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Abstract—DNA sequence alignment is an important workload
in computational genomics. Reference-guided DNA assembly in-
volves aligning many read sequences against candidate locations in
a long reference genome. To reduce the computational load of this
alignment, candidate locations can be pre-filtered using simpler
alignment algorithms like edit distance. Prior work has explored
accelerating filtering on simulated compute-in-DRAM, due to the
massive parallelism of compute-in-memory architectures. In this
paper, we present work-in-progress on accelerating filtering using
a commercial compute-in-SRAM accelerator. We leverage the re-
cently released Gemini accelerator platform from GSI Technology,
which is the first, to our knowledge, commercial-scale compute-in-
SRAM system. We accelerate the Myers’ bit-parallel edit distance
algorithm, producing average speedups of 14.1× over single-core
CPU performance. Individual query/candidate alignments pro-
duce speedups of up to 24.1×. These early results suggest this
novel architecture is well-suited to accelerating the filtering step
of sequence-to-sequence DNA alignment.

I. INTRODUCTION

DNA sequence alignment is an important component of a
vast array of biological tasks. In particular, genome assem-
bly involves aligning a collection of read sequences against a
long reference sequence. State-of-the-art genome alignment
pipelines adopt a seed-and-extend approach, which involves us-
ing kmer-matching to first find candidate locations for each read
(query) in the reference genome [4, 15]. Then, each query is
aligned to its set of candidates using gap-affine approximate
string matching, usually a variant of the Smith-Waterman algo-
rithm [19]. Previous work has suggested that the most compu-
tationally expensive step of the pipeline is the gap-affine align-
ment [17]. In order to reduce the time spent in this step, prior
work has proposed adding a filtering step to filter the candi-
dates before alignment and reduce the number of candidates
per query. A common approach to filtering is computing a
simpler edit-distance score for each query/candidate pair that
approximates the similarity between the sequences. Candi-
dates whose scores are above a certain threshold are then fil-
tered out [2, 3, 14]. Thus, adding filtering and accelerating it
in hardware can effectively reduce the number of alignments
performed later in the pipeline and improve overall end-to-end
genome assembly execution time.

Recent advances in compute-in-memory technologies make
it a promising architecture on which to accelerate such com-
putational genomics algorithms. Compute-in-memory (CIM)
architectures seek to reduce computation time spent on data
movement by closing the traditional gap between processors
and storage elements, which is highly beneficial for data-
intensive workloads like DNA alignment. Prior work by

Nag et al. proposed GenCache, a tightly-coupled compute-in-
SRAM accelerator with hardware extensions for filtering oper-
ations [17]. GenCache improves execution time of end-to-end
alignment (including filtering and other steps) by 5.26× over
an identical accelerator without the added in-cache capabili-
ties. Another work by Kim et al. proposed GRIM-Filter [14],
which also uses CIM to accelerate the filtering step of DNA
sequence alignment pipelines. GRIM-Filter explores using
loosely-coupled, 3D-stacked DRAM architectures for short-
read assembly with custom hardware for filtering. Their sys-
tem improves overall end-to-end genome assembly time by up
to 3.65×.

Inspired by these promising, simulation-based studies, we
are exploring the potential for using a general-purpose, com-
mercial compute-in-SRAM architecture to accelerate the filter-
ing step of short-read DNA assembly. Relative to DRAM, the
physical scaling of SRAM has more closely tracked transis-
tor and logic scaling, so compute-in-SRAM enables monolithic
solutions with lower area- and energy-overheads. The Gem-
ini accelerator platform from GSI Technologies is a recently-
released commercial system [10]. To our knowledge, it is the
only commercial-scale compute-in-SRAM chip. It offers di-
rect computing capabilities in a 1.5MB SRAM bank, supported
by three other layers of memory hierarchy, and communicates
with an x86-64 host processor over PCIe. It’s highly efficient
search and update operations across large arrays of data give it
the name Associative Processing Unit, or APU. We thus present
our on-going work suggesting this novel architecture is well-
suited to accelerating the filtering step of sequence-to-sequence
genome alignment.

In this paper, we detail the architecture and programming
model of the Gemini APU accelerator platform and then use it
to accelerate the Myers’ bit-parallel edit-distance algorithm, as
originally proposed by G. Myers in [16]. The Myers’ algorithm
provides an efficient approach to edit-distance calculation. Us-
ing simple bit-operations, the algorithm calculates a score for
each query/candidate pair indicating the number of base-pair
edits needed for the best alignment of that pair. Candidates with
scores above a certain threshold can be filtered out prior to the
subsequent expensive gap-affine alignment step. Like GRIM-
Filter, we focus on short-read DNA assembly, with query se-
quences that are hundreds of base pairs in length. We evalu-
ate the performance of the APU relative to a Intel(R) Xeon(R)
Gold 6230R CPU using a dataset consisting of 500 simulated
queries of length 300 base pairs (bp) and corresponding candi-
date sequences generated from a standard human genome refer-
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ence sequence. The APU provides speedups of up to 14.1× for
the entire dataset, with speedups of up to 24.1× for individual
queries with large numbers of candidates.

Our key contributions include: (1) the first publicly-available,
microcode-level description of the architecture and program-
ming model of the Gemini APU accelerator platform, and (2)
early work demonstrating the ability of the APU to accelerate
the filtering step of the DNA short-read assembly pipeline using
the Myers’ bit-parallel edit-distance algorithm.

