
Appears in the Proceedings of the 2016 IEEE Int’l Symp. on Performance Analysis of Systems and Software (ISPASS), April 2016

JIT-Assisted Fast-Forward Embedding and Instrumentation
to Enable Fast, Accurate, and Agile Simulation

Berkin Ilbeyi and Christopher Batten
School of Electrical and Computer Engineering, Cornell University, Ithaca, NY

{bi45,cbatten}@cornell.edu

Abstract—Computer architects need fast and accurate simula-
tion to research new computing systems, but architects are also
increasingly demanding agile simulation to give them flexibility to
productively explore the interaction between software and hard-
ware. In this paper, we propose JIT-assisted fast-forward em-
bedding (JIT-FFE) and JIT-assisted fast-forward instrumentation
(JIT-FFI) for fast, accurate, and agile simulation. JIT-FFE enables
zero-copy architectural state transfer between a state-of-the-art
dynamic-binary-translation-based instruction-set simulator and a
detailed microarchitectural simulator. JIT-FFI enables productive
implementation of fast functional profiling and warmup. We have
implemented these two techniques in a new tool, called PydginFF,
which can be integrated with any C/C++ detailed simulator. We
evaluate PydginFF within the context of the gem5 detailed sim-
ulator for both periodic sampling (SMARTS) and targeted sam-
pling (SimPoint) and demonstrate that PydginFF reduces simula-
tion time of fast-forward-based sampling by over 10⇥.

I. INTRODUCTION

There is always a need for fast and accurate simulation of
computer systems, but achieving these goals is particularly
challenging when exploring new architectures for which native
functional-first (trace-driven) simulation [14, 20, 30, 31, 33, 42,
51] is not applicable. Traditional approaches to improving the
speed and accuracy of simulation for new architectures usually
assume that the instruction-set architecture (ISA) and the entire
software stack are fixed. For example, checkpoint-based sam-
pling will collect a set of checkpoints from a profiling phase for
a specific ISA and software stack, and then reuse these check-
points across many different experiments. However, there is
an emerging trend towards vertically integrated computer ar-
chitecture research that involves simultaneously rethinking ap-
plications, algorithms, compilers, run-times, instruction sets,
microarchitecture, and VLSI implementation. Vertically inte-
grated computer architecture research demands agile simula-
tion, which allows complete flexibility in terms of exploring the
interaction between software and hardware. Agile simulation
is certainly possible if one is willing to sacrifice either speed
or accuracy. Table I illustrates how the state-of-the-art simu-
lation methodologies can be fast and agile (e.g., instruction-set
simulation with dynamic binary translation), accurate and agile
(e.g., fast-forward-based sampling), or fast and accurate (e.g.,
checkpoint-based sampling). A newer trend is to use native ex-
ecution to speed up functional simulation when the target (i.e.,
the simulated architecture) and the host (i.e., the architecture
running the simulator) are identical. Such “native-on-native”
fast-forward acceleration is fast, accurate, and partially agile;
this technique enables exploring changes to the software and
microarchitecture, but does not enable research that involves
changing the actual ISA. Our goal in this paper is to explore
a new approach that can potentially enable fast, accurate, and
agile simulation for the entire computing stack.

TABLE I. SIMULATOR METHODOLOGIES

Fast Accu
ra

te

Agil
e

Examples

DBT-Based ISS # [1, 9, 28, 29, 32, 34, 45, 57]
FF-Based Sampling # [24, 39, 54, 55, 63, 64]
CK-Based Sampling # [50, 59, 61]
NNFF-Based Sampling G# [4, 6, 36, 51, 52]
PydginFF

Comparison of different simulator methodologies for achieving fast, accurate,
and agile simulation. DBT = dynamic-binary translation; ISS = instruction-set
simulation; FF = fast-forward; CK = checkpoint; NNFF = native-on-native
fast-forward acceleration.

Simple interpreter-based instruction-set simulators (ISSs)
have significant overheads in fetching, decoding, and dispatch-
ing target instructions. Augmenting an ISS with dynamic binary
translation (DBT) can enable fast and agile simulation. DBT
identifies hot paths through the binary and dynamically trans-
lates target instructions on this hot path into host instructions.
This eliminates much of the overhead of simple interpreter-
based ISSs and enables simulation speeds on the order of hun-
dreds of millions of instructions per second. While traditional
DBT-based ISSs are known to be difficult to modify, recent
work has explored automatically generating DBT-based ISSs
from architectural description languages [5,12,29,47,48]. DBT-
based ISSs are fast and agile, but these simulators do not accu-
rately model any microarchitectural details.

Detailed simulation uses cycle- or register-transfer-level
modeling to improve the accuracy of simulation, but at the ex-
pense of slower simulation speeds. Modern microarchitectural
simulators run at tens of thousands of instructions per second,
which means simulating complete real-world programs is prac-
tically infeasible (e.g., simulating a few minutes of wall-clock
time can require months of simulation time). Researchers have
proposed various sampling techniques to make detailed simula-
tion of large programs feasible [16, 54, 55, 63, 64]. These tech-
niques either use statistical sampling or light-weight functional
profiling of the overall program to identify representative sam-
ples from the full execution. Detailed simulation is only re-
quired for the samples, yet these techniques can still maintain
accuracy within a high confidence interval. Since the samples
are usually a small ratio of the whole program, sampling can
drastically reduce the amount of time spent in slow detailed sim-
ulation. However, the samples tend to be scattered throughout
the entire execution, which raises a new challenge with respect
to generating the correct architectural state (e.g., general pur-
pose registers, page tables, physical memory) and potentially
microarchitectural state (e.g., caches, branch predictors) to ini-
tiate detailed simulation of each sample.

Fast-forward-based (FF-based) sampling focuses on provid-
ing accurate and agile simulation. An interpreter-based ISS
is used to “fast-forward” (FF) the program until the starting
point of a sample, at which point the simulator copies the ar-
chitectural state from the interpreter-based ISS into the detailed
simulator [16, 54, 55]. Some FF-based sampling schemes also
require functional warmup where microarchitectural state is
also generated during fast forwarding to ensure accurate de-
tailed simulation of the sample [63, 64]. FF-based sampling
significantly improves the simulation speed compared to de-
tailed simulation without sampling, but it is still many orders-
of-magnitude slower than DBT-based ISS. The execution time
tends to be dominated by the interpreter-based ISS used during
fast-forwarding, and as a consequence simulating a few minutes
of wall-clock time can still require several days.

Native-on-native fast-forwarding-based (NNFF-based) sam-
pling uses native execution instead of an interpreter-based ISS
for fast forwarding. These techniques typically use virtual-
ization to keep the host and simulated address spaces sepa-
rate [4,6,36,51,52]. Because NNFF-based sampling uses much
faster native execution for functional simulation, it can achieve
fast, accurate, and partially agile simulation. NNFF-based sam-
pling enables quickly changing the microarchitecture and soft-
ware, but ISAs different than the host cannot run natively. New
instructions and experimental ISAs cannot take advantage of
native execution for fast-forwarding, making such studies un-
suitable for NNFF-based sampling.

Checkpoint-based sampling focuses on providing fast and
accurate simulation. An ISS is used to save checkpoints of
the architectural state at the beginning of each sample [50,
59, 61]. Once these checkpoints are generated for a partic-
ular hardware/software interface and software stack, they can
be loaded from disk to initiate detailed simulation of the sam-
ples while varying microarchitectural configuration parameters.
Checkpoint-based sampling improves overall simulation time
by replacing the slow FF step with a checkpoint load from disk.
However, checkpoint-based sampling requires the hardware/-
software interface and software stack to be fixed since regen-
erating these checkpoints is time consuming. Because check-
point generation is rare, the tools that profile and generate these
checkpoints are usually quite slow; it can take many days to
regenerate a set of checkpoints after changing the hardware/-
software interface or the software stack.

Section II provides background on DBT-based ISS and
sampling-based simulation techniques. We make the key obser-
vation that while FF-based sampling is both accurate and agile,
its speed suffers from slow FF. This motivates our interest in
enabling fast, accurate, and agile simulation by augmenting FF-
based sampling with recent research on DBT-based ISSs. How-
ever, there are several technical challenges involved in integrat-
ing these two techniques. DBT-based ISSs and detailed sim-
ulators use very different design patterns (e.g., page-based bi-
nary translation vs. object-oriented component modeling), data
representations (e.g., low-level flat memory arrays vs. hierar-
chical memory modeling), and design goals (e.g., performance
vs. extensibility). These differences significantly complicate ex-
changing architectural state between DBT-based ISSs and de-
tailed simulators. Furthermore, instrumenting a DBT-based ISS

to enable functional profiling and/or functional warmup can be
quite difficult requiring intimate knowledge of the DBT inter-
nals.

