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Abstract—We propose unified modular ordering constraints
(UMOC), a novel approach that seamlessly unifies method-based
cycle-level (CL) modeling and signal-based register-transfer-level
(RTL) modeling. Motivated by the challenges in state-of-the-art
CL modeling methodologies and existing CL/RTL composition at-
tempts, UMOC successfully breaks the trade-off between model
fidelity and scheduling modularity for CL modeling and provides
seamless composition of CL and RTL models. Instead of requiring
the designer to specify the global intra-cycle ordering of hardware
processes, UMOC eliminates this burden using implicit local or-
dering constraints of RTL signals and explicit local ordering con-
straints of CL methods. We implement and evaluate UMOC in
PyMTL3, a state-of-the-art open-source Python-based hardware
modeling framework.

I. INTRODUCTION

In response to the growing register-transfer-level (RTL) design effort
for modern systems-on-chips (SoC) and the increasing heterogeneity in
these SoCs, computer architects have been leveraging domain-specific
cycle-level (CL) simulators (CPU [3, 18], memories [16], GPU [2],
and on-chip networks [1]), and general-purpose CL modeling frame-
works [6, 13, 14], rather than faithfully constructing RTL netlists from
the very beginning. Even though CL models include less hardware
detail and usually cannot be converted to hardware, the faster sim-
ulation speed and easier modification/enhancement is crucial to the
early design-space exploration phase. The approximate timing behav-
iors, combined with analytical area/energy/timing models [11], provide
valuable insights to help make first-order design decisions and hence
drastically reduce the time spent later in the RTL development phase.
After the CL design-space exploration phase, instead of moving di-
rectly from a complete CL model to a complete RTL implementation,
the ability to seamlessly mix and match RTL models with CL models
brings significant productivity benefits. Gradually swapping CL blocks
for freshly developed RTL blocks makes it easier to: (1) maintain the
integration tests, end-to-end tests, and performance regressions, and
(2) steadily improve the model fidelity of the whole design. Prior re-
search attempts to unify the cycle-level descriptions and RTL genera-
tion for specific hardware domains (e.g., architectural description lan-
guages for processors [4,7]). This paper focuses on general-purpose
CL/RTL modeling and composition mechanisms.

Unlike RTL modeling’s well-established discrete-event simulation
semantics, the inter-cycle and intra-cycle semantics are different across
different CL simulators. Commonly used CL inter-cycle mechanisms
include: (1) discrete-event simulation that maintains an event queue to
automatically advance the timestamp and trigger designer-scheduled
events of hardware processes [1, 3,14, 18], and (2) cycle-by-cycle sim-
ulation which essentially assumes all hardware processes are recur-
ringly triggered at every rising clock edge [2, 6, 8, 13, 16]. When sev-
eral hardware processes are triggered at the same timestamp in both
cases, the intra-cycle mechanism has to decide the order of execution.
This paper focuses on intra-cycle mechanisms. The most commonly

used CL intra-cycle mechanism is designer-specified global ordering
of hardware process invocations for modeling combinational/sequen-
tial behaviors. However, global intra-cycle ordering makes it challeng-
ing to achieve model fidelity and scheduling modularity at the same
time. State-of-the-art mechanisms for composing CL and RTL models
are ad-hoc and only enable heterogenous compositions across different
models of computation, due to the intra-cycle semantic gap between
CL and RTL modeling. As elaborated in Section II, we identify two
major challenges in state-of-the-art CL simulators/frameworks and at-
tempts to compose CL and RTL models: (1) the trade-off between
model fidelity and scheduling modularity in CL modeling; (2) seam-
less composition of CL and RTL models.

