
Type Freezing: Exploiting Attribute Type
Monomorphism in Tracing JIT Compilers

Lin Cheng
Berkin Ilbeyi

lc873@cornell.edu
bi45@cornell.edu
Cornell University
Ithaca, NY, USA

Carl Friedrich Bolz-Tereick
cfbolz@gmx.de

Heinrich-Heine-Universität
Düsseldorf
Germany

Christopher Batten
cbatten@cornell.edu
Cornell University
Ithaca, NY, USA

Abstract
Dynamic programming languages continue to increase in
popularity. While just-in-time (JIT) compilation can improve
the performance of dynamic programming languages, a sig-
nificant performance gap remains with respect to ahead-
of-time compiled languages. Existing JIT compilers exploit
type monomorphism through type specialization, and use
runtime checks to ensure correctness. Unfortunately, these
checks can introduce non-negligible overhead. In this paper,
we present type freezing, a novel software solution for exploit-
ing attribute type monomorphism. Type freezing “freezes”
type monomorphic attributes of user-defined types, and
eliminates the necessity of runtime type checks when per-
forming reads from these attributes. Instead, runtime type
checks are done when writing these attributes to validate
type monomorphism. We implement type freezing as an ex-
tension to PyPy, a state-of-the-art tracing JIT compiler for
Python. Our evaluation shows type freezing can improve
performance and reduce dynamic instruction count for those
applications with a significant number of attribute accesses.

CCS Concepts • Software and its engineering → Lan-
guage features; Just-in-time compilers.

Keywords dynamic languages, just-in-time compiler

ACM Reference Format:
Lin Cheng, Berkin Ilbeyi, Carl Friedrich Bolz-Tereick, and Christo-
pher Batten. 2020. Type Freezing: ExploitingAttribute TypeMonomor-
phism in Tracing JIT Compilers . In Proceedings of the 18th ACM/IEEE
International Symposium on Code Generation and Optimization (CGO
’20), February 22–26, 2020, San Diego, CA, USA. ACM, New York, NY,
USA, 14 pages. https://doi.org/10.1145/3368826.3377907

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
CGO ’20, February 22–26, 2020, San Diego, CA, USA

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7047-9/20/02. . . $15.00
https://doi.org/10.1145/3368826.3377907

1 def foo(pt):

2 x = pt.x

3 y = pt.y

4 return x+y

(a)

1 assert_type(pt,Point)

2 _x = load_attr(pt,x)

3 _y = load_attr(pt,y)

4 r = add_int(_x,_y)

5 return r

(c)

1 assert_type(pt ,Point)

2 _x = load_attr(pt,x)

3 _y = load_attr(pt,y)

4 assert_type(_x ,int)

5 assert_type(_y ,int)

6 r = add_int(_x ,_y)

7 return r

(b)

Figure 1. Example of Type Specialization vs. Type Freezing –
(a) dynamic language pseudocode; (b) intermediate representation
(IR) nodes after applying type specialization in a traditional JIT
compiler; and (c) IR nodes after applying type specialization and
type freezing in our proposed JIT compiler.

1 Introduction
Dynamic programming languages have become increasingly
popular across the computing spectrum from the Internet of
Things (e.g., MicroPython for microcontrollers), to mobile
devices (e.g., JavaScript for web browsers), to servers (e.g.,
Ruby on Rails, Node.js). Among the top-ten most popular
programming languages, four of them are dynamic [7]. Dy-
namic programming languages usually support lightweight
syntax, managed memory, garbage collection, and dynamic
typing. These features, along with rich and powerful built-
in libraries, make dynamic programming languages highly
expressive and productive [6, 16, 22, 25].
Type polymorphism, in which data with different types

can be associated with a single identifier, is one of the key
features of dynamic typing. Because of type polymorphism,
many operations (e.g., add) need to use type dispatching to
determine the concrete operations for specific operands (e.g.,
add for adding two strings vs. add for adding two integers).
Type dispatching and other dynamic features mean dynamic
languages are usually interpreted using a virtual machine.
For example, each time an interpreter executes method foo

in Figure 1(a), it needs to determine the correct addition
semantics for the types of x and y.
Type monomorphism, where an identifier is only associ-

ated with a single type of data throughout the duration of

16

https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3368826.3377907
https://doi.org/10.1145/3368826.3377907

CGO ’20, February 22–26, 2020, San Diego, CA, USA Lin Cheng, Berkin Ilbeyi, Carl Friedrich Bolz-Tereick, and Christopher Batten

the application, is actually not as uncommon as one might
expect in dynamic language programs. In fact, an analysis
of popular Python-based frameworks and libraries revealed
that at least 79% of the identifiers are type monomorphic [30].
Just-in-time (JIT) compilation is a popular way to address
the performance gap between dynamic languages and ahead-
of-time (AoT) compiled languages. Most recent JIT compilers
apply an optimization technique called type specialization,
which eliminates type dispatching overhead by speculatively
replacing generic operations with concrete ones in the JIT
compiled code. However, there is no guarantee that any
identifier in a dynamic language program will remain type
monomorphic, so runtime checks (e.g., assert_type at lines
1, 4, and 5 in Figure 1(b)) are needed to ensure correctness.

