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Editor’s notes:
This article proposes a new model testing and verification methodology, 
PyH2, using property-based random testing in Python. PyH2 leverages the 
whole Python ecosystem to build test benches and models.

—Sherief Reda, Brown University
—Leon Stock, IBM

—Pierre-Emmanuel Gaillardon, University of Utah

J AS DENNARD SCALING is over and Moore’s law 
continues to slow down, modern system-on-chip (SoC) 
architectures have been moving toward heterogene-
ous compositions of general-purpose and specialized 
computing fabrics. This heterogeneity complicates the 
already challenging task of SoC design and verification. 
Building an open-source hardware community to amor-
tize the nonrecurring engineering effort of developing 
highly parametrized and thoroughly verified hardware 
blocks is a promising solution to the heterogeneity 
challenge. However, the widespread adoption of open-
source hardware has been obstructed by the scarcity 
of such high quality blocks. We argue that a key missing 
piece in the open-source hardware ecosystem is com-
prehensive, productive, and open-source verification 
methodologies that reduce the effort required to create 
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thoroughly tested hard-
ware blocks. Compared to 
closed-source hardware, 
verification of open-source 
hardware faces several sig-
nificant challenges.

First, closed-source 
hardware is usually owned 
and maintained by compa-

nies with dedicated verification teams. These verifica-
tion engineers usually have many years of experience 
in constraint-based random testing using a universal 
verification methodology (UVM) with commercial 
SystemVerilog simulators. However, open-source hard-
ware teams usually follow an agile test-driven design 
approach stemming from the open-source software 
community, where the designer is also responsible for 
creating the corresponding tests. Moreover, the steep 
learning curve, in conjunction with very limited support 
in existing open-source tools, makes the UVM-based 
approach rarely used by open-source hardware teams. 
We argue that the open-source hardware community is 
in critical need of an alternative route for testing open-
source hardware, instead of simply duplicating closed-
source hardware testing frameworks.

Second, unlike closed-source hardware’s 
development cycle where most engineers focus 
on a specific design instance for the next gen-
eration product, open-source hardware blocks 
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usually exist in the form of design generators to 
maximize reuse across the community [1]. How-
ever, design generators are significantly more 
difficult to verify than design instances due to 
the combinatorial complexity in the multidimen-
sional generator parameter space. There is a crit-
ical need to create an open-source framework 
that systematically and productively tests design 
generators and automatically simplifies both 
failing test cases and failing design instances to 
facilitate debugging.

Third, performing random testing can be dif-
ficult in important hardware domains. There has 
been a major surge in open-source RISC-V processor 
implementations. However, due to limited human 
resources, most of these implementations only 
include a few directed tests, randomly generated 
short assembly sequences, and/or very large scale 
system-level tests (e.g., booting Linux). There is a 
critical need to create an automated random testing 
framework to improve the fidelity of open-source 
processor implementations.

Fourth, many open-source hardware blocks 
are designed to improve reusability by exposing 
well-encapsulated timing-insensitive hand-shake 
interfaces that can provide an object-oriented 
view of the hardware block (e.g., a hardware reor-
der buffer exposes three object-oriented “method” 
interfaces: allocate, update, and remove). How-
ever, it is very hard to perform random testing to 
test the behavior of concurrent hardware data 
structures that have multiple interfaces accept-
ing “transactions” in the same cycle. Converting a 
random transaction sequence into cycle-by-cycle 
test vectors using traditional testing approaches 
requires a cycle-accurate golden model. Manu-
ally creating multitransaction test-vectors only 
works for directed testing. One possible solution 
is to execute only one random transaction in each 
cycle, yet the inability to stress intracycle concur-
rent behavior harms the quality of the tests. There 
is critical need to create a novel testing approach 
for object-oriented hardware using concurrent 
intracycle transactions.

To address these challenges, we introduce PyH2,1 
our vision for a productive and open-source testing 
methodology for open-source hardware, which is sig-
nificantly different from state-of-the-art closed-source 

1Python’s hypothesis for hardware.

hardware testing. Leveraging open-source software, 
PyH2 attempts to solve the open-source hardware 
testing challenge by holistically using proper-
ty-based testing (PBT) in Python to significantly 
reduce designer effort in creating high-quality tests. 
The advantage of PBT over constraint-based random 
testing is as follows.

 • PBT does not draw all of the random data before-
hand, making it possible to leverage runtime 
information to guide the random data generation.

• PBT can automatically shrink the failing test case 
to a minimal failing case once a bug is discovered.

Compared to BlueCheck [2], a prior PBT frame-
work for hardware, the key distinctions are as follows.

