
Cross-Layer Workload Characterization of
Meta-Tracing JIT VMs

Berkin Ilbeyi1, Carl Friedrich Bolz-Tereick2, and Christopher Batten1

1 School of Electrical and Computer Engineering, Cornell University, Ithaca, NY
2 Heinrich-Heine-Universität Düsseldorf, Germany

bi45@cornell.edu, cfbolz@gmx.de, cbatten@cornell.edu

Abstract—Dynamic programming languages are becoming in-
creasingly popular, and this motivates the need for just-in-time
(JIT) compilation to close the productivity/performance gap. Un-
fortunately, developing custom JIT-optimizing virtual machines
(VMs) requires significant effort. Recent work has shown the
promise of meta-JIT frameworks, which abstract the language def-
inition from the VM internals. Meta-JITs can enable automatic
generation of high-performance JIT-optimizing VMs from high-
level language specifications. This paper provides a detailed work-
load characterization of meta-tracing JITs for two different dy-
namic programming languages: Python and Racket. We propose a
new cross-layer methodology, and then we use this methodology to
characterize a diverse selection of benchmarks at the application,
framework, interpreter, JIT-intermediate-representation, and mi-
croarchitecture level. Our work is able to provide initial answers
to important questions about meta-tracing JITs including the po-
tential performance improvement over optimized interpreters, the
source of various overheads, and the continued performance gap
between JIT-compiled code and statically compiled languages.

I. INTRODUCTION

Dynamic programming languages are growing in popular-
ity across the computing spectrum from smartphones (e.g.,
JavaScript for mobile web clients), to servers (e.g., Node.js,
Ruby on Rails), to supercomputers (e.g., Julia for numerical
computing). Four out of the top-ten most popular programming
languages are now dynamic [12]. Dynamic languages typically
include: lightweight syntax; dynamic typing of variables; man-
aged memory and garbage collection; rich standard libraries;
interactive execution environments; and advanced introspection
and reflection capabilities. The careful use of these features can
potentially enable more productive programming.

However, the very features that make dynamic languages
popular and productive also result in lower performance. These
languages traditionally use interpreters to implement a virtual
machine that closely aligns with the language semantics, but
interpreted code can be orders-of-magnitude slower than stati-
cally compiled code. To address this performance/productivity
gap, dynamic languages are using just-in-time (JIT) optimizing
virtual machines (VMs) to apply traditional ahead-of-time com-
piler techniques at run-time [6,10,17,22,24,26,43,46,47]. Such
JIT optimizations include removing the (bytecode) fetch and
decode overhead, generating type-specialized code for the ob-
served types, (partial) escape analysis [5,39], constant propaga-
tion, and dead-code elimination. It is well known that develop-
ing state-of-the-art JIT-optimizing VMs is very challenging due
to the overall complexity (e.g., the need for profiling, record-
ing a trace, compiling, deoptimizations on type misspeculation,
garbage collection, etc.), performance requirements (e.g., the
JIT optimization process itself must be fast since it is on the crit-
ical path), and development process (e.g., debugging dynamic

code generation). With many programmer-decades of engineer-
ing effort, some JIT-optimizing VMs (e.g., Google V8 [22, 43],
Mozilla IronMonkey [24]) can begin to achieve performance
that is within 10⇥ of statically compiled code.

Unfortunately, many emerging and experimental languages
simply cannot afford the effort required to implement a custom
state-of-the-art JIT-optimizing VM. This has motivated work
on meta-JIT optimizing VMs (or “meta-JITs”) which abstract
the language definition from the VM internals such that lan-
guage implementers need not worry about the complexity typ-
ically associated with JIT optimizations. There are currently
two production-ready meta-JITs: the Truffle framework for
rapidly developing method-based JIT-optimizing VMs [45–47]
and the RPython framework for rapidly developing trace-based
JIT-optimizing VMs [6, 10] (see [29] for a detailed comparison
of these frameworks). The Truffle framework enables language
implementers to define abstract-syntax-tree- (AST-) based in-
terpreters for their language and also specify JIT-optimization
opportunities to the Graal compiler. Truffle automatically iden-
tifies “hot” target-language methods and then applies the pre-
viously specified JIT optimizations along with aggressive par-
tial evaluation before targeting the HotSpot JVM. The RPython
framework enables language implementers to build AST- or
bytecode-based interpreters in a high-level language. An inter-
preter communicates to the framework its dispatch loop, target-
language loops, and additional run-time hints. RPython auto-
matically identifies “hot” target-language loops and then gener-
ates a trace, optimizes the trace, and lowers the trace into as-
sembly. Meta-JITs can significantly reduce the effort involved
in building JIT-optimizing VMs, and so it is not surprising
that many language interpreters are now either using or exper-
imenting with meta-JITs (e.g., Python [6], Ruby [37, 40, 42],
JavaScript [47], R [41], Racket [9], PHP [20], Prolog [8],
Smalltalk [7]). To narrow the scope of this work, we focus
on the RPython meta-tracing JIT, and Section II provides ad-
ditional background on this framework.

We anticipate the trend towards meta-JITs will continue for
new, research, and domain-specific languages, and this mo-
tivates our interest in performing a multi-language workload
characterization of the RPython meta-tracing JIT. Section III
describes our baseline characterization methodology. One of
the key challenges in performing such a characterization is the
many layers of abstraction used in a meta-tracing JIT includ-
ing: the target dynamic programming language; the target lan-
guage AST or bytecode; the high-level language used to imple-
ment the interpreter; the intermediate representation (IR) used
in the meta-trace; and the final assembly instructions. In Sec-
tion IV, we describe a new cross-layer characterization method-
ology that enables inserting cross-layer annotations at a higher

Appears in the Proceedings of the 2017 IEEE Int’l Symp. on Workload Characterization (IISWC), October 2017



layer, and then intercepting these annotations at a lower layer. In
Section V, we use this new cross-layer methodology to charac-
terize a diverse selection of benchmarks written in Python and
Racket at the application, framework, interpreter, JIT-IR, and
microarchitecture level. In Section VI, we use this characteri-
zation data to answer the following nine key questions:
1. Can meta-tracing JITs significantly improve the

performance of multiple dynamic languages?
2. Does generating and optimizing traces in a meta-tracing

JIT add significant overhead?
3. Does deoptimization in a meta-tracing JIT consume a

significant fraction of the total execution time?
4. Does garbage collection in a meta-tracing JIT consume a

significant fraction of the total execution time?
5. Is all JIT-compiled code equally used in a meta-tracing JIT?
6. Does a meta-tracing JIT need to spend most of its time in

the JIT-compiled code to achieve good performance?
7. What fraction of the time in the JIT-compiled code is

overhead due to the meta-tracing JIT?
8. What is the microarchitectural behavior (e.g., instruction

throughput, branch prediction) of JIT-compiled code?
9. Why are meta-tracing JITs for dynamic programming

languages still slower than statically compiled languages?

This paper makes three technical contributions: (1) we de-
scribe a new cross-layer methodology that enables detailed
characterization of meta-JITs; (2) we present a cross-layer
workload characterization of the RPython meta-tracing JIT for
two different programming languages; and (3) we provide ini-
tial answers to the above nine questions. Our work can help
the broader community and meta-JIT developers understand the
difference between traditional JITs and meta-JITs and focus on
key performance bottlenecks.