Attribute type monomorphism is where an attribute in all
instances of a certain user-defined type holds only one type
of data. For example, in Figure 1, the x and y attributes of
Point objects always store integer values. However, a tradi-
tional JIT compiler applying type specialization (Figure 1(b))
still needs to insert an assert_type on each of these at-
tributes (lines 4–5) to ensure the Point type has not been
modified elsewhere. Note that the check on the type of these
attributes is in addition to the preceding check on the type of
pt (line 1). In Section 4, we present type freezing, a new way
to exploit attribute type monomorphism that complements
type specialization. Type freezing freezes type monomorphic
attributes of user-defined types, and eliminates the necessity
of runtime type checks when performing reads from these
attributes. Instead, runtime type checks are done when per-
forming writes to validate type monomorphism. Previous
work described a software/hardware hybrid scheme to mine
attribute type monomorphism and remove redundant type
checks [12]. We propose two pure software mechanisms,
simple type freezing and nested type freezing in the context
of a tracing JIT compiler, which achieve similar performance
improvements as this prior work without the need for any
form of specialized hardware. The JIT compiled code after
applying type specialization and our technique is shown in
Figure 1(c). We implemented both proposed mechanisms
as extensions to PyPy, a widely adopted implementation of
Python [20]. Our evaluation on two real machines shows
that: (1) for most applications that use user-defined objects
heavily, our techniques improve performance by 5% on av-
erage and up to 16%, while reducing dynamic instruction
count by 8% on average and up to 17%; (2) for applications
that rarely use user-defined objects, or do not use them at
all, our mechanisms incur minimal overhead.
The contributions of this work are: (1) we quantify type

monomorphism in real-world Python workloads; (2) we pro-
pose two pure-software mechanisms, simple type freezing
and nested type freezing, to exploit attribute type monomor-
phism in the context of a tracing JIT; and (3) we show the
effectiveness of our techniques with microbenchmarks and
full-size benchmarks on PyPy, measured on real machines.

2 Background on JIT Compilation
In this section, we briefly introduce just-in-time compilation,
meta-tracing JIT compilers, RPython, quasi-immutables, and
the map optimization prevalent in modern JIT compilers.

Just-in-Time Compilation JIT compilation has been in-
creasingly adopted as dynamic languages gain in popularity.
Under Rau’s categorization of program representations [23],
the source code (e.g., C/C++, Fortran, and Python) is called
high-level representation (HLR), and a JIT compiler trans-
lates a directly interpretable representation (DIR) (e.g., Java
and Python bytecode) to a directly executable representation
(DER) (e.g., RISC-V [24] and x86 machine instructions). A
method-based JIT compiler (e.g., Google V8 [28], JavaScript-
Core [18]) mainly targets frequently executed methods, and
preserves the control flow graph in the DER. A tracing JIT
compiler (e.g., HotpathVM [14], TraceMonkey [13]) mainly
targets frequently executed loops, and compiles the DER
from a linear trace through the DIR. While it is simpler to
apply certain compiler optimizations when control flow is
linear, runtime control flow checks must be added to ensure
the execution is still taking exactly the same path. These
checks, along with the runtime type checks we mentioned
before, are usually called guards.

Meta-Tracing JIT and RPython Applying JIT compila-
tion significantly closes the gap between dynamic languages
and AoT-compiled languages. However, it is well known
that developing performant JIT compilers is very challeng-
ing. Meta-JIT compilers (e.g., Truffle framework [29] and
RPython framework [2]), which separate language defini-
tion from virtual machine and JIT compiler implementations,
have been proposed to overcome this difficulty. The RPython
framework allows language implementers to construct inter-
preters for the target languages in a high-level language (i.e.,
a restricted subset of Python). PyPy is a production-ready
Python implementation developed using RPython.

With only a few additional hints, the RPython framework
is able to automatically generate a JIT compiler for a target
language. The RPython framework also provides additional
hints that can dramatically improve the performance of the
resulting JIT compilers [3]. For example, the hint promote
marks variables as runtime constants, and allows the JIT
compiler to remove subsequent reads to these variables.

Quasi-Immutable RPython also provides a way to opti-
mize for attributes that rarely change. When defining a VM-
level class, one can annotate certain attributes to be quasi-
immutable variables. Then hooks, which are very much like
write-barriers in the context of garbage collectors, are auto-
matically generated for these attributes’ modifiers. During
tracing, the values read from these attributes are consid-
ered to be constants. When a quasi-immutable variable is
written to, all compiled traces that access this variable are
invalidated.