In this paper, we introduce a novel intra-cycle modeling mechanism
that unifies method-based CL modeling and signal-based RTL mod-
eling to solve these challenges. Unified modular ordering constraints
(UMOC) provide a unified view for general-purpose CL and RTL mod-
eling and enable automatically scheduling all the CL/RTL processes
with designer-specified (CL) or inferred (RTL) local constraints with-
out manually specified global intra-cycle ordering of hardware pro-
cesses. Section III discusses the key idea and foundation of UMOC.
UMOC can be implemented in any unified CL/RTL modeling frame-
work (e.g., SystemC [14]). We implement UMOC in PyMTL3 [10],
a recently developed open-source Python-based hardware modeling
framework. We explain the implementation in Section IV. Section V
includes two case studies on how UMOC with PyMTL3 enables accu-
rately composing CL/RTL processors and CL/RTL checksum acceler-
ators, and a bigger CL/RTL manycore system.

This paper makes the following contributions: (1) we identify
two key challenges to CL modeling and CL/RTL composition; (2)
we propose unified modular ordering constraints (UMOC) to address
these challenges; and (3) we explain our UMOC implementation in
PyMTL3, a state-of-the-art hardware modeling framework.

II. RELATED WORK AND MOTIVATION

In this section, we identify two key challenges to CL modeling and
CL/RTL composition, along with the corresponding related work.

Challenge #1: Trade-off between model fidelity and scheduling
modularity in cycle-level modeling — Cycle-level simulators [1-3,16,
18] usually improve the model fidelity against the target architecture by
specifying the intra-cycle total ordering of calling hardware processes
to model the desired pipeline/combinational behavior. Figure 1(b—c)
shows an example of a C++ simulator modeling the composition of
one processor and one tightly coupled hardware accelerator in Fig-
ure 1(a) using reversed invocation order for pipeline behavior. Note
that invoking processor and accelerator schedules as blackboxes at the
top level as shown in Figure 1(d) harms the model fidelity regardless
of the invocation order of proc.tick() and accel.tick(). Essen-
tially, simply composing two modular "pipelines" and concatenating
their execution schedule gives up the possibility to interleave hardware
processes in these pipelines and can create a behavior mismatch against
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Figure 1. Modeling a Cycle-Level Processor/Accelerator Tile — An example abstracted from real-world simulator code: (a) the pipeline structure
and composition of a five-stage processor and a two-stage tightly coupled accelerator where the accelerator request is sent out at decode and the
response is accepted at writeback; (b—c) the tick methods of Proc class and Accel class, both of which model pipeline behavior; (d) the modular
tick method of Tile that calls the tick of Proc and Accel; (e) the flat tick method that directly calls the hardware logic inside Proc and Accel
for more accurate performance modeling; (f) the hypothetical flat tick function of a complex design that models the performance accurately; (g)
Proc: :decode and Proc: : execute communicate through buffer DX_q.

the target architecture. This is a module-level cyclic inter-dependency
that the modular tick approach cannot break. Admittedly, the designer
should be able to break the modularity to improve performance fidelity
as illustrated in Figure 1(e) to resolve the module-level dependency.
However, to the best of our knowledge, we have rarely seen any sim-
ulator that abandons scheduling modularity, simply because it is hard
to maintain a flattened top-level schedule of a complex hardware block
(see Figure 1(f)), especially during incremental development. gem5 [3]
relies on designer-marked single-integer priority on each hardware pro-
cess and decides the global intra-cycle ordering by sorting the events
based on priority. Specifying incorrect priority will lead to unexpected
and profound performance bugs such as erroneous combinational be-
havior between two decoupled modules, and it is impossible to report
any mistake during scheduling under this scheme.

We conclude that the state-of-the-art CL modeling approaches rely
on designer-specified global intra-cycle ordering of hardware pro-
cesses, which makes it challenging to attain scheduling modularity and
performance fidelity at the same time.