II. BACKGROUND ON META-TRACING AND RPYTHON

The RPython toolchain uses a novel approach where the trac-
ing JIT compiler is actually a meta-tracing JIT compiler, mean-
ing that the JIT does not directly trace the application, but in-
stead traces the interpreter interpreting the application. The
interpreter is written in RPython, a statically typed subset of
Python. The interpreter uses a dispatch loop to continuously
fetch a quantum of execution (e.g., bytecode) and dispatch to a
corresponding execution function. The RPython framework has
its own standard library (similar to Python’s standard library)
and an API so that the language implementer can inform the
framework of the interpreter’s program counter, dispatch loop,
and application-level loops. The framework also supports hints
to indicate which variables can be treated as constants in the
trace, which interpreter-level functions are pure, and when type-
specialized versions of functions should be generated.

Since RPython is a proper subset of Python, interpreters writ-
ten in RPython can be executed using a standard Python inter-
preter. However, for good performance, these interpreters are
automatically translated into C using the RPython translation
toolchain (see dashed lines in Figure 1). At run-time, the ap-
plication (e.g., Python code) is compiled into bytecode, and the
bytecode executes on the C-based interpreter (see solid lines

Figure 1. RPython Framework – Dashed lines indicate ahead-of-time
operations; solid lines indicate execution-time operations. The lan-
guage each block is written in is indicated after the colon. Dark blue
blocks are where we can insert cross-layer annotations, and light blue
blocks are where we can intercept cross-layer annotations.

in Figure 1). When the interpreter reaches an application-level
loop, the framework increments an internal per-loop counter.
Once this counter exceeds a threshold, the execution is trans-
fered to a meta-interpreter. The meta-interpreter builds the
meta-trace by recording the operations performed by the inter-
preter until the application-level loop is completed. The trace is
then passed on to a JIT optimizer and assembler before initiating
native execution. A meta-trace includes guards that ensure the
dynamic conditions under which the meta-trace was optimized
still hold (e.g., the types of application-level variables remain
constant). If a guard fails or if the optimized loop is finished,
the JIT returns control back to the C-based interpreter using a
process called deoptimization. Deoptimization transforms the
intermediate state in a JIT-compiled trace to the precise state re-
quired to start execution of the interpreter. If a guard fails often,
it is converted into a bridge, which is a direct branch from one
JIT-compiled trace to another, separately JIT-compiled trace.
More on the RPython toolchain can be found in [1, 4, 36].

Meta-tracing JITs have some important differences compared
to traditional tracing JITs. Tracing JITs trace the execution of
the target program directly (e.g., recording the trace of exe-
cuted bytecodes), while meta-tracing JITs trace the execution
of the interpreter as it executes the target program. These ex-
tra levels of abstraction can potentially result in increased over-
head during tracing, deoptimization, garbage collection, and
JIT-compiled execution. Also note that the meta-interpreter op-
portunistically inlines interpreter-level function calls. However,
if these functions contain loops with data-dependent bounds,
they are excluded from the trace to avoid numerous guard fail-
ures. These functions are ahead-of-time- (AOT-) compiled (and
so not dynamically optimized) and then called from within the
JIT-compiled code. While traditional tracing JITs may also
include calls to the JIT framework from within JIT-compiled

Appears in the Proceedings of the 2017 IEEE Int’l Symp. on Workload Characterization (IISWC), October 2017



code, there is the potential for many more calls in a meta-tracing
JIT because such calls are particularly easy to use in RPython.

III. BASELINE CHARACTERIZATION METHODOLOGY

To characterize meta-tracing JITs across multiple languages,
we will study Python (a well-known, general-purpose program-
ming language) and Racket (a general-purpose programming
language in the Lisp-Scheme family). As a baseline, we will
use the “reference” interpreters for both Python (i.e., CPython)
and Racket. Technically, Racket does not use an interpreter
but instead uses a custom JIT-optimizing VM. Both Python
and Racket also have highly optimized meta-tracing JITs im-
plemented using the RPython framework. For Python, we will
use the very popular PyPy meta-tracing JIT [6] and for Racket,
we will use the Pycket meta-tracing JIT [9]. For each language,
we will also explore an interpreter generated from the RPython
translation toolchain but without the meta-tracing JIT enabled
as another example of a traditional interpreter. Finally, we also
include results for C/C++ implementations of some benchmarks
to provide a reference for statically compiled languages.

We use benchmarks from two suites: the PyPy Benchmark
Suite [31] and the Computer Languages Benchmarks Game
(CLBG) [19]. We use the PyPy Benchmark Suite because it
is widely used for benchmarking Python programs [5, 36]. We
use the CLBG to compare the performance of different lan-
guages and interpreters on highly optimized implementations of
the same benchmarks. The benchmarks in the PyPy Benchmark
Suite are single-threaded and single-process, whereas many im-
plementations in the CLBG make use of multi-programming
and multi-threading. CPython and the RPython framework cur-
rently make use of a Global Interpreter Lock (GIL) [3], pre-
venting parallelism in multi-threaded programs. Because the
focus of the paper is on the performance characterization of
meta-tracing JITs, and not of GILs and parallelism, we restrict
all benchmarks, including many parallel implementations in the
CLBG, to use a single hardware thread. Because CLBG pro-
vides multiple implementations of the same benchmark and lan-
guage, we pick the fastest implementation for each benchmark
and language combination. Due to some missing features of the
Racket language in Pycket, a number of the CLBG benchmarks
did not execute correctly.

When characterizing at the JIT IR level, we make use of the
PyPy Log facility, which is part of the RPython framework. The
PyPy Log contains information about each JIT-compiled trace
including the bytecode operations, JIT IR nodes, and assembly
instructions contained in each trace, along with the number of
times each trace was executed. Enabling the PyPy Log slightly
degrades performance (<10%), so we disabled this feature when
comparing the overall execution time of the interpreters.

We use two mechanisms to collect microarchitectural mea-
surements through performance counters. The first uses the per-
formance application programming interface (PAPI) to record
performance counters on certain cross-layer annotations [30].
We implemented this mechanism in the RPython-based inter-
preters. To compare microarchitectural characteristics of meta-
tracing to other interpreters and statically compiled code, we
use Linux’s perf tool to periodically read the performance
counters.

IV. CROSS-LAYER CHARACTERIZATION METHODOLOGY

The baseline characterization methodology described in Sec-
tion III can enable initial analysis, but the many layers involved
in a meta-tracing JIT make it difficult to gain insight into cross-
layer interactions between: the target dynamic programming
language; the target language AST or bytecode; the interpreter
including the RPython standard library; the JIT IR used in the
meta-trace; and the final assembly instructions. In this sec-
tion, we describe a new cross-layer characterization method-
ology based on using cross-layer annotations.

Cross-layer annotations are a unified mechanism to annotate
events of interest at one level of meta-tracing execution, and col-
lect these annotations at different level. For instance, a Python
application might annotate when a particular function is called,
the Python interpreter might annotate every time the dispatch
loop is executed, the RPython framework might annotate when
loops are being traced or when garbage collection occurs, and
generated machine code from the JIT compiler might annotate
when a particular assembly sequence corresponding to a par-
ticular IR node is being executed. Figure 1 shows the blocks
where the cross-layer annotations can be inserted in dark blue.

These annotations can be collected at different levels. At the
assembly instruction level, annotations can be observed by us-
ing a carefully selected instruction which does not change the
program behavior but also includes a tag to indicate the corre-
sponding annotation. Our methodology uses the nop instruction
in the x86 ISA. Although the nop instruction supports the usual
addressing modes of the x86 ISA, the architecture only con-
siders the opcode and ignores the corresponding address. Our
methodology uses a unique address to serve as the tag for each
cross-layer annotation. Other ISAs can use other instructions
or sequences of instructions to achieve a similar effect (e.g.,
add r1, r1, #145; sub r1, r1, #145 in ARM). The ex-
ecution target that executes these machine instructions (e.g., a
dynamic instrumentation tool, an ISA simulator, or a soft-core
processor on an FPGA) can perform some action when one of
these cross-layer annotations is executed. Cross-layer annota-
tions can also be collected at higher levels. For example, the
timestamps or microarchitectural measurements can be logged
to a file every time a cross-layer annotation is called. Figure 1
shows the blocks where the cross-layer annotations can be col-
lected in light blue.