In Sections III and IV, we propose JIT-assisted fast-forward
embedding (JIT-FFE) and JIT-assisted fast-forward instrumen-
tation (JIT-FFI) to enable fast, accurate, and agile simulation.
JIT-FFE and -FFI leverage recent work on the RPython meta-
tracing just-in-time compilation (JIT) framework for general-
purpose dynamic programming languages [2, 10, 11, 41, 44]
and the Pydgin framework for productively generating very
fast DBT-based ISSs [29]. JIT-FFE enables embedding a full-
featured DBT-based ISS into a detailed simulator, such that the
DBT-based ISS can have zero-copy access (large data struc-
tures do not need to be copied) to the detailed simulator’s ar-
chitectural state. JIT-FFI enables productively instrumenting
the DBT-based ISS with just a few lines of high-level RPython
code, but results in very fast functional profiling and warmup.
We have implemented JIT-FFE and -FFI in a new tool, called
PydginFF, which can be integrated into any C/C++ detailed sim-
ulator.

Section V evaluates PydginFF within the context of the gem5
detailed simulator [7] and two different sampling techniques
(periodic sampling through SMARTS [63,64] and targeted sam-
pling through SimPoint [54]) when running a variety of SPEC
CINT2006 benchmarks. PydginFF is able to reduce the simula-
tion time of FF-based sampling by over 10⇥; simulations that
previously took 1–14 days can now be completed in just a few
hours.

To our knowledge, this is the first work to propose and
demonstrate fast, accurate, and agile simulation through the cre-
ative integration of DBT-based ISSs and detailed simulation.
Unlike related NNFF-based sampling approaches, our work al-
lows the entire computing stack to be modified in an agile man-
ner. We anticipate this approach would be particularly useful
for studying ISA extensions or for exploring radical hardware
acceleration techniques to improve the performance of emerg-
ing workloads where the software is not static (e.g., just-in-time
compilation and optimization techniques). The primary con-
tributions of this work are: (1) we propose JIT-assisted fast-
forward embedding to elegantly enable zero-copy architectural
state transfer between a DBT-based ISS and a detailed simu-
lator; (2) we propose JIT-assisted fast-forward instrumentation
to enable productive implementation of fast functional profil-
ing and warmup; and (3) we evaluate these techniques within
the context of PydginFF embedded into gem5 using SMARTS
and SimPoint sampling techniques and show compelling perfor-
mance improvements over traditional sampling with interpreter-
based fast-forwarding.

II. BACKGROUND

In this section, we provide brief background on DBT-based
ISSs and sampling-based detailed simulation, including an
overview of the SMARTS and SimPoint methodologies used
in our evaluation.

A. DBT-Based Instruction Set Simulation
Instruction-set simulators (ISSs) facilitate software develop-

ment for new architectures and the rapid exploration and evalu-
ation of instruction-set extensions. In an interpreter-based ISS,

a dispatch loop fetches and decodes target instructions before
dispatching to a function that implements the instruction seman-
tics. Dynamic-binary translation (DBT) can drastically improve
the performance of interpreter-based ISSs by removing most
of the dispatch-loop-based overheads. A DBT-based ISS still
uses an interpreter for light-weight profiling to find frequently
executed code regions. These hot regions are then translated
into host instruction equivalents. The native assembly code
generated using DBT is cached and executed natively when-
ever possible instead of using the interpreter. DBT-based ISSs
require sophisticated software engineering since they include
profiling, instruction-level optimizations, assembly code gen-
eration, code caching, and a run-time that can easily switch
between interpreter- and DBT-based execution. Coordinating
all these components while maintaining correctness and high
performance makes DBT-based ISSs very hard to implement,
maintain, and extend. However, promising recent work has
demonstrated sophisticated frameworks that can automatically
generate DBT-based ISSs from architecture description lan-
guages [38, 46, 60].

At the same time, there has been significant interest in JIT-
optimizing interpreters for dynamic programming languages.
For example, JavaScript interpreters in web browsers make
heavy use of JIT-optimizations to enable highly interactive web
content [58]. Another notable JIT-optimizing interpreter is
PyPy for the Python language [2, 10, 11, 41, 44]. The PyPy
project has created a unique development approach that uti-
lizes the RPython translation toolchain to abstract the process
of language interpreter design from low-level implementation
details and performance optimizations. The interpreter devel-
opers write their interpreter (e.g., for the Python language)
in a statically typed subset of Python called RPython. Using
the RPython translation toolchain, an interpreter written in the
RPython language is translated into C by going through type
inference, back-end optimization, and code generation phases.
The translated C code for the interpreter is compiled using a
standard C compiler to generate a fast interpreter for the target
language. In addition, the interpreter designers can add light-
weight JIT annotations to the interpreter code (e.g., annotat-
ing the interpreter loop, annotating which variables in the inter-
preter denote the current position in the target program, anno-
tating when the target language executes a backwards branch).
Using these annotations, the RPython translation toolchain can
automatically insert a JIT into the compiled interpreter binary.
RPython separates the language interpreter design from the JIT
and other low-level details by using the concept of a meta-
tracing JIT. In a traditional tracing JIT, a trace of the target
language program is JIT compiled and optimized. In a meta-
tracing JIT, the trace is generated from the interpreter inter-
preting the target language program. Tracing JITs need to be
specifically designed and optimized for each language, while
meta-tracing JITs are automatically generated from the anno-
tated language interpreter. The meta-tracing JIT approach re-
moves the need to write a custom JIT compiler for every new
language.

Pydgin is a recent framework for productively building DBT-
based ISSs [29]. Pydgin makes use of the RPython translation
toolchain to bridge the productivity-performance gap between

Figure 1. Sampling Methods – Different phases are represented with
different letters. Sampling methods include periodic, random, and tar-
geted. The selected representative samples are simulated using detailed
simulation; the portion of the execution shown with a dashed line can
use fast-forwarding or checkpointing.

interpreter- and DBT-based ISSs. An ISS in Pydgin is written
as an interpreter in the RPython language, which allows it to
be translated and compiled into an efficient binary. Pydgin also
has the necessary annotations to allow RPython to automatically
generate a very fast and optimized JIT. RPython’s pseudocode-
like syntax and the Pydgin library hide most performance-
focused optimizations from the ISA definition, making modi-
fying or adding new instructions very productive. Pydgin is a
key enabler for the two techniques proposed in this paper: JIT-
assisted fast-forward embedding and JIT-assisted fast-forward
instrumentation.

B. Sampling-Based Detailed Simulation
Figure 1 illustrates three approaches to sampling-based de-

tailed simulation: random sampling, periodic sampling, and tar-
geted sampling. Random sampling leverages the central limit
theorem to enable calculating confidence bounds on perfor-
mance estimates. Periodic sampling is an approximation of ran-
dom sampling, and similar statistical tools can be used to ensure
accuracy. Periodicity in the studied programs might skew the re-
sults for periodic sampling, however, this was shown not to be
an issue for large benchmarks in practice [63,64]. Targeted sam-
pling requires a profiling step to find samples that are represen-
tative of different program regions. The profiling information
can be microarchitecture-dependent [55] or microarchitecture-
independent (e.g., based on basic-block structure [54] or loop/
call graphs [26, 27]).

A key challenge in sampling-based detailed simulation is
generating the architectural (and potentially microarchitectural)
state to initiate the detailed simulation of each sample. Ta-
ble II shows different types of simulation to produce the initial
state for detailed simulation of each sample. Fast-forwarding
is pure functional execution of the program and only the ar-
chitectural state is modeled. This is the least detailed type of
simulation, hence it tends to be the fastest. However, uninitial-
ized microarchitectural state at the beginning of a sample can
heavily bias the results. Researchers usually use some form of
warmup to minimize this cold-start bias. The processor core
pipeline contains relatively little “history” and thus requires
warmup of a few thousand instructions. Caches, branch pre-
dictors, and transaction look-aside buffers contain much more
“history” and thus require hundreds of thousands of instructions
to minimize the cold-start bias [17, 19, 63]. Detailed warmup
will initiate detailed simulation before the start of the sample.
Detailed warmup is good for warming up both long- and short-
history microarchitecture, but is obviously quite slow. Func-

TABLE II. SIMULATION TERMINOLOGY

Long-History Short-History Collect
Modeling Modeling Statistics

Fast-Forwarding
Functional Warmup X
Functional Profiling X
Detailed Warmup X X
Detailed Simulation X X X

Long-history modeling includes caches and branch predictors. Short-history
modeling includes core pipeline. Collecting statistics might include profiling
or microarchitectural statistics.