17

Type Freezing: Exploiting Attribute Type Monomorphism in Tracing JIT Compilers CGO ’20, February 22–26, 2020, San Diego, CA, USA

pt1 = Point (42 ,1)

pt2 = Point (6,7)

42
1

6
7

Point	instance

"y"
1

"x"
0

NULL

attr	name
storage	slot
next	entry

map
storage

slot	0
slot	1

Point	instance
A	Map

pt1

pt2

Figure 2. Objects and Maps – A digram of objects and maps after
running the code listed at the top. Left side of the figure shows two
simplified user-defined objects. Each object has two fields, map and
storage. Right side of the figure shows a simplified map, which is
composed as a linked list of map entries. Each entry holds meta
data for a single attribute.

1 def read(self , obj , name):

2 attr = self.find_map_attr(name)

3 if attr is None:

4 self.handle_error ()

5 return obj.read_storage(attr.storageindex)

Figure 3. PyPy read Method – Simplified version of the read

method in PyPy which uses the map optimization.

MapOptimization Manymodern dynamic languages (e.g.,
Python and JavaScript) allow attribute manipulation outside
of object constructors. These languages allow instances of
the same class to have different sets of attributes. This can
cause significant overhead (e.g., CPython maintains a space
consuming attribute dictionary for each object). However,
in practice many objects share the same set of attributes.
Maps (i.e., hidden classes or Shapes in Google V8) are a well-
known technique to exploit this similarity, which were first
introduced by the SELF project [8]. PyPy employs this tech-
nique [5]. A map is an immutable collection of attributes
that defines the type of the object. A map is implemented
as a linked list of attribute entries (see Figure 2). When an
attribute is added to or deleted from an object, the object
points to another map which reflects its current attribute
set. If the map we want to point to does not already exist, a
new one will be created. To read an attribute from an object,
we use bytecode LOAD_ATTR, which pops the user-defined
object off the stack, and then invokes the read method of
its map. A simplified implementation of read is shown in
Figure 3. Inside read, we first look up where this attribute is
stored using the name of this attribute and a linear search
over the map. If there is no such attribute, a special routine
handles the failure. Otherwise, we read from this object’s
storage space in a separate data structure using the index
found in the map lookup.

3 Attribute Type Monomorphism
Type specialization is a widely adopted JIT compiler tech-
nique to exploit type monomorphism in dynamic program-
ming languages by replacing general operations with type-
specific ones. Since there is no guarantee that any identifier
will remain type monomorphic, runtime checks are needed
to verify future data still has the expected type. Previous re-
search has shown that executing these runtime type checks
consumes considerable time and energy [10, 11].
Attribute type monomorphism is a special kind of type

monomorphism, where an attribute in all instances of a cer-
tain user-defined type holds only one type of data. A study on
JavaScript applications has revealed the existence of attribute
type monomorphism, and the potential benefit of exploiting
it [12]. We conduct a similar study on applications from the
PyPy Benchmark Suite [21]. We profile and characterize each
application using a variety of statistics including the number
of attribute reads (AR), the number of attribute writes (AW),
number of reads that are to type monomorphic attributes
(MAR), and the read-to-write ratio (AR/AW) (see Table 1).
We have observed that in all applications except gcbench,
hexiom2, and raytrace, there is significant attribute type
monomorphism. Reading monomorphic attributes accounts
for 74.8% of all reads. Moreover, a considerable amount of
accesses (OMAR in Table 1) are to nested objects in certain ap-
plications (e.g., deltablue and mako). Though attribute type
polymorphism (i.e., an attribute of a certain user-defined
type holds more than one type of data) does exist in almost
all applications, the amount of attributes that become poly-
morphic is small, except in the case of sympy. Excluding
sympy, on average only 18 attributes hold more than one
type of data. The existence and abundance of attribute type
monomorphism, along with the rareness of attributes that
later become polymorphic, motivate us to investigate mecha-
nisms that automatically discover and speculatively remove
runtime type checks on monomorphic attributes, while be-
ing able to fall back if a monomorphic attribute eventually
becomes type polymorphic.