In this paper, we have modified the RPython framework and
inserted cross-layer annotations at various events of interest in
the framework (e.g., when a minor garbage collection starts and
ends, when tracing starts and ends, when execution starts on
the JIT-compiled code, etc.). This allows us to know exactly
what the framework is doing at a given point of time. We can
use this information to get detailed breakdowns of time spent
in different parts of the framework. We also added cross-layer
annotations at the interpreter level at the beginning of the dis-
patch loop. This allows us to have an independent measure
of “work” (e.g., number of bytecodes in PyPy) regardless of
whether the interpreter is being used (if the JIT is off or has not
warmed up yet), the tracing interpreter is being used, or the JIT-
compiled code is being executed. This enables precisely finding
the JIT warmup break-even point. Finding the break-even point
using other techniques is likely very difficult because counting

Appears in the Proceedings of the 2017 IEEE Int’l Symp. on Workload Characterization (IISWC), October 2017



the number of bytecodes executed in the JIT would likely in-
troduce significant performance overheads that would skew the
results. We added application-level APIs to our interpreters so
that cross-layer hints can also be emitted from the application
level. Finally, we can also emit cross-layer annotations when
each JIT IR node is lowered to assembly instructions. This en-
ables tracking the connection between traces, JIT IR nodes, and
assembly instructions. Each cross-layer annotation can be en-
abled/disabled from the command line.

We use the Pin dynamic binary instrumentation tool [28] as
the primary mechanism for intercepting cross-layer annotations.
We have developed a custom PinTool that detects the nop in-
structions and can track information on the phase, the bytecode
execution rate, AOT-compiled functions, and JIT IR nodes.

V. CROSS-LAYER WORKLOAD CHARACTERIZATION

This section presents cross-layer workload characterization
studies that will help us answer the key questions regarding
meta-tracing JITs.

A. Application-Level Characterization

We first compare the overall application performance of dy-
namic languages running on different VMs. Table I compares
the application performance of the PyPy Benchmark Suite us-
ing CPython, PyPy without a meta-tracing JIT, and PyPy with a
meta-tracing JIT. We can see that CPython is consistently faster
than PyPy with its meta-tracing JIT disabled for almost all of
the benchmarks, usually by 2⇥ or more. The first reason for
this is because CPython is written directly in C, whereas PyPy is
written in a high-level language (RPython) translated to C. The
other reason is because CPython is designed to only be an in-
terpreter, and thus it includes some modest interpreter-focused
optimizations. The performance benefit of PyPy with the meta-
tracing JIT over CPython is much more varied and usually much
higher: from 0.7–51⇥.

To compare different languages, Table II shows the over-
all execution time of the CLBG benchmarks. Similar trends
hold here between PyPy with the meta-tracing JIT enabled and
CPython, except for a few cases (chameneosredux, pidigits,
revcomp) where CPython performs much better. These Python
programs use external libraries, which are often written in C us-
ing an API that exposes CPython implementation details. There
is ongoing work on a PyPy C-compatibility layer which could
enable similar performance benefits. We see that the other
RPython-based meta-tracing JIT, Pycket, has similar perfor-
mance as Racket with a range of 0.3–2⇥. This is due to: (1) Py-
cket is less mature compared to PyPy; and (2) unlike CPython,
Racket uses a custom JIT-optimizing VM. Racket- and Python-
language implementations, even with a meta-tracing JIT, tend
to perform very poorly compared to C and C++.

B. Framework-Level Characterization: Phases

Tracing JITs typically have different phases inherent to the
way they execute and optimize code. Initially, execution starts
in the interpreter phase. When hot loops are detected, these
loops are traced and compiled in the tracing phase. The JIT-
compiled code is executed during the JIT phase. Occasionally,
there are calls to AOT-compiled functions in the runtime from

TABLE I. PYPY BENCHMARK SUITE PERFORMANCE

CPython PyPy w/o JIT PyPy with JIT

Benchmark t (s) IPC M t (s) vC IPC M t (s) vC IPC M

richards 0.2 1.65 5.9 0.5 0.5 1.32 6.4 0.004 51.2 1.38 3.5
crypto_pyaes 2 1.94 3.1 4 0.4 1.55 3.2 0.06 30.2 1.62 0.8

chaos 0.3 1.49 5.5 0.7 0.4 1.03 6.7 0.01 27.2 1.31 1.9
telco 0.9 1.24 7.4 2 0.4 0.88 7.3 0.03 27.1 1.11 4.0

spectral-norm 0.3 1.93 3.3 0.9 0.3 1.44 3.6 0.01 25.9 1.90 0.8
django 0.7 1.24 5.7 1 0.5 0.88 6.6 0.04 18.2 1.37 2.5

twisted_iteration 0.09 1.41 4.5 0.4 0.2 0.95 7.1 0.006 15.0 1.27 0.8
spitfire_cstringio 10 1.92 1.4 9 1.1 1.46 3.0 0.9 11.4 2.00 0.5

raytrace-simple 2 1.54 5.4 4 0.5 1.13 5.8 0.2 10.4 1.22 2.7
hexiom2 149 1.88 2.5 442 0.3 1.38 4.2 14 10.1 1.91 1.2

float 0.4 1.62 2.5 0.8 0.5 1.22 4.6 0.05 7.1 1.38 2.9
ai 0.3 1.44 3.7 1 0.3 1.05 4.7 0.04 7.0 1.79 1.6

nbody_modified 0.3 2.06 2.9 0.9 0.3 1.58 3.0 0.04 6.9 1.50 1.1
twisted_pb 0.05 1.12 7.9 0.1 0.4 0.86 7.0 0.007 6.4 0.68 4.1

fannkuch 1 1.70 3.8 2 0.6 1.36 6.5 0.2 5.2 1.59 5.5
genshi_text 0.1 1.29 6.2 0.4 0.3 0.94 7.1 0.02 5.2 1.30 1.8
pyflate-fast 2 1.68 4.4 4 0.5 1.29 5.6 0.4 4.8 1.62 2.4
bm_mako 0.1 1.46 2.3 0.3 0.4 0.89 5.1 0.02 4.8 1.41 2.3

twisted_names 0.008 0.74 13.9 0.02 0.5 0.67 9.5 0.002 4.1 0.51 9.4
json_bench 3 1.54 4.6 31 0.1 1.17 6.2 0.9 3.9 1.91 0.7
genshi_xml 0.2 1.11 7.6 0.8 0.3 0.78 8.6 0.06 3.9 1.09 1.4

bm_chameleon 0.07 1.35 5.4 0.2 0.4 1.05 5.6 0.02 3.5 1.39 2.5
pypy_interp 0.3 1.15 7.0 0.6 0.5 0.89 6.5 0.1 3.3 0.91 6.4
twisted_tcp 0.6 0.68 10.3 1 0.5 0.54 9.2 0.2 3.0 0.48 3.4

html5lib 11 0.93 9.7 27 0.4 0.77 7.0 4 2.5 0.89 4.6
meteor-contest 0.2 1.51 7.0 0.6 0.4 1.32 3.4 0.1 2.4 1.64 3.9

sympy_sum 1 1.25 5.6 5 0.3 0.80 6.6 0.6 2.3 0.99 5.6
spitfire 5 1.82 2.4 12 0.4 1.37 2.7 2 2.1 1.55 1.1

