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Abstract

Sequence alignment is a fundamental building block for critical
applications across multiple fields, such as computational biol-
ogy and information retrieval. The rapid advancement of genome
sequencing technologies and breakthrough generative Al tools,
like AlphaFold, has driven an exponential increase in sequence-
data production, creating a pressing need for fast and efficient se-
quence alignment tools to analyze ever-growing biological sequence
databases. Notwithstanding the numerous accelerators proposed,
from general-purpose architectures (CPUs and GPUs) to domain-
specific designs (FPGAs and ASICs), the most efficient solutions
suffer from over-specialization and fail to adapt to the wide variety
of irregular use cases demanded by practical sequence alignment
applications. Thus, it remains a challenge to design an architecture
that can balance efficiency and flexibility to meet the demands of
real-world alignment applications.

This work introduces SMX, a heterogeneous architecture de-
signed for high-performance sequence alignment that supports
various configurations for different sequence types (DNA, protein,
and ASCII text) and alignment models (including weighted gaps
and substitution matrices). SMX integrates an ISA extension (SMX-
1D) for irregular and sequential tasks and a specialized coprocessor
(SMX-2D) to accelerate regular and parallel tasks, both orchestrated
by the general-purpose core to enable seamless integration with
state-of-the-art sequence alignment algorithms. Our results demon-
strate that SMX’s heterogeneous architecture accelerates differ-
ent sequence alignment use cases by 256-744x compared to state-
of-the-art software implementations when aligning real datasets.
Compared to specialized hardware accelerators, SMX delivers up
to 18.5x more peak performance per area added while providing
greater flexibility to accelerate different use cases. Physical design
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results targeting a 22nm technology node estimate SMX’s area at
0.34mm?, which is only 30% of a single-issue in-order CPU. SMX
offers a high-performance and efficient heterogeneous architecture
for accelerating practical sequence alignment algorithms, providing
a scalable and flexible solution tailored to meet the needs of modern
sequence-analysis tools. Furthermore, an SMX case study explores
the frontier between flexibility and efficiency in domain-specific
architectures and accelerators.
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1 Introduction

Sequence alignment assesses the similarity between two sequences
and is a fundamental building block across many application do-
mains, including information retrieval [9, 23, 80, 81], computational
biology [7, 32, 57, 86, 100], natural language processing [39, 96],
and others [26, 59, 90]. In computational biology, recent advances
in sequencing technologies have made sequence alignment a criti-
cal component of genome sequence analysis [4, 60, 91, 93]. More-
over, breakthroughs in generative-Al-based methods, such as Al-
phaFold [54] for protein structure prediction, have revolutionized
our understanding of biology and contributed to an exponential
growth of biological sequence databases. Figure 1 shows the expo-
nential growth of sequence databases over the past decades.

This increase in genomic data has been crucial for the develop-
ment of population-wide pangenome studies [38, 64, 107], person-
alized healthcare [8, 22, 35, 41, 42, 52, 75], and effective COVID-19
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Figure 1: Growth of DNA (GenBank [78]), RNA (SRA [79]),
and protein (Uniprot [25]) databases in the last two decades.

outbreak tracing, to name a few. However, the rapid growth in se-
quence data production and biological databases places a significant
computational burden on data-analysis tools. As a result, acceler-
ating key computational tasks, such as sequence alignment, has
become key for scaling data analyses to large volumes of sequence
data.

Most sequence alignment algorithms are based on dynamic pro-
gramming (DP) [82, 94] and involve computing an m X n matrix
(DP-matrix) of integer elements (DP-elements), being m and n the
sequences’ length. Hence, DP-based sequence alignment algorithms
have quadratic complexity in time and memory, posing scalability
challenges for comparing long sequences (e.g., needing 4TB of DP-
matrix for aligning a 1IMbp long ONT sequence [53]). To address
this challenge, a wide array of diverse algorithms use heuristics
that narrow computation to specific regions of the DP-matrix (e.g.,
banded [103]) or stop calculations if the alignment score drops be-
low a predefined threshold (e.g., Xdrop [7, 63, 98]). Some algorithms
trade memory for additional computation, recomputing regions of
the DP-matrix recursively instead of storing them (e.g., Hirschberg
algorithm [103]). Modern sequence alignment tools [31, 44, 95]
combine variations of these algorithms and heuristics to balance ef-
ficiency and practicality in real-world applications. Figure 2 shows
the trade-offs between performance (DP-elements computed), mem-
ory requirements (DP-elements stored), and accuracy for different
alignment algorithms. Ultimately, all these tools require fast com-
putation of part of, if not the entire, DP-matrix, highlighting the
need for new architectural solutions to accelerate DP computations
while remaining adaptable to diverse algorithms and use cases.

The demand for faster sequence alignment tools has driven re-
search into hardware accelerators, including solutions based on
GPUs [1, 2, 74, 84], FPGAs [14, 21, 46, 48, 69, 92, 109], PIM [20,
28, 47, 56, 70, 77], and ASICs [5, 15, 16, 36, 67, 83, 101]. Recently,
new ISA extensions have been proposed to accelerate sequence
alignment [30, 85], which leverages existing CPU/GPU hardware
to reduce both area and power costs. These ISA extensions pro-
vide greater flexibility compared to monolithic, standalone domain-
specific accelerators (DSA), enabling the efficient acceleration of
various sequence alignment algorithms. However, ISA extensions
are limited by the core performance and often struggle to fully uti-
lize their custom functional units while meeting strict constraints
on area, latency, and data width. In contrast, highly specialized
standalone DSAs, such as Darwin [101] and GenASM [15], can
exploit high parallelism and have shown their ability to achieve
significant performance and efficiency improvements compared
to general-purpose accelerators. However, DSAs often struggle to

Doblas, et al.

3 DP-Elem. computed [EZ0 DP-Elem. stored [ Accuracy

100 -
751
X ]
1z le 31 HP
SRR EERd B BEE B
S E N © n o - = 2 @
3 3 <
- |- o © o o -
T T T T T
Smith GenASM GACT Banded Hirschberg
Waterman (10%)

Figure 2: Percentage of the total DP-elements computed and
stored, and alignment recall (percentage of correctly aligned
sequences over the whole dataset) for different alignment
algorithms on Oxford Nanopore DNA sequences [11].

accelerate irregular and sequential operations, are limited in the
input sizes they can handle, and typically require a non-negligible
area. Moreover, optimized DSA designs are usually tailored for spe-
cific use cases, implementing fixed algorithms and heuristics and
even limiting the sequence alphabet (e.g., 2-bit for aligning DNA
sequence only). As a result, standalone DSAs are typically inflexible
and unable to adapt to different applications in rapidly evolving
fields like modern genomics and sequence biology.

Our goal is to design a high-performance and flexible archi-
tecture for accelerating different sequence alignment algorithms
across multiple application domains.

In this work, we propose SMX, an efficient heterogeneous ar-
chitecture that enables fast and scalable sequence alignment accel-
eration of different algorithms (e.g., banded, Xdrop, Hirschberg)
and applications (e.g., DNA, protein, and ASCII-text alignment).
SMX speeds up DP-based algorithms by integrating (1) SMX-1D, an
efficient yet flexible ISA-extended CPU for irregular and latency-
sensitive DP operations, and (2) SMX-2D, a high-performance copro-
cessor that accelerates regular and compute-intensive 2D DP-matrix
operations, all coordinated by the general-purpose core. SMX intro-
duces an improved encoding scheme that compresses DP-elements
to 2, 4, 6, or 8 bits (configurable), reducing memory footprint and
cache pressure. Our narrow-width encoding enables packing mul-
tiple DP-elements, increasing the computational parallelism and
reducing the area of the design by around 90% compared to other
DSAs. At the core of SMX, we introduce the SMX-engine, an opti-
mized design to accelerate the computation of complete tiles of the
DP-matrix for different alignment configurations. Equipped with
several SMX-workers to process independent sequence alignment
tasks in parallel, our SMX-engine achieves a near 100% utilization,
computing a peak of 1024 DP-elements per cycle. As opposed to
inflexible, monolithic, and standalone DSAs, SMX presents an archi-
tectural design that balances efficiency and flexibility for numerous
use cases.