TABLE III. COMPARISON OF SMARTS AND SIMPOINT

SMARTS SimPoint

Sampling Type periodic targeted
Functional Profiling optional required
Num of Samples 10,000 maximum 30
Len of Samples 1000 10 million
Len of Detailed Warmup 2000 optional
Between Samples functional warmup fast forwarding

SMARTS has an optional profiling step to determine the length of the
benchmark; SimPoint has a required functional profiling step to generate
BBVs. Length of samples and detailed warmup are in instructions.

tional warmup will update long-history microarchitectural state
using a purely functional model during fast-forwarding. Be-
cause these long-history microarchitectural components tend
to be highly regular structures, adding these models to fast-
forwarding usually has a modest impact on simulation speed. A
related type of simulation is functional profiling, which is used
in some sampling methodologies to determine where to take
samples. Similar to functional warmup, functional simulators
can often use light-weight modifications to implement profiling
with only a modest impact on simulation speed. Table III com-
pares two common sampling-based simulation methodologies
that we will use in our evaluation: SMARTS [61, 63, 64] and
SimPoint [26, 27, 39, 54, 59].

SMARTS is one of the most well-known statistical sampling
methodologies. This approach uses periodic sampling to ap-
proximate random sampling, which allows the authors to use
statistical sampling theory to calculate confidence intervals for
the performance estimates. While the original paper thoroughly
evaluates different parameters such as the length of each sam-
ple, the number of samples, and the amount of detailed warmup,
the paper ultimately prescribes for an 8-way processor: 10,000
samples, each of them 1000 instructions long, with 2000 in-
structions of detailed warmup [63]. SMARTS is able to use a
relatively short length of detailed warmup by relying on func-
tional warmup between samples. The authors determined that
if functional warmup is unavailable and pure fast-forwarding is
used instead, detailed warmup of more than 500,000 instruc-
tions (i.e., 500⇥ the size of the sample) is required for some
benchmarks.

SimPoint is one of the most well-known targeted sampling
methodologies. SimPoint classifies regions of dynamic exe-
cution by their signature generated from the frequency of ba-
sic blocks executed in each region. SimPoint requires an ini-
tial functional profiling phase that generates basic block vectors

(BBVs) for each simulation interval. Each element of the BBV
indicates the number of dynamic instructions executed belong-
ing to a particular basic block. Because the number of basic
blocks is large, the dimensionality of the BBVs are reduced
using random projection and then classified using the k-means
clustering algorithm. One simulation interval from each clus-
ter is picked to be a representative sample or simulation point.
While the original SimPoint paper used 100 million instructions
per sample with a maximum of 10 samples [54], a follow-up
work used 1 million instructions per sample with a maximum
of 300 samples [39]. The most common parameters used in
practice tend to be 10 million instructions per sample with a
maximum of 30 samples. In contrast to SMARTS, SimPoint
uses fewer but longer samples. This results in the inter-sample
intervals of billions of instructions and thus SimPoint lends it-
self to pure fast-forwarding. Since the samples are very long,
the effect of cold-start bias is mitigated and warmup is less crit-
ical.

III. JIT-ASSISTED FAST-FORWARD EMBEDDING

One of the biggest obstacles in augmenting FF-based sam-
pling with a DBT-based ISS is coordinating a single execution
context for the target application between the ISS and the de-
tailed simulator. The entire architectural state (and microar-
chitectural state in the case of functional warmup) needs to
be communicated between these two simulators. These simu-
lators often represent architectural state differently, using dif-
ferent data structures, in different alignments, and at differ-
ent granularities. Performance-oriented DBT-based ISSs tend
to represent the architectural state in forms that will facilitate
high performance, but detailed simulators often choose more
extensible approaches that allow running different ISAs and ex-
periments. Another challenge is to ensure consistency of the
architectural state for switching. Dirty lines in the modeled
caches and uncommitted modifications to the architectural state
(e.g., in host registers in DBT-based ISSs) need to be com-
mitted before switching. Once the entire architectural state is
gathered in a consistent form, another challenge is marshalling
this data, using an interprocess communication method such as
writing/reading a file/pipe, and finally unmarshalling and recon-
structing the data in the new simulator. Performing all of these
tasks without incurring excessively long switching times can be
quite challenging.

A. JIT-FFE Proposal

We propose JIT-assisted fast-forward embedding (JIT-FFE)
to address this challenge. JIT-FFE enables the fast DBT-based
ISS to be dynamically linked to the slow detailed simulator,
obviating the need to run two different processes. Since both
simulators share the same memory space, large data structures
(e.g., the simulated memory for the target) can be directly ma-
nipulated by both the DBT-based ISS and the detailed simulator.
This removes the need for marshalling, interprocess communi-
cation, and unmarshalling, and thus enables zero-copy architec-
tural state transfer. JIT-FFE requires both simulators to obey
the same conventions when accessing any shared data struc-
tures, even at the expense of slightly reduced performance for
the DBT-based ISS. JIT-FFE does not require all data structures

Figure 2. PydginFF compilation and simulation flow.

to be shared; for smaller architectural state (e.g., register file)
simply copying the data between simulators is usually simpler.
While JIT-FFE elegantly enables using a DBT-based ISS for
fast-forwarding in SimPoint, JIT-FFE’s ability to provide zero-
copy state transfer is particularly effective in SMARTS due to
large number of small samples (i.e., many switches between the
DBT-based ISS and detailed simulator).

B. JIT-FFE Implementation

We have augmented Pydgin with JIT-FFE features, which
we call PydginFF. PydginFF defines a C/C++ application-
programming interface (API) that is visible to the detailed sim-
ulator. This API is used for getting and setting the architectural
state, declaring a shared data structure for the simulated mem-
ory to enable zero-copy state transfer, and starting functional
simulation. The API is defined both in the PydginFF source (in
the RPython language) and in a C header file. RPython has a
rich library to manipulate and use C-language types and struc-
tures, and declare C-language entry-point and call-back func-
tions. Even though PydginFF is written in RPython, not C, the
RPython translation toolchain translates PydginFF into pure C.
This means that after the C/C++ detailed simulator dynamically
links against PydginFF, the detailed simulator can directly inter-
act with PydginFF without crossing any language boundaries.
This is a key enabler that allows efficient zero-copy architectural
state transfer between Pydgin ISS and the detailed simulator.

Figure 2 shows the compilation and simulation flow of Py-
dginFF. Pydgin (without the PydginFF extensions) consists of
an architectural description language (ADL) where the ISA is

defined, and the framework which provides ISA-independent
features and JIT annotations. The ADL and the framework go
through the RPython translation toolchain which includes type
inference, optimizations, code generation, and JIT generation.
This produces the stand-alone JIT-optimized Pydgin binary that
can be used for stand-alone functional profiling. The JIT-FFE
extensions to Pydgin are also primarily in the RPython lan-
guage, and go through the same RPython translation toolchain.
In addition, we have configured the toolchain to also produce
a dynamic library at the end of translation and compilation.
C/C++ detailed simulators that are modified to take advantage
of the PydginFF API can simply dynamically link against Pydg-
inFF and use the Pydgin JIT for fast-forwarding (and functional
warmup) in sampled simulation. Targeted sampling method-
ologies such as SimPoint also need a functional profile of the
application. For these, the stand-alone Pydgin binary can gen-
erate the functional profile which can be used by the detailed
simulator to determine when to start sampling.

IV. JIT-ASSISTED FAST-FORWARD INSTRUMENTATION

While JIT-FFE enables a DBT-based ISS to be used for
fast-forwarding within a detailed simulator, common sampling
methodologies also require instrumenting the functional simu-
lation. For example, SMARTS requires the long-history mi-
croarchitectural state to be functionally modelled, and SimPoint
uses basic-block vectors generated from functional profiling.
Adding instrumentation to a traditional DBT-based ISS can be
very challenging. DBT-based ISSs tend to be performance ori-
ented and are not built with extensibility in mind. These simula-
tors are usually written in low-level languages and styles in or-
der to get the best performance. Moreover, the instrumentation
code added to these simulators will not automatically benefit
from the JIT and can significantly hurt performance.

A. JIT-FFI Proposal
We propose JIT-assisted fast-forward instrumentation (JIT-

FFI) to address this challenge. JIT-FFI allows the researcher
to add instrumentation to the RPython interpreter, not to the JIT
compiler itself. RPython’s meta-tracing JIT approach generates
a JIT compiler for the entire interpreter including instruction ex-
ecution and instrumentation. This means instrumentation code
is not just inlined but also dynamically JIT-optimized within
the context of the target instruction stream. JIT-FFI inlining
can produce very high performance for simple instrumentation.
However, JIT-FFI inlining can reduce performance if the instru-
mentation includes complex data-dependent control flow, since
this irregularity causes the meta-tracing JIT to frequently abort
trace formation. JIT-FFI also includes support for JIT-FFI out-
lining where the instrumentation code is statically pre-compiled
into an optimized function that can be directly called from the
JIT trace. Figure 3 shows a simplified example of PydginFF
code with JIT-FFI-inlined and -outlined instrumentation code,
target instruction stream, and the resulting JIT trace.