spambayes 0.2 1.59 4.3 0.6 0.4 1.35 4.2 0.1 2.0 0.99 6.4
rietveld 0.6 0.99 9.1 1 0.5 0.76 7.8 0.3 1.8 0.76 8.4

deltablue 0.02 1.74 3.5 0.05 0.4 1.25 4.2 0.01 1.7 0.98 6.1
eparse 0.8 1.35 5.5 1 0.6 0.96 6.3 0.5 1.5 0.77 5.8

sympy_expand 1 1.17 7.1 3 0.4 0.83 6.7 0.8 1.4 0.86 6.4
slowspitfire 0.4 1.86 2.1 1 0.4 1.52 2.2 0.3 1.3 1.39 0.5

sympy_integrate 4 1.30 5.5 15 0.2 0.88 6.3 3 1.2 0.86 6.8
pidigits 12 2.45 0.1 11 1.1 1.83 0.1 10 1.1 1.84 0.1

bm_mdp 10 1.34 8.6 70 0.2 1.19 5.2 10 1.1 1.39 2.1
sympy_str 0.5 1.14 7.7 1 0.4 0.83 6.9 0.7 0.7 0.88 7.2

Average 1.46 5.4 0.5 1.10 5.6 1.7 1.27 3.4

Overall execution times ordered by PyPy with JIT speedup over CPython.
vC = speedup compared to CPython. IPC = instructions per cycle. M = branch
misses per 1000 instructions.

TABLE II. CLBG PERFORMANCE

C CPython PyPy Racket Pycket

Benchmark IPC Sdn IPC Sdn IPC Sdn IPC Sdn IPC

binarytrees 2.16 37 1.95 4.5 1.37 5.7 1.80 11 1.26
chameneosredux 1.19 87 1.13 1374 0.86 111 0.99 – –

fannkuchredux 1.16 89 1.85 25 1.43 13 1.97 7.2 1.16
fasta 1.89 8.3 1.93 5.6 1.23 2.0 1.09 2.1 1.09

knucleotide 1.74 15 1.69 8.8 1.65 4.4 2.20 – –
mandelbrot 1.99 115 2.23 29 1.29 9.0 1.52 6.7 1.21

meteor 1.18 78 1.78 30 1.04 12 1.63 31 1.06
nbody 2.23 97 2.16 12 1.33 5.3 1.68 2.8 1.20

pidigits 1.65 1.8 1.48 5.1 0.96 13 0.93 7.4 1.89
regexdna 1.36 3.8 1.78 3.1 1.12 6.7 2.01 – –
revcomp 1.43 4.0 1.96 6.8 1.35 5.1 2.10 4.0 1.21

spectralnorm 1.20 104 1.97 10 1.25 6.4 1.56 4.2 1.16
threadring 1.03 20 0.97 16 0.94 16 0.82 – –

IPC and slowdowns (Sdn) compared to C/C++. Meta-tracing JIT is enabled for
PyPy and Pycket.

Appears in the Proceedings of the 2017 IEEE Int’l Symp. on Workload Characterization (IISWC), October 2017



Figure 2. RPython Framework Breakdown – Shows the breakdown of time spend in various components of the RPython framework.

Figure 3. Framework Phases in Time – Each line indicates which phase
the framework currently is in during the first 10 billion instructions of
the best-performing (richards) and worst-performing (sympy_str)
benchmarks.

JIT-compiled code, which is the JIT call phase. Finally, there
is the GC phase for garbage collection and the blackhole phase
deoptimization (due to the “blackhole interpreter” used to im-
plement deoptimization in RPython).

Using cross-layer annotations and a custom PinTool that in-
tercepts them, we can tease apart how much of the execu-
tion time is spent in each of these phases. Figure 3 shows
the phases for the best- and worst-performing (compared to
CPython) benchmarks. As expected, the framework initially
spends most of its time in the interpreter, tracing, and black-
hole phases until the meta-tracing JIT warms up, then time in
JIT phase dominates. Interestingly, garbage collection is used
more heavily before the JIT phase. This is most likely due to es-
cape analysis in the JIT which removes many object allocations.
Figure 2 shows the breakdown of time spent in each phase by
benchmark. For some benchmarks, the JIT and JIT call phases
dominate the execution (e.g., ai, json_bench), while others
spend most of their time in the interpreter (e.g., sympy_str).
With the exception of blackhole, every different phase domi-
nates the execution time of at least one benchmark. This shows
that none of these phases can be ignored from an optimiza-
tion perspective, and aggressive improvements in one of these
phases unfortunately translates to modest improvements of ex-
ecution times on average. Figure 4 compares the phase break-
down for the meta-tracing JITs on the CLBG benchmarks. For

Figure 4. RPython Framework Breakdown – Shows the breakdown of
time spent in various components of the RPython framework in CLBG.
The PyPy and Pycket implementations are suffixed with _p and _r
respectively.

the most part, different interpreters show similar trends when
running the same program: large usage of GC in binarytrees,
large usage of the JIT in fasta and spectralnorm, heavy
use of JIT calls in pidigits, and large warmup overheads in
meteor. The main exception to this is revcomp where PyPy
spends most of its time in the interpreter while Pycket is able to
compile and use JIT traces quickly.

C. Framework-Level Characterization: JIT Calls
Figures 2 and 4 show that for many benchmarks, the frame-

work is mostly in the JIT call phase. These calls to AOT-
compiled functions typically happen at a very fine granularity,
unlike our cross-layer methodology, many other measurement
methodologies typically lump this phase into the JIT phase.
These calls arise from functions in the interpreter or the meta-
tracing framework that cannot be inlined into the trace (typically
because they contain unbounded loops).

To determine which AOT-compiled functions are being called
from JIT-compiled meta-traces, we tracked the target addresses
when our PinTool observed a call from JIT-compiled code. Ta-
ble III shows the functions that constitute at least 10% of the
overall execution time. Note that if these functions call other
functions, the time spent in the called functions is also counted
as part of these entry points. Some of the functions are part
of RPython-level type intrinsics which implement the opera-
tions over standard Python types (e.g., lists, strings, dictionar-
ies) used in the interpreter and framework. Another source
is the RPython standard library, which provides a subset of
Python’s standard library for use by the interpreter and frame-
work. There are also external C functions usually part of the

Appears in the Proceedings of the 2017 IEEE Int’l Symp. on Workload Characterization (IISWC), October 2017



TABLE III. SIGNIFICANT AOT-COMPILED
FUNCTIONS FROM META-TRACES

Benchmark % Src Function

ai 19.4 I setobject.get_storage_from_list
bm_chameleon 17.9 R rordereddict.ll_call_lookup_function

bm_mako 26.1 L runicode.unicode_encode_ucs1_helper
bm_mako 12.8 R rordereddict.ll_call_lookup_function
bm_mdp 16.8 R rordereddict.ll_call_lookup_function

django 16.6 L rstring.replace
django 14.8 R rordereddict.ll_call_lookup_function
eparse 12.3 R rstr.ll_join

fannkuch 20.0 I IntegerListStrategy._setslice
fannkuch 15.9 I IntegerListStrategy._fill_in_with_sliced...

genshi_xml 12.4 R rordereddict.ll_call_lookup_function
hexiom2 10.8 I IntegerListStrategy._safe_find
html5lib 13.1 I W_UnicodeObject._descr_translate

json_bench 18.5 M _pypyjson.raw_encode_basestring_ascii
json_bench 10.6 R rbuilder.ll_append

meteor-contest 35.4 I BytesSetStrategy.difference_unwrapped
meteor-contest 22.2 I BytesSetStrategy.issubset_unwrapped

nbody_modified 44.6 C pow
pidigits 36.1 L rbigint.divmod
pidigits 33.2 L rbigint.int_mul
pidigits 13.0 L rbigint.lshift
pidigits 12.6 L rbigint.add

pyflate-fast 16.1 R rstr.ll_find_char
pyflate-fast 11.7 I BytesListStrategy.setslice

spitfire 22.1 R rstr.ll_join
spitfire 14.4 R rstr._ll_strhash

spitfire_cstringio 14.6 R rbuilder.ll_append
spitfire_cstringio 14.1 R ll_str.ll_int2dec

telco 13.4 L rarithmetic.string_to_int
twisted_tcp 16.6 C memcpy

Significant (>10% of overall execution) functions. The percentages are the
time spent in AOT-compiled functions in overall execution. Src is where the
functions are defined: R = RPython type system intinsics; L = RPython’s std
lib; C = external stdlib call; I = interpeter; M = PyPy module.