II. GEMINI ACCELERATOR ARCHITECTURE

In order to provide insights into the features of the Gem-
ini APU platform that make it well-suited to accelerating the
Myer’s bit-parallel algorithm and other potential genomics
computations, in the following section we present a simpli-
fied view of the APU’s architecture, microarchitecture, and pro-
gramming model (see Figure 1). There is currently no detailed
public description providing a microcode-level view of the ac-
celerator platform. Here, we detail the main features that af-
fect microcode programming, while abstracting away some ad-
ditional functionalities not relevant to the results in this paper.
See [10] for more high-level information about the APU. In or-
der to provide the best intuitive description of the Gemini plat-
form’s microarchitecture, we have adopted slightly different ter-
minology than GSI Technology uses. See Table I for a conver-
sion between the terms we use here and the ones found in GSI’s
published materials.

A. System Overview

The Gemini platform consists of a host CPU and an APU
chip. The host stages data by copying values to a 16GB shared
DDR4 DRAM located on the device, and then launches a ker-
nel to the device. The APU chip contains four APU cores con-
nected by an on-chip network, and a control processor inside
each accelerator core runs the kernel issued by the host.

B. Accelerator Core Logical View

Logically, each accelerator core can be viewed as a vector en-
gine containing a control processor (CP), a vector register file
(VRF), vector execution logic (VXU), and a selection of other
memory and control blocks (Figure 1b). Within a core, instruc-
tion distribution starts in the 32-bit control processor, which ex-
ecutes scalar code and issues vector instructions to the vector
command unit (VCU). The VCU decodes vector instructions,
like vector-vector addition, into microcode operations that di-
rectly control the hardware at a cycle-level granularity. The
VCU can issue a single instruction per cycle that operates on
all 16 bits of each element, or it can generate up to four instruc-
tions per cycle that can operate on subsets of the 16 bits.

Data flows from the host processor in a series of transfers
through a memory hierarchy. Data in the shared device DRAM
can be accessed by the device using a special pointer-like mech-
anism called a memory handle. The accelerator cores use direct
memory access (DMA) to transfer data from the device DRAM
to their 64KB scratchpad memories (SPM), which are local to
each core. Sequences of microcode issued by the VCU then
transfer data closer to the execution units inside a 3MB vec-
tor memory register file (VMRF), which serves as a set of 48

TABLE I. MICROARCHITECTURE TERMINOLOGY

Term Used in This Work GSI Term

Vector Register File (VRF) MMB
Vector Memory Register File (VMRF) L1
Scratchpad Memory (SPM) L2
Device DRAM L4
Control Processor (CP) ARC
SRAM Bit-Slice Section
Global Vertical Line (GVL) GL
Global Horizontal Line (GHL) RSP

"background" registers. Ultimately, the main unit of local stor-
age (the compute-in-memory block) is a 1.5MB vector register
file (VRF). Data is most naturally organized as 24 vector regis-
ters (VRs) that each contain 32,768 16-bit elements. 15 of these
VRs are exposed to the application C code, while the remaining
are reserved as temporaries for microcode functions.

To simplify communication and data movement, the VRF is
divided into 16 banks, each of which contain 2048 of the 32K
elements in each vector register. Elements of a vector regis-
ter are striped across the banks. SRAM cells within each bank
share read- and write-enable signals, and adjacent SRAM cells
in any direction can easily transfer data.

C. Bank Physical View

Figure 1c shows the actual microarchitecture of one bank of
the VRF. There are 2048 columns, each of which stores the 16
bits of an element vertically. Data is stored in a bit-sliced fash-
ion, where corresponding bits of each VR are stored together as
one bit-slice. For example, in column zero, bit-slice i contains
bit i of element zero of all 24 vector registers, bit-slice i+1 con-
tains bit i+ 1 of element zero from all 24 vector registers, etc.
Each bit processor (one column of a bit-slice) thus contains 24
bits, along with some associated digital logic to perform com-
putations on those bits. The green elements in Figure 1 indicate
how the 16 bits of the first element of the first VR are stored in a
bit-sliced manner across the bit-slices. The blue and orange el-
ements show how the bits of two other elements of the first VR
map to the 16 bit-slices, where various elements from across the
VR are stored in bank 0 due to striping elements across banks.
Each bit-slice contains 2048 bit processors (BP) that have their
own bitline logic but share read- and write-enables.

To facilitate global communication, there is a global vertical
latch (GVL) that connects all bit-slices in a column. This latch
enables data broadcasts, logical ANDs of multiple elements,
and bitwise shifts with wraparound. The architecture also in-
cludes a global horizontal line (GHL) for each bit-slice. While
its actual microarchitectural implementation is more complex,
the GHL functionality ORs together the read latches of all the
elements in each bit-slice.

We have described here the most intuitive way to store data:
the 16 bit-processors in a column are used to store a single 16-
bit element of each vector register in a bit-sliced fashion, and the
32K columns store 32K elements. However, data can be stored
in many other formats. For example, data of smaller bitwidths
could be stored while increasing the vector length, by storing
multiple smaller elements in a single column. Alternatively,
wider elements such as 32-bit values could be stored using two
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Figure 1. APU Architecture – (a) System Overview, (b) APU Core Logical View, (c) Bank Physical View, (d) Bit Processor Circuitry. CP = control
processor, VCU = vector command unit, VXU = vector execution unit, VRF = vector register file, VMRF = vector memory register file, SPM =
scratchpad memory, GVL = global vertical latch, R/W = read/write logic, RBL = read bitline, WBL = write bitline, WBLB = write bitline bar,
REx = read-enable for bit x, WEx = write-enable for bit x, RLN = north read latch. Note: exact bit-slice organization is not published by GSI.

columns per vector element with a 16K vector length. To in-
crease throughput for bit-serial operations, each bit-slice could
be assigned a different vector element, with the bits of the ele-
ment loaded from the VMRF in subsequent cycles. In this work,
we focus only on the canonical data organization.