Challenge #2: Seamless composition of CL and RTL models — Sev-
eral general-purpose modeling frameworks have provided first-class
support for composing cycle-level models and RTL models. Cas-
cade [6] is a CL modeling framework which provides RTL-like register
elements and combinational updates as modeling primitives. Cascade
supports composing cycle-level models written in C++ with Verilog
by exporting the CL model as a standalone C module and importing
it inside a Verilog module using Verilog Procedural Interface (VPI).
However, the top-level simulation driver is the Verilog simulator. Sys-
temC [14] provides a unified environment in C++ for CL and RTL
modeling. However, SystemC primitives for transaction-level model-
ing (TLM) are often used for functional verification rather than ac-
curate performance modeling. For example, it is impossible to model
intra-cycle behavior going through RTL-CL-RTL if TLM channels are
used as interfaces, which makes it hard to do fine-grained intra-cycle
CL/RTL composition. PyMTL [13] also unifies CL/RTL modeling in
Python by instantiating port-based RTL interfaces inside CL models
and wrapping RTL interfaces with CL buffers with enqueue/dequeue
methods for CL processes to call. PyMTL supports event-driven se-
mantics for RTL models, but the designer has to manually call the CL
processes in a total order like Figure 1(b-f). Hence, PyMTL fails to
close the CL/RTL semantic gap.

There are also ad-hoc attempts [5, 12] to compose established CL
and RTL simulators. PAAS [12] supports coarse-grained composition
of Verilog RTL accelerators with gem5 CPU and memory models by
using linux /dev/shm shared memory to exchange data between gem5
and a Verilator-compiled [17] C++ simulator.

We conclude that previous attempts to compose CL and RTL models
are ad-hoc and design-specific at a coarse granularity. As far as we are
aware, no prior work has provided a seamless composition of CL and
RTL models using a unified model of computation.

ITII. UNIFIED MODULAR ORDERING CONSTRAINTS

In this section, we describe unified modular ordering constraints
(UMOC), a novel intra-cycle scheduling mechanism to unify CL/RTL
modeling which tackles the two challenges in Section II.

A. RTL Scheduling with Implicit Constraints

If behavioral RTL process A writes signal x and B reads x, traditional
HDL simulators will infer this sensitivity and dynamically schedule B
to execute whenever A modifies x. Inspired by previous work on stati-
cally scheduling RTL processes [6,9,15], we propose to use the notion
of ordering constraints to implicitly deduce the relationship between
block A and B as follows.

=

The key observation here is that even though x is merely a local
variable w.r.t. A and B, the ordering between A and B is later used
by the scheduler globally to determine the final execution order of all
RTL processes in the design. This is because in a hierarchical RTL
model, an RTL module exposes ports to the parent module which are
connected to signals in other modules. All the connected signals are es-
sentially the same signal, and hence the preceding relationship of any
two faraway combinational RTL processes can be established without
exposing any details inside the module, which preserves the modular-
ity.

x is a combinational wire
A writes signal x, B reads signal x

A precedes B
(A<B)

B. CL Scheduling with Explicit Constraints

For CL modeling, we also want to reduce the burden on designers by
propagating local ordering constraints. However, there is no signal in



CL models, as CL models deal with high-level data structures. We ob-
serve that CL processes still need to communicate via buffers that ex-
pose methods for CL processes to call (similar to SystemC sc_£fifo).
For example, Figure 1(g) shows that decode enqueues a message to
DX_q and execute dequeues the message (using a queue handles the
back pressure from a later pipeline stage). The reversed order in Fig-
ure 1(b) guarantees that execute is called before decode in every
clock cycle, which means dequeue of the buffer is always called be-
fore enqueue. Thus, whatever decode enqueues to the buffer will only
be dequeued by execute in the next cycle to model pipeline behavior.
Conversely, calling decode before execute results in combinational
bypass behavior.

From the above observation, we further discover that specifying the
global ordering (Figure 1(b)) essentially controls the order of calling
enqueue and dequeue of the buffers in a cycle. Can we specify the
ordering inside the buffer directly so that the order between the
functions that call enqueue and dequeue can then be inferred glob-
ally? The answer is positive, and the deductive process with explictly
specified local constraints between enqueue and dequeue methods is
shown below. Simply flipping the local ordering constraints allows the
designer to model combinational behavior with the same set of methods
without changing anything else.

