
PyMTL3: A Python
Framework for Open-Source
HardwareModeling,
Generation, Simulation,
and Verification

Shunning Jiang, Peitian Pan, Yanghui Ou,
and Christopher Batten
Cornell University

Abstract—In thisarticle,wepresentPyMTL3, aPython framework for open-sourcehardware

modeling, generation, simulation, andverification. Inaddition tocompelling benefits from

using thePython language,PyMTL3 isdesigned toprovideflexible,modular, andextensible

workflows for bothhardwaredesignersandcomputer architects. PyMTL3supports a

seamlessmultilevelmodelingenvironment andcarefully designedmodular software

architectureusing asophisticated in-memory intermediate representationandacollection

of passes that analyze, instrument, and transformPyMTL3hardwaremodels.Webelieve

PyMTL3canplay an important role in jump-starting theopen-sourcehardwareecosystem.

& DUE TO THE breakdown of transistor scaling

and the slowdown of Moore’s law, there has

been an increasing trend toward energy-efficient

system-on-chip (SoC) design using heteroge-

neous architectures with a mix of general-

purpose and specialized computing engines. Het-

erogeneous SoCs emphasize both flexible param-

eterization of a single design block and versatile

composition of numerous different design

blocks, which have imposed significant chal-

lenges to state-of-the-art hardware modeling and

Digital Object Identifier 10.1109/MM.2020.2997638

Date of publication 25 May 2020; date of current version

30 June 2020.

Theme Article: Agile and Open-Source HardwareTheme Article: Agile and Open-Source Hardware

58
0272-1732 � 2020 IEEE Published by the IEEE Computer Society IEEE Micro

Authorized licensed use limited to: Cornell University Library. Downloaded on July 03,2020 at 00:53:45 UTC from IEEE Xplore. Restrictions apply.

verification methodologies. Developing, open-

sourcing, and collaborating on hardware genera-

tors is a compelling solution to increase the

reuse of highly parametrized and thoroughly

tested hardware blocks in the community. How-

ever, the general lack of high-quality open-

source hardware designs and hardware verifica-

tion methodologies have been a major concern

that limits the widespread adoption of open-

source hardware.

To respond to these challenges,

the open-source hardware commu-

nity is augmenting or even replac-

ing traditional domain-specific

hardware description languages

(HDLs) with productive hardware

development frameworks empow-

ered by high-level general-purpose

programming languages such as C+

+, Scala, Perl, and Python. Hard-

ware preprocessing frameworks

(e.g., Genesis2)1 intermingle a high-

level language for macro-process-

ing and a low-level HDL for logic modeling, which

enables more powerful parametrization, yet cre-

ates an abrupt semantic gap in the hardware

description. Hardware generation frameworks

completely embed parametrization and logic

description in a unified high-level “host” lan-

guage,2 but still generates and simulates low-

level HDL code. This requires test benches to be

written in the low-level HDL, which creates a

modeling/simulation language gap that may

require the designer to frequently cross lan-

guage boundaries during iterative development.

All these challenges have inspired completely

unified hardware generation and simulation

frameworks where parametrization, static elabo-

ration, test benches, behavioral modeling, and a

simulation engine are all embedded in a general-

purpose high-level language.3,4 High-level syn-

thesis (HLS) is an alternative approach that

seeks to automatically synthesize software-ori-

ented programs written in C++ into low-level

HDL implementations.5 We see HLS as comple-

mentary to the emerging trend toward hardware

generation and simulation frameworks, since

any realistic SoC will require a mix of blocks

well-suited to HLS (e.g., well-structured data-

processing blocks, low-performance control

blocks) and blocks that require designers to con-

trol more hardware details (e.g., processors,

memory hierarchies, networks-on-chip, and

complex accelerators). Our previous work

presents a detailed comparison of contemporary

approaches.6

At the same time, computer architects are

using open-source cycle-level (CL) modeling

methodologies such as SystemC and Cascade7 to

facilitate rapid design-space

exploration of large SoCs before

creating RTL implementations.