Key Results. We evaluate SMX-accelerated implementations
of real-world algorithms in different practical scenarios, including
DNA, protein, and ASCII-text alignment. We demonstrate that
(1) SMX’s heterogeneous architecture allows accelerating state-of-
the-art software implementations by 256-428x and 744x aligning
real DNA and protein datasets, respectively. (2) SMX heterogeneous
system achieves a peak throughput per area added of 15.5-18.6x
higher that of state-of-the-art standalone DSAs while being more
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flexible and requiring a minimal area overhead of 0.34 mm?; (3) SMX-
engine allows a 4-64X memory footprint reduction while reducing
the bandwidth to memory and cache pressure, enabling SMX to
scale in multi-accelerator SoC.

In summary, this paper makes the following contributions:

e We propose the SMX-1D ISA extension, a flexible instruction set
optimized to accelerate sequence alignment. SMX-1D ISA uses
an improved differential-encoding scheme to compress multiple
variable-size DP-elements, minimizing memory footprint and
enabling higher parallelism.

e We propose the SMX-2D, a high-performance coprocessor de-
signed to compute complete tiles of the DP-matrix in parallel.
Using SMX differential-encoding, SMX-2D implements a 2D com-
puting engine that processes multiple tiles in parallel, relieving
the core from compute-intensive and regular tasks.

o We present SMX, to our knowledge, the first heterogeneous archi-
tecture for accelerating different sequence alignment algorithms
and applications. We propose a co-design that integrates SMX-1D
ISA and SMX-2D coprocessor to (a) accelerate regular DP-matrix
computations, (b) handle irregular alignment tasks, and (c) adapt
to different algorithms and applications.

e We conduct a thorough performance analysis using a cycle-
level simulator to evaluate SMX’s performance to accelerate
widely-used sequence alignment algorithms across different use
cases. Moreover, we evaluate SMX scalability in a multicore sys-
tem, demonstrating near-linear scalability for multiple alignment
workloads.

o We integrated SMX-1D and SMX-2D into a RISC-V in-order core
at the RTL level and performed a physical design implementation
using a 22nm technology node. The results indicate that SMX-1D
and SMX-2D occupy 0.015 mm? and 0.328 mm?, respectively,
corresponding to only 1.4% and 29.7% of the total design area.

2 Background
2.1 Sequence Alignment

Given two input sequences, reference R = rory ...r,m—1 and query
Q = qoq1 - --qn-1 of length m and n, and a scoring function, the
optimal alignment is the sequence of operations (i.e., match, mis-
match, insertion, and deletion) that transforms one sequence into
the other, maximizing the score. Sequence alignment is usually
computed using some variation of DP and requires performing two
steps: (1) DP-matrix computation and (2) alignment traceback.
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Figure 3: Simple example of a DP-based sequence alignment
of two proteins. (a) Final alignment. (b) DP-matrix. (c) Trace-
back matrix. (d) Partial BLOSUM-62 substitution matrix. The
insertion and deletion penalties are both set to I = D = —4.

MICRO 25, October 18-22, 2025, Seoul, Republic of Korea

Sequence alignment algorithms first compute an mxn DP-matrix
of integer DP-elements (Figure 3.b). Using the gap scoring func-
tion, the matrix is computed with the DP-recurrence relations in
Eq 2, where I and D represent insertion/deletion costs, and S(q;, ;)
(Figure 3.d) denotes the substitution cost of character g; with r;.
After computing the DP-matrix, the bottom-right DP-element M, ,
contains the optimal alignment score.

In the traceback step (Figure 3.c), the optimal alignment is de-
rived by tracing back the DP-elements that originated the optimal
alignment score, from My, ,, to My, following the path of maxi-
mum score DP-elements. As a result, the traceback produces the
alignment between the two sequences (Figure 3.a).

Mig=i-1
M;j = max{M,-,l,j,l +S(qi-1, rjfl),Miij +1I, Mj j—1 +D} (2)

Moj=j-D (1)

It is important to note that computing the DP-matrix has qua-
dratic O(m X n) complexity in time and space. However, parallelism
can be exploited within each antidiagonal since all DP-elements on
a single antidiagonal are independent and can be computed simul-
taneously. In contrast, the traceback step is inherently sequential,
with O(m+n) complexity, as each step depends on the previous one
to reconstruct the alignment path from My, , to Mo. Traceback
process involves branch-heavy execution, frequent mispredictions,
and loop-carried dependencies, limiting parallelism. While most
applications require full alignment, certain use cases like protein
alignment and sequence pre-filters, only need the alignment score
(i.e., score at M, ), eliminating the need to store the full DP-matrix.

2.2 Sequence Alignment Models

Depending on the application, parameters from Eq 2 are adjusted
to model each sequence alignment problem adequately.

For example, the edit model is commonly used for applications
such as NLP [51], spell-checking [73], comparing ASCII code/text
strings, and analyzing genome DNA/RNA sequences. The edit
model assigns a unit cost to insertions and deletions (i.e., ] = D = 1)
and defines the substitution cost as S(q;,r;) = 0 if g; == rj, and
S(gi,rj) = 1 otherwise.

Other weighted gap models employ different values of I, D, and
S(gi,rj) (where S(gi,rj) = M if g; == rj, and S(q;,rj) = X oth-
erwise) to address complex alignment problems, such as genomic
evolutionary events, genetic mutations, and other DNA/RNA varia-
tions. More complex models, like protein models, assign a different
penalty to each character’s substitutions based on a predefined
substitution-matrix. Broadly used protein-alignment tools, like
BLAST [6], BLAT [58], and DIAMOND [13], use well-established
substitution-matrices (e.g., BLOSUM [49] and PAM [27]) to esti-
mate the likelihood of mutations between amino acids in protein
alignments, helping to compute biologically significant alignments.

2.3 Practical Sequence Alignment Algorithms

Practical sequence alignment algorithms rely on sophisticated heuris-
tics and drop strategies to reduce the number of DP computations
to certain regions of the DP-matrix. The most notable example is
the banded heuristic [19, 31, 43, 63, 95, 98, 102], which calculates
a narrow band around the main diagonal of the DP-matrix. Based
on the observation that optimal alignments often lie near the main
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diagonal (especially for similar sequences), the banded heuristic
achieves significant speed-up while maintaining reasonable accu-
racy. In the same spirit, drop strategies [7, 63, 110] terminate
the alignment computation when the score of the computed DP-
elements drops below a threshold, indicating that the regions being
aligned have low similarity and little relevance to the application.

Notwithstanding, alignment algorithms still demand significant
memory. Hirschberg’s algorithm [31, 50, 71] is a well-known
divide-and-conquer strategy to reduce memory usage at the cost
of recomputing parts of the DP-matrix. In a nutshell, Hirschberg
works by recursively breaking the alignment into smaller subprob-
lems, solving each one independently, and combining the results to
reconstruct the full alignment. Hirschberg requires linear memory
to compute each subproblem breakpoint at the cost of partially
recomputing the DP-matrix at each step.

While alignment algorithms, heuristics, and drop techniques
vary widely, their core operation can be reduced to computing
specific regions of the DP-matrix, called DP-blocks. Despite being
regular and parallelizable, computing DP-blocks is usually the most
computational-demanding task in practical alignment algorithms.
Depending on each algorithm’s idiosyncrasies (e.g., steps, heuris-
tics, drops), algorithms require computing different workloads of
DP-blocks. As a result, orchestrating the computation of different
DP-blocks while implementing sophisticated heuristics and drops
becomes a highly irregular task involving data dependencies and
heavy-control flow operations.

2.4 Differential Encoding

Efficient CPU-based sequence alignment leverages SIMD instruc-
tions to accelerate DP-matrix computation. However, these im-
plementations typically use 16-bit or 32-bit integers to store DP-
elements, which limit SIMD parallelism since fewer values can fit
in a register. Longer input sequences further increase DP-element
values, requiring larger integers that reduce parallelism and in-
crease memory usage. To mitigate these limitations, studies [76, 99]
propose differential encoding, which stores differences between
consecutive DP-matrix values instead of absolute values. Conse-
quently, we define Av; j = M; j — M;—1,j and Ah; j = M; j — M; j—1
and reformulate the DP-recurrence equations to compute the dif-
ferential values, as shown in Eq. 3 and 4.