D. Bit Processor

Inside each bit processor (BP), bits are stored in custom 12T
SRAM cells. A small collection of logic gates is found at the
bottom of each bit processor ("R/W Logic" in Figure 1(d), func-
tionally equivalent to the VXU in the micro-programmer view
in Figure 1(b) above). As demonstrated in Figure 1(d), to op-

3



TABLE II. MICROCODE SEMANTICS

Microarchitectural State

RL read latch
GVL global vertical latch
GHL global horizontal latch
VRF[i] vector register source i in VRF

Operations on State

RL = VRF[vrs0] read vector register from VRF
RL = VRF[vrs0,vrs1] read two vector registers, bitwise AND the values
RL = L read value from a source latch
RL = VRF[vrs0] op L operate on new values from VRF and a latch
RL op= VRF[vrs0] operate on current RL and new value from VRF
RL op= L operate on current RL and new value from latch
RL op= VRF[vrs0] op L operate on current RL, value from VRF, and latch
VRF[vrs0] = L write to VRF from source latch

Bit Masking

bm: stmt 16-bit mask (bm) activates bit-slices
(bm << imm): stmt bm can be bitwise shifted by immediate (imm)

L is latch specifier (i.e., RL, GVL, GHL, RLN, RLS, RLE, RLW); also possible to use
complement of latch (i.e., ~RL, ~GVL, ~GHL, ~RLN, ~RLS, ~RLE, ~RLW).

erate on any given bit, data values are read from memory cells
using a single common read bit-line (RBL), and, after option-
ally performing a simple logical operation in the read logic, are
stored in a read latch (RL). The read logic can perform AND,
OR, and XOR on two or more operands, including the VRF, RL,
and GVL. To perform arithmetic operations, the hardware en-
ables data transfer between adjacent bit processors by allowing
each bit processor to read from its own read latch along with
the read latches of the bit processors to its north, south, east,
and west (i.e., RLN, RLS, RLE, and RLW). In addition, multi-
ple rows can be read from the memory array in a single cycle;
the logical AND of the values appears on the RBL. Write op-
erations choose from the operands in the same source mux and
modify the VRF using the write bit-line (WBL) and its negation
(WBLB).

By default, the same operations are performed in all 16 bit-
slices and all 2048 columns simultaneously. However, different
operations can be done on different bit-slices at once using a bit-
mask, a 16-bit value indicating which bit-slices to operate on.
For instance, one microcode instruction could read a subset of
the bits from one VR, and then a second microcode instruction
could read the remaining bits from a the remaining bits from a
different VR.

E. Microcode

Programmer-visible function calls are decoded into mi-
crocode instructions by the VCU. These microinstructions con-
trol read and write logic, global structures (GVL and GHL), and
data transfer between memory layers (VRF, VMRF, and SPM).
Table II gives an overview of the syntax and semantics of the
subset of microcode operations that we use in this paper.

An APU core has three main types of microarchitectural
state: read latches, global latches, and the VRF. Read latches
allow operations on values currently stored inside this bit pro-
cessor’s circuitry, or values stored in its four neighboring bit
processors. As introduced above, the GVL connects the 16 read
latches in a column while the GHL ORs together all 32K read
latches in each bit-slice. Bit processors also contain circuitry to

negate values as they are read or written. Read operations store
a new value in the read latch by performing AND, OR, or XOR
operations on either existing values in the latch or new values
selected by a source mux. Write operations store data values
back to the VRF.

Each of these operations can be expressed as a line of mi-
crocode with the inclusion of a bit-mask. Additionally, al-
though we do not utilize this functionality in this paper, up to
four micro-operations can be combined into a single VLIW in-
struction issued by the VCU. It is the responsibility of the pro-
grammer to avoid structural hazards when writing microcode
sequences.

III. ACCELERATION OF MYERS’ BIT-PARALLEL
ALGORITHM

Reference-guided genome assembly involves a series of com-
putational steps. First, candidate locations in the reference
genome are identified for each query sequence. Optionally,
these candidate locations can be chained together into longer
segments or filtered to reduce the number of candidates per
query. Then, each query/candidate pair is aligned using an ap-
proximate string matching algorithm, and the final assembly is
put together. In this work, we focus on the filtering step. Effec-
tive and highly-performant filtering can reduce the time spent in
the later alignment stage.

A. Short-Read Alignment Filtering
In the filtering step of short-read DNA alignment, the goal

is to compare each read (short DNA sequence) in a dataset
against many corresponding candidate locations using one-to-
many alignment. Candidates are generated using a seed-and-
extend technique. For a given read, this method involves first
pre-computing a hash table that stores the locations of kmers
(small subsequences) in the reference genome, and then index-
ing into the hash table to find exact match locations for all kmers
located in the read. An extended region around each of these ex-
act matches is gathered, creating a set of queries and for each
one, a set of potential candidate locations in the reference. The
output of filtering is a score for each query/candidate pair equal
to the minimum number of edits needed to make that query and
candidate align exactly. For a given query, all candidates are
of equal length, but query and candidate lengths can vary for
different reads from the same genome.

B. Myers’ Bit-Parallel Algorithm
Myers’ bit-parallel algorithm computes the edit distance be-

tween two DNA sequences, measuring the minimum number of
base-pair edits to the sequences that would make the two strings
match exactly at their best relative alignment location [16]. Ed-
its can consist of insertions, deletions, or substitutions of base
pairs [14].