When moving from CL to RTL,

the ability to support seamless

multilevel modeling (i.e., mix and

match RTL models with CL mod-

els) provides significant produc-

tivity benefits. For each

individual design block, the CL

model can serve as the golden

reference model, which means all

the unit tests can be reused to

test the RTL model. Moreover, in

a development flow with continuous integration,

gradually replacing existing CL blocks with

newly developed RTL blocks in a large design

while maintaining the integration tests, end-to-

end tests, and performance regressions signifi-

cantly reduces the integration effort and steadily

improves the performance accuracy of the over-

all model.

To further improve the productivity of both

hardware designers and computer architects, we

have built PyMTL3, an open-source Python-based

hardware modeling, generation, simulation, and

verification framework. PyMTL3 supports seam-

less multilevel modeling across register-transfer

level (RTL), CL, and functional level (FL) to enable

simulating critical models in RTL with noncritical

CL/FL behavioral models. Note that PyMTL3 sup-

ports generic multilevel modeling, while previous

work on architecture description languages is

domain-specific and mostly focuses on processor

modeling.8 PyMTL3’s predecessor, PyMTL2,4 has

been extensively used in several undergraduate

and graduate courses, many research papers, and

three chip tape-outs in IBM 130 nm, TSMC 28 nm,

and TSMC 16 nm. The design philosophy of

PyMTL3 incorporates two important takeaways

from PyMTL2: 1) modularity of the framework is

To further improve the

productivity of both

hardware designers

and computer

architects, we have

built PyMTL3,

an open-source

Python-based

hardware modeling,

generation, simulation,

and verification

framework.

July/August 2020 59
Authorized licensed use limited to: Cornell University Library. Downloaded on July 03,2020 at 00:53:45 UTC from IEEE Xplore. Restrictions apply.

the key to creating a vibrant and evolving open-

source hardware development ecosystem; and

2) interoperability with other open-source tools is

the key to achieving widespread adoption. To pro-

vide flexible, modular, and extensible workflows,

PyMTL3 is designed to have a strictly modular

software architecture. Specifically, PyMTL3 sepa-

rates the PyMTL3 embedded domain-specific lan-

guage (DSL) that constructs PyMTL3 models, the

PyMTL3 in-memory intermediate representation

(IMIR) that systematically stores hardware mod-

els and exposes APIs to query/mutate the elabo-

rated model, and PyMTL3 passes that are well-

organized programs to analyze, instrument, and

transform the PyMTL3 IMIR using APIs. While

maintaining the key modeling features of PyMTL2,

PyMTL3 also includes unified modular ordering

constraints (UMOC) for seamless multilevel

modeling, a new parameter configuration system,

first-class method-based interfaces, polymorphic

interface connections, and faster simulation per-

formance using the PyPy just-in-time compiler.

PyMTL3 leverages the latest Python 3 features

where PyMTL2 only works on Python 2.

PyMTL3 is an ideal framework to jump-start

the open-source hardware ecosystem for three

major reasons.

� PyMTL3 is embedded in Python. Python is cur-

rently the most popular programming lan-

guage for its high productivity. Python has

been evolving for nearly three decades, sup-

ported by a large open-source community with

over 100 000 third-party libraries. PyMTL3

users can use these third-party libraries to

build test benches, golden reference models,

and passes. For example, PyMTL3 analysis

passes can leveragematplotlib and graphviz to
visualize characteristics of hardware designs.

Open-source hardware built in PyMTL3 can

also directly reuse Python’s package-manage-

ment system pip for distribution. For example,

installing PyOCN9 (an open-source on-chip net-

work generator built with PyMTL3) involves a

single command (pip install pymtl3-net),
during which pymtl3 and other dependen-

cies are automatically installed.