Av;j = max{S(qi-1,7j-1) — Ahi_1j, Avi j—1 — Ahi_1j + I, D} (3)
Ahi)j = max{S(qi_l, rj_l) - Al)i)j_l,l, Ahi—l,j - Avi)j_l + D} (4)

As shown in [63, 99], difference values are typically small and
can often be stored in 8 bits or less. This makes differential encod-
ing a crucial optimization in alignment tools like Minimap2 [63],
enhancing SIMD performance while reducing memory usage.

3 Motivation and Goal

Contrary to common belief, sequence alignment is not a single
problem but a family of problems defined across different align-
ment models, heuristics, alphabets, and more. Some examples are:
(D NeoDisc [52], a proteogenomic pipeline for neoantigen discov-
ery, uses BWA [62] (DNA-gap + Xdrop) for DNA read alignment
, STAR [29] (RNA-gap/DNA-gap + Banded) for RNA-seq analysis,
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and BLAST [17] (protein + BLOSUM + Xdrop) for protein align-
ment; 2) MEDUSA, a pipeline [75] for metagenomic analysis, uses
Bowtie2 [61] (DNA-gap + Full) and DIAMOND [12] (protein +
BLOSUM + Banded); (3) Racoon [105], an assembly pipeline uses
Edlib [95] (DNA-edit + Banded + Hirschberg) for read filtering and
SPOA [105] (DNA-gap + Full) for partial order alignment.

Although multiple software and hardware sequence alignment
accelerators have been proposed over the years, each has its lim-
itations. Unfortunately, none of the existing solutions covers all
requirements or performance across the diverse range of sequence
alignment scenarios. This section discusses the benefits and limita-
tions of current architectures used for sequence alignment.

CPU architectures offer great flexibility for executing differ-
ent sequence alignment algorithms. Modern sequence alignment
tools implement complex algorithms and sophisticated heuristics
optimized for general-purpose processors, often leveraging SIMD
instructions [31, 34, 63, 65, 68, 88, 99, 108]. However, CPU-based
solutions present performance limitations due to the lack of spe-
cific support to accelerate DP computations and the overhead of
extra CPU instructions, such as memory access and control flow. In
addition, CPUs take up significantly more silicon area per core (com-
pared to GPUs or DSAs), resulting in lower performance per unit
area. Furthermore, as core counts increase in many-core systems,
memory scalability can become a significant bottleneck.

Massively parallel GPU architectures deliver better perfor-
mance than traditional CPU architectures, scaling with the number
of cores while maintaining reasonable flexibility for implementing
different sequence alignment algorithms. As a result, GPU-based se-
quence alignment implementations [1, 18, 40] often deliver higher
throughput than CPU implementations. However, GPU architec-
tures are optimized for processing regular and parallelizable work-
loads. Thus, GPUs are not well-suited for inherently sequential
tasks, like the traceback, or irregular tasks, like X-drop, as these
often lead to warp divergence and performance bottlenecks. More-
over, similar to CPUs, GPUs face performance overheads from
irregular memory and control flow instructions.

Custom ISA extensions for CPUs [30] and GPUs [85, 89] en-
hance sequence alignment performance while preserving general-
purpose flexibility. These ISA extensions introduce specialized in-
structions to improve the performance of the DP-matrix computa-
tion. Moreover, these ISA functional units consume minimal area,
making them cost-effective. Despite these advantages, the architec-
tural constraints of general-purpose cores, such as area and latency,
limit ISA extensions’ performance and the complexity of the oper-
ations they can implement. For instance, in the case of the GMX,
the overheads from control-flow and memory instructions on the
CPU limit the utilization of GMX specialized functional units to
just 10-20% (Section 11). Another example, in terms of operation
complexity, is Nvidia DPX [85], which focuses on a limited set of
operations, primarily combining maximum functions.

Specialized standalone DSAs [15, 36, 37, 66, 101] seek to ad-
dress performance and efficiency limitations of general-purpose
architectures, proposing tailored architectural designs optimized
for specific end-to-end sequence alignment algorithms. DSA’s spe-
cialized design enables high throughput DP-matrix computations
and energy efficiency, utilizing parallel processing units and op-
timized control logic. As standalone designs, DSAs can scale up
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easily by replicating their processing units. Despite their efficiency,
DSAs have limited flexibility and reusability since they are highly
specialized for specific alignment models, algorithms, and applica-
tions (e.g., edit-distance alignment for 2-bit DNA [15]). Designs like
GACT (Darwin’s aligner) and GenASM achieve high efficiency by
using heuristics, such as the window heuristic, to reduce memory
usage. However, this restricts their use to cases where some loss
in accuracy is acceptable (e.g., adaptive sampling), and limits their
applicability to accelerate full genomics pipelines [52, 75, 105].

While standalone DSAs aim to minimize the DP-elements stored
for traceback reconstruction, they dedicate significant silicon area
to traceback logic and memory (e.g., 79.4% in GACT and 81.4% in
GenASM). Although necessary for obtaining the alignment path,
this logic and memory consume substantial resources without sig-
nificantly accelerating computation, as traceback is an inherently
sequential and irregular operation. Moreover, in designs like GACT
and GenASM, the traceback of each window is mandatory to de-
termine the next window position to be computed, even when the
alignment path is unnecessary for the specific use case.

3.1 Our Goal

Our goal is to overcome the limitations of traditional accelerators
and leverage their advantages by designing a heterogeneous archi-
tecture (SMX) that combines: (1) SMX-1D, a flexible yet efficient ISA
extension to accelerate irregular and sequential alignment tasks,
like traceback; and (2) SMX-2D, a highly optimized coprocessor
that accelerates regular and highly-parallel tasks, like computing
DP-matrix. This architecture must provide flexibility to acceler-
ate modern sequence alignment algorithms while being versatile
enough to adapt to a wide range of real-world use cases. Further-
more, this study aims to contribute to the ongoing discussion on
the trade-offs between flexibility and efficiency in DSAs.

4 SMX-1D: A Flexible Alignment ISA

Classical DP-based alignment algorithms, such as Smith-Waterman
(SW) and Needleman-Wunsch (NW), typically compute the DP-
matrix element by element, as illustrated in Figure 4.a. We propose
SMX-1D, an efficient and flexible instruction set extension designed
to accelerate sequence alignment. SMX-1D enables the computa-
tion of an entire column vector, containing VL DP-elements, in a
single operation (Figure 4.b). The value of VL depends on the size
of each DP-element and can be configured to 2-bit, 4-bit, 6-bit, or
8-bit element width (EW) based on the specific requirements of each
sequence alignment problem. Therefore, a 64-bit processor utilizing
SMX-1D can compute 32, 16, 10, or 8 DP-elements concurrently,
depending on the selected configuration. As a result, SMX-1D re-
duces the number of executed instructions by a factor of 8x-32x
and, thanks to the differential encoding, reduces the memory foot-
print by 2Xx-8x compared to traditional methods that use 32-bits
per DP-element.

4.1 SMX Differential Encoding

Computing and storing integer values of Eq. 2 results in low com-
putation efficiency as the maximum DP-element value increases
linearly with the DP-matrix size. To address this, we employ a
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Figure 4: (a) Element-by-element computation of the clas-
sical DP algorithm. (b) SMX-1D column-vector instruction
computation using a VL of 3 elements.
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differential-encoding scheme [63, 99] which expresses each DP-
element as a difference relative to its neighbors and allows packing
multiple elements into an SMX-1D vector to efficiently process
more DP-elements per SMX-1D operation.

Software implementations using differential-encoding are con-
strained to a minimum of signed 8-bit representation for each DP-
element [63, 99]. To improve hardware efficiency, we apply linear
transformation on Eq. 3 and 4 by shifting the Av and Ah values, so
that all intermediate results are non-negative, and propose a design
that adapts to a runtime-configurable element width (EW € 2-bit,
4-bit, 6-bit, 8-bit), balancing flexibility and hardware cost.

The shifting of Eq. 3 and 4, similar to [33, 72], leads us to new
non-negative differentially-encoded scores Ao’ = Av — D and
Ah’ = Ah—I and new substitution-matrix penalties S’ (g;—1,7j-1) =
S(gi-1,rj—1)—D—1.Eq. 5 and 6 show the new recurrence equations
to compute the DP-matrix.

