected components (SCC)
algorithm

» Shrink cycles into a single node
• Execute the DAG of SCCs

» Topological sort of the DAG
» Iteratively Execute the SCC

UMOC Implemented in PyMTL3
• PyMTL3 is a state-of-the-art Python-based hardware generation and

simulation framework
• PyMTL3 is very extensible thanks to modular framework architecture
• Frontend: Embedded domain specific language (EDSL) modeling primitives
• IR: Native in-memory intermediate representation (NIMIR)
• Backend: Passes that systematically manipulate NIMIR

• UMOC implemented in PyMTL3:
• EDSL modeling primitives
• NIMIR data structures
• Graph generation and scheduling passes

UMOC Implementation of PyMTL3 EDSL Primitives
• UMOC PyMTL3 EDSL primitives:
• Inherit from Component
• InPort, OutPort, Wire, CalleePort, CallerPort
• @update_ff, @update, @update_once, @method_port
• add_constraints

UMOC Implementation of PyMTL3 NIMIR & Passes

UMOC Implementation of PyMTL3 NIMIR & Passes
• Supporting UMOC in PyMTL3 NIMIR elaboration

UMOC Implementation of PyMTL3 NIMIR & Passes
• Supporting UMOC in PyMTL3 NIMIR elaboration
• Collecting all the update blocks and ordering constraints

UMOC Implementation of PyMTL3 NIMIR & Passes
• Supporting UMOC in PyMTL3 NIMIR elaboration
• Collecting all the update blocks and ordering constraints
• Exposing all metadatas with APIs

UMOC Implementation of PyMTL3 NIMIR & Passes
• Supporting UMOC in PyMTL3 NIMIR elaboration
• Collecting all the update blocks and ordering constraints
• Exposing all metadatas with APIs

• UMOC passes

UMOC Implementation of PyMTL3 NIMIR & Passes
• Supporting UMOC in PyMTL3 NIMIR elaboration
• Collecting all the update blocks and ordering constraints
• Exposing all metadatas with APIs

• UMOC passes
• GenUDGPass to generate the unified directed graph

• Update blocks as vertices, explicit/implicit constraints as edges
• UMOCSchedulingPass to schedule the UDG

UMOC Implementation of PyMTL3 NIMIR & Passes
• Supporting UMOC in PyMTL3 NIMIR elaboration
• Collecting all the update blocks and ordering constraints
• Exposing all metadatas with APIs

• UMOC passes
• GenUDGPass to generate the unified directed graph

• Update blocks as vertices, explicit/implicit constraints as edges
• UMOCSchedulingPass to schedule the UDG

• The user only need to set local explicit ordering constraints. No global
scheduling required.

UMOC Case Study in PyMTL3

UMOC Case Study in PyMTL3

• 5-stage RTL Processor, 3-stage CL processor

UMOC Case Study in PyMTL3

• 5-stage RTL Processor, 3-stage CL processor
• RTL/CL checksum accelerators

UMOC Case Study in PyMTL3

• 5-stage RTL Processor, 3-stage CL processor
• RTL/CL checksum accelerators
• Manual == Execute everything in accelerator before processor (or vice

versa)

UMOC Case Study in PyMTL3

• 5-stage RTL Processor, 3-stage CL processor
• RTL/CL checksum accelerators
• Manual == Execute everything in accelerator before processor (or vice

versa)

UMOC Case Study in PyMTL3

• 5-stage RTL Processor, 3-stage CL processor
• RTL/CL checksum accelerators
• Manual == Execute everything in accelerator before processor (or vice

versa)

CL/RTL Compositions Helps Chip Tape-outs

• Main-memory only needs CL
• CL shared MDU/FPU for DSE
• CL cache for DSE
• CL on-chip networks for DSE
• Processor IP already developed

Takeaways & Conclusion

• UMOC’s explicit ordering constraints achieves model fidelity and
scheduling modularity at once.
• UMOC’s implicit & explicit constraints achieves seamless CL/RTL

composition.
• UMOC has been implemented in PyMTL3. Many IPs have been built

using UMOC scheme.