The traditional approach to computing edit distance requires
making a large matrix C of size (m+ 1) × (n+ 1), where m is
the number of base pairs in the query and n is the number of
base pairs in each candidate. Each element (i, j) is computed as
follows:

C [i, j] = min{C [i−1, j−1]+ ! (ri == s j),

C [i−1, j] + 1,C [i, j−1] + 1}
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where ri is the ith base pair of the query and s j is the jth base
pair of the candidate. C [i, j] depends on the elements above,
to the left, and diagonally to the upper left of the desired ele-
ment (i, j). Each column (corresponding to a base pair of the
candidate) produces a score along the bottom row of the ma-
trix. When using edit distance for filtering in DNA alignment,
the output is a single scalar score for each query/candidate pair,
equal to the minimum value in this last row of scores.

To reduce the space and time complexity of such an algo-
rithm, Myers adopts a bit-vector approach. Instead of storing
the score for every element (i, j) in the matrix, Myer’s bit-
parallel algorithm stores the horizontal and vertical deltas be-
tween adjacent elements. These deltas only have values in the
set {+1, 0, −1} and thus can each be represented using two
bits. The algorithm iterates over the base pairs of the can-
didate, as if proceeding column-wise through the score ma-
trix. Vectors Pv and Mv are defined as the positive and neg-
ative components of the vertical deltas in a given column: at
each element i, Pv(i) = 1 and Mv(i) = 0 if the vertical delta at
(i, j) is +1 (i.e., C[i, j] is one more than the element above it),
Pv(i) = 0 and Mv(i) = 1 if the vertical delta at (i, j) is −1, and
Pv(i) =Mv(i) = 0 if the vertical delta at (i, j) is 0. Similarly, Ph
and Mh hold the positive and negative components of the hor-
izontal deltas. Then, all calculations of the score deltas can be
performed via simple bit-wise operations on these bit-vectors.
The use of such simple bitwise operations and the high degree
of parallelism in the Myer’s algorithm makes it well-suited to
acceleration on the APU hardware. The pseudocode for Myers’
algorithm can be seen in Figure 2(a).

Each element of each vector in the pseudocode would ideally
have a number of bits equal to the length of an entire column
of the score matrix, i.e., the number of base pairs in the query.
For short-read assembly, each query is hundreds of base pairs
long. However, in a CPU implementation of Myers’ algorithm
running on a 64-bit processor, we can only pack up to 64 bits of
each vector into a single word, and on the APU, as explained be-
low, we operate on 16-bit values. Thus, to support query lengths
of greater than w base pairs (where w is a CPU’s word width or
16 for the APU), we iterate over w-bit chunks of the query base
pairs. In order to correctly account for vertical deltas that prop-
agate down a column of the score matrix, we must save values
between iterations of this inner loop. For a particular iteration of
the outer loop, corresponding to some base pair at index j of the
candidate, three bits of information per candidate must be saved
between iterations: the carry-out bit of addition in line 11 of the
pseudocode in Figure 2(a), the most-significant bit of Ph shifted
out in line 23, and the most-significant bit of Mh shifted out in
line 26. In our CPU implementation of Myers’ algorithm, we
use a word width of 64 bits. For each query in the dataset, we
loop over all the associated candidates, computing all columns
in series for each candidate.

C. Mapping the Myers’ Algorithm to the APU

On the APU, we adapt this algorithm to suit the hardware’s
massive parallelism. Since each of the 32K columns of the
APU’s SRAM can hold 16 bits, we can perform 512k bit op-
erations in parallel on every cycle. In order to exploit this, we
modify the data layout of our CPU-optimized version of Myers’

algorithm. For each query, we compute the scores for all can-
didates in parallel. Specifically, each candidate i is assigned to
column i in the SRAM (element i of each of its vector registers).
The vector registers hold vectors Pv, Mv, etc., where each ele-
ment of a VR holds data for 16 base pairs of the read (forming
a 16-bit element). The data layout can be seen in Figure 3. As a
note, this means that the candidate matrix must be generated in
a transposed format relative to the input candidate matrix of the
CPU version of the algorithm.

The vector register file of the APU is limited in size, with 15
user-facing vector registers if each holds 32K 16-bit data ele-
ments. All 15 of these vector registers are used in each iteration
of the innermost loop of the APU implementation of the algo-
rithm, which loops over 16-bit chunks of the query base pairs.
However, the vertical deltas computed for a set of 16 query base
pairs and one particular candidate base pair must be used in the
calculation for the next candidate base pair and that same set of
16 query base pairs. This means the data must be stored tem-
porarily in the VMRF, which provides space to hold up to 48
vector registers’ worth of data. Data is moved in and out of these
VMR’s using microcode. Moving data between just the VMRF
and VRF is well-suited for performing short-read alignments,
as we do here. Future work can explore long-read alignments,
and would have to carefully manage data movement between
the VMRF and DRAM.

The accelerator requires the query and candidate sequences
at the start of the algorithm, and produces a result matrix at the
end. The time spent copying data from the host to the device is
dominated by moving the candidate sequences, so we adopt a
bit-packed approach to storing the candidate sequence data. In
particular, since each base pair of a candidate sequence can only
hold four possible values (corresponding to A, C, T, and G), it
can be represented with just two bits. We thus pack eight base
pairs into each 16-bit element of candidate sequence data moved
between the host and device. Doing so also reduces the time
spent in the computational kernel on the accelerator itself, as it
requires eight times fewer loads from the shared DDR4 DRAM
in favor of simple bitwise shifts (an operation performed highly
efficiently by the APU).

In addition, to further reduce the time spent in computation,
we leverage the ability of the APU to quickly initialize data
inside its SRAM. By using a 16-bit value as a bit-mask, the
device can write this value to all 32K 16-bit elements simulta-
neously in just three cycles. As a result, the APU can perform
massively parallel in-memory initialization, which can save sig-
nificant amounts of time over a CPU that must instead iterate
through a large array.