A precedes B

q.dequeue precedes q.enqueue
(A< B)

A calls q.dequeue, B calls q. enqueue

C. Achieving Fidelity and Modularity At Once

We use the processor/accelerator example in Figure 1 to explain
how Challenge #1 in Section II can be fully addressed by explicit
ordering constraints. We first create a pipeline queue which speci-
fies { dequeue < enqueue }. Then we instantiate it between the
stages in Proc and Accel. The global scheduler can automatically
deduce the reversed invocation order of Figure 1(b—c) without the
designer-written tick methods. To accurately model the communica-
tion between the processor and the accelerator in Figure 1(a), we also
need to put two queues inside Accel as the communicating buffer for
Accel: :work and Proc: :writeback, and for Proc: :decode and
Accel::interface. For the former pair, since Accel: :work and
Proc: :writeback are not in the same module, we need to expose the
"pointer" of the dequeue method from Accel to the parent module
Tile (similar to SystemC sc_export) and pass it into Proc so that
Proc: :writeback actually calls the dequeue method of the queue
in Accel. The latter pair can be handled similarly by exposing the
enqueue method from Accel.

The global scheduler then automatically deduces {
Proc::writeback < Accel::work, Accel::interface <
Proc::decode }. The designer does not need to write Tile: :tick
and Top: :tick like Figure 1(d—f) at all. A feasible global schedule
is able to achieve the same model fidelity as flattened tick functions
like Figure 1(e—f). Moreover, the modularity is preserved at the same
time. Accel module now exposes a dequeue method and an enqueue
method to the outside world, which means we can use the accelerator
as a standalone module to build other systems without knowing any
detail inside Accel. Any CL process P that calls the exposed dequeue
automatically results in an ordering constraint {P < Accel: :work}.

D. Unified Directed Graph (UDG)

Creating the Unified Directed Graph — The key to solve Challenge
#2 in Section I1 is to create a unified directed graph (UDG) G = (V,E)

x is signal
g.dequeue < g.enqueue

a,b,x,y,z are signals
ql.dequeue < gl.enqueue

a,b,x,y,z are signals

A: X=a+1

[Ar x=y~+1 | s =y 41 At y=a+1
B — =y ql.enqueue(a)
[B: q.enqueue(x TR 1 BB =T deqeis)
[C:z = q.dequeue() | ELER) b=g+x

[C: z=9*

S0 o

—p: explicit constraint —: implicit constraint

Figure 2. UMOC Examples — Code of CL/RTL processes and corre-
sponding unified directed graphs: (a) CL/RTL constraints can co-exist;
(b) cycle of RTL processes; (c) cycle of CL processes.

where V includes all the hardware processes and E includes all the
implicit/explicit ordering constraints between them. For any mixed
CL/RTL design, applying the deductive process in Section III-A and
III-B can set up the preceding relationships not only between all pairs
of RTL processes and all pairs of CL processes, but also CL and RTL
processes. We can deduce two ordering constraints in Figure 2(a):
{A < B} from signal x and {C < B} from { q.enqueue < q.dequeue
}. Here, B serves as the "glue" between CL and RTL portions of the de-
sign by accessing signals and calling methods at the same time. Note
that G may contain cycles. UMOC allows the UDG to have cycles
among only combinational RTL processes and defers the combina-
tional loop detection to the real simulation if the signal values fail to
stabilize. However, UMOC does not allow cycles that include any CL
process, because CL processes are usually modeled to execute once
per clock cycle due to the side effects on high-level data structures.
For example, executing process A of Figure 2(c) multiple times may
unexpectedly enqueue many elements into ¢1.

Scheduling the Unified Directed Graph for Simulation — We cannot
directly reuse canonical event-driven RTL scheduling algorithms for
unified CL/RTL scheduling. This is again because CL processes use
high-level data structures instead of signal/ports, and CL processes are
usually modeled to execute exactly once per cycle (see Figure 1(g)).
Essentially, a correct execution of G must guarantee that before exe-
cuting any CL process, all preceding processes should have been exe-
cuted, and the cycles of preceding RTL processes have stabilized.