Avg’j =max{S’ (i—1,j— 1) — AK] Avlf,j_1 - Ah;_ljj,O} (5)

i—-1,j°
Ah;!j =max{S'(i—-1,j—-1) - Avlf’j_l,o, Ah;_u - Aul{’j_l} (6)

By construction, Av” and Ak’ lie in the range [0, 8], where 0 =
Smax — I — D and Smay is the maximum substitution-matrix penalty.
Each value therefore requires at most [log,(8 + 1)] bits. Using
this bounded representation, we can select the minimal bit-width
needed for each alignment task, ensuring that no truncation or
overflow occurs, as long as the bit-width is configured to cover
the range up to 0 (see proof on [63, 99]). In typical applications,
0 and the alphabet size remain within 8 bits; BLOSUM and PAM
matrices require 5-6 bits, and gap penalties require fewer, making
narrow-width encoding both practical and precise.

This transformation also simplifies the datapath. Since operands
in Eq. 5 and 6 are non-negative and one term is always zero, the
max operation can be implemented using four subtractions and a
pair of 3-to-1 multiplexers. As shown in Fig. 5, the sign bits from
these subtractions directly control the selection lines, avoiding the
four explicit signed comparisons otherwise required for Eq. 3 and 4.
Furthermore, the equations are mutually dependent. If the first term
is selected in one equation, it is also selected in the other, allowing
reuse of control logic across both Av” and AR’ computations.

4.2 SMX-1D ISA Semantics and Architecture

The SMX-1D ISA extension provides two specialized instructions
(smx.v and smx. h) to accelerate the DP-matrix computation, two
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support operation instructions (smx . redsum and smx . pack), 3 con-
figuration registers (smx_query, smx_reference, smx_config, and
one 78 X 64-bit memory smx_submat). SMX-1D instructions are
register-to-register instructions and use standard R-type RISC-V
encoding with reserved custom opcodes.

Let AV; = [Av; ... Avjtyi—1] be a vector containing VL elements
of EW bits representing the vertical A values (i.e., differential-encoded
DP-elements), and Ah; be a single horizontal A value of EW bits.
SMX-1D implements the following instructions.

e smx.v rd, rsl, rs2. Computes a column vector AV, of VL
elements, each EW bits wide, from AV; and Ah;, stored in registers
rs1 and rs2, using smx_query and smx_reference. Writes the
result to register rd.

e smx.h rd, rs1, rs2. Computes a scalar Ah, value from AV;
and Ah;, stored in registers rs1 and rs2, using smx_query and
smx_reference. Writes the result to register rd.

e smx.redsum rd, rsi1. Computes the sum reduction of all VL
differentially encoded scores A; stored in register rs1. Writes the
result to register rd.

e smx.pack rd, rs1.Packs an 8-character ASCII string from the
source register rs1 into a packed representation based on the
element width (EW) specified in the configuration register. Writes
the result to register rd.

SMX requires three 64-bit architectural state registers (smx_query,
smx_reference, and smx_config). Architectural registers are ac-
cessed using standard read-and-write instructions implemented in
conventional ISAs, such as the csrr/csrw instructions on RISC-V.
SMX-1D implements the following Architectural State Registers:

e smx_query: Stores a packed query subsequence of VL elements
to be used by the SMX-1D unit.

e smx_reference: Stores a packed reference subsequence of VL
elements to be used by the SMX-1D unit.

o smx_config: Stores the configuration of the SMX-1D functional
unit. The SMX-1D configuration includes the element with (EW),
score model (match/mismatch or substitution-matrix), and match,
mismatch, and indel scores.

The smx_query and smx_reference registers are frequently
written, requiring the same recovery mechanisms used for general-
purpose registers, such as register renaming. This allows SMX-
1D to be implemented in out-of-order processors. In contrast, the
smx_config register and smx_submat memory are rarely modified,
as their values are reused across all alignments within the same
application. Therefore, to simplify the implementation, these regis-
ters can be updated at commit, eliminating the need for recovery
mechanisms. This reduces both the implementation and verifica-
tion complexity in a complex processor. SMX-1D uses two separate
instructions (smx.v and smx.h) to compute DP-matrix columns,
making the extensions suitable for simple RISC-like CPUs with a
single destination register port. However, this approach does intro-
duce redundancy, similar to the mul and mulh instructions in RISC-V.
For CPUs with two destination register ports, smx.v and smx. h can
be merged, enhancing encoding efficiency and throughput.

Along with its architectural registers, the SMX-1D unit requires
a 78 X 64-bit memory block (smx_submat) to store the packed form
of a 26 X 26 X 6-bit substitution matrix. This matrix is used for align-
ing sequences with a 26-character alphabet, with match/mismatch
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scores encoded using 6-bit values. The full matrix is serialized into
78x64-bit words, with 3 words allocated per column.

4.3 SMX-1D ISA Hardware Implementation

SMX-1D is designed to be an ISA extension implemented within
the processor pipeline. Therefore, SMX-1D implementation has
to meet specific hardware constraints: (1) small area footprint,
(2) short execution latency (i.e., few clock cycles), (3) use the pro-
cessor’s general-purpose registers efficiently, and (4) operate at the
same high-frequency as the processor. The SMX-1D implementa-
tion adopts the structure of a functional unit, connected similarly
to the other functional units in the CPU, such as the ALU.

4.3.1 SMX Processing Element (SMX-PE). The SMX Processing Ele-
ment (SMX-PE) is the hardware module responsible for computing
a single DP-element of EW bits (encoded in Avyy; and Ahgy;) using
left Avjn, upper Ah;p, and S, (Figure 5). It implements the opti-
mized differential equations 5 and 6 with four hardware subtractors
and two multiplexers, one for each A. The multiplexers’ selection
depends on overflow bits generated by the four subtractions. The
overflow bit Oy, is defined as the EW-th bit of the x and y subtrac-
tion, which then controls the multiplexers as detailed in Figure 5.

4.3.2  SMX-1D Array Implementation. SMX-1D computation mod-
ule is implemented by one array of SMX-PEgyy units for every EW
configuration. Since SMX supports EW values of 2-bit, 4-bit, 6-bit,
and 8-bit, the SMX-1D module includes four corresponding arrays:
32xSMX-PE;, 16XSMX-PE4, 10xSMX-PE¢, and 8XxSMX-PEs. This
design allows the module to adapt to different sequence alignment
scenarios (e.g., DNA, protein, text) and efficiently handle various
arithmetic precisions (e.g., edit-distance, gap model, protein model).
The left side of Figure 6 shows the SMX-PE interconnection in the
SMX-1D module. The input AV’ is obtained from register rs1 and
passed to the corresponding SMX-PE. The input Ak’ is obtained
from register rs2 and provided to the first SMX-PE, while each
subsequent SMX-PE receives its AR’ from the previous unit’s out-
put. The results are stored in rd: the smx. v instruction collects all
Av’ outputs, whereas the smx.h instruction stores only the last
computed AR’.

4.3.3 Efficient S’ (i, j) Computation. The input S’ for each SMX-
PE is generated dynamically using query and reference values in
the smx. query and smx. reference registers. The SMX-1D module
supports two different configurations for generating these substitu-
tion scores based on the sequence alignment problem being solved.
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Figure 6: High-level diagram of the heterogeneous SMX architecture.

1. The match-mismatch configuration assigns fixed penalties
to matching or mismatching characters and is commonly used in
edit-distance calculations and algorithms like Needleman-Wunsch
for comparing DNA, RNA, and ASCII sequences. This configuration
is implemented as an array of comparators that evaluate characters
from the smx.query and smx.reference registers. Each compara-
tor in the array outputs M —I—D (i.e., 0) if the reference and query
characters match at that position or X — I — D otherwise.

2. The substitution-matrix configuration assigns penalties
to character substitutions using matrices like BLOSUM and PAM,
which contain 26 X 26 penalty values ranging from -6 to 15. These
matrices are typically used with indel costs between 5 and 12, lead-
ing to a maximum 6 of 39, which can be encoded in 6 bits.