C standard library. In addition, some of these functions are de-
fined by the interpreter or Python modules. In particular we can
see that many benchmarks spend a significant amount of time
in rordereddict.ll_call_lookup_function, which is the
hashmap lookup function of RPython’s dictionary data struc-
ture.

D. Interpreter-Level Characterization: JIT Warmup

Warmup can have important performance implications: com-
piling traces too eagerly results in wasted work, and compiling
traces too lazily results in wasted opportunity. Traditional char-
acterization methods can struggle to capture detailed warmup
behavior. This is because the overhead associated with the pro-
cess of measuring might alter the measured performance. We
insert cross-layer annotations at the interpreter level at the be-
ginning of each iteration of the dispatch loop. This enables
accurately measuring the bytecode execution rate using a Pin-
Tool, and enables a precise definition of completed work per
unit time. This data can enable finding the break-even points
where JIT-compiling can compile efficient code that amortizes
the overhead of tracing and compiling.

Figure 5 shows the warmup curves of the benchmarks, nor-
malized to CPython. These plots show the number of bytecodes
executed per unit time compared to CPython over the first 10
billion assembly instructions executed. It also shows the PyPy
warmup break-even points for the point in time where the num-

ber of bytecodes executed thus far on PyPy matches that on
CPython (dashed vertical lines) and PyPy without JIT (dotted
vertical lines). In PyPy, it is surprising that the meta-tracing
JIT compilation incurs negligible slowdowns compared to run-
ning the code on a PyPy interpreter without a meta-tracing JIT.
The break-even point for PyPy compared to PyPy without JIT
is usually reached very early on in the programs. There is more
variability for the break-even points of reaching CPython per-
formance. The programs where PyPy’s performance advantage
is smaller tends to have break-even points that are later. These
benchmarks tend to be more complicated and have many differ-
ent traces, so the warmup tends to take longer.

E. JIT IR-Level Characterization: Compilation Burden and
Usefulness of Meta-Traces

One potential drawback of tracing-based JITs as opposed
to method-based JITs is long and redundant traces. Whereas
the unit of compilation in a method-based JIT is typically an
application-level method, for tracing-based JITs, it is a partic-
ular trace taken as an application-level loop is executed. Dif-
ferent functions called as the loop executes are inlined into the
trace, and different control paths taken result in different traces.
Tracing-based JITs therefore tend to perform poorly when the
application-level code has many alternative control flow paths
that are taken in similar probabilities. Such code can result in
the compilation of many traces, most of them infrequently used.
JIT compilation of unused traces can be a compilation burden
and hurt the performance, especially for long traces. Loops with
long bodies (or loops that call many functions) result in long
traces. The main drawback of long and infrequently used traces
is the time it takes to compile them may not be amortized espe-
cially since some compiler passes have superlinear complexities
with respect to the size of the code. The secondary drawback is
increased memory usage to store the generated code.

Figure 6(a) shows the number of IR nodes that are JIT-
compiled, which shows a large variability, ranging from less
than 1000 (float, nbody_modified, slowspitfire, and
pidigits) to 370,000 (sympy_integrate). Compiling a
small number of IR nodes can indicate either the program does
not have many branches due to its arithmetically heavy nature,
or in the case of pidigits, spends most of its time in calls to
AOT-compiled functions for arithmetic operations. While there
is a large variability across different benchmarks, the best per-
forming benchmarks typically compile between 2000-20,000
IR nodes. Figure 6(b) shows the percentage of JIT IR nodes
that are executed 95% of the time spent in the JIT. For some
benchmarks (e.g., spectral-norm, spitfire_cstringio,
slowspitfire, and bm_mdp), only 5% of the compiled IR
nodes are executed 95% of the time, indicating these bench-
marks have exceptionally “hot” regions within the JIT-compiled
code. For these benchmarks, multi-tiered JIT compilation might
be beneficial even though this is not currently supported in
RPython. If a large number of JIT-compiled IR nodes are used
in the 95th percentile, this shows that many traces are used
equally (e.g., in sympy_integrate and sympy_str) indicating
a very branchy application and large compiler burden (as Fig-
ure 2 also shows large tracing and blackhole overheads). Fig-
ure 6(c) shows the number of executed IR nodes per one million
dynamic assembly instructions. This data mostly matches the

Appears in the Proceedings of the 2017 IEEE Int’l Symp. on Workload Characterization (IISWC), October 2017



Figure 5. PyPy Warmup – PyPy bytecode execution rate normalized to CPython for the first 10 billion instructions. The dashed vertical lines
indicate the break-even point with respect to CPython: in this point in time, both PyPy and CPython have executed the same number of bytecodes.
The dotted vertical lines indicate the break-even point with respect to PyPy without JIT. The cross indicates the eventual (at the end of the
execution) speedup of PyPy compared to CPython. The benchmarks are sorted in the order of speedup over CPython.

Figure 6. JIT IR Node Compilation and Execution Statistics
– (a) Total number of JIT IR Nodes compiled throughout the
benchmarks (every benchmark executed for 10B instructions),
shown in log scale. (b) Most commonly executed JIT IR nodes
(95% of the time spent in JIT-compiled code) shown as percent-
age of all IR nodes compiled. (c) Total (dynamic) number of IR
nodes executed for every one million of assembly instructions
executed. The benchmarks are sorted in the order of speedups
over CPython.

Appears in the Proceedings of the 2017 IEEE Int’l Symp. on Workload Characterization (IISWC), October 2017



Figure 7. Categorized weighted IR node frequency by benchmark – Shows categorized breakdown of roughly the ratio of time spend in each class
of IR nodes.

Figure 8. IR Node Frequency – In the PyPy Benchmark Suite, shows
the frequency of the most common 35 IR node types.

time spent in JIT-compiled code in Figure 2. The variations are
mostly due to some IR nodes mapping to different number of
x86 assembly instructions. It can also be seen that the best per-
forming benchmarks on PyPy tend to have higher than average
dynamic number of executed IR nodes.

F. JIT-IR-Level Characterization: Composition of Meta-Traces

Figure 8 shows the dynamic frequency histogram of different
IR node types encountered in the PyPy Benchmark Suite, based
on how many times these nodes are executed. Interestingly,
80% of IR node types constitute less than 1% of the overall ex-
ecution in the JIT-compiled traces (mostly for uncommon use
cases). Two IR nodes, getfield_gc and setfield_gc, con-
stitute more than 18% and 10% respectively of all JIT traces.
Implied by their name, these two operations get or set a field
from a pointer, resulting in a memory load or a store after
pointer arithmetic.