• PyH2 enables using a high-level behavioral speci-
fication written in Python as the reference model 
instead of requiring the reference model to be 
synthesizable.

• The random byte-stream internal representa-
tion of hypothesis provides more sophisticated 
auto-shrinking, while BlueCheck simply removes 
transactions along with ad hoc iterative deepening.

• PyH2 can auto-shrink not only the transactions 
but also the design itself by unifying the design 
parameter space and the test-case space.

We see coverage-guided mutational fuzzing 
(e.g., RFUZZ [3]) as complementary to PBT. PBT 
can be used to quickly find bugs with moderate 
complexity, while RFUZZ can be used to very 
slowly find potentially more complex bugs. Over-
all, PyH2 is able to combine the advantages of com-
plete-random testing (CRT) and iterative-deepened 
testing (IDT) to identify a failing test case quickly 
and then provide a minimal failing case to facilitate 
debugging.

PyH2 is supported by the whole Python ecosystem, 
among which three main packages form the foun-
dation of PyH2 (PyMTL3, pytest, and hypothesis). 
PyH2 users can use over 100,000 open-source Python 
libraries to build test benches and golden models. 
PyH2 leverages PyMTL3 [4], [5] to build Python test 
benches to drive register-transfer-level (RTL) sim-
ulations with PyMTL3 models and/or external Sys-
temVerilog models leveraging PyMTL3’s Verilator 
cosimulation support. PyH2 adopts pytest, a mature 
full-featured Python testing tool, to collect, organize, 
parametrize, instantiate, and refactor test cases for 
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testing open-source hardware. PyH2 also exploits 
pytest plugins to evaluate hardware-specific testing 
metrics. For example, PyH2 tracks the line coverage 
of behavioral logic blocks of PyMTL3 models during 
simulation using coverage.py, a line coverage tool for 
normal Python code. The key component of PyH2 is 
hypothesis, a PBT framework to test Python programs 
by intelligently generating random test cases and rap-
idly auto-shrinking failing test cases.

PyH2 is realized by a collection of PyH2 frame-
works which are discussed in depth in the rest of this 
article: PyH2G (PyH2 for RTL design generators), 
PyH2P (PyH2 for processors), and PyH2O (PyH2 for 
object-oriented hardware).

Background
This section briefly introduces PyMTL3, pytest, 

and hypothesis, the three key Python libraries that 
form the foundation of PyH2.

PyMTL3
PyMTL3 is an open-source Python-based hard-

ware modeling, generation, simulation, and ver-
ification framework. PyMTL3 supports multilevel 
modeling for RTL, cycle-level, and functional-level 
models. To provide productive, flexible, and exten-
sible workflows, PyMTL3 is designed to be strictly 
modular. Specifically, PyMTL3 separates the PyMTL3 
embedded domain-specific language that constructs 
PyMTL3 models, the PyMTL3 in-memory intermedi-
ate representation (IMIR) that systematically stores 
hardware models and exposes APIs to query/mutate 
the elaborated model, and PyMTL3 passes that are 
well-organized programs to analyze, instrument, and 
transform the PyMTL3 IMIR.

PyMTL3 aims at creating an evolving ecosystem 
with its modern software architecture and high inter-
operability with other open-source tools. PyMTL3 
emphasizes performing simulation in the Python runt-
ime and automatic Verilator black-box import for 
cosimulation. Driving the simulation from Python test 
benches to test both PyMTL3 designs and external Sys-
temVerilog modules enables PyMTL3 to combine the 
familiarity of Verilog/SystemVerilog with the produc-
tivity features of Python. Tools that take the opposite 
approach (e.g., cocotb) embed Python in a Verilog 
simulator and drive the simulation from the Verilog 
runtime, but this complicates the ability to leverage 
the full power of Python. RTL designs built in PyMTL3 
can be translated to SystemVerilog accepted by 

commercial EDA tools, or Yosys-compatible Verilog 
accepted by OpenROAD, a state-of-the-art open-
source EDA flow [6].

PyTest
pytest is a mature full-featured tool for testing 

Python programs. Using pytest, the programmer 
can create small tests with little effort and also 
parametrize numerous complex tests with compo-
sitions of pytest decorators succinctly as shown 
in Figure 1a. pytest also provides lightweight com-
mand line options to print out different kinds of error 
messages varying from a list of characters indicating 

Figure 1. Background on testing 
methodologies. (a) Parametrizing 
directed tests using a pytest decorator. 
(b) Comparison of different testing 
techniques. (c) Code for testing a greatest 
common divisor function using CRT, IDT, 
and PBT.
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whether each test fails, to per-test full stack traces. 
pytest has hundreds of plugins, such as pytest-cov 
that leverages coverage.py to track line coverage.