To support this, SMX-1D implements a dedicated memory struc-
ture storing 26 X 26 elements, each 6 bits wide, totaling 26 X 26 X 6
bits. To optimize access, the matrix is structured into 26 rows, each
corresponding to a reference character, with 26 words per row rep-
resenting query characters. This layout allows for efficient SRAM
implementation, as only one reference character needs to be ac-
cessed at a time. The memory access process first selects the SRAM
row for the given reference character, outputting a 26 X 6-bit array.
Then, the relevant VL elements corresponding to query characters
are extracted, forming a VL X 6-bit vector. This organization mini-
mizes latency and ensures rapid access during protein alignment.

5 SMX-2D: A High-Performance Coprocessor

SMX-1D ISA extensions enhance DP-matrix computation by pro-
cessing VL DP-elements per operation while minimizing memory
footprint to EW. However, SMX-1D faces certain limitations to scale
efficiently to process more DP-elements. As an ISA extension, its
implementation is constrained by the resources and capabilities
of the general-purpose core it integrates with (e.g., area, latency,
and power). Also, the core still requires executing memory and
control-flow instructions, which ultimately limits the core from
reaching the peak performance of SMX-1D functional units (i.e.,
reaching up 20% of the peak throughput).

To further accelerate the O(n?) DP-matrix computation, we pro-
pose SMX-2D, a high-performance coprocessor for computing en-
tire DP-matrix blocks (DP-block). Our design allows the core to
offload the computation of arbitrarily large DP-blocks to the SMX-
2D coprocessor to accelerate the most compute-intensive step of
sequence alignment algorithms. Internally, SMX-2D is designed as

a coprocessor connected to the L2 cache that scales up the SMX-1D
array design into a 2D matrix of SMX Processing Elements (SMX-
PE). SMX-2D computes tiles of DP-elements (DP-tiles) using its
2D matrix array until the entire DP-block is calculated (see Fig-
ure 6). Thanks to its 2D array, specialized control logic and memory
pipeline, the SMX-2D coprocessor is expected to deliver up to 128
higher throughput than the SMX-1D ISA.

Storing all computed DP-elements for large DP-blocks would
heavily strain memory resources. To mitigate this, SMX-2D retains
only the border DP-elements of each DP-tile, enabling efficient
computation of subsequent tiles and allowing on-demand recompu-
tation of inner DP-elements during traceback. Therefore, SMX-2D
can reduce the memory footprint up to 32X compared to SMX-1D,
and up to 256X compared to the software implementation.

5.1 SMX-2D Coprocessor Architecture

SMX-2D coprocessor architecture consists of three main compo-
nents: SMX-engine, SMX-workers, and the memory controller (cen-
tral part of Figure 6). First, the SMX-engine is responsible for com-
puting DP-tiles of size VLXVL elements until the complete DP-block
is calculated. Meanwhile, SMX-workers manage DP-block execu-
tion by partitioning it into tiles, issuing computations to the SMX-
engine, and handling memory transfers. SMX-2D implements mul-
tiple SMX-workers to allow multiple DP-block computations in
parallel and maximize the SMX-engine utilization. The memory
controller facilitates communication with the L2 cache, efficiently
sharing a single L2 request port with the CPU using an arbiter.
Experimental results show that even at full occupancy, SMX-2D
utilizes only 25% of the L2 port, while the CPU’s usage remains at
2%, ensuring minimal performance impact.

In more detail, SMX-2D execution begins when the core offloads
a DP-block computation to a specific SMX-worker by writing the
configuration registers to set reference/query addresses, sizes, A
matrix addresses, and other parameters (e.g., EW and penalties).
Then, the SMX-worker starts by generating a read request to the
memory controller to fetch segments of the input sequences and
the A matrices. Once all required data is received, the SMX-worker
issues DP-tile computation requests to the SMX-engine. Once com-
pleted, the SMX-engine returns the computed results (i.e., A values
of the tile borders) to the SMX-worker to store them via the mem-
ory controller. The SMX-worker continues this process, sending
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computations to the SMX-engine, until the entire DP-block is com-
puted. Finally, the SMX-worker signals completion, allowing the
core to retrieve results for further processing, such as computing
the final alignment score or performing traceback.

5.2 SMX-Engine Design

Extending the SMX-1D compute array design, the SMX-engine con-
sists of a 2D matrix of SMX-PEgyy units for every EW configuration.
Since SMX allows EW to be configured to 2-bit, 4-bit, 6-bit, and 8-bit,
the SMX-engine contains four arrays of 32x32 SMX-PE,, 16x16
SMX-PE4, 10x10 SMX-PEg, and 8x8 SMX-PEg. As a result, the SMX-
engine computes an entire DP-tile of size 32x32, 16X16, 10x10, and
8x8 elements per cycle, depending on the EW configured.

Interconnection between SMX-PEs within the SMX-engine is
shown in the right side of Figure 6. Each SMX-PE generates AR’ and
Av’ as outputs, which serve as inputs to the adjacent SMX-PE below
and to the right, respectively. The input vector AV}, (loaded from
rs1 register) supplies values to the leftmost column of SMX-PEs, and
the input vector AH;, (loaded from the rs2 register) initializes the
top row of SMX-PEs. Similarly, SMX-engine generates the output
vector AV, (output Ao’ values from the rightmost column of
SMX-PE) and the output vector AH] , (output Ah’ values from the
bottom row of SMX-PE).

The SMX-engine is segmented into multiple pipelined stages
since the SMX-engine contains a large 2D matrix of SMX-PE units
and each unit adds a non-negligible propagation delay. Specifically,
our SMX-engine design incorporates segmentation registers along
the 2D matrix antidiagonals to effectively reduce propagation delay
while maintaining a throughput of one DP-tile per cycle.

For efficient computation of the S’ (i, j) values, the SMX-engine
extends the approach described for the SMX-1D ISA implementa-
tion. When using the match-mismatch model, the SMX-engine uses
a 2D matrix of comparators to compare reference and query char-
acters and determine whether to assign either a match or mismatch
value to each SMX-PE. When aligning 8-bit amino acids using a
substitution-matrix, the SMX-engine has to select S’ (i, j) values to
feed the 10x10 matrix of SMX-PEs. For that, the SMX-engine first
accesses simultaneously 10 columns from the substitution-matrix,
each corresponding to a character in the reference subsequence.
Then, for each of these 10 rows of 26 X 6-bit values, the SMX-engine
selects the corresponding value based on the query characters (as
in the SMX-1D implementation). Due to the need to perform 10
accesses in parallel, using SRAMs is not an option, as SRAMs typ-
ically support only single-row access at a time. Therefore, our
SMX-engine design stores the substitution-matrix in registers.

5.3 SMX-Workers: Maximizing Utilization

SMX-engine’s design has a peak throughput of one DP-tile com-
puted per cycle, but 100% utilization is challenging due to stalls
from data dependencies between tiles and memory access delays.

To mitigate these issues, we introduce the SMX-worker as a spe-
cialized control unit designed to manage DP-blocks computations
and guarantee a continuous flow of requests to the SMX-engine.
The SMX-worker comprises dedicated memory and custom control
logic to coordinate a DP-block alignment.
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Figure 7: SMX-Worker computation pattern.

To exploit memory locality, the SMX-worker groups DP-tiles
that share reference and query cache lines into SMX-supertiles (see
Figure 7). It first loads a full cache line with reference and query data
along with supertile boundary A values, then processes all inner
DP-tiles using the SMX-engine while storing tile edges in internal
SRAM. Tiles within supertiles are processed along antidiagonals
to maximize parallelism. SMX-worker stores the computed tile
borders, properly arranged into cache line transfers, minimizing
the memory operations used.

Although the SMX-worker improves SMX-engine utilization,
stalls may still occur due to memory access delays, task switching,
and the variable number of parallel DP-tiles in first and last an-
tidiagonals. To further improve utilization, SMX-2D incorporates
multiple SMX-workers that process different DP-blocks in parallel,
reducing idle cycles and hiding memory latencies.

6 SMX Heterogeneous Architecture

SMX heterogeneous architecture combines a CPU extended with
the SMX-1D ISA with an SMX-2D coprocessor to accelerate different
sequence alignment algorithms. While SMX-2D specializes in high-
throughput computations of 2D DP-blocks, the SMX-1D-enhanced
core manages irregular and control-intensive tasks, including trace-
back computation, work scheduling, and heuristics.