If G contains no cycle, i.e., G is a directed acyclic graph (DAG), a
topological sort on G will yield a valid serial schedule. In each clock
cycle, we can simply enumerate the serial schedule to execute each
hardware process exactly once, satisfying the guarantee for CL pro-
cesses. If G contains cycles, according to classic graph theory, a “cy-
cle” in a directed graph is defined as a strongly connected component
(SCC) in which every vertex is reachable from every other vertex. The
scheduler can apply classic SCC algorithms to transform G into a DAG
G’ of SCCs. Each SCC represents a single vertex in G’ or a “cycle” in
G. Applying a topological sort on G’ yields a serial schedule of all the
SCCs. During simulation, we execute all the SCCs in the schedule in
each clock cycle. For single-node SCCs, we execute the only hardware
process. For multi-node SCCs, we need to iteratively execute all the
RTL processes until the signals stabilize and report a combinational
loop when it fails to converge.

IV. UMOC IMPLEMENTATION IN PYMTL3

In this section, we present the UMOC implementation in
PyMTL3 [10], an open-source Python-based hardware modeling
framework. Note that UMOC can be implemented in other frame-



I class RegIncrRTL( Component ): I class WireIncrRTL( Component ):

2 def construct( s ): 2 def construct( s ):

3 s.in_ = InPort (32) 3 s.in_ = InPort (32)

4 s.out = OutPort(32) 4 s.out = OutPort(32)

5 5

6 s.reg = Wire(32) 6 s.wire = Wire(32)

7 Qupdate_ff 7 Qupdate

8 def seq_reg(): 8 def comb_wire():

9 s.reg <<= s.in_ 9 s.wire @= s.in_

10 10

11 Qupdate 11 Q@update

12 def comb_out(): 12 def comb_out():

13 s.out @= s.reg + 1 13 s.out @= s.wire + 1
(a) RTL Reglncr Unit (b) RTL Wirelncr Unit

1 class WireIncrCL( Component ):
def construct( s ):

class RegIncrCL( Component ):

1

2 def construct( s ): 2

3 s.add_constraints( 3 s.add_constraints(

4 M(s.read) < M(s.write), 4 M(s.write) < M(s.read),
5 ) # Sequential behavior! 5 ) # Combinational behavior!
6 6

7 @method_port 7 @method_port

8§ def read( s ): 8 def read( s ):

9 return s.v + 1 9 return s.v + 1

10 10

11 @method_port 11 @method_port

12 def write( s, v ): 12 def write( s, v ):

13 s.Vv = v 13 S.V=v

(c) CL Reglncr Unit (d) CL Wirelncr Unit

class RegIncrCLRTL( Component ): 1 class RegIncrRTLCL( Component ):

1 1
2 def comstruct( s ): 2 def comstruct( s ):

3 s.write = CalleePort() 3 s.in_ = InPort(32)

4 s.out = OutPort(32) 4 s.read = CalleePort()

5 s.rl = RegIncrCL() 5 s.rl = RegIncrRTL()

6 s.r2 = RegIncrRTL() 6 s.r2 = RegIncrCL()

7 connect(s.write, s.rl.write) 7 connect(s.in_, s.rl.in_ )
8 connect(s.out, s.r2.out ) 8 connect(s.read, s.r2.read)
9

10 Qupdate_once 10 @update_once

1 def send_to_r2(): 11 def send_to_r2():

12 s.r2.in_ @= s.rl.read() 12 s.r2.write( s.rl.out )

(e) CL+RTL Two-Stage Reglncr  (f) RTL+CL Two-Stage Reglncr

Figure 3. PyMTL3 Buffered Incrementer Units — (a—d) shows the
RTL/CL implementations of a registered incrementer and a wire incre-
menter; (e—f) shows the two possible RTL/CL compositions.

works as well. We implement cycle-by-cycle simulation as the inter-
cycle mechanism and UMOC as the intra-cycle mechanism. Lever-
aging Python’s productive features, we implement a set of modeling
primitives for the designer to construct CL and RTL models. Then we
implement PyMTL3 passes to build and schedule the unified directed
graph for simulation. Figure 3 shows six PyMTL3 code examples.