D. Microcode for the Myers’ Algorithm
In order to implement this approach on the APU, we cre-

ate C-function wrappers around microcode fragments that exe-
cute vector operations corresponding to each line of the pseu-
docode in Figure 2(a). This includes (1) bitwise vector opera-
tions like bitwise OR and bitwise AND, (2) element-wise vec-
tor operations, (3) memory operations, and (4) cross-element
operations. In addition to well-known arithmetic and Boolean
operations, we developed several custom operations, including
one that saves the last value computed on the RL of a previ-
ous operation or extracts a desired bit from every element of the

5



(a)
0 let m = length(query)
1 let n = length(candidate)
2
3 for q in [0...num_queries-1]:
4 precompute peq
5
6 for c in [0...num_cand-1]:
7 Pv = 1^m
8 Mv = 0^m
9 score, min = m
10
11 for j in [0...n-1]:
12 eq = peq[seed(j), i]
13 Xv = eq | Mv
14 Xh = ((eq & Pv)

+ Pv ^ Pv) | eq
15 Ph = Mv | ~(Xh | Pv)
16 Mh = Pv & Xh
17
18 if Ph MSB = 1, score += 1
19 if Mh MSB = 1, score -= 1
20 if score < min, min = score
21
22 shift Ph
23 save old MSB of Ph
24
25 shift Mh
26 save old MSB of Mh
27
28 Pv = Mh | ~(Xv | Ph)
29 Mv = Ph & Xv

(b)
APL_FRAG vor_vv(vrd, vrs0, vrs1):

0xFFFF: RL = VRF[vrs0];
0xFFFF: RL |= VRF[vrs1];
0xFFFF: VRF[vrd] = RL;

(c)
APL_FRAG vmseq(vrd_m, vrs, rs):

0xFFFF: RL = VRF[vrs];
~rs: RL = ~RL;
0xFFFF: GVL = RL;
vrd_m: VRF[MASK_REG] = GVL;

(d)
APL_FRAG vmv_vx(vrd, in_value):

0xFFFF: RL = 0;
in_value: RL = 1;
0xFFFF: VRF[dst] = RL;

(e)
APL_FRAG save_last_bit(vrd, b16, bit):

b16: GVL = RL;
bit: VRF[dst] = GVL;

(f)
APL_FRAG lsl_with_cin(vrs, shift_in):

0xFFFF: RL = VRF[src];
0xFFFF: VRF[src] = NRL;
0x0001: RL = VRF[shift_in];
0x0001: VRF[src] = RL;

(g)
APL_FRAG vadd(vdst, vsrc0, vsrc1):

// ---- bit 0 ----

// vdst = vsrc0 XOR vsrc1
0x0001: RL = VRF[vsrc0];
0x0001: RL ^= VRF[vsrc1];
0x0001: VRF[vdst] = RL;

// cout = vsrc0 AND vsrc1
0x0001: RL = VRF[vsrc0, vsrc1];

// ---- bit 1 ----

// vdst = a ^ b ^ cin
(0x0001<<1): RL = VRF[vsrc0];
(0x0001<<1): RL ^= VRF[vsrc1];
(0x0001<<1): RL ^= RL_N;
(0x0001<<1): VRF[vdst] = RL;

// cout = a*b + b*cin + a*cin
(0x0001<<1): RL = VRF[vsrc0, vsrc1];
(0x0001<<1): VRF[temp_0] = RL;
(0x0001<<1): RL = VRF[vsrc1];
(0x0001<<1): RL &= RL_N;
(0x0001<<1): VRF[temp_1] = RL;
(0x0001<<1): RL = VRF[vsrc0];
(0x0001<<1): RL &= RL_N;
(0x0001<<1): RL |= VRF[temp_0];
(0x0001<<1): RL |= VRF[temp_1];
...

Figure 2. Pseudocode and Microcode for Myers’ Algorithm. (a) Pseudocode for alignment of a single read against a single seed from [16]. (b-g)
Microcode fragments for Myers’ algorithm implementation: (b) bitwise OR, used in lines 13-15 and 28 of the pseudocode; (c) vector set-equals,
used in a multi-line equivalent to line 12 of the pseudocode on Gemini; (d) sets all elements to scalar value, used for data initialization on lines 7-9
and 12; (f) saves the last bit (bit 16) that is currently stored in RL, used directly after the functions appearing in lines 23 and 26 of the pseudocode;
(f) left bitwise shift with a carry-in, used in lines 22 and 25; (g) ripple-carry elementwise addition for line 14, although the actual implementation
of addition used in our algorithm uses a more sophisticated carry-select approach not shown here. vrd = destination vector register, vrs = source
vector register, vrd_m = a one-hot encoding for which of the 16 bits of each element of MASK_REG corresponds to the desired mask. rs, in_value,
and shift_in are all 16-bit integer operands. b16 is a 16-bit value with only the 16th bit set, and bit is a 16-bit mask for a desired bit.

.

VR 0 = Pv

Pv for alignment 
of 16 bp of query 

against candidate 0

Pv for alignment 
of 16 bp of query 

against candidate 1

Pv for alignment of 
16 bp of query against 

candidate 32,768

VR 1 = Mv

Mv for alignment 
of 16 bp of query 

against candidate 0

Mv for alignment 
of 16 bp of query 

against candidate 1

Mv for alignment of 
16 bp of query against 

candidate 32,768

Figure 3. Data Layout of Myers’ Algorithm on the APU

vector register in parallel. A complete list of all the microcode
operations developed or used in this Myers’ algorithm imple-
mentation can be found in Table III.