Figure 8.a illustrates the computation of a complete DP-block,
represented as a 2 X 2 array of DP-tiles. In the example, the tile size
is 4x4 DP-elements. The core first packs the input sequences using a
custom packing instruction and offloads the DP-block computation
to the SMX-2D coprocessor. The coprocessor computes all tiles, stor-
ing only their borders (blue elements in Figure 8.a). The core then
performs traceback, starting from the bottom-right DP-element.
Since inner DP-elements are not stored, the core selectively re-
computes them using SMX-1D instructions (green elements) only
for tiles involved in the traceback. This minimizes redundant com-
putations while reconstructing the alignment path (red arrows),
ultimately reaching the top-left corner.

For the applications where only the alignment score is needed,
the SMX-2D coprocessor stores only the last column of the DP-block
using differential encoding. The core then sums all Ah values along
the first row and Ao along the last column to obtain the alignment
score, corresponding to the bottom-right element of the DP-block.

The SMX-2D coprocessor and the core interleave tasks to exe-
cute simultaneously, enhancing performance. Figure 8.b illustrates
a timeline where the core and SMX-2D process multiple small
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Figure 8: (a) Computation of a DP-block (2x2 DP-tiles of 4x4 DP-elements) using SMX heterogeneous architecture. (b) Timeline
of SMX architecture processing DP-blocks of 2x2 DP-tiles. The SMX-2D has two SMX-workers and a 4-stage SMX-engine.
prep; indicates the sequence preprocessing (e.g., packing the strings) needed for DP—block;. traceback; indicates that the CPU is
computing the traceback of DP-block;. bi(x,y) indicates that the SMX-engine is computing the tile (x,y) of the DP-block;.

DP-blocks of 2 x 2 tiles. In this illustration, SMX-2D features two
SMX-workers and a single SMX-engine with a 4-stage pipeline.
First, the CPU packs the reference and query sequences for two
DP-blocks and dispatches them to the coprocessor, assigning one
DP-block to each worker. The workers then issue tile computation
requests to the SMX-engine while handling data dependencies (e.g.,
tiles (0,0) and (1,0)). If a tile depends on a previously computed
one, the worker stalls until the dependency is resolved. Conversely,
independent tiles (e.g., tiles (1,0) and (0,1)) can be processed con-
currently within the SMX-engine pipeline. In this example, the
SMX-engine achieves around 50% utilization due to the limited
number of tiles and workers. Increasing DP-block size and adding
more workers can push utilization closer to 100%. Once a DP-block
is computed, the core can initiate the traceback using the SMX-1D
ISA. The heterogeneous SMX design enables overlapping sequence
packing and traceback computation in the core with DP-block com-
putation in SMX-2D, ensuring continuous execution of both units
and maximizing overall throughput.

7 Experimental Methodology

Cycle-Accurate Simulations: For experimental evaluation, we
implement the SMX heterogeneous architecture into the gem5 RISC-
V simulator [10]. Using gem5, we simulate an SoC with 8 cores
extended with SMX-1D ISA and 8 SMX-2D coprocessors connected
to each core’s private L2 cache. Each RISC-V core is an 8-way
superscalar out-of-order with the configuration shown in Table 1.
The SMX-2D coprocessor is configured with 4 SMX-workers to
maximize SMX-engine utilization while minimizing the silicon area
utilization (see Section 10 for area and frequency results).
Synthesis and Physical Design Environment: We integrate
an RTL implementation of SMX-1D and SMX-2D into a RISC-V 64-
bit Linux-capable edge processor featuring an in-order single-core
processor fabricated in GlobalFoundries’ 22nm technology node
(Table 2 shows the processor configuration). To achieve the 1 GHz
target frequency of the RTL design, we configure the SMX-engine
module to obtain a design with 7, 5, 4, and 3 cycles operation la-
tency for the 2-bit, 4-bit, 6-bit, and 8-bit configurations, respectively.
The processor with SMX is synthesized in GlobalFoundries’ 22nm

FD-SOI using Cadence Genus v19.11 and placed and routed with
Innovus v22.33, targeting a 1 GHz post-PnR clock.

Sequence alignment configurations: For evaluating SMX on
different use cases, we define four sequence alignment model config-
urations: DNA-edit (2-bit characters using edit distance), DNA-gap
(4-bit characters using a linear gap model), Protein (6-bit characters
using a linear gap model and BLOSUM50 substitution-matrix), and
ASCII (8-bit characters using edit distance).

Implementations: We evaluate SMX’s performance by com-
paring different implementations, computing only the alignment
score (Score) and the full alignment (Alignment). Our baseline,
SIMD, is the highly optimized and 128-bit vectorized KSW2 imple-
mentation found at the core of Minimap2 [63], one of the most
used state-of-the-art read mappers. SMX-1D implementation uses
the SMX-1D ISA extension to accelerate both DP-block compu-
tations and traceback. SMX-2D implementation accelerates only
the DP-block computations using the SMX-2D coprocessor, while
the general-purpose core performs the traceback step. Lastly, SMX
implementation uses the SMX-2D coprocessor for DP-matrix com-
putation and the SMX-1D ISA for pre/post-processing tasks, such
as the traceback computation.

Table 1: Gem5 Out-of-order processor configuration.

Pipeline 64-bit RISC-V (RV64GV), 8-wide out-of-order, 8k-entry Bi-
Mode predictor, 256-bit SIMD unit

Memory Unit 2 loads and 1 store per cycle, 96-entry LSQ, 96-entry SB

iTLB & dTLB Fully associative, 148 entries per TLB

Data L1 64 KB, 4-way, 3 cycles latency, 256 MSHR

Inst. L1 64 KB, 4-way, 2 cycles latency, 256 MSHR

Private L2 1MB, 8-way, 160 MSHR

Shared LLC 1MB per core, 16-way, 256 MSHR

Main memory 8 GB of DDR4 with 23.9 GB/s bandwidth

Table 2: RTL In-Order processor configuration

Pipeline 64-bit RISC-V (RV64GV), 7-stages, 128-entry bimodal pre-
dictor, 32-entry graduation list, 128-bit SIMD unit

Memory Unit 8-entry LSQ, 8-entry Store Buffer, 16 misses in flight

iTLB & dTLB Fully associative, 16 entries per TLB

Data cache 32 KB 4-way, 3-cycle, PIPT, 16-entry MSHR

Inst. cache 16 KB 4-way, 2-cycle, VIPT
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Figure 9: Throughput SMX-1D and SMX-2D aligning different length DP-block for 4 sequence alignment configurations.

Experimental Datasets: Using the methodology from [44, 71,
72], we generated different datasets, each corresponding to a use
case (i.e., DNA-edit, DNA-gap, Protein, and ASCII), containing se-
quences of lengths of 100, 1K, and 10K base-pairs (bps). Additionally,
for the evaluation of practical sequence alignment algorithms, we
used two real DNA-sequencing datasets (*15Kbps sequences of
PacBio-HiFi [104] and ~50Kbps sequences of ONT-Nanopore [11])
and a protein dataset containing various pairwise alignments gen-
erated by querying proteins against the UniProt database [24].

8 SMX Performance Analysis

This section presents performance results aligning DP-blocks of dif-
ferent sizes in various use cases. The experiments are evaluated on
the gem5 simulator using a single SMX-enhanced out-of-order core.
Figure 9 shows the throughput (DP-blocks per second) obtained
when aligning DP-blocks of sizes 100100, 1Kx1K, and 10Kx10K;
using the different implementations (SIMD, SMX-1D, SMX-2D, and
SMX, which combines SMX-1D and SMX-2D) across four configu-
rations (DNA-edit, DNA-gap, Protein, and ASCII).