4 Type Freezing
Previous work has found that runtime checks due to dy-
namic language features constitute 25% of execution time
in state-of-the-art virtual machines [10]. Given the perfor-
mance and energy impacts of runtime checks, and the abun-
dance of type monomorphic attributes, we propose to use
a novel software technique, type freezing, for exploiting at-
tribute type monomorphism. In this section, we first describe
two mechanisms, simple type freezing and nested type freez-
ing, in detail. We then demonstrate the benefits of applying
type freezing with micro-benchmarks, and we discuss the
overheads and correctness of type freezing. We extend the
example in Figure 1 to a more complex one to better illus-
trate how our proposed mechanisms work. In Figure 4, we

18

CGO ’20, February 22–26, 2020, San Diego, CA, USA Lin Cheng, Berkin Ilbeyi, Carl Friedrich Bolz-Tereick, and Christopher Batten

Table 1. Benchmark Statistics

Attribute Reads

Benchmark Total (AR) CAR MAR OMAR PAR
(%) (%) (%) (%) AW AR/AW MAP PM BC BC/AR

⋆ deltablue 524.10 M 0.0 56.6 41.7 1.7 107.53 M 4.9 81 11 3.67 B 6
⋆ raytrace 5.01 B 0.2 2.7 9.6 87.4 1.23 B 4.1 86 17 34.07 B 6
⋆ raytrace-opt 5.01 B 0.2 90.2 9.6 0.0 1.23 B 4.1 86 10 34.07 B 6
⋆ richards 808.08 M 3.3 64.5 7.5 24.6 297.25 M 2.7 51 11 7.65 B 9
⋆ eparse 20.34 M 0.0 51.6 0.1 48.4 4.12 M 4.9 70 15 168.75 M 8
⋆ telco 376.50 M 0.0 70.9 1.6 27.5 103.42 M 3.6 95 15 3.04 B 8
⋆ float 150.01 M 0.0 100.0 0.0 0.0 90.00 M 1.7 57 10 1.28 B 8
⋆ html5lib 21.17 M 0.0 70.0 5.7 24.4 4.88 M 4.3 232 29 194.09 M 9
⋆ chaos 538.39 M 0.0 86.1 0.0 13.9 110.09 M 4.9 71 11 5.81 B 10
pyflate-fast 53.54 M 0.0 83.5 0.0 16.5 5.88 M 9.1 65 11 777.69 M 14

⋆ pickle 55.93 M 0.0 100.0 0.0 0.0 452.44 K 123.6 85 13 1.12 B 20
icbd 8.26 K 0.0 66.4 0.9 32.7 2.33 K 3.5 61 13 138.62 K 16
hexiom2 426.31 M 0.0 8.3 1.4 90.3 2.38 M 178.9 74 11 9.57 B 22

⋆ scimark 993.98 M 0.0 100.0 0.0 0.0 503.89 K 1972.6 66 11 17.84 B 17
spambayes 11.00 M 0.1 89.2 0.0 10.6 700.78 K 15.7 344 37 287.24 M 26
json-bench 42.81 M 7.5 92.5 0.0 0.0 2.67 K 16034.0 73 10 2.13 B 49
django 32.48 M 0.0 71.5 14.2 14.3 26.67 K 1217.5 202 20 1.32 B 40
mdp 5.62 M 0.0 58.8 0.0 41.2 1.44 M 3.9 101 16 260.66 M 46

⋆ sympy 6.20 M 0.0 87.3 0.0 12.6 1.44 M 4.3 6410 4774 304.72 M 49
⋆ sympy-opt 6.20 M 0.0 86.8 0.0 13.1 1.46 M 4.2 6410 4774 304.77 M 49
⋆ gcbench 37.14 M 0.0 0.0 0.0 100.0 190.47 M 0.2 59 13 1.78 B 47
genshi-text 11.64 M 0.0 98.1 1.7 0.1 12.20 K 954.2 159 18 814.50 M 69

⋆ genshi-xml 5.84 M 0.0 98.0 1.7 0.3 11.71 K 498.7 166 19 792.76 M 135
gzip 1.49 M 0.0 66.3 3.5 30.2 1.06 M 1.4 129 14 225.51 M 151
crypto-pyaes 9.69 M 0.0 92.9 7.1 0.0 3.24 K 2993.5 62 11 6.67 B 688
regex-effbot 11.10 K 0.0 63.1 1.8 35.0 3.22 K 3.4 54 10 9.32 M 839

⋆ chameleon 451.46 K 0.0 84.0 0.4 15.6 488.86 K 0.9 1411 77 506.81 M 1122
mako 260.12 K 0.0 73.7 17.5 8.8 109.34 K 2.4 340 26 399.19 M 1534
spitfire 59.09 K 0.0 73.0 4.1 22.9 20.82 K 2.8 454 60 405.54 M 6862

⋆meteor-contest 11.52 K 0.0 77.9 0.6 21.5 4.67 K 2.5 54 10 359.55 M 31219
ai 7.88 K 0.0 68.3 0.8 30.9 2.27 K 3.5 54 10 941.71 M 119536
fannkuch 7.88 K 0.0 68.3 0.8 30.9 2.27 K 3.5 54 10 1.09 B 138818
nbody-modified 7.88 K 0.0 68.3 0.8 30.9 2.27 K 3.5 54 10 2.68 B 339759