The microcode implementation of bitwise OR is shown in
Figure 2(b). Each microcode instruction is executed on every
bit-processor across all 32K elements of the vector register file
in parallel. As described in Section II, corresponding bits of
each element are read out from the VRF and operated on by
the R/W logic containing an OR gate at the bottom of the bit
processor. We use an |= operation since the RL is only a 1-bit
storage element. The resulting bit is written to the destination
VR. In addition to the three microcode instructions shown in
Figure 2(b), three additional instructions are needed before that

TABLE III. MICROCODE OPERATIONS USED IN MYERS’

Bitwise Operations Elementwise Operations

bitwise OR addition
bitwise AND less-than comparison
bitwise XOR set to scalar value
bitwise NOT masked vector copy
bitwise left-shift w/ carry-in broadcast bit to entire element
extract a desired bit
save bit 16 currently on RL

Memory Operations Cross-Element Operations

load from VMRF vector set-equals (search)
store to VMRF vector set-equals (search)
load from DRAM
store to DRAM

microcode fragment is issued to set registers in the control pro-
cessor indicating source operands.

In addition to bitwise operations, the conventional Myers’
algorithm implementation also requires elementwise addition
between vectors. The microcode shown in Figure 2(g) shows
one way to do addition, using a naive bit-serial ripple-carry al-
gorithm, although the actual implementation used in our My-
ers’ algorithm uses a more sophisticated carry-select approach.
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However, we explain the basic ripple-carry approach because it
demonstrates fundamental properties of this architecture. In the
bit-serial version shown, for inputs a and b, carry-in cin, result
r, and carry-out cout , we express the result and carry-out of each
bit using the Boolean logic functions ri = XOR(ai,bi,cini) and
cout i = ai ∗bi +bi ∗ cini +ai ∗ cini. We then implement these ex-
pressions using bitlines and peripheral logic circuitry. For each
bit, the result bit is first computed and stored, and then a carry-
out is computed and propagated to the next bit-slice. The code
for bit 1 in Figure 2(g) is replicated, shifting the bit-mask by
an additional bit each time, for the remaining 14 bits. This ba-
sic implementation makes the simplifying assumption that the
source operands are distinct, but identical operands could be
easily supported. Our experiments utilize a more sophisticated
carry-select approach provided by GSI Technology.

Accelerating the Myers’ algorithm on the APU allows us to
take advantage of element-wise search, which is extremely ef-
ficient on its associative-style SRAM array. As described in
the microcode section below, a 16-bit scalar value can be com-
pared against all elements of a 32K-element vector register in
just four microcode instructions, corresponding to roughly four
cycles on the device’s control processor. This is useful in cre-
ating the eq vector, whose elements hold one-hot encodings of
where each candidate sequence’s current base pair (A, C, G, or
T) appears in the current 16-bit chunk of the query sequence. A
precomputed array of where each base pair appears in the query
sequence is created on the host processor. Then, for each index
j of the main loop of the algorithm, the device must load dif-
ferent chunks of this data into elements of the eq vector register
corresponding to the different base pairs located at the index j
of each candidate. Such an operation can be done efficiently by
searching a vector register containing the jth base pairs of each
candidate and using vector mask operations to load data from
peq into a single eq vector.

Figure 2(c) shows the code for this element-wise search (a
set-equals operation), which compares a scalar operand to each
element of a vector in parallel and marks the elements that
match. After reading in all 32K elements in parallel, we se-
lectively negate bits for which the desired scalar operand has
a zero. Using the GVL as a reduction element, we AND to-
gether the resulting data, which yields a one if the 16-bit ele-
ment matches the scalar operand and a zero if it differs.

In order to store the results of a comparison instruction like
set-equals, we provide support for representing vector masks.
To reduce space overhead, we follow GSI Technology’s con-
vention of packing up to twelve masks into a single desig-
nated vector register, denoted MASK_REG. The ith mask is
stored as 32K bits, where the ith bit of each 16-bit element of
MASK_REG corresponds to this mask. Eight masks are ex-
posed to the user for general-purpose storage, while four are
used for temporaries by the vector functions. The remaining
four bits of each element of MASK_REG are reserved for use
as arithmetic flags.

The implementation of Myers’ described here has many pos-
sibilities for future optimizations. For example, as described
in [16], the addition operator used in line 11 of the Myers’
pseudocode is incorporated only to allow for the propagation
of carry bits across bits of a single data value in a traditional
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Figure 4. Cumulative Distribution of Candidates Per Query – Distribu-
tion of the number of candidates produced in each length-range (mea-
sured in base pairs) for the 300-base pair reads produced by Mason
simulation.

processor. Since the APU architecture provides efficient low-
level support for bitwise shifts and carries, the calculation of
Xh could be reduced to a much simpler set of bit operations that
could be done efficiently on the accelerator. Future work can
incorporate such optimizations.

IV. EVALUATION METHODOLOGY

To accurately evaluate the performance of the Myers’ algo-
rithm on the APU and a CPU baseline, we generate a set of
short queries of length 300 base pairs (bp) using a state-of-the-
art simulator. Like [8, 14, 17], we generate test data from the
standardized GRCh38 release of the human genome. We used
the Mason simulator [11] to generate 500 simulated queries of
length 300bp from the reference genome. We configured Mason
to simulate queries based on the Illumina sequencing technol-
ogy characteristics.

Candidate alignments for these queries were then generated
with a program written using the SeqAn library [18]. First, we
created a hash-table based index of the reference genome using
10-mer minimizers (short sequences of 10 base pairs that occur
in the reference genome). We eliminated any 10-mers that oc-
curred more than 100,000 times in the reference from the index,
as these matches occur too frequently to provide useful infor-
mation in determining a best alignment with a query sequence.
This eliminated less than 0.1% of minimizers in the table, but
reduced the number of stored locations by 3.7%.