When computing the alignment score, all implementations fit
data in the cache hierarchy. Compared to the SIMD baseline, SMX-
1D accelerates DNA-edit, DNA-gap, protein, and ASCII alignments
by up to 23X, 11X, 16X, and 6X, respectively, thanks to its effi-
cient packing of 8 to 32 DP-elements per word, enabling parallel
computation in a single instruction. In contrast, SIMD packs 16 DP-
elements per vector but requires 9 arithmetic SIMD instructions
per computed vector, explaining SMX-1D’s performance advantage.
Protein alignment benefits particularly from SMX-1D, as the SIMD
baseline suffers from frequent random accesses to the substitution
matrix, significantly degrading performance. SMX-2D and SMX
(SMX-1D + SMX-2D) achieve similar peak speed-ups across all use
cases, reaching up to 1465x, 379%, 778X, and 96X over SIMD for
10Kx10K DP-blocks. These results demonstrate the advantages of
the 2D systolic array (up to 32x higher parallelism than SMX-1D)
and optimized control logic in improving system utilization (up to
4x higher utilization compared to SMX-1D). For smaller DP-blocks,
however, SMX-2D alone does not match SMX’s performance due
to pre/post-computation bottlenecks in the core, which are effi-
ciently handled by SMX-1D. As shown in Figure 9, SMX-based
implementations achieve the highest speed-ups for long sequences,
where most execution time is spent on DP computation. The results
also highlight the importance of configurable EW and VL values
for performance. Specifically, for long sequences, SMX-1D scales

linearly in performance, while SMX-2D and SMX exhibit quadratic
scalability as VL increases.

When computing full alignments (including traceback), SMX-1D
improves performance over the SIMD baseline by up to 18X, 12X,
8%, and 7x for DNA-edit, DNA-gap, protein, and ASCII alignments,
respectively. These speedups hold when aligning 1Kx1K DP-blocks
that fit within the cache hierarchy. For longer sequences, neither
SIMD nor SMX-1D can keep DP-blocks in cache, leading to sig-
nificant performance degradation. SMX-2D accelerates DP-matrix
computations but remains bottlenecked by the CPU, which handles
inner DP-element recomputation and traceback. This limitation is
more pronounced for small DP-blocks and lower EW values, where
the number of tiles to be recomputed is larger. However, as sequence
length increases, DP-matrix computation dominates runtime, in-
creasing SMX-2D’s speedup. The SMX implementation overcomes
these traceback bottlenecks by using the SMX-1D ISA to efficiently
recompute inner DP-elements within tiles. Compared to the SIMD
baseline, it achieves up to 404X, 299X, 696X, and 98x speedups for
DNA-edit, DNA-gap, protein, and ASCII alignments, respectively.

8.1 SMX-2D Utilization Analysis

We evaluate SMX-engine utilization in the SMX-2D coprocessor
with 1 to 8 workers to determine the optimal configuration. To accu-
rately measure peak utilization, we compute only DP-block scores,
minimizing CPU overhead. Figure 10 shows utilization across dif-
ferent worker configurations, model setups, and sequence lengths.
A single worker achieves at most 30-45% utilization when aligning
large DP-blocks, while increasing to 4 workers raises utilization
around 90%, optimizing resource use and performance. Beyond 4
workers, performance gains are marginal, making the area increase
unjustifiable. For very small DP-blocks (e.g., 100x100), utilization
drops significantly due to high communication overhead.

100x100 1Kx1K —A— 10Kx10K
100
50 4 DNA-edit | ; DNA-gap
0 T T T T T T
100

Protein | ]

: ]

Utilization (%) Utilization (%)

o

8

©

4 4
Workers Workers

Figure 10: SMX-engine utilization by worker count
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Figure 11: Throughput of SMX-accelerated algorithms.

9 SMX-Accelerated Algorithms

In this section, we show the acceleration of different practical al-
gorithms leveraging SMX’s heterogeneous architecture. As shown
in Figure 11, SMX accelerates Hirschberg’s recursive algorithm,
achieving a 390x speedup on real DNA datasets. This is because
Hirschberg’s method spends most of its execution time recomput-
ing arbitrarily large DP-blocks to divide the alignment into smaller
subproblems, a task where SMX-2D excels. Similarly, Xdrop-SMX,
an SMX-accelerated version of the banded Xdrop algorithm (as
used in BLAST [7]), improves performance by 256X on real DNA se-
quencing datasets. While effective, its speedup is slightly lower than
Hirschberg’s due to the smaller DP-block sizes (columns sized by
the supertile’s width), which introduce additional CPU-coprocessor
communication overhead. Lastly, Full-SMX, SMX-accelerated imple-
mentation of protein-to-protein alignment, yields a 744X speedup
compared to the SIMD baseline. In this case, the SIMD baseline
requires random access to the substitution-matrix for each DP-
element, significantly reducing the SIMD performance.

9.1 SMX-Algorithms Multicore Scalability

Figure 12 (left panel) shows the scalability of SMX in a multicore
system where each core is extended with the SMX-1D ISA and
connected to an SMX-2D coprocessor via the private L2 cache. We
observe that all SMX-accelerated alignment implementations scale
linearly with the number of cores. Moreover, we can expect the
same scalability in larger systems since all these different algo-
rithms fit computed DP-blocks inside the private caches. Note that
the Xdrop version shows slightly less efficient scaling than the
other implementations due to the higher communication overheads
between the CPU and the SMX-2D. Such overheads can lead to
some congestion in the cache hierarchy, impacting scalability.

9.2 SMX-Algorithms Work Balance

This section shows the work balance between the core (with SMX-
1D) and the SMX-2D coprocessor while executing various applica-
tions aligning real sequence datasets. Figure 12 (right panel) shows
the percentage of time the core spends processing data (i.e., not
waiting for the SMX-2D) and the utilization of the SMX-engine
(i.e., the percentage of cycles where the SMX-engine receives new
computation requests). In the case of SMX-accelerated Hirschberg,
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Figure 12: SMX-accelerated algorithms scalability on multi-
core (left) and core/SMX-engine utilization (right).

executions achieve high utilization of the SMX-engine by alternat-
ing low-intensive core-coprocessor coordination tasks and high-
intensive traceback computations. Aligning larger sequences re-
quires performing more subproblem divisions, reducing core activ-
ity during these steps. As can be observed in Figure 12, aligning the
ONT dataset, which contains very long sequences, shows less core
utilization than aligning the PacBio dataset, which contains shorter
sequences. When executing the SMX-accelerated banded algorithm
with Xdrop, we observe high utilization of both the core and the
SMX-engine. In this case, the SMX-2D coprocessor constantly pro-
cesses DP-blocks belonging to the DP-matrix band, and the core
processes the results to determine whether the alignment should
continue or be dropped while sending new DP-blocks to compute.
Finally, when computing protein alignments using the UniProt
dataset, the SMX-engine shows very high utilization while the CPU
remains underutilized, since its role is limited to performing simple
operations to process the results (i.e., a DP column reduction to
calculate the alignment score).

9.3 Accelerating End-to-End Applications

In this section, we show the performance improvements that SMX
can provide to end-to-end applications such as Minimap2 [63] for
DNA read mapping and DIAMOND [12] for sensitive protein align-
ment. In the case of Minimap2, the alignment phase (DNA-gap +
Banded + Xdrop) accounts for 70-76% of the total execution time
when aligning PacBio sequences [55]. SMX accelerates Minimap2’s
alignment algorithm by 274X, resulting in an end-to-end application
speedup of 3.3-4.1%. Similarly, in the case of DIAMOND protein
aligner, alignment (Protein + BLOSUM + Banded) consumes around
99% of the total execution time [12]. SMX accelerates this DIA-
MOND’s alignment algorithm by 744X, resulting in an end-to-end
application speedup of 88.3x.

10 SMX Synthesis, Area, and Frequency

Table 13b shows the area breakdown of each SMX module after
place and route at 1 GHz when implemented in an in-order single-
issue RISC-V core using a 22nm technology node (Table 2 details the
processor configuration). SMX-1D adds a minimal area overhead
of 0.0152mm?, just 1.37% of the processor area, which is compara-
ble to a 2-cycle 64-bit integer multiplier. The SMX-2D coprocessor
occupies 0.3280mm?, with 0.1136mm? for the SMX-Engine and
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Figure 13: Physical design of the SMX-enhanced Processor

0.0369mm? per SMX-Worker. Overall, SMX-2D accounts for 29.66%
of the processor area, equivalent to 2.13X the 32KB L1 data cache.
Regarding the power consumption, SMX consumes 0.342 mW as-
suming a 20% gate activity factor.