However, the frequency alone of these IR node types does
not indicate how expensive they are. For this, Figure 9 shows
on average, how many x86 assembly instructions are required
to implement each IR node type. We can see that the top IR
node type is call_assembler which maps to more than 30 as-
sembly instructions. Other types of calls also take up more than
15 assembly instructions. The call_assembler calls another
JIT trace from this trace, while the other call_ nodes call AOT-
compiled functions. These values are the call overheads, not the
time spent in the called functions. However, most IR nodes, in-
cluding the common getfield_gc and setfield_gc, require
only one or two assembly instructions.

Figure 7 shows the breakdowns with IR nodes categorized as:
memory operations (memop), guards, call overheads, control

Figure 9. Average Number of Assembly Instructions of IR Nodes –
In the PyPy Benchmark Suite, shows the average number of assembly
instructions to implement the top 35 most expensive IR node types.

flow (ctrl), integer operations (int), memory allocation (new),
floating-point operations (float), string operations (str), pointer
manipulations (ptr), and unicode operations. Across all bench-
marks, memory operation IR nodes are the most common,
around 26%, followed by guards at 22%, call overheads at 18%,
and control flow at 16%. Memory operations are the biggest
part of meta-traces, followed by guards, which are unique to
JIT-compiled code. Call overheads are also a major part of
meta-traces.

Looking at how these categories break down per benchmark,
we see that memory operations are the most significant part of
meta-traces for most benchmarks, which likely is due to Python
code that makes it easy to work with complex data structures.
Exceptions to this are bm_chameleon, bm_mako, bm_mdp,
fannkuch, pidigits, spambayes, spectralnorm. We see
that bm_chameleon, pidigits, and spitfire_cstringio
have large call overheads, as these benchmarks cause many
calls to AOT-compiled functions. As an example, pidigits
is making very heavy usage of bignum arithmetic, which is all
implemented in AOT-compiled code that the meta-traces call
into. We see that guard percentages stay similar across differ-
ent benchmarks except for richards where it constitutes most
of the execution. We see that even in the arithmetic-intensive
benchmarks (e.g., float, nbody_modified, chaos), integer
and floating point operations do not constitute a significant por-
tion of meta-traces.

G. Microarchitecture-Level Characterization

Table I shows the instructions per cycle (IPC) and branch
misses per 1000 instructions (MPKI) for the benchmarks. There

Appears in the Proceedings of the 2017 IEEE Int’l Symp. on Workload Characterization (IISWC), October 2017



is a high variance (standard deviation is 0.37, 0.30, and 0.41 re-
spectively for CPython, PyPy without JIT, and PyPy with JIT)
in IPC across all benchmarks, indicating the application has a
major impact on the IPC. However, CPython has a better IPC
than PyPy with JIT by 15%, and PyPy without JIT by 32%. The
IPC difference between the two interpreters without the JIT is
surprising and partially accounts for the 2⇥ performance gap
between the two. This is again likely because RPython is not
optimized for use as an interpreter without a meta-tracing JIT.

The JIT-compiled code includes numerous guards to ensure
the observed control paths still hold true. This might lead to an
increase in the number of branches. However, the results show
that the branch rate across all interpreters is almost identical and
different benchmarks do not show much variation. The MPKI
of CPython and PyPy without JIT is very similar, however when
the JIT is enabled, the MPKI drops by 35%. This is likely due
to the more specialized and denser code produced by the JIT
helping the processor to better predict the control flow [34].

The cross-layer annotations also allow us to study microar-
chitectural characteristics by phases. Table IV shows the mean
and standard deviation of IPC, branches per instruction, and
branch miss rate for each phase. As the overall results sug-
gested, the interpreter IPC tends to be low with a relatively large
misprediction rate. This is partially due to the interpreter being
used only at the beginning for a short amount of time. The JIT
phase (in this table, this also includes calls to AOT-compiled
functions from the JIT-compiled code) has the largest IPC mean
and the largest variation. It also has the lowest miss rate. The
higher variation in the microarchitectural values is due to the
application-specific nature of JIT-compiled code. The black-
hole interpreter has the worst IPC among the phases, making
the observations in Section V-B regarding the expense of this
phase even more significant. Finally, the GC phase has a rela-
tively high IPC compared to the other phases, perhaps because
the same collection code is executed over and over, allowing the
predictors to warm up sufficiently.

VI. DISCUSSION

In this section, we use the results from Section V to derive
initial answers to the nine key questions listed in Section I.

1. Can meta-tracing JITs significantly improve the perfor-
mance of multiple dynamic languages? While it is well known
that JIT compilation can significantly improve the performance
of dynamic languages, the performance of meta-tracing JITs
across different languages is still an active research area. As Ta-
ble I showed, the PyPy meta-tracing JIT was indeed able to out-
perform the CPython interpreter on almost all benchmarks (up
to 51⇥ on richards and 30⇥ on crpyto_pyaes). Looking at
the CLBG results in Table II, the Pycket meta-tracing JIT had
comparable performance to Racket, a custom JIT-optimizing
VM. Even though there are some exceptions, and certainly
room for improvement, our results seem to confirm the promise
of meta-tracing JITs.

2. Does generating and optimizing traces in a meta-tracing
JIT add significant overhead? The conventional wisdom is
that JIT warmup can add a significant overhead, which might
be problematic especially when interactivity is important. We
see in Figure 2 that tracing can consume a large percentage of

TABLE IV. MICROARCHITECTURAL
CHARACTERIZATION OF PHASES

Phase IPC Branch / inst Branch miss rate

interpreter 0.76 (0.26) 0.15 (0.019) 0.06 (0.021)
tracing 1.05 (0.07) 0.15 (0.003) 0.05 (0.005)

JIT 1.24 (0.53) 0.16 (0.038) 0.02 (0.026)
blackhole 0.48 (0.10) 0.13 (0.009) 0.09 (0.019)

GC 1.18 (0.30) 0.20 (0.024) 0.04 (0.016)

Microarchitectural means (and standard deviation in parentheses) by RPython
phase in the PyPy Benchmark Suite.

the total execution time for certain benchmarks. However, Fig-
ure 5 shows that the break-even point where meta-tracing JIT
performance exceeds PyPy without the meta-tracing JIT occurs
early in the benchmark execution. This suggests that even for
short running applications, enabling the meta-tracing JIT does
not significantly reduce performance. So compared to the basic
PyPy interpreter, the overhead is not as significant as the con-
ventional wisdom might suggest. CPython’s interpreter is faster
than PyPy without the meta-tracing JIT, so the corresponding
break-even point is somewhat later in the execution.

3. Does deoptimization in a meta-tracing JIT consume a sig-
nificant fraction of the total execution time? The conventional
wisdom is that deoptimization should be relatively inexpen-
sive [23, 27, 36]. Figure 2 shows that deoptimization (imple-
mented using the “blackhole interpreter” in RPython) can con-
sume more than 10% of the total execution time for some bench-
marks. The phase diagrams of both fast-warming and slow-
warming benchmarks in Figure 3 illustrate that the blackhole
phase is an essential part of the warmup process. Meta-traces
compiled when the control-flow coverage is insufficient require
many deoptimizations to fall back to the interpreter and com-
pile additional meta-traces. Furthermore, Table IV suggests that
the blackhole phase performs poorly on modern hardware. Our
results suggest that deoptimization presents a more significant
overhead than perhaps the conventional wisdom might suggest.

4. Does garbage collection in a meta-tracing JIT consume a
significant fraction of the total execution time? While garbage
collection (GC) used to be a significant worry, modern JIT-
optimizing VMs are carefully constructed to ensure that GC
only consumes a small fraction of the total execution time (e.g.,
Wilson writes it “should cost roughly ten percent of running
time” [44], which Jones and Lins call a “not unreasonable [fig-
ure] ... for a well-implemented system” [25, p. 13]). The break-
downs in Figure 2 confirm that RPython’s GC does indeed con-
sume a reasonable fraction of the total execution time with the
exception of a few memory-intensive benchmarks.