JIT-FFI is critical to achieving fast and agile simulation using
both SMARTS and SimPoint. For SMARTS, JIT-FFI enables
very fast functional warmup of long-history microarchitectural
state such as caches. For SimPoint, JIT-FFI enables very fast
collection of basic-block vectors for determining representative
samples.

Figure 3. JIT-FFI instrumentation (in red) can be added to Pydgin (in
black). instrument_inst is called from the simulation loop to in-
strument every instruction; instrument_memop is called from the in-
struction semantics of the store instruction to instrument memory oper-
ations. The @jit.dont_look_inside decorator causes instrumenta-
tion to be JIT-FFI outlined. On the right is a simple loop in an example
ISA and the resulting optimized JIT trace with instrumentation.

B. JIT-FFI Implementation

We illustrate examples of instrumentation that users would
write to take advantage of JIT-FFI in functional warmup and
functional profiling, respectively. PydginFF provides hooks
for users to add custom instrumentation at different granular-
ities (at instruction, memory operation, and control-flow op-
eration levels with instrument_inst, instrument_memop,
instrument_ctrl function calls respectively), and more of
these hooks can be added. Figure 4 shows the JIT-FFI code
within PydginFF to implement a functional model of a 2-
way set-associative cache for use in SMARTS. The mod-
eling is done in a rather straight-forward fashion, and the
cache model maintains arrays for the tags (tag_array),
dirty bits (dirty_array), and LRU bits (lru_array). The
RPython language has a rich library of hints that can be
given to the JIT, and an example for this can be seen in
the @jit.dont_look_inside decorator, which leaves the hit
lookup function as a call from the JIT trace and forces JIT-FFI
outlining. Modeling the cache with a high-level language like
RPython and then using simple JIT annotations make JIT-FFI
both productive and fast. We evaluate a case study examining
the effects of JIT-FFI inlining vs. outlining in set-associative
and direct-mapped cache models in Section V-D. Note that it is
usually more efficient not to store data in the JIT-FFI caches, but
simply retrieve the data from the main memory even on a cache
hit (but still update tags and LRU bits accordingly). This means
that the cache models do not benefit from JIT-FFE zero-copy
architectural state transfer, and their states need to be copied
between PydginFF and the detailed simulator.

1 def instrument_memop(self, memop_type, address):
2 line_idx, tag = self.get_idx_tag(address)
3

4 # get if hit or not, and the way if it was a hit
5 hit, way = self.get_hit_way(line_idx, tag)
6

7 # If miss, get a victim way and update the tag
8 if not hit:
9 way = self.get_victim(line_idx)

10 self.tag_array[line_idx][way] = tag
11

12 # On write, set dirty bit
13 if memop_type == WRITE:
14 self.dirty_array[line_idx][way] = True
15

16 # Update LRU bits
17 self.update_lru(line_idx, way)
18

19 @jit.dont_look_inside
20 def get_hit_way(self, line_idx, tag):
21 for way in range(self.num_ways):
22 if tag == self.tag_array[line_idx][way]:
23 return True, way
24 return False, -1
25

26 def update_lru(self, line_idx, way):
27 self.lru_array[line_idx] = 0 if way else 1
28

29 def get_victim(self, line_idx):
30 return self.lru_array[line_idx]

Figure 4. JIT-FFI for Cache Warmup – RPython code to model a 2-
way set-associative cache. The @jit.dont_look_inside decorator
can be used to force JIT-FFI outlining.

Figure 5 shows the JIT-FFI code within PydginFF to im-
plement basic-block vector (BBV) generation for use in Sim-
Point. Basic blocks in BBV generation are defined to be
dynamic streams of instructions that have a control-flow in-
struction at the beginning and end, but not elsewhere. In the
instrument_ctrl function, line 3 calls get_bb_idx, which
returns a unique basic-block index or -1 if this basic block has
not been seen before. The @jit.elidable_promote decora-
tor on line 17 is a JIT annotation that constant-promotes the
arguments (guaranteeing that the arguments will always be the
same at the same point in the trace), and marks the function el-
idable (guaranteeing that this function does not have any side
effects and always returns the same value). This annotation al-
lows the function to be completely optimized away in the JIT
trace and replaced with the corresponding constant basic-block
index. In the JIT trace, the basic-block index will never be zero
(it would have been observed before), so slower code to register
a new basic block (lines 5–9) will be skipped. The only opera-
tion that will be inlined in the JIT trace is incrementing the cor-
responding BBV entry in line 12. This illustrates how JIT-FFI
inlining can enable very high-performance instrumentation. We
evaluate the effect of enabling JIT-FFI inlining versus outlining
for BBV generation in Section V-E.

V. EVALUATION

We have implemented JIT-FFE and -FFI in a new tool,
called PydginFF. Although PydginFF can be integrated into any
C/C++ detailed simulator, we have chosen the popular gem5

1 # Called only when there are control-flow instructions
2 def instrument_ctrl(self, old_pc, new_pc, num_insts):
3 bb_idx = self.get_bb_idx(old_pc, new_pc)
4

5 # bb_idx will never be equal to -1 in JIT trace
6 if bb_idx == -1:
7 # Register a new BB along with the size of the BB
8 bb_idx = self.register_new_bb(old_pc, new_pc,
9 num_insts - self.last_num_insts)

10

11 # Increment BBV entry by the size of the bb
12 self.bbv[bb_idx].increment()
13 self.last_num_insts = num_insts
14

15 # Get the index into the BBV table
16 @jit.elidable_promote()
17 def get_bb_idx(self, old_pc, new_pc):
18

19 # Construct BB signature, check if BB was seen before
20 bb_sig = (old_pc << 32) | new_pc
21 if bb_sig not in self.bbv_map:
22 return -1
23

24 return self.bbv_map[bb_sig]

Figure 5. JIT-FFI for BBV Generation – RPython code to generate
BBV for SimPoint. @jit.elidable_promote is a JIT hint to enable
aggressive JIT optimization.

detailed simulator [7] for our evaluation, and we refer to the
combined simulator as PydginFF+gem5.

A. Benchmarks

We quantify the performance of each simulator configura-
tion (baseline SMARTS, baseline SimPoint, PydginFF+gem5
SMARTS, and PydginFF+gem5 SimPoint), using the SPEC
CINT2006 benchmark suite. We use the ARMv5 instruction set
for our target software, and a Newlib-based GCC 4.3.3 cross-
compiler. We use the recommended optimization flags (-O2)
for compiling the benchmarks. Three of the SPEC benchmarks,
400.perlbench, 403.gcc, and 483.xalancbmk failed to compile
for the target configuration due to limited system call support in
our cross-compiler so we omit these from our results. Table IV
shows the benchmark setup details. We used the ref datasets
for all of the benchmarks, and picked one dataset in cases where
there were multiple datasets. We also show the dynamic instruc-
tion counts of the benchmarks, which range from 200 billion to
3 trillion instructions.

B. Simulation Methodology

Our baseline simulation setup uses the gem5 [7] detailed mi-
croarchitecture simulator. We have implemented the SMARTS
and SimPoint sampling techniques in gem5. Both baseline con-
figurations use gem5’s interpreter-based atomic simple proces-
sor for fast-forwarding, functional warmup, and functional pro-
filing; and the cycle-level out-of-order processor model for de-
tailed simulation. We use the ARMv5 instruction set for both
PydginFF and gem5 with system-call emulation. For both con-
figurations, the detailed microarchitecture models a 4-way su-
perscalar pipeline with 4 integer ALUs, 2 AGUs, 32 entries in
the issue queue, 96 entries in the ROB, and 32 entries each
in load and store queues. We model a 2-way 32KB L1 in-

TABLE IV. BENCHMARKS

SMARTS SimPoint

Dyn % Det Dyn # % Det
Benchmark Dataset Inst Sim Inst Spl Sim

401.bzip2 chicken 30 195 0.020 194 25 0.200
429.mcf inp.in 373 0.008 373 27 0.100
445.gobmk 13x13.tst 323 0.009 316 20 0.090
456.hmmer nph3 swiss41 1112 0.003 952 13 0.020
458.sjeng ref.txt 2974 0.001 2921 13 0.007
462.libquantum 1397 8 3069 0.001 3036 17 0.008
464.h264ref foreman_ref 753 0.004 707 15 0.030
471.omnetpp omnetpp.ini 1282 0.002 1254 3 0.004
473.astar BigLakes2048 434 0.007 397 15 0.060

Dyn Inst = number of dynamic instructions when run to completion (in
billions); % Det Sim = percentage simulated using the detailed simulator;
Spl = number of samples. SimPoint has slightly fewer dynamic instructions
since the simulation can stop after the final sample.

struction and a 2-way 64KB L1 data cache. The baseline
SMARTS and SimPoint implementations use the configurations
presented in Table III. The SMARTS configuration only uses
functional warmup between the samples, and SimPoint uses
fast-forwarding until 500,000 instructions before the start of
the simulation point and then switches to detailed warmup. Al-
though optional, it is common practice to use detailed warmup
with SimPoint.