11 Performance Comparison with the SotA

This section compares SMX’s performance against state-of-the-art
methods. We conduct direct comparisons using identical datasets,
use cases, and algorithms, leveraging SMX’s flexibility to adapt
to diverse sequence alignment scenarios. Figure 14 shows SMX’s
performance against GMX [30] and DPX [89] ISA extensions (DPX
on CPU SIMD); GACT (from Darwin [101]) decoupled accelerator;
and CUDASW++ [89] GPU library (using DPX). For the evalua-
tion, we use ONT (DNA) and UniProt (protein) datasets. For fair
comparison, GMX and DPX instructions were integrated into the
same gemb5-simulated processor as SMX, executing Hirschberg and
Xdrop algorithms. GMX was added to the CPU’s scalar pipeline
using its original design [30]. DPX, originally designed for GPU
vector units, was implemented on the CPU’s SIMD unit.
Compared to GMX (ISA extension), SMX shows 5.9 higher
throughput for the Hirschberg algorithm aligning DNA in edit
distance. While both use 32x32 tiles, SMX achieves 82.4% tile occu-
pancy versus GMX’s 11.1%. As GMX is a pure ISA extension, CPU
limitations (e.g., pipeline contention and data dependencies) prevent
issuing one GMX instruction per cycle, lowering its throughput.
Compared to DPX (implemented as SIMD), SMX shows
411.3% higher throughput while accelerating the same Hirschberg
algorithm in gapped DNA alignment. DPX’s performance is limited
by its design, which merges a few operations (e.g., max of three)
into one instruction, resulting in only a 1.07x speedup over baseline
KSW2. In contrast, SMX processes hundreds of DP-elements per
cycle, significantly improving parallelism and throughput.
Compared to GACT (Darwin DSA), SMX is 2.4x slower when
computing the same window heuristic (window size of W=320
and overlap of O=128), despite comparable silicon areas (GACT:
1.34mm? @40nm; ~0.3mm? @22nm [97]). This is due to SMX’s
low efficiency when computing the small DP-blocks found in the
window heuristic. However, as shown in Figure 14, the window
heuristic fails to compute any optimal alignments from ONT se-
quences, resulting in zero recall. Unlike GACT, SMX’s flexibility
allows accelerating other algorithms, like the banded algorithm,
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Figure 14: Performance comparison (alignments/s and recall)
of SMX against the state-of-the-art methods. (H) Hirschberg,
(X) Banded with Xdrop of 8%, (W) Window (W=320, 0=128),
(F) Full alignment.

which is 5.2x slower than GACT but correctly aligns 90% of ONT se-
quences. Moreover, SMX can also accelerate Hirschberg algorithm,
which is 22.7x slower than GACT but guarantees to compute a 100%
correct alignment (full recall), demonstrating SMX’s performance-
accuracy trade-off.

Compared to CUDASW++ (GPU library with DPX) running
on an Nvidia H100 GPU (at 2 GHz), a 72-core SMX-enhanced Grace
CPU (at 1 GHz) is projected to achieve 1.7X higher throughput com-
puting protein alignments. Note that the die area of the Nvidia H100
GPU is comparable to that of the 72-core Grace CPU (both 800 mm?),
and that the area overhead of the SMX accelerators’ (at 5 nm) is
negligible compared to the Grace CPU’s die area. Furthermore, the
SMX-enhanced CPU configuration aligns better with current ge-
nomics software ecosystems, which are predominantly CPU-based,
with limited support for GPU-accelerated applications. This makes
SMX a more flexible and practical choice for accelerating a wide
range of mainstream genomic applications and pipelines.

12 Related Work

Sequence alignment is critical in computational biology, leading
to numerous efforts to accelerate it using general-purpose hard-
ware. Many proposals focus on algorithmic improvements [98,
99], exploitation of SIMD instructions [63, 68], multicore parallel-
processing [87], and GPUs acceleration [3, 89].

Recent ISA extension proposals, DPX [85, 89] for GPU and
GMX [30] for CPUs, provide specialized instructions to enhance
sequence alignment efficiency. DPX introduces 3-way maximum
and minimum operations, applicable across various DP-based appli-
cations, while GMX offers high-performance instructions for com-
puting DP-tiles using the edit distance model for DNA alignment.
In comparison, SMX-1D obtains a balance by delivering higher
performance than DPX while offering greater flexibility than GMX
across different sequence alignment algorithms.

Driven by the demand for faster sequence alignment solutions,
researchers have proposed numerous domain-specific hardware



SMX: Heterogeneous Architecture for Universal Sequence Alignment Acceleration

Table 3: Peak GCUPS (PGCUPS) per Processing Units (PU).

Application®
—_ 2
Study Device E G P T Cpu £CEST mmg
KSW2 [63] CPU VERVERVARN4 1 1.8 -
BlockAligner [68]  CPU v v v 1 3.6 -
GMX [30] ISA v v 1 1024.0 0.02
Study Devie @~ E G P T smf POCUPS®  mm’g
GASAL2 [3] GPU v v v 28 23 -
CUDASW++4 [89] GPU(ISA) v v V 132 633 -
. . 2
Study Device E G P T Chip %%M% '(‘:‘}':;P§
BioSEAL [56] PIM v v v 15 6046.7  230.0
Study Devie ~ E G P T put POCUPS®  mm’s
GENASM [15] DSA v v 32 64.0 0.33
DARWIN [101] DSA v v v 64 54.2 134
GenDP [45] DSA v v v 64 47 5.39
Mao-Jan Lin [66] DSA v v v v 1 91.4 5.72
Talco-XDrop [106] DSA v v v 32 12.8 1.82
DNA-edit v v 1024.0
DNA-gap ISA + v v v 256.0
SMX Protein Coproc. v v v 1 100.0 0.34
AsCI v v v 64.0

*E = Edit Model, G = Gap Model, P = Protein Model, T = Supports Traceback.
TSM - Streaming Multiprocessor, PU = Processing Units

" Peak GCUPS (Giga DP-elements computed per second) per processing unit.

$ Additional area (mm?) required per processing unit.

accelerators [15, 37, 45, 66, 101]. SeedEx and GenASM optimize edit-
distance DNA alignment, while Darwin accelerates DNA alignment
using a gap model in an ASIC design. However, these accelerators
rely on custom algorithms with restrictive heuristics tailored to spe-
cific applications in mind. On the other side, GenDP [45] presents
a more flexible DSA thanks to its programmable ISA, allowing it to
accelerate other DP problems. However, its performance per mm?*
is significantly lower than other sequence alignment DSAs. Despite
the significance of protein alignment, few DSAs support the substi-
tution matrices required for protein models. Mao-Jan Lin et al. [66]
propose an accelerator that computes the entire DP-matrix, while
Talco-XDrop [106] introduces a tiling-based method to reduce the
number of computed and stored cells in protein alignment. Un-
like other accelerators, SMX is not restricted to a single alignment
model and can be configured to maximize performance across di-
verse scenarios. Moreover, SMX operators can be used to accelerate
different DP-based alignment algorithms and heuristics.
Comparing sequence alignment proposals is challenging due to
variations in algorithms, architectures, and technologies. GCUPS
(Giga Cells/DP-elements Updated Per Second) remains a key met-
ric for peak performance, reflecting the number of DP-elements
processed per second. Table 3 summarizes key proposals, detailing
Processing Units (PU), silicon area, and flexibility. In this com-
parison, we account for both the logic and the private memory
required by each solution. For SMX, we include all logic and mem-
ory components of SMX-1D and SMX-2D. Overall, SMX achieves
high GCUPS per processing unit compared to highly specialized
DSAs while maintaining flexibility across sequence alignment mod-
els. It minimizes area overhead by using reduced datatypes and
leveraging the core’s memory hierarchy, eliminating the need for
dedicated traceback memory. By storing only tile borders, SMX-2D
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significantly reduces memory footprint and bandwidth, optimizing
system efficiency and enabling the core’s memory hierarchy reuse.

13 Conclusions

In this paper, we present the SMX, a heterogeneous architecture for
sequence alignment acceleration that combines flexible SMX-1D
ISA extensions to accelerate irregular and sequential alignment
tasks, and an efficient SMX-2D coprocessor to efficiently acceler-
ate the regular and highly-parallel DP-matrix computations. We
demonstrate the flexibility and efficiency of the SMX heteroge-
neous architecture by accelerating practical sequence alignment
algorithms in different real-world use cases, exploring the trade-offs
between flexibility and efficiency in domain-specific accelerators.
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