5. Is all JIT-compiled code equally used in a meta-tracing
JIT? The conventional wisdom states that there is different lev-
els of “hotness” of frequently executed code leading to multi-
tiered JITs, where the “hotter” a code region is, the more the
compiler will try to optimize. However, this effect might be
less pronounced in a tracing JIT due to each trace of execu-
tion getting compiled separately, so there might be many JIT-
compiled traces which are executed roughly equally. Figure 6
shows that there is indeed a large “hotness” variability where in
some benchmarks only 5% of compiled IR nodes are executed

Appears in the Proceedings of the 2017 IEEE Int’l Symp. on Workload Characterization (IISWC), October 2017



95% of the time. For these cases, multi-tiered JIT compilation
indeed should help.

6. Does a meta-tracing JIT need to spend most of its time
in the JIT-compiled code to achieve good performance? Be-
cause JIT-compiled code is optimized using run-time feedback,
the conventional wisdom suggests that most of the time should
be spent executing JIT-compiled instructions. However, Fig-
ure 2 showed that many benchmarks (including several high-
performance benchmarks) spend more of their time in AOT-
compiled functions than JIT-compiled code. Because irregu-
lar control flow can potentially reduce performance, there is a
delicate balance between code which should be JIT-compiled
(to benefit from run-time feedback), and code which should be
AOT-compiled (to avoid generating many bridges).

7. What fraction of the time in the JIT-compiled code is over-
head due to the meta-tracing JIT? The conventional wisdom is
that it is difficult to optimize dynamic languages, so overheads
such as pointer chasing to access high-level data structures can-
not be easily optimized away [13]. If we look at the breakdown
in Figure 7, we see that memory operations indeed constitute
the most significant time of JIT-compiled code. In addition,
most guards also represent a JIT-specific overhead. Finally, call-
ing AOT-compiled functions brings in a substantial overhead.
While it is hard to name an exact percentage, it is likely that
more than half of the JIT-compiled code is overhead.

8. What is the microarchitectural behavior of JIT-compiled
code? The conventional wisdom states that JIT-compiled code
might be inefficient compared to AOT-compiled code or a pure
interpreter due to additional overheads such as guards. Com-
paring the performance to statically compiled languages and
CPython in Table II, we see that meta-tracing JITs indeed
have lower IPC. However, the IPC is usually within 0.5 of C
code, meaning the gap is not as significant as one might as-
sume. Furthermore, comparing the microarchitectural behavior
of the RPython interpreter with and without the meta-tracing
JIT in Table II and the phase microarchitectural breakdown in
Table IV, we can see that the JIT-compiled code has better
microarchitectural behavior than other phases of the RPython
framework.

9. Why are meta-tracing JITs for dynamic programming lan-
guages still slower than statically compiled languages? Holis-
tically considering our workload characterization, it is clear that
there is no single reason. The meta-tracing framework has many
components that different benchmarks and languages stress in
different ways. The microarchitecture-level results do suggest
that the primary problem is less that the JIT-compiled code
is difficult to execute efficiently on modern architectures, and
more that meta-tracing JITs still do significantly more work
than statically compiled languages. Overall, there is no single
“silver bullet” to improve meta-tracing JIT performance, mean-
ing there is a wide array of opportunities for future researchers
from both the VM and architecture communities.

VII. RELATED WORK

To our knowledge, this is the first multi-language, cross-layer
workload characterization that focuses on meta-tracing JITs.

Sarimbekov et al. study the workload characteristics of var-
ious dynamic languages on the JVM using the CLBG bench-

marks [35]. They find that even though the implementations
use many polymorphic callsites, most runtime method invoca-
tions are actually monomorphic. They also find that dynamic
languages allocate significantly more objects than Java, most
of which are short-lived, due to the additional boxing/unboxing
that is common in dynamic languages.

Rohou et al. study branch misprediction in switch-based in-
terpreters on Haswell-generation Intel hardware [34]. They find
that counter to folklore [16], the cost of branch misprediction is
very low on modern hardware, so techniques like jump thread-
ing are no longer necessary. However the statement of Rohou
et al. that the “principal overhead of interpreters comes from
the execution of the dispatch loop” is itself called into question
by the work of Brunthaler [11]. He argues that this “is specif-
ically not true for the interpreter of the Python programming
language.” The reason he gives is that Python bytecodes do a
lot of work, so the overhead of bytecode dispatch is relatively
lower. Castanos et al. observe this as well [13]. They write: “[in
Jython] a single Python bytecode involves between 160 and 300
Java bytecodes, spans more than 20 method invocations, and
performs many heap-related operations. Similar path lengths
are also observed in the CPython implementation.”

Anderson et al. introduce the “Checked Load” ISA exten-
sions to offload type checking overhead to hardware in dynamic
language interpreters [2]. Choi et al. propose a similar hard-
ware mechanism for object access [14]. Gope et al. identify
calls to AOT-compiled functions from the PHP JIT as signifi-
cant overhead and propose hardware accelerators for common
framework-level functions [18]. Dot et al. present a steady-
state performance analysis of the V8 JavaScript engine using
the builtin sampling profiler and present hardware mechanisms
to provide a 6% performance speedup [15]. Southern and Renau
use real systems to characterize the overhead of deoptimization
checks (guards) in V8 [38]. Like our findings, they also find that
the cost of such checks is lower than the conventional wisdom
might suggest in the context of V8.

Würthinger et al. provide an overview of the Truffle system
and the concept of runtime calls (AOT-compiled calls) from the
JIT-compiled code, but do not quantify the overheads of such
calls [45].

Holkner and Harland evaluate the dynamic behaviour of
Python applications [21]. They find that all the tested programs
use some dynamic reflective features that are hard to compile
statically, and a large fraction of the tested programs execute
code that is dynamically generated at runtime (20%).

There have been some studies to characterize the perfor-
mance of JavaScript, e.g., [33] study the dynamic features typi-
cally used in JavaScript, and [32] study the correlation between
benchmarks and their real-world counterparts.

VIII. CONCLUSION

We have presented a cross-layer workload characterization
of meta-tracing JIT VMs. To make this study possible, we first
introduced a new cross-layer annotation methodology, which
allows inserting annotations at different abstraction levels of
a multi-level VM (e.g., the RPython framework), and observ-
ing these at different levels of execution (e.g., the binary level
to get microarchitectural statistics, or the assembly layer to

Appears in the Proceedings of the 2017 IEEE Int’l Symp. on Workload Characterization (IISWC), October 2017



intercept using a dynamic binary instrumentation tool). We
then used two RPython interpreters, PyPy and Pycket, for
application-level, framework-level, interpreter-level, JIT IR-
level, and microarchitecture-level characterization. We finally
provided initial answers to nine key questions regarding meta-
tracing JIT VM performance. One main takeaway is the perfor-
mance characteristics are highly varied across different appli-
cations, bottlenecked by different parts of the meta-tracing JIT
VM, and there is likely no single “silver bullet” that could give
significant speedups by a small change in software or hardware.

ACKNOWLEDGMENTS

This work was supported in part by NSF CRI Award
#1512937, NSF SHF Award #1527065, and donations from In-
tel. The authors acknowledge and thank Alex Katz for his early
work on automating data collection for the workload character-
ization.

REFERENCES

[1] D. Ancona et al. RPython: Towards Reconciling Dynamically &
Statically Typed OO Languages. Symp. on Dynamic Lang., Oct 2007.