As mentioned in Sections III and IV, we have used the open-
source Pydgin DBT-based ISS [29,43] to develop PydginFF. We
embed PydginFF into gem5 (PydginFF+gem5) and evaluate the
performance, again using SMARTS and SimPoint, against the
baseline SMARTS and SimPoint implementations with gem5
alone. The PydginFF+gem5 configurations use the DBT-based
ISS for fast-forwarding, functional warmup, and functional pro-
filing, and the same gem5 cycle-level microarchitectural model
for detailed warmup and detailed simulation. We use PyPy/R-
Python 2.5.1 to translate PydginFF, GCC 4.4.7 to compile both
PydginFF and gem5, and SimPoint 3.2 to generate simulation
points from BBVs. We run all experiments on an unloaded 4-
core 2.40 GHz Intel Xeon E5620 machine with 48 GB of RAM.

Table IV shows sampling-related statistics of the benchmarks
we used. A difference between the two sampling techniques
is that SimPoint requires running the target program until the
end of the last simulation point instead of running it to com-
pletion. However, it can be seen that the last simulation points
tend to be close to the completion of the program, so this benefit
is minimal. The number of simulation points in SimPoint can
be varied as well, and our benchmarks showed a large range
from 3 to 27. This number determines how much total de-
tailed simulation needs to take place, which can affect the sim-
ulation performance. Since SMARTS uses the same number
of samples for each benchmark, the total detailed simulation
is the same. The table also shows the percentage of detailed
simulation (including detailed warmup) that takes place in each
sampling technique. These values are extremely low, indicating
that fast-forwarding does indeed constitute 99+% of the sim-
ulation and motivating the need for faster fast-forwarding and
functional warmup.

TABLE V. SMARTS AND SIMPOINT RESULTS

gem5 fun gem5 det Pydgin gem5 SM gem5 SP PydginFF+gem5 SM PydginFF+gem5 SP

Benchmark IPS T* IPS T** IPS T IPS T* IPS T* IPS T vs. g5 IPS T vs. g5

401.bzip2 2.4M 23h 54K 41d 613M 5.3m 2.2M 1.0d 2.0M 1.1d 44M 1.2h 20⇥ 29M 1.9h 14⇥
429.mcf 2.4M 1.8d 60K 72d 487M 13m 2.0M 2.1d 1.9M 2.2d 34M 3.1h 17⇥ 25M 4.2h 13⇥
445.gobmk 2.3M 1.6d 51K 74d 119M 45m 2.0M 1.8d 1.9M 1.9d 14M 6.3h 7⇥ 40M 2.2h 20⇥
456.hmmer 2.3M 5.6d 67K 192d 582M 32m 2.1M 6.2d 1.9M 5.8d 49M 6.4h 24⇥ 195M 1.4h 102⇥
458.sjeng 2.4M 14d 58K 596d 260M 3.2h 2.1M 16d 2.1M 16d 24M 1.5d 11⇥ 160M 5.1h 76⇥
462.libquantum 2.6M 14d 66K 534d 605M 1.4h 2.2M 16d 2.1M 17d 93M 9.1h 43⇥ 292M 2.9h 141⇥
464.h264ref 2.4M 3.6d 66K 133d 732M 17m 2.1M 4.1d 2.0M 4.0d 34M 6.2h 16⇥ 157M 1.2h 77⇥
471.omnetpp 2.8M 5.4d 62K 240d 474M 45m 2.3M 6.4d 2.3M 6.3d 27M 13h 12⇥ 209M 1.7h 90⇥
473.astar 2.5M 2.0d 64K 78d 386M 19m 2.1M 2.3d 2.0M 2.3d 31M 3.9h 15⇥ 67M 1.6h 34⇥

IPS = inst/second; T = simulation time (T* = extrapolated from 10B inst, T** = extrapolated from 500M inst); vs. g5 = speedup relative to gem5 baseline; fun =
pure functional simulation; det = pure detailed simulation; SM = sampling-based simulation with SMARTS, SP = sampling-based simulation with SimPoint.

40
1.

bz
ip

2

42
9.

m
cf

44
5.

go
bm

k

45
6.

hm
m

er

45
8.

sje
ng

46
2.

lib
qu

an
tu

m

46
4.

h2
64

re
f

47
1.

om
ne

tp
p

47
3.

as
ta

r
1h

2h

4h

8h

1d

2d

4d

8d

16d

32d

si
m

u
la

ti
o
n
 d

u
ra

ti
o
n
 l

o
g
(h

o
u
rs

)

gem5

gem5 with profiling

PydginFF+gem5

PydginFF+gem5 with profiling

Figure 6. SMARTS Results – gem5 and PydginFF+gem5 results using
SMARTS. Note the log scale for duration. with profiling = functional
profiling added on top of simulation time.

C. Overall Results
Table V shows the instructions per second (IPS) and elapsed

time results of pure gem5, pure Pydgin, and PydginFF+gem5
configurations. gem5 simulator performance is very consistent
across different benchmarks: around 2.5 MIPS and 60 KIPS
for functional and detailed simulations, respectively. Even on
the functional simulator, the simulations can take many days.
Simulating the entire lengths of the longer benchmarks in the
detailed model would take well over a year, which clearly is not
feasible. Note that the table shows the results for gem5 func-
tional simulation without any cache modeling. However, we
also ran gem5 functional simulation with cache modeling (e.g.,
for functional warmup) and the results were very close to with-
out caches. The Pydgin column shows the performance that a
pure DBT-based ISS can achieve, between 100–700 MIPS. It
should be noted that DBT-based ISS performance is more var-
ied compared to interpreter-based ISSs like the gem5 atomic
model. This variation is due to dynamic optimizations done on
instruction streams: some instruction streams benefit more than
others. The longest-running benchmark took only about 3 hours
on the DBT-based ISS.

40
1.

bz
ip

2

42
9.

m
cf

44
5.

go
bm

k

45
6.

hm
m

er

45
8.

sje
ng

46
2.

lib
qu

an
tu

m

46
4.

h2
64

re
f

47
1.

om
ne

tp
p

47
3.

as
ta

r
1h

2h

4h

8h

1d

2d

4d

8d

16d

32d

si
m

u
la

ti
o
n
 d

u
ra

ti
o
n
 l

o
g
(h

o
u
rs

)

gem5

gem5 with profiling

PydginFF+gem5

PydginFF+gem5 with profiling

Figure 7. SimPoint Results – gem5 and PydginFF+gem5 results using
SimPoint. Note the log scale for duration. with profiling = functional
profiling added on top of simulation time.

The SMARTS results can be seen in Table V (gem5 SM and
PydginFF+gem5 SM columns) and in Figure 6. The plot shows
the total duration of simulation in log timescale. In the base-
line gem5 SMARTS configuration, simulations can take 1–16
days, similar to gem5 functional model. This is because the
vast majority of instructions are being executed in the func-
tional warmup mode. To guarantee low error bounds, SMARTS
needs a sufficient number of samples. A functional profiling
step hence might be necessary to determine the total number of
instructions, which can then be used to compute the distance be-
tween samples to reach the target number of samples. Adding
this optional functional profiling phase roughly doubles the sim-
ulation time on gem5. PydginFF+gem5 using SMARTS sam-
pling performs much better: between one hour to less than two
days. The speedup of this technique compared to gem5 can be
seen in Table V, which is well over an order of magnitude for
most of the benchmarks.