Subsequently, for each query produced by Mason, our SeqAn
program generates all possible 10-mer minimizers in the query
and looks up their locations in the hash-table index of reference
10-mers. Thus, for each minimizer of the query, we found every
occurrence of the minimizer recorded in the index. For each of
these occurrences, we then generated a candidate alignment by
selecting a region of the reference around the location indicated
in the index. We selected a region 15% larger than the query,
and used the location of the minimizer in the query to determine
how much of this region would occur before the location in the
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TABLE IV. TOTAL EXECUTION TIME BREAKDOWN

Function Single-Core
CPU (ms)

Single-Core
APU (ms)

initialize read params <0.01 <0.01
allocate on shared DRAM 0.00 0.01
initialize parameters <0.01 <0.01
initialize peq array <0.01 0.36
copy data host to device 0.00 0.60
kernel 152.73 9.67
copy data device to host 0.00 0.19
free allocated memory 0.00 0.01

total 152.73 10.82

index and how much would occur after. A distribution of the
number of base pairs in the candidates corresponding to each
300-base pair query is shown in Figure 4. Ultimately, we evalu-
ated the performance of our edit distance acceleration using this
dataset of 500 queries of length 300 base pairs, each with a vari-
able number of associated candidates capped at 32K candidates
per query.

To evaluate performance, we compared the end-to-end execu-
tion time for performing the Myers’ algorithm on the APU with
an optimized CPU implementation. We ran the CPU version on
an Intel Xeon Gold 6230R CPU @ 2.1GHz with DDR4-2933.
All results were averaged over ten runs.

V. RESULTS

Using the dataset described above, we first explored APU
performance relative to single-core CPU performance. The
APU provides a total average speedup of 14.1× relative to
single-core CPU performance on the Intel Xeon Gold 6230R
processor, with a standard deviation of 0.07.

A. Execution Time Breakdown

Table IV shows a breakdown of the time spent in each portion
of the end-to-end execution time for filtering. As seen in the ta-
ble, for both the CPU and APU, the actual time spent perform-
ing computations on the device (labeled "kernel time") domi-
nates the end-to-end execution time of the program. The kernel
alone gains a speedup up of 15.8× on the accelerator relative to
the CPU.

To provide deeper insights, Table V shows a breakdown of
the number of cycles spent in each portion of the computation
kernel when running on the APU. The code sections closely
correspond to the algorithm pseudocode in Figure 2(a). As seen
in the table, the largest number of cycles is devoted to com-
puting the eq vectors. This is done at the beginning of each
iteration of the innermost loop of the algorithm, and requires
multiple sets of vector-search operations followed by masking
operations. Computing this on the device is much faster than
doing it on the CPU before launching the kernel, but still con-
tributes a large number of cycles to the total performance. The
second-largest cycle count belongs to the computation of the Xh
vectors. The Xh vector is an intermediate result that propagates
results horizontally along rows of the traditional score matrix,
where each element depends on the one before it. In the ac-
celerator’s data layout, this means each bit of each element of

TABLE V. KERNEL TIME BREAKDOWN

Code Section Avg # of Cycles
(1K)*

Percent of Total
Cycles

loading saved Pv and Mv 856.2 8.7
computing eq 1329.0 13.6
computing Xv 605.1 6.2
computing Xh 1119.6 11.4
computing Ph 769.3 7.9
computing Mh 512.5 5.2
computing scores 432.0 4.4
shift and save Ph 955.5 9.8
shift and save Mh 787.5 8.0
computing Pv 735.0 7.5
computing Mv 872.6 8.9
storing Pv and Mv 813.9 8.3

* Indicates total cumulative cycle count (in thousands) for all times
each section of code was executed. All numbers refer to computing
Myers’ on one single query/candidate set, averaged over 10 trials.

the Xh vector depends on the bit before it. In order to calculate
Xh efficiently, we follow [16] in using an addition operation to
leverage its bit-carry property. There may be opportunities to
further optimize this that future work can explore.

The total end-to-end speedup is slightly lower than that of
just the kernel due to other overheads, including the overhead
of moving data to and from the host and device and some lim-
ited data initialization on the host. As shown in the table, the
second-largest portion of the accelerator execution time after
the kernel is the time spent copying data from the host to the de-
vice. The bit-packed representation of the candidate sequence
data described in Section III has reduced this to the value seen
here. The next-largest contributor of overhead is the time spent
computing the peq matrix on the host processor before launch-
ing the kernel to the device. Since the data would have to be
transposed to be useful in the main kernel of computation, it
was pre-computed on the host processor. Future work can ex-
plore efficient ways to migrate this computation to the device.

B. Parameter Sweeping

Since candidate alignments are done in parallel for a given
query, the greatest performance benefit of the APU is realized
when all 32K columns of the SRAM are utilized. This cor-
responds to aligning a single query against 32K candidate se-
quences. However, as seen in the histogram in Figure 4, each
query produces a variable number of candidates that is often less
than 32K. To understand more deeply how the relative perfor-
mance of the APU and CPU change with the number of candi-
dates, we plotted the average speedup for each individual query
as a function of its number of associated candidates. The results
can be seen in Figure 5.

When the number of candidates increases, the execution time
of the kernel (actual computations) on the APU stays almost
constant, as operations are done in parallel across all 32K
columns of the SRAM regardless. There is a slight linear in-
crease in total APU execution time due to copying more data
from the host to device and back. However, the CPU execution
time increases linearly much faster with the number of candi-
dates, as the processor must loop over every candidate for each
query. Since the CPU execution time increases faster than the
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Figure 6. Fine-Grained Sweep of APU Speedup

APU execution time, speedup increases. This trend can be seen
in the graph.