A. Modeling Primitives

Here we explain a minimum set of necessary primitives to simplify
the context. Syntactic sugar can be created on top of them to further
improve the productivity of hardware designers.

Components — A component is a hardware module that includes RTL
and/or CL processes, and child components.

Signals and Value Ports — Implicit ordering constraints are inferred
from accesses to signals and value (input/output) ports. Value ports are
exposed to the parent component. Normal signals are internal. Con-
necting signals and value ports associates all connected signals/ports
with the same value and hence propagates the implicit constraint out-
side the component, which is the key to modularity.

Methods and Method Ports — Methods are member functions of a
component. Method (caller/callee) ports are exposed to the parent
component. The designer explicitly specifies the ordering constraints
that involves methods, which will be collected by PyMTL3 during
elaboration. Connecting methods and method ports essentially prop-

flip_registers()
while not stable:

A()

C()

D()

B()

check threshold()
E() # After SCC
F() # After SCC
G() # After E,F
H() # After E,G

J() # After G
L() # After H
K() # After J

(b) 1-cycle execution

(a) A unified directed graph example

1: procedure TICK ( top )

2 flip_registers( top )

3 for each SCC c in top.schedule do

4 if size(c) == 1 then

5: Execute the only block b in ¢

6 else

7 count =0

8 while outputs from ¢ does not stabilize do
9: for each block b in ¢ do
10: Execute b
11: count = count + 1
12: if count > threshold then
13: error("Found combinational loop!")

(c) Generated tick function

Figure 4. Scheduling and Simulating a Design — (a) the correspond-
ing graph of a design with 11 update blocks, four of which form a
strongly connected component; (b) one-cycle execution trace of the
tick function; (c) the generated tick function.

agates the specified constraints outside the component.

Update Blocks — We model hardware processes in PyMTL3 us-
ing three types of blocks: update for combinational RTL logic,
update_f£f for sequential RTL logic, and update_once for CL mod-
eling. All blocks can read/write signals and ports. Any signal/port
written by a non-blocking assignment in an update_ff block is in-
ferred as a sequential element and not counted in ordering constraint
deduction. Hence update_£f blocks will not precede any other block.
update_once blocks can also call methods and method ports, and
hence are restricted to be executed exactly once in each cycle.

Setting Ordering Constraints — We add an API to PyMTL3 for the
designer to specify two types of explicit ordering constraints between
(1) methods and (2) methods and update blocks. Figure 3(c—d) shows
the constraints set between two methods: read < write for sequential
behavior, and write < read for combinational behavior.

B. Building the Unified Directed Graph

We implement a PyMTL3 UDG generation pass that generate the
UDG G = (V,E) of an elaborated PyMTL3 model. V includes all three
types of update blocks, and E includes all the implicit and explicit or-
dering constraints between those blocks. Figure 4(a) shows an 11-node
UDG example.

Implicit Ordering Constraints — We implement a two-step algorithm.
First, we leverage Python’s introspection features to obtain the abstract
syntax tree of each update block, look for read/write variables, and
turn each variable name into an actual object using Python’s reflection
features. If an object is of signal/port type, we associate the object
with the update block. The second step enumerates all the signals col-
lected throughout the hierarchy to perform the deductive process in



Section III-A. For each signal x, we add a unidirectional edge A — B
to the edge set E if block A writes x and block B reads x and A is not
an update_£ff block.

Explicit Ordering Constraints — As Python methods are objects,
we apply the same AST-based approach to obtain what methods each
update_once block invokes. Then, we assemble the invocations with
the explicit ordering constraints specified by the designer and perform
the deductive process in Section III-B. Specifically, if block A calls
method P and block B calls method Q, and the explicit method/method
constraint P < Q exists, we add a unidirectional edge A — B to the
edge set. Likewise, if block A calls method P and there is an explicit
method/update constraint P < B between method P and block B, we
add A — B to the edge set.