CRT, IDT, and hypothesis PBT
Traditional testing methodologies usually use a 

mix of CRT and IDT. As shown in Figure 1b, CRT can 
detect errors quickly because it randomly samples 
the input space, but can produce very complicated 
failing test cases which are difficult to debug. IDT 
finds bugs more slowly because it gradually samples 
the input space, but can produce simple counterex-
amples. PBT, first popularized by QuickCheck [7], is 
a high-level, black-box testing technique where one 
only defines properties of the program under test and 
uses search strategies to create randomized inputs. 
The original QuickCheck paper also discussed the 
integration with Lava [8] to test circuits. Properties 
are essentially partial specifications of the program 
under test and are more compact and easier to write 
and understand than full system specifications. Users 
can make full use of the host language when writ-
ing properties and thus can accurately describe the 
intended behavior. Most PBT tools support shrink-
ing, a mechanism to simplify failing test cases into 
a minimal reproducible counterexample. With these 
features, PBT can achieve the benefits of both CRT 
and IDT.

Hypothesis [9] is a state-of-the-art Python PBT 
library that includes built-in search strategies for differ-
ent data types and supports integrated auto-shrinking 
of failing test cases. All hypothesis strategies are built 
on top of a unified random byte-stream representa-
tion, and each strategy internally repurposes random 
bytes to produce the target random value. Search 
strategies in hypothesis are integrated with methods 
that describe how to simplify certain types of data, 
which makes shrinking effective. Users can compose 
built-in search strategies for any user-defined data 
type and shrinking will work out-of-the-box.

Complicated stateful systems can also be tested 
with RuleBasedStateMachine in hypothesis. The 
user inherits from the RuleBasedStateMachine 
class to add variables, a prologue, and an epilogue 
to create a new test class. The user needs to define 
rules and their preconditions and invariants, which 
describes conditional state transitions. For stateful 
testing, usually the user creates Python assertions 
inside the rule to compare against a golden refer-
ence model. Hypothesis repeatedly instantatiates 

the test class and executes a sequence of rules on 
the state machine.

Figure 1c shows examples of testing the great-
est common divisor function using CRT, IDT, and 
hypothesis PBT against math.gcd. The CRT test 
(lines 16–20) includes 100 random samples. The IDT 
test (lines 22–25) iteratively tries all possible values 
for a and b from 1 to 128. We use the @hypothesis.
given decorator to transform a normal function 
test_property_based that accepts arguments, into 
a randomized PBT test. Consider a bug where line 3 
in Figure 1a is changed to while b > 10. CRT can 
find the bug quickly, but the failing test case involves 
relatively large numbers. IDT finds the bug in exactly 
11 test cases [i.e., gcd(1,11)]. PBT can find the bug 
quickly with large numbers, but then auto-shrink the 
inputs to a minimal counterexample [i.e., gcd(2,1)].

PyH2G: PyH2 for RTL design 
generators

PyH2G is a PyH2 framework to productively and 
effectively test RTL design generators. We envision 
that future open-source SoC designs are heavily based 
on chip generators which are composed of numerous 
highly parametrized RTL design generators. Unfor-
tunately, verifying design generators is significantly 
more challenging than verifying design instances due 
to the combinatorial explosion in the multidimen-
sional generator parameter space. Traditional testing 
techniques such as CRT and IDT face new challenges 
when testing design generators. CRT can find a bug 
quickly with a few test cases but often leads to a com-
plicated failing test case with numerous transactions 
and a complex design, which makes it more difficult 
to debug. IDT can produce a simple failing case with 
a small design instance, but may take a very long 
time to detect the error due to the iterative deepening 
required for the generator parameters.

In response to these challenges, PyH2G uses PBT 
to obtain the benefits of both CRT and IDT. Specifi-
cally, PyH2G creates composite search strategies in 
hypothesis to interpret part of the generated random 
byte stream as the design parameters and the rest 
as the test case (see lines 3–4 of Figure 2a). Unify-
ing the design parameter space and the test case 
space allows hypothesis to simultaneously shrink 
the design parameters (i.e., reducing the complexity 
of the generated design instance), the length of the 
input transaction sequence, and the complexity of 
each transaction to a minimal failing test case.
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Case study: on-chip network generator
We quantitatively evaluated CRT, IDT, and 

PyH2G using the PyOCN [10] ring network gen-
erator against four real-world bugs. PyOCN is a 
multitopology, modular, and highly parametrized 
on-chip network generator built in PyMTL3. 
Figure 2a illustrates an example of a PyH2G test 
that uses search strategies to configure the ring 
network and generate the test packets. When a test 
case fails, hypothesis can simultaneously shrink the 
design instance and the packet sequence. We ran 

50 trials for each bug, and the results are shown 
as box-and-whisker plots in Figure 2b–d. Overall, 
PyH2G detects errors quickly with a small num-
ber of test cases and produces a simple failing test 
case that has a short sequence of transactions and 
a simple design. PyH2G also significantly reduces 
the transaction complexity. PyH2G sometimes runs 
slightly more test cases than CRT because hypothe-

sis will first generate explicit examples to stress-test 
the boundary conditions before exploring values 
randomly. However, this also help PyH2G discover 
the credit bug more quickly than CRT.