At what number of candidates per query does the APU be-
come more optimal than the CPU? To answer this, we ran a set
of experiments that capped the number of candidates per query
at various values between 800 and 1800. The results are shown
in Figure 6. Having at least 1300 candidates per query allows
the APU to be faster than the CPU. Thus, even if earlier steps
in the read-assembly pipeline were more optimized, using tech-
niques such as chaining during candidate generation to produce
only more likely alignment locations, the APU would likely still
provide speedup over a single-core CPU.

For the query and candidate lengths used here, at its optimal
performance (i.e., when the number of candidates for a single
query is 32K), the APU provides average speedups of 24.1×,
with a standard deviation of 1.28.

As demonstrated above, the APU has the capacity to filter
a large number of candidates per query sequence. This could
relieve pressure on earlier filtering or chaining steps in the
pipeline, since extra parallelism here incurs very little overhead.

C. Multicore Results

The CPU baseline can also be multithreaded to take advan-
tage of all 16 cores of the Intel CPU chip. We parallelized our
CPU baseline over different queries, so each core processes a
chunk of queries and aligns all associated candidates against
each query. Using 16 cores in this manner results in an average
speedup of 1.49× for the APU over the CPU.

However, there are also four cores available on the APU, of
which the current edit distance implementation only uses one.
We expect a roughly linear multicore speedup on the APU (sim-
ilar to what was seen with the CPU), leading to an estimated
total speedup of 5-6× for a 4-core APU over a 16-core CPU.

VI. RELATED WORK

There have been numerous approaches to accelerating
reference-guided DNA assembly. Most prior work focuses
on using hardware acceleration for the final gap-affine align-
ment step because it is the most computationally expensive.
Such work includes custom hardware accelerators such as Dar-
win [20] and GenAx [8]. SeedEx further reduces alignment
time by adopting a heuristic algorithm called banded Smith-
Waterman [9]. SeGraM extends the acceleration of sequence-
to-sequence tasks into sequence-to-graph tasks, with accelera-
tion still focused on the gap-affine alignment phase [5]. Some
recent work has begun to use compute-in-memory for acceler-
ation of this gap-affine alignment step, such as GenCache [17].
GenCache integrates in-cache operators into the GenAx acceler-
ator to accelerate a custom Silla gap-affine alignment algorithm.

An alternative approach accelerates edit distance and uses it
for that same final sequence alignment step. This has higher
performance but may have lower accuracy than gap-affine scor-
ing, making it optimal for some biological applications but not
applicable to more complex analysis of proteins and structural
variation. Such work includes the GenASM accelerator [4] that
proposed hardware for the Bitap edit distance algorithm, a dif-
ferent bit-vector algorithm for sequence alignment.

Recent work has begun to explore accelerating the filtering
step of short-read DNA assembly, as we have done in this pa-
per, in order to reduce the number of alignments that need to
be performed in the more expensive gap-affine alignment stage.
Shouji [2] and GateKeeper [3] use FPGA-based accelerators.
GRIM-Filter, the most closely related work, uses a simulation-
based study of 3D-stacked compute-in-DRAM to accelerate a
custom filtering algorithm based on kmer-matching [14]. While
both Myers’ and the GRIM-Filter algorithm are effective in ac-
curately filtering query/candidate pairs, the Myers’ algorithm’s
massively parallel bit-operations make it more suitable for the
APU architecture described here.

As a promising accelerator for genomics workloads, the
APU also represents the first, to our knowledge, commercial
compute-in-SRAM system. Compute-in-SRAM has been pre-
viously only explored in simulation or small-scale academic
prototypes. Bitline computing was introduced in SRAM by
Jeloka et al. using 28nm academic prototypes [12, 13]. A re-
lated line of work built on this to provide the ability to per-
form floating-point operations for neural networks [6], per-
forming computation in horizontal bitlines [21], and adopting
a SIMT abstraction to accelerate workloads in a data-parallel
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manner [7]. Bit-serial and bit-parallel operations were further
explored in VRAM [1].

VII. CONCLUSION

In this paper, we illustrated promising on-going work that
accelerates the filtering step of reference-guided DNA assem-
bly using commercial compute-in-SRAM. We demonstrated the
ability of the Gemini APU to provide average speedups for the
Myers’ bit-parallel edit distance algorithm of 14.1× relative to
single-core Intel Xeon Gold 6230R CPU performance.

Several key characteristics emerge as features of the APU that
make the system well-suited to Myers’ algorithm and likely to
other genomics workloads as well. First, as demonstrated by the
increasing speedups that result from increasing seed count, the
massive parallelism of the APU is key. Secondly, bit-parallel
operations like those found in Myers’ algorithm allow the ap-
plication to take full advantage of this parallelism. Bitwise op-
erations can be performed with high computational throughput
using the low-level microcode primitives we described. In ad-
dition, many genomics applications use low-precision integer
arithmetic operations, such as on DNA datasets that can be en-
coded as two-bit values. This allows the programmer to pack
more data into 16-bit integers, as we did here. Finally, this par-
ticular application has a high degree of data reuse, but other ap-
plications will need to carefully consider the ratio of data move-
ment to computation. Future work can explore more complex
genomics algorithms that exploit these properties.

The APU is thus a promising way to accelerate filtering and
likely other genomics workloads. As in the case of filtering, the
massive parallelism the APU provides may prompt rethinking
of traditional genomics algorithms or their context within the
genomics pipeline.
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