� PyMTL3 emphasizes interoperability with

other open-source hardware tools. A signifi-

cant amount of open-source hardware is

written in Verilog or SystemVerilog. Verila-

tor is currently the fastest and most capable

open-source simulator for synthesizable

Verilog and SystemVerilog. Unfortunately,

Verilator requires driving these simulations

with low-level C++. PyMTL3 passes can auto-

matically use Verilator to import Verilog

and SystemVerilog models into PyMTL3 for

black-box co-simulation. This enables PyMTL3

to combine the familiarity of Verilog/System-

Verilog with the productivity of Python.

PyMTL3 passes can also support black-box

co-simulation with SystemC, translate RTL

models to Yosys-compatible or Verilator-

compatible SystemVerilog, and generate

GTKWave-compatible waveforms. We have

also implemented a FIRRTL10 backend that

generates PyMTL3models.

� PyMTL3 promotes agile and test-driven design

methodologies. PyMTL3 adopts pytest, a

mature full-featured Python testing tool to

collect, manage, parametrize, and refactor

tests. PyMTL3 also includes the PyH2 frame-

work that repurposes hypothesis, a prop-

erty-based testing (PBT) framework for

Python software, to test hardware generators

(PyH2G), processors (PyH2P), and hardware

data structures (PyH2O). Currently, there is

no standard verification methodology for

open-source hardware. Open-source simula-

tors (e.g., Verilator and Icarus Verilog) have

limited support for industry standard verifi-

cation methodologies (e.g., UVM). cocotb
embeds Python in a Verilog simulator, which

can limit the use of Python features. PyMTL3

takes the opposite approach by embedding

Verilog in Python using Verilator, which

unleashes the full potential of the Python

runtime. Additionally, cocotb only targets

building test benches, while PyMTL3 is a full-

fledged modeling framework. Combining the

familiarity of Verilog/SystemVerilog with the

productivity features of Python, PyMTL3

realizes the agile hardware manifesto.11

PyMTL3 WORKFLOW
Figure 1(a) illustrates an example PyMTL3

workflow. The designer starts from developing

an FL design-under-test (DUT) and test bench

Agile and Open-Source Hardware

60 IEEE Micro

Authorized licensed use limited to: Cornell University Library. Downloaded on July 03,2020 at 00:53:45 UTC from IEEE Xplore. Restrictions apply.

(TB) completely in Python. Then, the DUT is

manually refined to a CL and/or RTL model. The

designer simulates and evaluates the DUT/TB

composition, and debugs the FL/CL/RTL DUT

leveraging various tracing output. The designer

can also leverage the built-in PyH2 PBT frame-

work to find minimal failing test cases. Mean-

while, the designer uses the existing analysis

tools or creates new ones to assist iterative

refinement. The designer may temporarily trans-

form the hardware model to replace modules or

add new logic without modifying the original

design. After iterating in the pure-Python envi-

ronment, the designer invokes translation back-

ends to generate SystemVerilog code and import

it back to PyMTL3 for co-simulation with the

same TB. Finally, the designer can push the

translated SystemVerilog code through an

FPGA/ASIC toolflow, and use a prototype proxy

that PyMTL3 generates based on the original

DUT to test the FPGA/ASIC prototype using the

same TB. Designers who only write SystemVeri-

log code can still benefit from most of the pro-

ductive workflow steps through PyMTL3’s

SystemVerilog import. Computer architects may

iterate more in CL modeling and only implement

RTL for critical parts.