PyH2P: PyH2 for processors
PyH2P is a PyH2 framework to automatically gen-

erate random assembly instruction sequences to 
test processors, which makes the case for effective 
domain-specific random testing methodologies. Differ-
ent from existing work, PyH2P is able to automatically 
shrink a failed long program to a minimal instruction 
sequence with a minimal set of architectural regis-
ters and memory addresses. It is possible to combine 
auto-shrinking with other sophisticated random pro-
gram generators [11] by carefully using PyH2P random 
strategies. PyH2P can also leverage Symbolic-QED [12] 
by applying QED transformations to generated random 
programs and performing bounded model checking to 
accelerate bug discovery.

PyH2P creates composite hypothesis strategies 
to generate random assembly programs for effec-
tive auto-shrinking. Specifically, PyH2P creates a 
hierarchy of strategies for arithmetic, memory, and 
branch instruction strategies using substrategies 
for architectural registers, memory addresses, and 
immediate values. PyH2P currently implements a 
block-based mechanism which first instantiates a 
control-flow template of branches, and then fills 
random instructions between branches. PyH2P 
ensures that each generated assembly program 
has well-defined behavior across the test and ref-
erence models. For arithmetic instructions, PyH2P 
constrains the range of the immediate value strat-
egy to avoid overflow. For memory instructions, 
PyH2P constrains the range of the memory address 
strategy to avoid unaligned and out-of-bound 
memory accesses. For branch instructions, PyH2P 
first generates a sequence of branch instruc-
tions and their corresponding labels, and then 
randomly shuffles them to form the control-flow 
template. This eliminates the possibility of branch 

Figure 2. PyOCN RingNet generator case 
study. (a) PyH2G example. (b) CRT. (c) IDT. 
(d) PyH2G.
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out-of-range errors. Additionally, a set of registers 
are dedicated to loop bounds and loop variables 
to avoid infinite loops.

Case study: PicoRV32 processor
We demonstrate the effectiveness of PyH2P using 

PicoRV32, an open-source, area-optimized RV32IMC 
processor implemented in Verilog. We leverage 
PyMTL3’s Verilator support to drive the cosimulation 
using a PyMTL3 testbench. The imported processor 
is connected to a PyMTL3 cycle-level test memory 
which stores the assembly program generated by 
PyH2P. After executing the program, we extract and 
compare the value of PicoRV32 architectural regis-
ters and the test memory against an instruction set 
simulator written in PyMTL3.

We inject five directed bugs into the Verilog code, 
and ran 50 trials for each methodology and bug com-
bination. The results are shown as box-and-whisker 
plots in Figure 3a–c. CRT generally requires a small 
number of tests (less than to discover a bug, but the 
failing cases usually include more than 50 complex 
instructions. IDT significantly reduces the number of 
instructions in the failing test case, but needs signif-
icantly more cases to find the failing case. Note that 
IDT generates instructions of similar complexity to 
CRT because we have to generate random imme-
diate values to avoid prohibitively long runtimes to 
find these bugs. PyH2P is able to discover the failing 
test case using a similar number of trials to CRT and 
can shrink it to a minimal case with similar length 
to the cases found by IDT. Moreover, PyH2P is able 
to shrink the immediate value so that the average 
instruction complexity is significantly reduced.

Figure 3d–g shows the failing cases for the mul_

carry bug discovered by each methodology. This 
bug can only be triggered by specific operands. Fig-
ure 3d is the example found by CRT with 41 instruc-
tions, seven unique architectural registers, and large 
immediate values. Figure 3e shows the example 
found by IDT which uses only one register but a large 
random immediate value. Figure 3f and g includes 
two minimal failing cases from different PyH2P trials, 
which are significantly simpler.

PyH2O: PyH2 for object-oriented  
hardware

PyH2O is a PyH2 framework that enables using 
method calls to test RTL hardware components 
with object-oriented latency-insensitive interfaces. 