The SimPoint results are also shown in Table V (gem5 SP
and PydginFF+gem5 SP columns) and in Figure 7. The base-
line gem5 SimPoint results are similar to SMARTS because the
execution time again is dominated by the highly predictable per-

401.bzip2 429.mcf 445.gobmk 456.hmmer 458.sjeng 462.libquantum 464.h264ref 471.omnetpp 473.astar
5

10

20

50

100

200

400

lo
g

(M
IP

S
)

PydginFF PydginFF DM outline

PydginFF DM inline

PydginFF SA outline

PydginFF SA inline

PydginFF SA opt

PydginFF SA+L2 opt

Figure 8. PydginFF Cache Modeling – PydginFF = PydginFF with no cache modeling; PydginFF DM/SA outline/inline = PydginFF modeling
a direct-mapped/set-associative cache modeling with JIT-FFI outlining/inlining; SA opt = set-associative cache with optimized JIT-FFI inlining;
SA+L2 opt = L1 and L2 caches (both set-associative) with optimized JIT-FFI inlining. Note that this study uses stand-alone PydginFF with no
gem5 detailed simulation. 458.sjeng and 464.h264ref with a JIT-FFI inlined SA cache model were aborted due to using too much memory.

formance of the gem5 functional model. PydginFF+gem5 man-
ages to get even better speedups compared to SMARTS (in the
range 13–141⇥) with a maximum execution time of only about
five hours. Even including functional profiling, which SimPoint
requires for every new binary, PydginFF+gem5 only takes about
nine hours in the worst case, compared to 32 days using the
baseline. The reason why SimPoint performance is better on
PydginFF+gem5 compared to SMARTS is because SimPoint
uses fast-forwarding instead of functional warmup, and fast-
forwarding on our DBT-based ISS is much faster, as will be
shown in Section V-D. One final thing to note is that longer-
running benchmarks (e.g., 462.libquantum and 458.sjeng) can
get much better speedups compared to shorter-running bench-
marks (e.g., 401.bzip2 and 429.mcf) due to the lower ratio of
detailed simulation to functional simulation.

D. JIT-FFI Case Study: Cache Modeling

The SMARTS technique requires functional warmup to be
used instead of fast-forwarding to generate the microarchitec-
tural state before the detailed simulation starts. Functional
warmup requires the long-history microarchitectural structures
(e.g., caches) to be simulated in the functional model. We used
JIT-FFI to implement direct-mapped and set-associative caches
in PydginFF. In Figure 8, we compare the performances of
stand-alone PydginFF (without gem5 detailed simulation) using
direct-mapped and set-associative cache modeling to PydginFF
without caches. We also compare the effects of using JIT-FFI
inlining and outlining when implementing the cache model. In
this study, PydginFF without caches models virtual memory,
so its performance is slightly lower than unmodified Pydgin
that uses raw memory. A JIT-FFI outlined direct-mapped cache
significantly reduces performance compared to PydginFF with-
out caches (up to 10⇥). However, JIT-FFI inlining can bring
the performance back to reasonable levels (within 50% of Py-
dginFF without caches). Outlined set-associative cache unsur-
prisingly has an even worse performance than outlined direct-
mapped cache due to the increased complexity in the cache
model. However, unlike the direct-mapped cache where JIT-FFI

inlining helps, JIT-FFI-inlined set-associative cache performs
worse that outlining.

The reason for this slowdown is because the set-associative
cache model has data-dependent control-flow at line 22 in Fig-
ure 4. This if statement checks each cache way for the tag, and
this information is recorded in the generated trace. Any time the
same static instruction loads from or stores to a memory address
that belongs to another cache way, the trace is aborted, which
causes the observed speed degradation. These frequent trace
aborts usually cause new traces to be generated, each of them
with a different control-flow path. For certain benchmarks, the
explosion of compiled traces can use up all of the host memory,
as was observed in 458.sjeng and 464.h264ref. However, in one
benchmark, 462.libquantum, the static loads and store instruc-
tions usually hit the same way, and do not display this patholog-
ical behavior. Due to these observations, PydginFF uses JIT-FFI
outlining for set-associative cache models including for the re-
sults in the previous section.

We have also implemented a more optimized set-associative
cache model using JIT-FFI inlining (shown as PydginFF SA
opt in Figure 8). This uses a relatively large (~1 GB) lookup
table for the entire address space to map every cache line to
its corresponding way in the cache, or an invalid value to in-
dicate a miss. This removes the data-dependent control flow,
and manages to increase the performance to 50–310 MIPS for
most benchmarks. Note that for a 64-bit ISA, this optimized
implementation might require a prohibitively large lookup ta-
ble. Figure 8 also shows the impact of adding a set-associative
L2 cache; PydginFF is still able to achieve simulation perfor-
mance between 30–300 MIPS for most benchmarks.

E. JIT-FFI Case Study: BBV Generation
Basic-block vectors (BBVs) generated from the functional

profiling step are crucial for the SimPoint sampling method-
ology. Because these BBVs need to be generated any time the
target software changes, it is important that the BBV generation
is fast and does not prevent agile simulation. We used JIT-FFI
to implement the BBV generation as explained in Section IV-B.
We compared unmodified Pydgin to BBV generation with JIT-

40
1.

bz
ip

2

42
9.

m
cf

44
5.

go
bm

k

45
6.

hm
m

er

45
8.

sje
ng

46
2.

lib
qu

an
tu

m

46
4.

h2
64

re
f

47
1.

om
ne

tp
p

47
3.

as
ta

r
0

100

200

300

400

500

600

700

800

M
IP

S

No BBV gen

BBV gen outline

BBV gen inline

BBV gen inline and elidable

Figure 9. BBV Generation with Optimizations – No BBV gen = un-
modified Pydgin that does not generate BBVs; BBV gen outline/in-
line = BBV generation with JIT-FFI outlining/inlining; elidable = uses
the @jit.elidable_promote hint. Note that this study uses stand-
alone Pydgin and PydginFF with no gem5 detailed simulation.

FFI outlining, JIT-FFI inlining, and using the more advanced
@jit.elidable_promote hint. These experiments were done
on stand-alone Pydgin and PydginFF without gem5 detailed
simulation. Figure 9 shows the results for this case study. The
goal with inlining and eliding optimizations is to approach the
unmodified Pydgin performance, hence have the least possible
overhead in generating the BBVs. Figure 9 shows that unopti-
mized (outlined) BBV generation can have more than 7⇥ slow-
down compared to unmodified Pydgin. With the addition of
simple JIT annotations, the BBV generation overhead shrinks
to around 20%.

VI. RELATED WORK

There has been significant prior work on DBT-based
instruction-set simulators. Seminal work on DBT techniques
provided significant performance benefits over traditional in-
terpretive simulation [15, 32, 34, 62]. These performance ben-
efits have been further enhanced by optimizations which re-
duce overheads and improve code generation quality of just-
in-time compilation (JIT) [21, 28, 57]. Current state-of-the-art
ISSs incorporate parallel JIT-compilation task farms [9], mul-
ticore simulation with JIT-compilation [1, 45], or both [23].
This work builds on top of Pydgin [29], which uses a slightly
different approach for building DBT-based simulators. In-
stead of a custom JIT, Pydgin leverages the RPython frame-
work [2, 10, 11, 41, 44], which allows encoding the architecture
description in pure Python. The RPython framework then adds
a JIT to the interpreter and translates it to C. There has also
been prior work on embedding the cycle-approximate hardware
model directly in the JIT [8, 18]. While these approaches tend
to be fast and agile for changing the software, they are not agile
for changing the modeled microarchitecture.

To reduce simulation time, KleinOsowski et. al proposed
manually crafting smaller datasets for the SPEC 2000 suite
that were representative of the larger datasets [22]. However,

manually manipulating the datasets is not agile for frequent
changes in the software stack. Sampling approaches, in con-
trast, are automated, so they are much more agile in the face of
changing software. Researchers proposed picking samples ran-
domly [16, 25], periodically [63, 64], and targeted [24, 54, 55].
Random and periodic sampling methodologies can be used to
prove error bounds. Targeted sampling uses either microarchi-
tectural [55] or microarchitecture-independent [24, 54] metrics,
to identify samples that are representative of the overall exe-
cution. A notable work on SimPoint in the context of mod-
eling different ISAs is Perelman et. al, where the authors pro-
pose techniques to synchronize the simulation points on differ-
ent ISAs to correspond to the same program phases [40]. This
work is orthogonal to PydginFF.

Checkpointing is a very popular technique to reduce the sim-
ulation time further. Architectural state is usually very large,
so checkpoint sizes on the disk is a concern, especially when
there are many checkpoints [59]. However, there are proposals
to reduce the checkpoint size by analyzing which memory ad-
dresses are actually used in each sample, and then only storing
these values in the checkpoint [59, 61], and over time cheaper
disk space made this issue less of a concern. The most serious
shortcoming of checkpointing is its lack of agility: every time
the software or the program inputs change, checkpoints need to
be re-generated.