PyMTL3 FRAMEWORK
The goal of PyMTL3 is to create a flexible, mod-

ular, and extensible framework that not only

allows the designers to select “flow steps” to form

their own suitable workflow, but also accommo-

dates the ever-growing wishlist of RTL designers

and computer architectswith lightweight changes

to the existing codebase. To this end, we take

inspiration from LLVM and design PyMTL3 to be a

strictly modular framework that separates front-

end embedded DSL, intermediate representation

(IR), and passes. Figure 1(b) shows the software

architecture of PyMTL3. The PyMTL3 embedded

DSL exposes the modeling primitives to the

designer for describing hardware, creating test

benches, and configuring parameters. PyMTL3 is

responsible for elaborating the hardware model

and creating an IMIR that exposes APIs to query/

modify the stored metadata of the whole hierar-

chical model. Compared to existing hardware IRs

(e.g., FIRRTL,10 CoreIR12) that focus on represent-

ing circuits, PyMTL3 IMIR provides a model-level

view of the whole design hierarchy for not only

the RTL circuits, but also CL/FL methods and

update blocks which can sometimes include arbi-

trary Python code. While any Python program

could invoke IMIR APIs, PyMTL3 passes are sys-

tematic programs that interact with PyMTL3

IMIR. PyMTL3 passes are generally categorized

into analysis, instrumentation, and transform

passes. Analysis passes simply analyze the

PyMTL3 IMIR model and generate useful outputs.

Instrumentation passes enhance the model with

additional functionalities without modifying the

model hierarchy. Transform passes mutate the

model hierarchy by adding/removing/replacing

part of themodel.

PyMTL3 EMBEDDED DSL
Lines 1–28 of Figure 2 show the PyMTL3 imple-

mentation of a registered incrementer unit and a

parametrized N-stage registered incrementer

using PyMTL3 embedded DSL primitives. The

rest of this section focuses on the distinctive

Figure 1. PyMTL3 Overview. (a) PyMTL3 Workflow. (b) PyMTL3 Framework.

July/August 2020 61
Authorized licensed use limited to: Cornell University Library. Downloaded on July 03,2020 at 00:53:45 UTC from IEEE Xplore. Restrictions apply.

modeling features in PyMTL3 that are not found

in existing frameworks (including PyMTL2).

Unified Multilevel Scheduling

PyMTL3 provides three sets of primitives for

FL, CL, and RTL modeling. FL/CL update blocks

communicate through methods, and RTL update

blocks communicate through signals. PyMTL3

deploys a novel scheme, UMOC, to schedule FL/

CL/RTL update blocks together under the same

abstraction. The intracycle ordering of RTL

update blocks is implicitly inferred from the sig-

nals that each block reads or writes. The intra-

cycle ordering of CL/FL update blocks is

deduced from local explicit ordering constraints

between method and/or update blocks, and the

information of the methods each update block

calls. The user can simply set explicit ordering

constraints in each component. The simulation

passes will handle all the ordering constraints

globally. UMOC eliminates the need to manually

schedule CL update blocks to model the desired

behavior and is the key mechanism in PyMTL3

to support seamless multilevel modeling.

Highly Parametrized Static Elaboration

Python’s object-oriented programming and

dynamic typing features enable PyMTL3 users to

intuitively parametrize hardware components,

as opposed to using low-level HDL’s limited

parametrization constructs and static typing.

The users can use parameters of arbitrary types

and instantiate different models or update

blocks based on value or type. Moreover,

PyMTL3 provides a powerful parameter configu-

ration system to solve the common pitfall of

parametrizing a hierarchical design. Usually the

designer must pass the same parameter from

the top-level design through the entire hierar-

chy. In PyMTL3, the designer can instead specify

the parameter at the top-level component using

a string with wildcard selection. PyMTL3 will

resolve simple regular expressions and distrib-

ute the parameters accordingly. Lines 32–33 of

Figure 2 show how the individual RegIncr com-

ponents in the array are configured. In practice,

this system can significantly reduce the chance

of misconfiguration in a complex SoC composed

by many hardware generators.

Polymorphic Interface Connections

PyMTL3 interfaces are bundles of value ports

or method ports. By default, connecting two inter-

faces involves recursively connecting nested

interfaces and port pairs with the same name.

However, the designer may want to insert an

adapter between two incompatible interfaces. In

highly parametrized PyMTL3 design generators,

manually inserting such adapters is tedious and

error-prone due to the verbose type introspection

code that checks for matching interface pairs and

duplicated code across different components that

instantiate the same interface pair. For example,

composing any FL/CL/RTL components often

involves inspecting the interface type and insert-

ing the corresponding cross-level adapters. To

solve this problem, PyMTL3 allows the interface

designer to provide a customized connectmethod

in the interface class to centralize type introspec-

tion and adapter insertion code. When connecting

two interfaces, PyMTL3 automatically invokes the

Figure 2. PyMTL3 code example.