⋆ fib 7.88 K 0.0 68.3 0.8 30.9 2.27 K 3.5 54 10 6.23 B 791289

Total (AR) = attribute reads, excluding read attempts to attributes that do not exist. CAR = constant attribute reads; MAR = monomorphic attribute reads in
which data is primitive type; OMAR = monomorphic attribute reads in which data is another user-defined object; PAR = polymorphic attribute reads; AW =
attribute writes; AR/WA = read to write ratio; MAP = total number of map entries, in which each holds metadata about a single attribute; PM = map entry that
becomes type polymorphic; BC = total bytecode count; BC/AR = bytecodes per attribute read. Applications with a star (⋆) are used for evaluation. Note that
ai, fannkuch, nbody-modified, fib have similar statistics since the only usage of user-defined objects in these applications involves very similar argument
parsing code

define two classes, Point and Line. Each instance of Point
has two attributes x and y that hold integer values. Each
instance of Line has two attributes pt1 and pt2, where each
of them holds an instance of Point. Method create_lines

constructs and returns a list of Line instances, while method
total_length takes in a list of Line instances, computes,
and returns the total lengths of all lines. The simplified JIT
trace of the while loop in method total_length compiled
by PyPy is shown in Figure 5.
In PyPy, each primitive type (e.g., integer and list) is im-

plemented as a separate VM class (i.e., W_IntObject and
W_ListObject respectively), while all user-defined types

share a single VM class (i.e., W_ObjectObject). Thus, to per-
form type dispatching and implement type guards, the run-
time checks if the VM object is an instance of a certain VM
class. For example, guard_class at line 19 of Figure 5 checks
if p12 is an integer object by verifying if it is an instance of
the VM class W_IntObject.

4.1 Simple Type Freezing

Simple type freezing removes guards that check if the VM
object is an instance of the expected VM class for type-
monomorphic attribute reads. In order to automatically dis-
cover type-monomorphic attributes, we need a data structure

19

Type Freezing: Exploiting Attribute Type Monomorphism in Tracing JIT Compilers CGO ’20, February 22–26, 2020, San Diego, CA, USA

1 import math

2
3 class Point(object):

4 def __init__(self , x, y):

5 self.x = x

6 self.y = y

7
8 class Line(object):

9 def __init__(self , pt1 , pt2):

10 self.pt1 = pt1

11 self.pt2 = pt2

12
13 def create_lines(n):

14 lines = []

15 for i in xrange(n):

16 pt1 = Point(i, n-i)

17 pt2 = Point(n-i*2, i)

18 lines.append(Line(pt1 , pt2))

19 return lines

20
21 def total_length(n, lines):

22 total_length = 0

23 i = 0

24 while i < n:

25 line = lines[i]

26 pt1 = line.pt1

27 pt2 = line.pt2

28 a_side = (pt1.x - pt2.x) ** 2

29 b_side = (pt1.y - pt2.y) ** 2

30 total_length += math.sqrt(a_side + b_side)

31 i += 1

32 return total_length

Figure 4. Running Example – This example creates a list of lines
and then calculates their total length.

to track the types of variables stored for each attribute. One
way to implement this is to create a centralized table, where
each entry of the table logs whether a specific attribute of a
given user-defined type is type monomorphic. However, this
table can growwithout a bound as new objects and attributes
are encountered, and accessing it can have poor data local-
ity, leading to reduced cache performance. A previous study
extending the V8 JavaScript JIT compiler for a similar type-
monomorphic attribute read optimization concludes that a
special hardware cache for this table is necessary since the
benefit of exploiting attribute type monomorphism will be
diminished using a software monomorphism table [12]. We
find it is natural to store attribute type information directly
in the maps instead. PyPy already automatically discovers
and optimizes for constant attributes using auxiliary vari-
ables in a map (see CAR in Table 1). Each attribute entry in
a map has a flag, ever_mutated. If an attribute is written
exactly once, this flag is deemed true and the value stored in
this attribute is considered a constant value.

1 i5 = int_lt(i1, i2) # i < n

2 guard_true(i5) #

3
4 p7 = get_array_item(p0, i1) # line = lines[i]

5 guard_class(p7, W_ObjectObject) #

6
7 p8 = get(p7, Map) # pt1 = line.pt1

8 guard_value(p8 , Map of Line) #

9 guard_not_invalidated () #

10 p9 = get(p7, slot0) #

11 guard_class(p9 , W_ObjectObject) #

12
13 p10 = get(p7, slot1) # pt2 = line.pt2

14 guard_class(p10 , W_ObjectObject) #

15
16 p11 = get(p9, Map) # pt1.x

17 guard_value(p11 , Map of Point) #

18 p12 = get(p9, slot0) #

19 guard_class(p12 , W_IntObject) #

20
21 p13 = get(p10 , Map) # pt2.x

22 guard_value(p13 , Map of Point) #

23 p14 = get(p10 , slot0) #

24 guard_class(p14 , W_IntObject) #

25 ...