C. Scheduling the UDG for Simulation

We implement the scheduling algorithm in Section III-D as a
PyMTL3 scheduling pass to condense G into a DAG G’ of SCCs (e.g.,
the “cycle” in Figure 4(a) will become a single vertex in G'), followed
by a topological sort on G’ to produce a linear schedule. The pass also
checks that any non-trivial SCC doesn’t contain update_once blocks.
Otherwise, the designer must remove the interdependencies.

Then, the tick generation pass takes the schedule and creates a tick
function that simulates for one clock cycle as shown in Figure 4(c).
The pass creates a function flip_registers for tick to call at the rising
clock edge to double-buffer all sequential elements that appear in the
non-blocking assignments of update_£f blocks. All the SCCs in the
schedule are then executed. The execution of each SCC is either exe-
cuting one block or repeatedly executing the update blocks until the
signals stabilize. If the execution does not converge until it reaches the
threshold, a combinational loop is detected. Figure 4(b) shows tick’s
execution for one clock cycle.

V. CASE STUDIES

We present two realistic case studies to showcase the effectiveness
of UMOC. The designs used are all implemented in PyMTL3. The first
case study includes a processor/accelerator composition similar to the
motivating example in Figure 1, which demonstrates that UMOC can
solve the two challenges in Section II. The second case study includes
a larger many-core design as evidence for UMOC'’s ability to handle
larger designs with fine-grained CL/RTL compositions for fast design-
space exploration during the iterative development process.

A. Processor/Accelerator Composition

We implement a classic 5-stage pipelined RTL RISC-V processor,
and a 3-stage pipelined cycle-level RISC-V processor which contains
only three update_once blocks to approximately model the RTL pro-
cessor (fetch, decodetexecute+memory, and writeback). We ex-
pect a little timing difference across CL and RTL processors, as dif-
ferent number of stages lead to different stalling behaviors of read-
after-write (RAW) hazards. We also implement RTL and CL Fletcher’s
algorithm checksum accelerators in PyMTL3. The CL accelerator con-
tains two update_once blocks to model the request handling and the
actual computation using normal Python functions, where the RTL ac-
celerator implements a fairly complex hierarchical design with eight
StepUnit instances and a finite state machine. For pure-CL composi-
tion, we instantiate cycle-level pipeline queues which already include
explicit ordering constraints for the update_once blocks in the CL
processor and CL accelerator to communicate. Thus we do not need
to set any constraints in the processor and the accelerator. We are also
able to expose and connect the queue methods at the top-level.

Mechanism \ Composition #Cycles Deviation \ Remarks

Event-driven | RTL Proc + RTL Accel ~ 565 - | baseline

UMOC |RTL Proc + RTL Accel 565 0% same as baseline
UMOC |CL Proc + CL Accel 541 4% due to 3-stage
Manual P<A |CL Proc + CL Accel 416 26% modular sub-tick
Manual A<P | CL Proc + CL Accel 416 26% modular sub-tick
UMOC |CL Proc + RTL Accel 541 4% same as CL+CL

UMOC |RTL Proc + CL Accel 565 0% same as RTL+RTL

TABLE 1. RESULTS FOR CL/RTL PROC/ACCEL CASE STUDY

Table I shows the simulated cycle count of various composi-
tions running the same microbenchmark. The rolling checksum mi-
crobenchmark contains a 25-iteration loop, with each iteration sending
3 loads to memory and 6 requests to the accelerator, resulting in a total
of 314 dynamic instructions. For the pure RTL composition, event-
driven simulation finishes in 565 cycles, and UMOC has exactly the
same simulated cycle count. For the pure CL composition, the global
schedule automatically generated by UMOC is able to achieve 4% cy-
cle count difference, which is expected as mentioned previously due to
the simplified 3-stage processor. To model the "manual modular sub-
tick" in Figure 1(b—d), we manually create two tick functions for CL
processes inside processor and accelerator. For P<A, we invoke pro-
cessor’s tick before accelerators’s tick, and A<P does the opposite. We
verify that the tracing output shows unexpected combinational behav-
ior in both cases in contrast to UMOC. As a result, the simulated cycle
count has 26% deviation from the pure RTL composition, much worse
than UMOC’s 4%.