Agile and Open-Source Hardware

62 IEEE Micro

Authorized licensed use limited to: Cornell University Library. Downloaded on July 03,2020 at 00:53:45 UTC from IEEE Xplore. Restrictions apply.

customized connect and falls back to by-name

connection if nomatch is found.

High-Level User-Defined Data Types

Inspired by Python’s dataclass, PyMTL3 sup-

ports arbitrarily arrayed/nested user-defined

data types for both native-Python simulation

and HDL generation. PyMTL3 provides Pythonic

dataclass-like APIs to declare new data types.

The simulation passes can determine the sensi-

tivity of subfields to correctly schedule the simu-

lation. The translation passes can directly

generate nested SystemVerilog struct types, or

recursively map subfields to slices of a flattened

signal (for Verilog).

PyH2: Property-Based Random Testing

PyMTL3 includes PyH2, a property-based ran-

dom testing framework for hardware generators,

processors, and hardware data structures.

PyMTL3 provides carefully implemented hypoth-
esis composite search strategies to generate ran-

dom Bits and user-defined type objects. One key

advantage of PyH2 over traditional random test-

ing and iterative-deepened testing is that PyH2

first samples the test-case space and design-

parameter space to quickly find a failing test case

and then automatically shrinks the failing case

and the design parameters. The result is a mini-

mal failing case with minimal design parameters

(e.g., shrinking a 50-transaction case for an eight-

node network to a 10-transaction case for a four-

node network).

PyMTL3 PASSES
PyMTL3 passes are grouped intomultiple cate-

gories (see Figure 3). Many passes leverage open-

source Python libraries and reuse/target open-

source hardware tools. The Python language sig-

nificantly simplifies not only the implementation

of passes, but also how designers can configure

the passes (e.g., configure a linting pass with a

Python lambda function). The designer can skip

unneeded passes and only apply a subset of

passes as shown in lines 39–41 of Figure 2. While

this article introduces some example passes,

there are numerous ongoing efforts to implement

additional passes, illustrating the modularity and

extensibility of the PyMTL3 software architecture.

Linting Passes

Linting passes are analysis passes that check

the coding style of PyMTL3 designs. The Check-
SignalNamePass queries all of the signal names

to enforce a naming convention defined by a

given lambda function. The CheckUnusedSignal-
Pass queries all of the signals, all of the update

block read/write information, and all of the con-

nections to report signals that are declared but

never used.

Statistics Passes

Statistics passes are analysis passes that

extract and/or visualize characteristics of the

design. RefactoringAnalysisPass gives insights

Figure 3. PyMTL3 example passes.

July/August 2020 63
Authorized licensed use limited to: Cornell University Library. Downloaded on July 03,2020 at 00:53:45 UTC from IEEE Xplore. Restrictions apply.

into code refactoring by using matplotlib to cre-

ate a scatter plot of the total input/output bit-

width of each module and a histogram plot of all

the update block lengths. DumpUDGPass lever-

ages graphviz to visualize the directed graph of

all update blocks as vertices and all dependen-

cies as edges.

Presynthesis Passes

Presynthesis passes attempt to address RTL

synthesis related issues. The CheckInferred-
LatchPass reports potential inferred latches by

querying the AST of combinational update blocks

to check if each signal written in the block has

valid assignments in all conditional branches. The

CheckClockGatingPass reports all signals that are
inferred to flip-flops, but nonblocking assignments

are not included in an if statement block. Early-

stage estimation passes give rough estimates of

the hardware based on annotated area/power/

timing (automatic annotation is work-in-progress)

without invoking external tools. The AreaEstima-
tionPass reports the aggregated area from the

annotated area estimates of all leaf components in

a structurally composed design.