The key contribution of PyH2O is a novel testing 
methodology for concurrent hardware data struc-
tures that are difficult to thoroughly test using 
traditional approaches. PyH2O proposes a novel 
simulation mechanism called auto-ticking, which 
has been implemented as a new PyMTL3 simulation 
pass. With merely “transaction-accurate” Python 
data structures as reference models, PyH2O uses the 
rule-based stateful testing features in hypothesis to 
perform a sequence of random method calls on both 

Figure 3. PicoRV32 processor case 
study. (a) CRT. (b) IDT. (c) PyH2P. (d) 
CRT example. (e) IDT example. (f) PyH2P 
example 1. (g) PyH2P example 2.
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the reference model and the auto-ticking simulator 
of the RTL model, and then checks if the outcomes 
match for each method call.

PyH2O is based on method-based interfaces 
which are decoupled handshake interfaces with 
four ports: 1) enable; 2) ready; 3) arguments; and 
4) return value. Essentially, setting the enable sig-
nal high after making sure the ready signal is high 
is equivalent to calling the corresponding ready 
method, checking if it returns true, and then call-
ing the actual method. Converting an RTL method 
interface to a Python method involves an adapter 
that provides a method and a ready method to the 
user and sets/modifies the signals inside the adapter. 
PyH2O leverages Python reflection to automatically 
wrap the RTL method interfaces with a generated 
top-level PyMTL3 wrapper with Python methods.

PyH2O applies the AutoTickSimPass to create an 
auto-ticking simulator for the wrapped model. Con-
ceptually, auto-ticking is more fine-grained than the 
classical delta cycle approach. Auto-ticking divides 
the combinational logic into multiple parts based 
on logic related to the method interfaces. When 
the user calls the enhanced top-level method, not 
only the method but also all the logic between this 
method and the next method is executed. If the exe-
cuted method is the last method of the cycle, the 
simulator advances to the first method of the next 
cycle. If the user skips a method in this cycle and 
calls another method later in the cycle or a previous 
method that is already skipped/called in the current 
cycle, the simulator ignores the in-between methods 
and executes all the logic until it reaches the called 
method. Unlike trivial one-method-per-cycle testing, 
this auto-ticking scheme is able to execute multiple 
methods in the same cycle if they are called in a 
specific order.

Case study: reorder buffer data structure
Figure 4a shows an RTL reorder buffer imple-

mentation which exposes the three methods called 
interfaces. allocate is ready if the buffer is not full. 
It returns the entry index and advances the tail 
pointer. update_ is ready if the buffer has valid ele-
ments. It takes an index/value pair to update the 
buffer. remove is ready if the buffer head is valid 
and already updated, and returns the index/value 
pair. Note that remove and allocate can occur in 
the same cycle even if the reorder buffer is full, 
because the implementation combinationally 

factors whether remove is called into allocate’s 
ready signal. Figure 4b shows the execution 
schedule generated by the AutoTickSimPass. 
The auto-ticking simulator guarantees that a 
sequence of three method calls in the order of  
update_ < remove < allocate will occur in the 
same cycle.

Figure 4. PyH2O reorder buffer case study. 
(a) PyMTL3 reorder buffer code snippet. 
(b) Auto-tick execution schedule for 
reorder buffer. (c) First falsifying example 
found by PyH2O. (d) Minimized failing case 
after auto-shrinking.
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To show the effectiveness of PyH2O, we replace 
head+1 with head+0 in line 19 of Figure 4a. This 
subtle bug needs at least six transactions in a spe-
cific order to trigger because it requires six transac-
tions to allocate, update and remove two entries, 
but must not remove the first one and allocate the 
second one in the same cycle. After trying several 
sequences with varying length from 5 to 19, PyH2O 
discovers a 11-transaction failing case as shown in 
Figure 4c. After auto-shrinking, PyH2O successfully 
finds one of the minimum failing case as shown in 
Figure 4d.

THIS ARTICLE HAS introduced PyH2, which lev-
erages PyMTL3, pytest, and hypothesis to create a 
novel open-source hardware testing methodology. 
We believe PyH2 is an important first step toward 
addressing four key challenges in open-source hard-
ware testing as follows.

• PyH2 is more accessible to open-source hard-
ware designers compared to complex closed-
source hardware testing methodologies.

• PyH2G is well-suited for testing not just design 
instances but also design generators which are 
critical to the success of the open-source hard-
ware ecosystem.

• PyH2P can improve the random testing of open-
source processor implementations compared to 
the more limited directed and random testing 
currently used in many open-source projects.

• PyH2O can more effectively test object-oriented 
hardware data structures.

We have open-sourced PyMTL3 and PyH2 at 
https://github.com/pymtl/pymtl3. �
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