26 p19 = get(p9, slot1) # pt1.y

27 guard_class(p19 , W_IntObject) #

28
29 p20 = get(p10 , slot1) # pt2.y

30 guard_class(p20 , W_IntObject) #

31 ...

32 i28 = int_add(i1, 1) # i += 1

33 jump(p0,i28 ,i2,f27) #

Figure 5. Baseline PyPy Trace – Simplified trace of the while
loop in Figure 4, optimized by the baseline JIT compiler.

We propose to associate another field, known_type, with
each attribute entry in a map (see Figure 7). This field can
hold either concrete type information, or two special values,
uninitialized and mutated. When an attribute entry is
first created, its known_type is set to uninitialized. Dur-
ing the first store to this particular attribute, known_type
is initialized to the type of the value to be stored. For sub-
sequent stores, known_type is compared with the type of
the value to be stored. Upon mismatch, known_type is set to
another special value, mutated, which flags this attribute as
type polymorphic. The method we use to conduct bookkeep-
ing is shown in Figure 6(c). When reading an attribute, in ad-
dition to finding the storage index by traversing the map and
loading the value from the storage (Figure 3), we also read the
known_type field of this attribute. If its known_type holds a
concrete type, we convey both the fact that this attribute is
type monomorphic and the concrete type information to the
JIT compiler through a hint called record_exact_class.

PyPy’s optimization passes remove duplicated type guards
by applying traditional compiler techniques. For example,
even though we read from object line twice in Figure 4
(lines 26 and 27), only one guard_class is inserted for both
reads in Figure 5 (line 5). record_exact_class is one of

20

CGO ’20, February 22–26, 2020, San Diego, CA, USA Lin Cheng, Berkin Ilbeyi, Carl Friedrich Bolz-Tereick, and Christopher Batten

1 i5 = int_lt(i1 , i2) # i < n

2 guard_true(i5) #

3
4 p7 = get_array_item(p0 , i1) # line = lines[i]

5 guard_class(p7 , W_ObjectObject) #

6
7 p8 = get(p7 , Map) # pt1 = line.pt1

8 guard_value(p8 , Map of Line) #

9 guard_not_invalidated () #

10 p9 = get(p7 , slot0) #

11
12 p10 = get(p7, slot1) # pt2 = line.pt2

13
14 p11 = get(p9, Map) # pt1.x

15 guard_value(p11 , Map of Point) #

16 p12 = get(p9, slot0) #

17
18 p13 = get(p10 , Map) # pt2.x

19 guard_value(p13 , Map of Point) #

20 p14 = get(p10 , slot0) #

21 ...

22 p19 = get(p9, slot1) # pt1.y

23
24 p20 = get(p10 , slot1) # pt2.y

25 ...

26 i28 = int_add(i1 , 1) # i += 1

27 jump(p0 ,i28 ,i2,f27) #

(a) Trace

1 def read(self , obj , name):

2 attr = self.find_map_attr(name)

3 if attr is None:

4 self.handle_error ()

5 value = obj.read_storage(attr.storageindex)

6 known_type = attr.known_type

7 if known_type is not mutated \

8 and known_type is not uninitialized:

9 record_exact_class(value , known_type)

10 return value

(b) Read method implementation

1 def record_type_info(self , w_value):

2 if self.known_type is mutated:

3 return

4 if self.known_type is uninitialized:

5 self.known_type = type(w_value)

6 else:

7 if self.known_type is not type(w_value):

8 self.known_type = mutated

9 return

10 return

(c) Write path type check implementation

Figure 6. Simple Type Freezing – (a) trace of the while loop
in Figure 4 after being JIT compiled by PyPy with simple type
freezing; (b) simplified read method of PyPy’s maps with simple
type freezing; (c) type check inserted by type freezing.

the JIT hints provided by RPython framework. A preced-
ing record_exact_class marks a certain reference as type
frozen, and thus makes subsequent type guards appear to be
duplicated. Then the same optimization pass will automati-
cally remove all related type guards on this specific reference.
By doing so, simple type freezing eliminates type guards for
reads to type-monomorphic attributes. The updated read

line = Line(Point(6,7), Point (42,1))

line

42
1

6
7

Line	instance

Point	instance

"pt2"
1

UDO

"pt1"
0

UDO
NULL

"y"
1

INT

"x"
0

INT
NULL

NULL NULL

attr	name
storage	slot
next	map

known_type
known_map

map
storage

slot	0
slot	1

Point	instance

A	Map

Figure 7. Objects and Maps with Simple and Nested Type
Freezing – A digram of objects and maps generated by running
the code on the top. Map fields with white background are preex-
isting. Fields with light green background are added by simple type
freezing. Fields with dark green background are added by nested
type freezing. UDO = user-defined object; INT = integer.

method is shown in Figure 6(b). The same trace of the while
loop after incorporating simple type freezing into PyPy is
shown in Figure 6(a). Guards at lines 11, 14, 19, 24, 27, and
30 in Figure 5 are removed.