Other techniques to improve the simulation time includes
Perelman et. al, which proposes an improved version of the
SimPoint algorithm where simulation points that occur early in
the program execution are prioritized to reduce the amount of
fast-forwarding necessary [39]. This technique can be used in
conjunction with our proposal to improve simulation time. Wis-
consin Wind Tunnel is one of the earliest uses of direct execu-
tion to speed up simulator performance [35, 49]. Patil et. al use
the Pin [30,42] dynamic binary instrumentation tool to generate
the profiling information to be used by SimPoint [37]. Simi-
larly, Szwed et. al propose native execution for fast-forwarding,
by re-compiling the original code to explicitly extract the ar-
chitectural state to be copied to a detailed simulator for sam-
pling [56]. However, both of these approaches only work if
the target ISA is the same as the host ISA, which is usually
not the case for new ISA research or studying new ISA ex-
tensions. Schnarr and Larus proposed using native execution
coupled with microarchitectural modeling of an out-of-order
processor [53]. They use memoization to cache timing out-
comes of previously seen basic blocks and starting microarchi-
tectural states and skip detailed simulation if they hit in the tim-
ing cache. Brankovic et. al looked into the problem of simu-
lating hardware/software co-designed processors which usually
include a software optimization layer [13]. For accurate simu-
lation, the software optimization layer needs to be warmed up
in addition to the microarchitecture. The authors detect ways
to determine when the optimization layer is warmed up, and
PydginFF would be an orthogonal technique to speed up the
software-optimization-layer warmup.

Another notable work to make sampling-based simulation
fast is Full Speed Ahead (FSA) [52] where the authors also
acknowledge the need for agility in the context of hardware/-
software co-design. FSA uses virtualized native execution for

fast-forwarding until the samples and also uses zero-copy mem-
ory transfer when switching between the virtualized native ex-
ecution and detailed model. However, because FSA relies on
native execution, it is not suitable when the ISA is different
than the host in the context of ISA extensions or modeling new
ISAs. Furthermore, fast functional warmup is not supported on
FSA, which is required by SMARTS. The COTSon [4] project
uses fast-forward-based sampling, where the SimNow ISS [6] is
used to fast-forward between the samples. SimNow uses DBT
techniques to speed up the simulation. However, SimNow is not
open-source and only supports the x86 ISA, so it is not possible
to use this flow for agile ISA extension developments. Other re-
cent attempts to make simulation fast (e.g., Graphite [33], CMP-
Sim [20], ZSim [51], MARSS [36], and Sniper [14]) also rely
on dynamic binary instrumentation, so are not suitable when the
target ISA is different than the host. The only other simulator
that uses JIT technology for fast-forwarding that we are aware
of is ESESC [3]. ESESC uses JIT-optimized QEMU ISS for
fast-forwarding and functional warmup. However, QEMU is a
performance-focused ISS that sacrifices productivity for perfor-
mance, which makes experimenting with ISA extensions chal-
lenging. Pydgin focuses both on productivity and performance,
and gives researchers agility in modifying the entire computa-
tion stack.

VII. CONCLUSION

State-of-the-art simulation methodologies can be fast and ag-
ile (e.g., instruction-set simulation with dynamic binary trans-
lation), accurate and agile (e.g., fast-forward-based sampling),
or fast and accurate (e.g., checkpoint-based sampling). Native-
on-native fast-forward-based sampling is fast, accurate, but par-
tially agile. In this paper, we have proposed JIT-assisted fast-
forward embedding (JIT-FFE) and JIT-assisted fast-forward in-
strumentation (JIT-FFI) that elegantly enable augmenting a de-
tailed simulator with a DBT-based ISS. We have implemented
JIT-FFE and -FFI in a new tool, called PydginFF, and we have
evaluated our approach within the context of the gem5 detailed
simulator and two different sampling techniques (periodic sam-
pling with SMARTS and targeted sampling with SimPoint).
Our results show that PydginFF is able to reduce the simula-
tion time of fast-forward-based sampling by over 10⇥, truly en-
abling fast, accurate, and agile simulation.

PydginFF opens up a number of interesting directions for
future research. JIT-FFE’s ability to provide zero-copy state
transfer and JIT-FFI’s ability to easily model microarchitectural
components can be applied to branch predictors and TLBs. Py-
dginFF can be integrated with any C/C++ microarchitectural
simulator, so we are exploring integration with simulators that
support a functional/timing split or even register-transfer-level
models. Finally, PydginFF enables new kinds of vertically in-
tegrated research. For example, PydginFF can enable explor-
ing hardware acceleration and ISA specialization for emerging
workloads such as JIT-optimized interpreters of dynamic pro-
gramming languages, using fast, accurate, and agile simulation.
PydginFF will be released as an open-source project.

ACKNOWLEDGMENTS

This work was supported in part by NSF XPS Award
#1337240, NSF CRI Award #1512937, NSF SHF Award
#1527065, a DARPA Young Faculty Award, and a donation
from Intel Corporation. We would also like to thank Trevor
Carlson for his insightful feedback about the work.

REFERENCES

[1] O. Almer et al. Scalable Multi-Core Simulation Using Parallel Dynamic
Binary Translation. Int’l Conf. on Embedded Computer Systems:
Architectures, Modeling, and Simulation (SAMOS), Jul 2011.

[2] D. Ancona et al. RPython: A Step Towards Reconciling Dynamically
and Statically Typed OO Languages. Symp. on Dynamic Languages,
Oct 2007.

[3] E. K. Ardestani and J. Renau. ESESC: A Fast Multicore Simulator
Using Time-Based Sampling. Int’l Symp. on High-Performance
Computer Architecture (HPCA), Feb 2013.

[4] E. Argollo et al. COTSon: Infrastructure for Full System Simulation.
ACM SIGOPS Operating Systems Review, 43(1):52–61, Jan 2009.

[5] R. Azevedo et al. The ArchC Architecture Description Language and
Tools. Int’l Journal of Parallel Programming (IJPP), 33(5):453–484,
Oct 2005.

[6] R. Bedicheck. SimNow: Fast Platform Simulation Purely in Software.
Symp. on High Performance Chips (Hot Chips), Aug 2004.

[7] N. Binkert et al. The gem5 Simulator. SIGARCH Computer
Architecture News (CAN), 39(2):1–7, Aug 2011.

[8] I. Böhm, B. Franke, and N. Topham. Cycle-Accurate Performance
Modelling in an Ultra-Fast Just-In-Time Dynamic Binary Translation
Instruction Set Simulator. Int’l Conf. on Embedded Computer Systems:
Architectures, Modeling, and Simulation (SAMOS), Jul 2010.

[9] I. Böhm, B. Franke, and N. Topham. Generalized Just-In-Time Trace
Compilation Using a Parallel Task Farm in a Dynamic Binary
Translator. ACM SIGPLAN Conf. on Programming Language Design
and Implementation (PLDI), Jun 2011.

[10] C. F. Bolz et al. Allocation Removal by Partial Evaluation in a Tracing
JIT. Workshop on Partial Evaluation and Program Manipulation
(PEPM), Jan 2011.

[11] C. F. Bolz et al. Tracing the Meta-Level: PyPy’s Tracing JIT Compiler.
Workshop on the Implementation, Compilation, Optimization of
Object-Oriented Languages and Programming Systems (ICOOOLPS),
Jul 2009.

[12] F. Brandner et al. Fast and Accurate Simulation using the LLVM
Compiler Framework. Workshop on Rapid Simulation and Performance
Evalution: Methods and Tools (RAPIDO), Jan 2009.

[13] A. Branković et al. Warm-Up Simulation Methodology for HW/SW
Co-Designed Processors. Int’l Symp. on Code Generation and
Optimization (CGO), Feb 2014.

[14] T. E. Carlson, W. Heirman, and L. Eeckhout. Sniper: Exploring the
Level of Abstraction for Scalable and Accurate Parallel Multi-Core
Simulation. Int’l Conf. on High Performance Networking and
Computing (Supercomputing), Nov 2011.

[15] B. Cmelik and D. Keppel. Shade: A Fast Instruction-Set Simulator for
Execution Profiling. ACM SIGMETRICS Conference on Measurement
and Modeling of Computer Systems (SIGMETRICS), May 1994.

[16] T. M. Conte, M. A. Hirsch, and K. N. Menezes. Reducing State Loss for
Effective Trace Sampling of Superscalar Processors. Int’l Conf. on
Computer Design (ICCD), Oct 1996.

[17] L. Eeckhout et al. BLRL: Accurate and Efficient Warmup for Sampled
Processor Simulation. The Computer Journal, May 2005.

[18] B. Franke. Fast Cycle-Approximate Instruction Set Simulation.
Workshop on Software & Compilers for Embedded Systems (SCOPES),
Mar 2008.

[19] J. W. Haskins Jr. and K. Skadron. Accelerated Warmup for Sampled
Microarchitecture Simulation. ACM Trans. on Architecture and Code
Optimization (TACO), Mar 2005.

[20] A. Jaleel et al. A Pin-Based On-the-Fly Multi-Core Cache Simulator.
Workshop on Modeling, Benchmarking and Simulation (MOBS), Jun
2008.