For mixed CL/RTL cases, we basically insert adapters of "glue"
blocks at the CL/RTL boundary. PyMTL3 allows us to create adapters
for automatically connecting CL/RTL interfaces, which makes the
CL/RTL integration effortless. Simulation results show that the CL
processor with RTL accelerator has the same cycle count as CL pro-
cessor with CL accelerator. Also, RTL processor with CL accelerator
has the same cycle count as the pure RTL composition. This confirms
that UMOC can provide seamless CL/RTL composition under the same
abstraction without losing any model fidelity.

B. Many-Core/Cache/Network Composition

We implement a many-core system that consists of a parametriz-
able amount of tiles. Each tile contains a parametrizable amount of
RV32IMAF cores and data caches, sharing one instruction cache, one
integer multiply/divide unit (MDU), and one floating point unit (FPU)
via on-chip interconnect networks. Throughout the development pro-
cess, we extensively use fine-grained CL/RTL mixed compositions en-
abled by UMOC to facilitate design-space exploration, performance
evaluation, and the decision on RTL implementation. The CL models
are able to capture the desired cycle-level behavior using UMOC ex-
plicit constraints and the scheduling pass. UMOC also enables us to
seamlessly integrate existing RTL IP blocks that have been fully tested
and prototyped in the past, instead of developing additional CL mod-
els. Figure 5 shows the many-core system with a CL main memory.
Each block is annotated with the availability of CL, RTL, or both CL
and RTL models.

The purpose of implementing the CL multiplier/divider is for
quickly studying the performance to decide the type of RTL unit
(pipelined or iterative) and the latency/throughput (number of pipeline
stages or processed bits per cycle) needed, when shared by multiple
processors. After simulating multiple workloads, we decided to imple-
ment the iterative divider in RTL because the ratio of div/mod instruc-
tions is low. However, we decided to implement radix-four iterative
divider so that each div/mod operation takes 16 instead of 32 cycles,
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Figure 5. Tiled many-core with mixed CL/RTL components — Dif-
ferent colors/patterns show the CL/RTL component availability during
the development process. We directly reused the RTL processor, be-
cause it was already available prior to the many-core project. We only
developed CL model for the main memory, because the main memory
is only for testing and verification.

since most division operations are found to stall many subsequent in-
structions. For the multiplier, we decided to implement a four-stage
pipelined multiplier for higher throughput, as some benchmarks con-
tain streams of multiply instructions. The CL models only contain one
update_once block which processes the request, does the computa-
tion, and sends the response to delayed buffers. The user does not need
to set any explicit ordering constraints in the multiplier/divider, as ap-
propriate explicit ordering constraints are automatically set when the
delay buffers are instantiated with different delays.

As we already developed the RTL processor, developing a CL
cache enables quickly exploring the system-level impact of a one-cycle
vs. two-cycle hit-latency under different cache sizes and associativi-
ties. This influences the parameter selection of different data struc-
tures inside the processor. The CL cache model only contains several
update_once blocks which are responsible for composing requests
and responses, which is much simplier than the final RTL cache that
consists of tens of different components. As Figure 5 shows, we have
a few different on-chip interconnects in this many-core composition.
We are able to develop a single CL network with less than two hundred
lines of code to guide the decision of each RTL network implementa-
tion. The CL model is essentially a crossbar network, but provides the
ability to configure the latency between each pair of input/output ter-
minals, and the size of each terminal buffers, which allows CL model
to capture the behavior of any complex network topology.

VI. CONCLUSIONS

In this paper, we propose a novel approach, unified modular or-
dering constraints (UMOC), to unify cycle-level and register-transfer-
level modeling. UMOC addresses the challenges in the state-of-the-art
CL modeling approaches and CL/RTL composition approaches. We
demonstrate the feasibility of our approach by implementating UMOC
in PyMTL3, an open-source Python-based hardware modeling frame-
work.
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