The optimized trace now assumes that these attributes are
monomorphic. However, if a variable of a different type is
written to these attributes elsewhere in the code, the trace
needs to be invalidated since the monomorphism assumption
is no longer correct. To do this, we declare known_type to be
quasi-immutable. At JIT compilation time, type guards (e.g.,
guard_class in Figure 5) are speculatively removed. The
JIT compiler speculates that the known_type fields of the
monomorphic attributes will not be modified. Thus, if the
attribute ever becomes polymorphic, writing into the corre-
sponding known_typewill automatically invalidate all traces
that depend on this specific attribute being type monomor-
phic (i.e., traces that depend on this particular known_type
staying immutable). By leveraging this existing mechanism
in the RPython framework, we avoid the necessity of adding
our own deoptimization mechanism for attributes that turn
polymorphic.

4.2 Nested Type Freezing

While simple type freezing can eliminate unnecessary guards
for primitive types, it is not sufficient for user-defined types.
Unlike primitive types, all user-defined types are represented
using the same W_ObjectObject VM class, and the JIT uses

21

Type Freezing: Exploiting Attribute Type Monomorphism in Tracing JIT Compilers CGO ’20, February 22–26, 2020, San Diego, CA, USA

the guard_value on the user-defined objects’ maps to con-
duct runtime type checks (e.g., lines 8, 17, and 22 in Figure 5).
Among certain applications we study, a considerable number
of type monomorphic attribute reads are to user-defined ob-
jects (i.e., OMAR in Table 1). We propose nested type freezing,
which eliminates map reads (e.g., get at lines 16 and 21) and
map guards when accessing a type monomorphic attribute
that holds user-defined objects.
We associate another quasi-immutable field, known_map,

for every attribute entry in maps (see Figure 7). Similar to
known_type, it can store either a reference to a concrete
map, or two special values, uninitialized and mutated.
Note that if a certain monomorphic attribute does not store
user-defined objects, the corresponding known_map is mean-
ingless andwill never be read.When an attribute entry is first
created, its known_map is set to uninitialized. During the
first store to this particular attribute, if the value to be stored
is a user-defined object, its map is stored in known_map for
the corresponding attribute entry in the outer object’s new
map. For subsequent stores, simple type freezing checks if
the value to be stored is still a user-defined object. If so, we
further read and compare the map of the object to be stored
with known_map. Upon mismatch, the special value mutated
will be stored into known_map. An example implementation
of the new write semantics is shown in Figure 8(c). If an
attribute is observed to have multiple user-defined types
stored to it, instead of marking this attribute type polymor-
phic, we mark it as map-level type polymorphic. Map-level
type polymorphic attributes exclusively store user-defined ob-
jects (i.e., different VM instances of the W_ObjectObjectVM
class), but may store different types of user-defined objects
(e.g., a certain attribute can store both instances of Point
and instances of Line). Distinguishing map-level type poly-
morphism from general type polymorphism allows us to
preserve the benefit of simple type freezing for these cases
(i.e., guard_class can still be removed).

To implement nested type freezing, we extended the vanilla
RPython framework with a new hint, record_exact_value.
All other parts of our proposed techniques are implemented
at the language implementation level. During tracing and
compiling, record_exact_value makes a particular value
(e.g., pointer to the map of a certain object) appear to be a
known constant. Then during JIT optimization, subsequent
reads (e.g., get on this map) and guards (e.g., guard_value
on this map) are removed by constant folding [3]. The trace
of the while loop shown in Figure 4 after being JIT compiled
by PyPy with nested type freezing is shown in Figure 8(a),
while the read method implementation that supports both
simple and nested type freezing is shown in Figure 8(b).

As described so far, the nested type freezing optimization
is not safe. It is not sufficient to detect a map-level type-
polymorphic attribute by solely observing what values are
stored into this specific attribute. This is because the ref-
erenced inner user-defined object is itself mutable, and its

1 i5 = int_lt(i1, i2) # i < n

2 guard_true(i5) #

3
4 p7 = get_array_item(p0, i1) # line = lines[i]

5 guard_class(p7, W_ObjectObject) #

6
7 p8 = get(p7, Map) # pt1 = line.pt1

8 guard_value(p8, Map of Line) #

9 guard_not_invalidated () #

10 p9 = get(p7, slot0) #

11
12 p10 = get(p7, slot1) # pt2 = line.pt2

13
14 p12 = get(p9, slot0) # pt1.x

15
16 p14 = get(p10 , slot0) # pt2.x

17 ...

18 p19 = get(p9, slot1) # pt1.y

19
20 p20 = get(p10 , slot1) # pt2.y

21 ...