Simulation Passes

PyMTL3 provides a platform for simulation

mechanism research. Simulation passes are

instrumentation passes that add a tick function

to the top-level component for the user to

simulate the whole design cycle-by-cycle. Each

simulation pass implements different modeling

semantics and/or creates a different simulator

for different simulation performance. The Even-
tDrivenPass can schedule pure-RTL models with

cyclic dependencies between update blocks and

throw exceptions for actual combinational loops.

The pass queries the read/write information of all

update blocks and constructs sensitivity informa-

tion to decide the dependent blocks of each

update block. The added tick function maintains

an event queue to trigger update blocks. The

StaticSchedulingPass can only schedule models

without cyclic dependencies even though they

may not be actual combinational loops. However,

removing the event queue leads to higher simula-

tion performance when the toggle rate is high.

The pass constructs a direct acyclic graph and

applies topological sort to compute a linear

execution schedule for every cycle. The added

tick function simply iterates over the static

schedule. Our previous work on Mamba6 pro-

posed several novel scheduling techniques that

boost the simulation performance under the

PyPy just-in-time compiler in a pure-Python envi-

ronment. The techniques are implemented as

additional simulation passes.

Tracing Passes

PyMTL3 provides many tracing options to

debug or visualize the execution. Tracing

passes are instrumentation passes that add cor-

responding tracing hook functions to the per-

cycle execution schedule. The classic VcdGe-
nerationPass adds a callback function before

the simulated rising clock edge to record the

value changes in the VCD format compatible

with GTKWave, an open-source waveform

viewer. Inspired by PyRTL, the TextWavePass
horizontally visualizes per-cycle value changes

of every signal using ASCII text sequences. Veri-
logTBGenPass captures the cycle-by-cycle value

change of the interface signals of a marked com-

ponent, and generates a Verilog TB with asser-

tions for use in pure-Verilog four-state RTL or

gate-level simulation.

Translation Passes

PyMTL3 RTL designs can be translated into

HDL code that is compatible with open-source/

commercial FPGA/ASIC synthesis tools. Transla-

tion passes are instrumentation passes that

attach the translated source file to the design.

The RTLIRGenPass first lowers the RTL design

from IMIR into RTLIR, a low-level hardware IR

provided by PyMTL3. Then, the translation back-

end pass turns the RTLIR into corresponding

HDL source code. Currently PyMTL3 has a

synthesizable SystemVerilog backend and a

synthesizable Yosys-compatible SystemVerilog

backend. To streamline the process of adding a

new backend, PyMTL3 ships a carefully designed

translation framework that provides a code gen-

erator template to be specialized by the target

HDL backend with the mapping from RTLIR prim-

itives to HDL source code. A backend can also

inherit from an existing backend to maximize

code reuse. For example, the Yosys-SystemVeri-

log backend inherits most code generation

Agile and Open-Source Hardware

64 IEEE Micro

Authorized licensed use limited to: Cornell University Library. Downloaded on July 03,2020 at 00:53:45 UTC from IEEE Xplore. Restrictions apply.

functions from the regular SystemVerilog back-

end and only adds several hundred lines of

code to override the interface/struct-specific

functions.

Import Passes

PyMTL3 provides import passes to integrate

external IPs with PyMTL3 designs/testbenches

using black-box import (simulation

only) or white-box import (creating

a new PyMTL3 component with

internal constructs). Co-simulating

existing IPs in Python significantly

facilitates verification. Import

passes are transform passes that

create PyMTL3 components on-

the-fly and replace the original pla-

ceholders so that the external IPs

are integrated seamlessly with rest

of the design hierarchy. SystemVer-

ilog and SystemC IPs are imported

as black-box modules backed by

external C++ shared libraries. The

user needs to specify interfaces

and source files in the placeholder. Specifically,

the VerilogImportPass leverages Verilator to

generate a C++ simulator for all specified System-

Verilog files, generates a C interface wrapper,

and links the C++ simulator against the wrapper

to produce a C++ shared library. Similarly, the

SystemCImportPass directly creates a C++

shared library by compiling a generated C++

interface wrapper with the SystemC code and

the SystemC kernel library. Then, the place-

holder is replaced by a generated PyMTL3 wrap-

per component that communicates with the

shared library through Python’s C foreign func-

tion interface.