[2] O. Anderson et al. Checked Load: Architectural Support for JavaScript
Type-Checking on Mobile Processors. Int’l Symp. on
High-Performance Computer Architecture (HPCA), Feb 2011.

[3] D. Beazley. Understanding the Python GIL. PyCon, Feb 2010.
[4] C. F. Bolz. Meta-Tracing Just-In-Time Compilation for RPython.

Ph.D. Thesis, Mathematisch-Naturwissenschaftliche Fakultät,
Heinrich-Heine-Universität Düsseldorf, 2012.

[5] C. F. Bolz et al. Allocation Removal by Partial Evaluation in a Tracing
JIT. Workshop on Partial Evaluation and Prog. Manipulation, Jan 2011.

[6] C. F. Bolz et al. Tracing the Meta-Level: PyPy’s Tracing JIT Compiler.
Workshop on the Implementation, Compilation, Optimization of
Object-Oriented Languages and Programming Systems, Jul 2009.

[7] C. F. Bolz et al. Back to the Future in One Week: Implementing a
Smalltalk VM in PyPy. Workshop on Self-Sustaining Sys., May 2008.

[8] C. F. Bolz, M. Leuschel, and D. Schneider. Towards a Jitting VM for
Prolog Execution. Int’l Symp. on Principles and Practice of Declarative
Programming, Jul 2010.

[9] C. F. Bolz et al. Meta-Tracing Makes a Fast Racket. Workshop on
Dynamic Languages and Applications (DYLA), Jun 2014.

[10] C. F. Bolz and L. Tratt. The Impact of Meta-Tracing on VM Design &
Implementation. Science of Computer Prog., 98:408–421, Aug 2015.

[11] S. Brunthaler. Virtual-Machine Abstraction & Optimization Techniques.
Electronic Notes in Theoretical Computer Science, Dec 2009.

[12] S. Cass. 2016 Top Programming Languages. IEEE Spectrum, Jul 2016.
[13] J. Castanos et al. On the benefits and pitfalls of extending a statically

typed language JIT compiler for dynamic scripting languages.
SIGPLAN Not., Oct 2012.

[14] J. Choi et al. ShortCut: Architectural Support for Fast Object Access in
Scripting Languages. Int’l Symp. on Computer Architecture (ISCA), Jun
2017.

[15] G. Dot, A. Martínez, and A. González. Analysis and Optimization of
Engines for Dynamically Typed Languages. Int’l Symp. on Computer
Architecture and High Performance Computing (SBAC-PAD), Oct 2015.

[16] M. Ertl and D. Gregg. The Behavior of Efficient Virtual Machine
Interpreters on Modern Architectures. Euro-Par 2001, Aug 2001.

[17] A. Gal et al. Trace-based Just-in-Time Type Specialization for Dynamic
Languages. ACM SIGPLAN Conf. on Programming Language Design
and Implementation (PLDI), Jun 2009.

[18] D. Gope, D. J. Schalis, and M. H. Lipasti. Architectural Support for
Server-Side PHP Processing. Int’l Symp. on Computer Architecture
(ISCA), Jun 2017.

[19] I. Gouy. The Computer Language Benchmarks Game.
http://benchmarksgame.alioth.debian.org/.

[20] HippyVM PHP. https://github.com/hippyvm/hippyvm.

[21] A. Holkner and J. Harland. Evaluating the dynamic behaviour of
Python applications. Proceedings of the Thirty-Second Australasian
Conference on Computer Science - Volume 91, 2009.

[22] M. Hölttä. Crankshafting from the Ground Up. Google Technical
Report, 2013.

[23] U. Hölzle, C. Chambers, and D. Ungar. Debugging optimized code with
dynamic deoptimization. ACM SIGPLAN Conf. on Programming
Language Design and Implementation (PLDI), 1992.

[24] Mozilla IonMonkey. https://wiki.mozilla.org/IonMonkey.

[25] R. Jones and R. D. Lins. Garbage Collection: Algorithms for Automatic
Dynamic Memory Management. Wiley, Sep 1996.

[26] Julia. http://julialang.org.

[27] T. Kotzmann and H. Mössenböck. Escape analysis in the context of
dynamic compilation and deoptimization. ACM/USENIX Int’l Conf. on
Virtual Execution Environments (VEE), 2005.

[28] C.-K. Luk et al. Pin: Building Customized Program Analysis Tools with
Dynamic Instrumentation. ACM SIGPLAN Conf. on Programming
Language Design and Implementation (PLDI), Jun 2005.

[29] S. Marr and S. Ducasse. Tracing vs. Partial Evaluation: Comparing
Meta-Compilation Approachess for Self-Optimizing Interpreters.
Conf. on Object-Oriented Programming Systems Languages and
Applications (OOPSLA), Dec 2015.

[30] P. J. Mucci et al. PAPI: A Portable Interface to Hardware Performance
Counters. DoD HPCMP Users Gp. Conf., 1999.

[31] PyPy Benchmark Suite.
https://bitbucket.org/pypy/benchmarks.

[32] P. Ratanaworabhan, B. Livshits, and B. G. Zorn. JSMeter: Comparing
the Behavior of JavaScript Benchmarks with Real Web Applications.
WebApps 2010, Jun 2010.

[33] G. Richards et al. An Analysis of the Dynamic Behavior of JavaScript
Programs. ACM SIGPLAN Conf. on Programming Language Design
and Implementation (PLDI), Jun 2010.

[34] E. Rohou, B. N. Swamy, and A. Seznec. Branch Prediction and the
Performance of Interpreters: Don’t Trust Folklore. Int’l Symp. on Code
Generation and Optimization, Feb 2015.

[35] A. Sarimbekov et al. Characteristics of Dynamic JVM Languages.
Workshop on Virtual Machines and Intermediate Lang., Oct 2013.

[36] D. Schneider and C. F. Bolz. The Efficient Handling of Guards in the
Design of RPython’s Tracing JIT. Workshop on Virtual Machines and
Intermediate Lang., 2012.

[37] C. Seaton. Specialising Dynamic Techniques for Implementing the Ruby
Programming Language. Ph.D. Thesis, School of Computer Science,
University of Manchester, 2015.

[38] G. Southern and J. Renau. Overhead of Deoptimization Checks in the
V8 JavaScript Engine. Int’l Symp. on Workload Characterization
(IISWC), Sep 2016.

[39] L. Stadler, T. Würthinger, and H. Mössenböck. Partial Escape Analysis
and Scalar Replacement for Java. Int’l Symp. on Code Generation and
Optimization, Feb 2014.

[40] Topaz Ruby. http://github.com/topazproject/topaz.

[41] FastR. https://github.com/graalvm/truffleruby.

[42] TruffleRuby. https://github.com/graalvm/truffleruby.

[43] V8 JavaScript Engine. https://code.google.com/p/v8.

[44] P. R. Wilson. Uniprocessor Garbage Collection Techniques. Int’l
Workshop on Memory Management, 1992.

[45] T. Würthinger et al. Practical Partial Evaluation for High-Performance
Dynamic Language Runtimes. ACM SIGPLAN Conf. on Programming
Language Design and Implementation (PLDI), Jun 2017.

[46] T. Würthinger et al. One VM to Rule Them All. Int’l Symp. on New
Ideas, New Paradigms, and Reflections on Programming & Software
(Onward!), Oct 2013.

[47] T. Würthinger et al. Self-Optimizing AST Interpreters. Symp. on
Dynamic Languages, Oct 2012.

Appears in the Proceedings of the 2017 IEEE Int’l Symp. on Workload Characterization (IISWC), October 2017


