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Cycle-level (CL) modeling:
- Approximate timing 

behaviors
- Analytical area, energy, 

timing models
CL models provide 
valuable insights to help 
make first-order design 
decisions 
(e.g., cycle-level “N-cycle 
hit-latency cache”)
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CL/RTL Composition:
- Use some CL models for 

faster overall simulation
- Gradually replacing CL 

models with RTL models
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• We insert a queue with deq<enq to accelerator
• The interface process invokes deq
• Expose its enq method to the parent tile
• Pass the enq method to processor
• The decode process invokes enq

• Global scheduler: interface before decode

Pipeline Queue
deq < enq

CL Model Fidelity & Schedule Modularity



Seamless CL/RTL Composition



Seamless CL/RTL Composition

• Creating the Unified Directed Graph (UDG)
• Edges include implicit and explicit ordering constraints



Seamless CL/RTL Composition

• Creating the Unified Directed Graph (UDG)
• Edges include implicit and explicit ordering constraints
• Loops between RTL processes are allowed



Seamless CL/RTL Composition

• Creating the Unified Directed Graph (UDG)
• Edges include implicit and explicit ordering constraints
• Loops between RTL processes are allowed
• CL processes are not allowed to appear in any loop
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Scheduling the Unified Directed Graph
• Some properties of the UDG:
• CL processes execute exactly once per cycle
• RTL processes need to execute until value stabilize

§ If the UDG has no cycle
• Topological sort that statically schedules 

all processes in the DAG
§ If the UDG has cycle

• Strongly connected components (SCC) 
algorithm

» Shrink cycles into a single node
• Execute the DAG of SCCs

» Topological sort of the DAG
» Iteratively Execute the SCC



UMOC Implemented in PyMTL3
• PyMTL3 is a state-of-the-art Python-based hardware generation and 

simulation framework
• PyMTL3 is very extensible thanks to modular framework architecture
• Frontend: Embedded domain specific language (EDSL) modeling primitives
• IR: Native in-memory intermediate representation (NIMIR)
• Backend: Passes that systematically manipulate NIMIR

• UMOC implemented in PyMTL3:
• EDSL modeling primitives
• NIMIR data structures
• Graph generation and scheduling passes



UMOC Implementation of PyMTL3 EDSL Primitives
• UMOC PyMTL3 EDSL primitives:
• Inherit from Component
• InPort, OutPort, Wire, CalleePort, CallerPort
• @update_ff,  @update, @update_once, @method_port
• add_constraints
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UMOC Implementation of PyMTL3 NIMIR & Passes
• Supporting UMOC in PyMTL3 NIMIR elaboration
• Collecting all the update blocks and ordering constraints
• Exposing all metadatas with APIs

• UMOC passes
• GenUDGPass to generate the unified directed graph

• Update blocks as vertices, explicit/implicit constraints as edges
• UMOCSchedulingPass to schedule the UDG

• The user only need to set local explicit ordering constraints. No global 
scheduling required.
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CL/RTL Compositions Helps Chip Tape-outs

• Main-memory only needs CL
• CL shared MDU/FPU for DSE
• CL cache for DSE
• CL on-chip networks for DSE
• Processor IP already developed



Takeaways & Conclusion

• UMOC’s explicit ordering constraints achieves model fidelity and 
scheduling modularity at once.
• UMOC’s implicit & explicit constraints achieves seamless CL/RTL 

composition.
• UMOC has been implemented in PyMTL3. Many IPs have been built 

using UMOC scheme.