Prototype Proxy Passes

After pushing the RTL model through an

FPGA/ASIC flow, PyMTL3 provides prototype

proxy passes that integrate the real prototype

with the same Python test bench, which can

significantly improve the prototype testing

productivity compared to an ad-hoc flow. The

proxy passes extensively use Python reflection

and IMIR APIs to generate wrapper compo-

nents that wrap around the prototype. The

PyMTL3 TB can send data to the wrapped

prototype over the same interface as the origi-

nal RTL model, as the wrapper components

will serialize/deserialize the data and commu-

nicate with the system device.

Ad-Hoc Transform Passes

Motivated by real-world situations, PyMTL3

provides many ad-hoc transform passes to help

avoid making significantly modifi-

cations (that may be reverted

eventually) to the codebase.

These passes creatively exploit

the add, delete, and replace APIs

to mutate the design hierarchy in

situ and open up many opportuni-

ties for productive verification

and rapid prototyping that would

be challenging in other frame-

works. Leveraging Python’s

dynamic typing feature, the Add-
DebugSignalPass pulls a signal

from deep in the hierarchy to

expose it at the top level for

debugging. For example, the pass

takes a signal’s hierarchical name top.chip.tiles
[1].core.dpath.mult.en, iteratively inserts a

debug_en port to the multiplier, the datapath,

the core, the tile, the chip, and the top, and con-

nects all the added port together. The user can

then apply translation passes to generate HDL

code with the additional ports. SwapHardene-
dIPPass searches for instances of marked

PyMTL3 behavioral models and swaps them

with placeholders that import hardened Verilog

models. Co-simulating the design with real hard-

ened models improves the fidelity of the tests.

CONCLUSION
This article discusses PyMTL3, our attempt to

jump-start the open-source hardware ecosystem.

PyMTL3 takes advantage of the existing Python

ecosystem, emphasizes interoperability with

other open-source tools, and provides strong

support for agile test-driven design. Moreover,

the flexible, modular, and extensible software

architecture enables the PyMTL3 framework

itself to evolve alongside the open-source hard-

ware ecosystem. PyMTL3 has been open-sourced

at https://github.com/pymtl.

This article discusses

PyMTL3, our attempt to

jump-start the open-

source hardware eco-

system. PyMTL3 takes

advantage of the exist-

ing Python ecosystem,

emphasizes interoper-

ability with other open-

source tools, and pro-

vides strong support

for agile test-driven

design.

July/August 2020 65
Authorized licensed use limited to: Cornell University Library. Downloaded on July 03,2020 at 00:53:45 UTC from IEEE Xplore. Restrictions apply.

ACKNOWLEDGMENTS
This work was supported in part by NSF CRI

Award #1512937, DARPAPOSHAward #FA8650-18-

2-7852, 7853, a research gift from Xilinx, Inc., and

the Center for Applications Driving Architectures

(ADA), one of six centers of JUMP, a Semiconduc-

tor Research Corporation program co-sponsored

by DARPA, as well as equipment, tool, and/or

physical IP donations from Intel, Xilinx, Synopsys,

Cadence, and ARM. The authors would like to

thank D. Lockhart for his valuable feedback and

his work on PyMTL2, as well as Cheng Tan, Berkin

Ilbeyi, Khalid Al-Hawaj, Lin Cheng, Yixiao Zhang,

Raymond Yang, Kaishuo Cheng, and Jack Weber

for their contributions to PyMTL3. The U.S. Gov-

ernment is authorized to reproduce anddistribute

reprints for Government purposes notwithstand-

ing any copyright notation thereon. Any opinions,

findings, and conclusions or recommendations

expressed in this publication are those of the

author(s) and do not necessarily reflect the views

of any funding agency.