[21] D. Jones and N. Topham. High Speed CPU Simulation Using LTU
Dynamic Binary Translation. Int’l Conf. on High Performance
Embedded Architectures and Compilers (HiPEAC), Jan 2009.

[22] A. KleinOsowski et al. Adapting the SPEC 2000 Benchmark Suite for
Simulation-Based Computer Architecture Research. Int’l Conf. on
Computer Design (ICCD), Sep 2000.

[23] S. Kyle et al. Efficiently Parallelizing Instruction Set Simulation of
Embedded Multi-Core Processors Using Region-Based Just-In-Time
Dynamic Binary Translation. International Conference on Languages,
Compilers, Tools, and Theory for Embedded Systems (LCTES), Jun
2012.

[24] T. Lafage and A. Seznec. Choosing Representative Slices of Program
Execution for Microarchitecture Simulations: A Preliminary
Application to the Data Stream. Workshop on Workload
Characterization (WWC), Sep 2000.

[25] S. Laha, J. H. Patel, and R. K. Patel. Accurate Low-Cost Methods for
Performance Evaluation of Cache Memory Systems. IEEE Trans. on
Computers (TC), Nov 1988.

[26] J. Lau, E. Perelman, and B. Calder. Selecting Software Phase Markers
with Code Structure Analysis. Int’l Symp. on Code Generation and
Optimization (CGO), Mar 2006.

[27] J. Lau, S. Schoenmackers, and B. Calder. Structures for Phase
Classification. Int’l Symp. on Performance Analysis of Systems and
Software (ISPASS), Mar 2004.

[28] Y. Lifshitz et al. Zsim: A Fast Architectural Simulator for ISA
Design-Space Exploration. Workshop on Infrastructures for
Software/Hardware Co-Design (WISH), Apr 2011.

[29] D. Lockhart, B. Ilbeyi, and C. Batten. Pydgin: Generating Fast
Instruction Set Simulators from Simple Architecture Descriptions with
Meta-Tracing JIT Compilers. Int’l Symp. on Performance Analysis of
Systems and Software (ISPASS), Mar 2015.

[30] C.-K. Luk et al. Pin: Building Customized Program Analysis Tools with
Dynamic Instrumentation. ACM SIGPLAN Conf. on Programming
Language Design and Implementation (PLDI), Jun 2005.

[31] M. M. K. Martin et al. Multifacet’s General Execution Driven
Multiprocessor Simulator (GEMS) Toolset. SIGARCH Computer
Architecture News (CAN), 33(4):92–99, Sep 2005.

[32] C. May. Mimic: A Fast System/370 Simulator. ACM Sigplan Symp. on
Interpreters and Interpretive Techniques, Jun 1987.

[33] J. E. Miller et al. Graphite: A Distributed Parallel Simulator for
Multicores. Int’l Symp. on High-Performance Computer Architecture
(HPCA), Jan 2010.

[34] W. S. Mong and J. Zhu. DynamoSim: A Trace-Based Dynamically
Compiled Instruction Set Simulator. Int’l Conf. on Computer-Aided
Design (ICCAD), Nov 2004.

[35] S. S. Mukherjee et al. Wisconsin Wind Tunnel II: A Fast, Portable
Parallel Architecture Simulator. IEEE Concurrency, 1(4):12–20, Oct
2000.

[36] A. Patel et al. MARSS: A Full System Simulator for Multicore x86
CPUs. Design Automation Conf. (DAC), Jun 2011.

[37] H. Patil et al. Pinpointing Representative Portions of Large Intel
Itanium Programs with Dynamic Instrumentation. Int’l Symp. on
Microarchitecture (MICRO), Dec 2004.

[38] D. A. Penry and K. D. Cahill. ADL-Based Specification of
Implementation Styles for Functional Simulators. Int’l Conf. on
Embedded Computer Systems: Architectures, Modeling, and Simulation
(SAMOS), Jul 2011.

[39] E. Perelman, G. Hamerly, and B. Calder. Picking Statisticlally Valid and
Early Simulation Points. Int’l Conf. on Parallel Architectures and
Compilation Techniques (PACT), Sep 2003.

[40] E. Perelman et al. Cross Binary Simulation Points. Int’l Symp. on
Performance Analysis of Systems and Software (ISPASS), Apr 2007.

[41] B. Peterson. PyPy. In A. Brown and G. Wilson, editors, The
Architecture of Open Source Applications, Volume II. LuLu.com, 2008.

[42] Pin–A Dynamic Binary Instrumentation Tool. Online Webpage, 2012
(accessed Sep, 2015). http://software.intel.com/en-us/
articles/pin-a-dynamic-binary-instrumentation-tool.

[43] Pydgin Repository on GitHub. Online Webpage, 2015 (accessed Sep
15, 2015). http://www.github.com/cornell-brg/pydgin.

[44] PyPy. Online Webpage, 2014 (accessed Sep 26, 2014).
http://www.pypy.org.

[45] W. Qin, J. D’Errico, and X. Zhu. A Multiprocessing Approach to
Accelerate Retargetable and Portable Dynamic-Compiled
Instruction-Set Simulation. Intl’l Conf. on Hardware/Software
Codesign and System Synthesis (CODES/ISSS), Oct 2006.

[46] W. Qin and S. Malik. Flexible and Formal Modeling of
Microprocessors with Application to Retargetable Simulation. Design,
Automation, and Test in Europe (DATE), Jun 2003.

[47] W. Qin and S. Malik. A Study of Architecture Description Languages
from a Model-based Perspective. Workshop on Microprocessor Test and
Verification (MTV), Nov 2005.

[48] W. Qin, S. Rajagopalan, and S. Malik. A Formal Concurrency Model
Based Architecture Description Language for Synthesis of Software
Development Tools. International Conference on Languages,
Compilers, Tools, and Theory for Embedded Systems (LCTES), Jun
2004.

[49] S. K. Reinhardt et al. The Wisconsin Wind Tunnel: Virtual Prototyping
of Parallel Computers. ACM SIGMETRICS Conference on
Measurement and Modeling of Computer Systems (SIGMETRICS), May
1993.

[50] J. Ringenberg et al. Intrinsic Checkpointing: A Methodology for
Decreasing Simulation Time Through Binary Modification. Int’l Symp.
on Performance Analysis of Systems and Software (ISPASS), Mar 2005.

[51] D. Sanchez and C. Kozyrakis. ZSim: Fast and Accurate
Microarchitectural Simulation of Thousand-Core Systems. Int’l Symp.
on Computer Architecture (ISCA), Jun 2013.

[52] A. Sandberg et al. Full Speed Ahead: Detailed Architectural Simulation
at Near-Native Speed. Int’l Symp. on Workload Characterization
(IISWC), Oct 2015.

[53] E. Schnarr and J. R. Larus. Fast Out-of-Order Processor Simulation
Using Memoization. Int’l Conf. on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), Oct 1998.

[54] T. Sherwood et al. Automatically Characterizing Large Scale Program
Behavior. Int’l Conf. on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), Feb 2002.

[55] K. Skadron et al. Branch Prediction, Instruction-Window Size, and
Cache Size: Performance Tradeoffs and Simulation Techniques. IEEE
Trans. on Computers (TC), Nov 1999.

[56] P. K. Szwed et al. SimSnap: Fast-Forwarding via Native Execution and
Application-Level Checkpointing. Workshop on Interaction between
Compilers and Computer Architectures (INTERACT), Feb 2004.

[57] N. Topham and D. Jones. High Speed CPU Simulation using JIT Binary
Translation. Workshop on Modeling, Benchmarking and Simulation
(MOBS), Jun 2007.

[58] V8 JavaScript Engine. https://code.google.com/p/v8.
[59] M. Van Biesbrouck, B. Calder, and L. Eeckhout. Efficient Sampling

Startup for SimPoint. IEEE Micro, Jul 2006.
[60] H. Wagstaff et al. Early Partial Evaluation in a JIT-Compiled,

Retargetable Instruction Set Simulator Generated from a High-Level
Architecture Description. Design Automation Conf. (DAC), Jun 2013.

[61] T. F. Wenisch et al. Simulation Sampling with Live-Points. Int’l Symp.
on Performance Analysis of Systems and Software (ISPASS), Mar 2006.

[62] E. Witchel and M. Rosenblum. Embra: Fast and Flexible Machine
Simulation. ACM SIGMETRICS Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS), May 1996.

[63] R. E. Wunderlich et al. SMARTS: Accelerating Microarchitecture
Simulation via Rigorous Statistical Sampling. Int’l Symp. on Computer
Architecture (ISCA), Jun 2003.

[64] R. E. Wunderlich et al. Statistical Sampling of Microarchitecture
Simulation. ACM Trans. on Modeling and Computer Simulation, Jul
2006.