& REFERENCES

1. O. Shacham et al., “Rethinking digital design: Why

design must change,” IEEE Micro, vol. 30, no. 6,

pp. 9–24, Nov./Dec. 2010.

2. J. Bachrach et al., “Chisel: Constructing hardware in a

scala embedded language,” in Proc. Des. Autom.

Conf., Jun. 2012, pp. 1212–1221.

3. J. Clow et al., “A pythonic approach for rapid hardware

prototyping and instrumentation,” inProc. 27th Int. Conf.

Field Programmable Logic Appl., Sep. 2017, pp. 1–7.

4. D. Lockhart et al., “PyMTL: A unified framework for

vertically integrated computer architecture research,”

in Proc. 47th Annu. Int. Symp. Microarchit., Dec. 2014,

pp. 280–292.

5. A. Canis et al., “LegUp: High-level synthesis for

FPGA-based processor/accelerator systems,” in

Proc. 19th Int. Symp. Field Programmable Gate

Arrays, Feb. 2011, pp. 33–36.

6. S. Jiang et al., “Mamba: Closing the performance gap

in productive hardware development frameworks,” in

Proc. 55th Des. Autom. Conf., Jun. 2018, pp. 1–6.

7. J. P. Grossman, B. Towles, J. A. Bank, and D. E. Shaw,

“The role of Cascade, a cycle-based simulation

infrastructure, in designing the Anton special-purpose

supercomputers,” in Proc. 50th Des. Autom. Conf.,

Jun. 2013, pp. 1–9.

8. A. Chattopadhyay et al., “LISA: A uniform ADL for

embedded processor modeling, implementation, and

software toolsuite generation,” in Processor

Description Languages. New York, NY, USA: Elsevier,

2008, pp. 95–132.

9. C. Tan et al., “PyOCN: A unified framework for

modeling, testing, and evaluating on-chip networks,”

in Proc. 37th Int. Conf. Comput. Des., Nov. 2019,

pp. 437–445.

10. A. Izraelevitz et al., “Reusability is FIRRTL ground:

Hardware construction languages, compiler

frameworks, and transformations,” in Proc. Int. Conf.

Comput.-Aided Des., Nov. 2017, pp. 209–216.

11. Y. Lee et al., “An agile approach to building RISC-V

microprocessors,” IEEE Micro, vol. 36, no. 2, pp. 8–20,

Mar./Apr. 2016.

12. C. Mattarei et al., “CoSA: Integrated verification for

agile hardware design,” in Proc. Int. Conf. Formal

Methods Comput. Aided Des., Oct. 2018, pp. 1–5.

Shunning Jiang is currently working toward the

Ph.D. degree in electrical and computer engineering

with Cornell University. Jiang received the B.S. degree

in computer science from Zhiyuan College, Shanghai

Jiao Tong University, in 2015. He is a student member

of IEEE. Contact him at sj634@cornell.edu.

Peitian Pan is currently working toward the Ph.D.

degree in electrical and computer engineering with

Cornell University. Pan received the B.S. degree in

computer science from Shanghai Jiao TongUniversity,

in 2018. He is a student member of IEEE. Contact him

at pp482@cornell.edu.

Yanghui Ou is currently working toward the Ph.D.

degree in electrical and computer engineering with

Cornell University. Ou received the B.Eng. degree in

electrical and computer engineering from Hong

Kong University of Science and Technology, in 2018.

He is a student member of IEEE. Contact him at

yo96@cornell.edu.

Christopher Batten is currently an Associate Pro-

fessor in electrical and computer engineering with Cor-

nell University. Batten received the B.S. degree in

electrical engineering from the University of Virginia in

1999, the M.Phil. degree in engineering from the Uni-

versity of Cambridge in 2000, and the Ph.D. degree in

electrical engineering and computer science from the

Massachusetts Institute of Technology in 2010. He is a

member of IEEE. Contact him at cbatten@cornell.edu.

Agile and Open-Source Hardware

66 IEEE Micro

Authorized licensed use limited to: Cornell University Library. Downloaded on July 03,2020 at 00:53:45 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