22 i28 = int_add(i1, 1) # i += 1

23 jump(p0,i28 ,i2,f27) #

(a) Trace

1 def read(self , obj , name):

2 attr = self.find_map_attr(name)

3 if attr is None:

4 self.handle_error ()

5 value = obj.read_storage(attr.storageindex)

6 known_type = attr.known_type

7 if known_type is not mutated \

8 and known_type is not uninitialized:

9 record_exact_class(value , known_type)

10 if isinstance(value , W_ObjectObject):

11 known_map = attr.known_map

12 if known_map is not mutated \

13 and known_map is not uninitialized \

14 and known_map.is_terminal:

15 record_exact_value(value._map , inner_map)

16 return value

(b) Read method implementation

1 def record_type_info(self , w_value):

2 if self.known_type is mutated:

3 return

4 if self.known_type is uninitialized:

5 self.known_type = type(w_value)

6 else:

7 if self.known_type is not type(w_value):

8 self.known_type = mutated

9 return

10 if self.known_map is mutated:

11 return

12 if isinstance(w_value , W_ObjectObject):

13 if self.known_map is uninitialized:

14 self.known_map = w_value._map

15 else:

16 if self.known_map is not w_value._map:

17 self.known_map = mutated

18 return

(c) Write path type check implementation

Figure 8. Simple and Nested Type Freezing – (a) trace of the
while loop in Figure 4 after being JIT compiled by PyPy with simple
and nested type freezing; (b) simplified read method of PyPy’s
maps with simple and nested type freezing; (c) type check inserted
by type freezing.

22

CGO ’20, February 22–26, 2020, San Diego, CA, USA Lin Cheng, Berkin Ilbeyi, Carl Friedrich Bolz-Tereick, and Christopher Batten

pt = Point (6,7)

line = Line(pt, Point (42,1))

delattr(pt ,"x")

line

42
1

6
7

Line	instance

Point	instance

"pt2"
1

UDO

"pt1"
0

UDO

NULL

"y"
1

INT

"x"
0

INT

NULL

NULL NULL
Point	instance

True

False

"y"
0

INT

NULL

NULL

True

pt
attr	name
storage	slot
next	map
is_terminal
known_type
known_map

Figure 9. Terminal Maps – Structure of a user-defined object
can be mutated through another reference (i.e., remove attribute
x through pt in this example). UDO = user-defined object; INT =
integer.

map can be changed at a later point through a separate ref-
erence. For example, consider the code shown in Figure 9.
Assume that initially, both attributes of Line are deemed
type monomorphic and store Point instances that have at-
tributes x and y. We then alter the structure of a Point in-
stance being stored in line by removing attribute x through
an external reference (i.e., pt). By definition, attribute pt1
of Line becomes map-level type polymorphic. We can no
longer safely assume that all instances stored in attribute
pt1 have an x attribute. However, this mutation cannot be
noticed by solely observing writes to line.pt1. To address
this issue, we propose the concept of terminal maps. A map is
said to be terminal if none of the references that point to this
map have added or removed any attributes. We add one addi-
tional quasi-immutable boolean field, is_terminal, in each
attribute entry to track this property (see light green fields
in Figure 9). If any reference modifies the type by adding
or removing an attribute, it sets the is_terminal field to
false. For example, when attribute x is removed from pt in
Figure 9, the map pt originally points to (the one linked to
pt with a dash line in Figure 9) has its is_terminal field set
to be false. As we have seen in Section 2, maps are linked
lists composed by attribute entries. The is_terminal field
in the head entry of a certain linked list indicates that this
particular map is considered terminal or not. When reading a
type-monomorphic attribute that holds a user-defined object,
nested type freezing checks if the corresponding known_map
stores a reference to a concrete map. If so, it further tests if

1:10 1:1 10:1 100:1
0.0
0.2
0.4
0.6
0.8
1.0
1.2

N
or
m

P
er
f

(H
ig
he
r
is
b
et
te
r)

1:10 1:1 10:1 100:1
Read to Write Ratio

0.0
0.2
0.4
0.6
0.8
1.0

N
or
m

D
yn

In
st
s

(L
ow

er
is
b
et
te
r)

Baseline STF STF + NTF

Figure 10. Micro-Benchmark Performance and Dynamic In-
structions – STF = simple type freezing; NTF = nested type freez-
ing. Showing 95% confidence interval over 60 runs.

this map is terminal. Only after verifying the map is still con-
sidered terminal, nested type freezing eliminates subsequent
reads and guards on the map of the object to be read.
The deoptimization mechanism for nested type freezing

is the same as simple type freezing. At JIT compilation time,
map reads and guards (e.g., get and guard_value for read-
ing from pt1 and pt2 in Figure 5) are removed by specu-
lating that the corresponding known_map and is_terminal

are immutable. Upon misspeculation, an attribute becomes
map-level type polymorphic, and writing into its known_map
and/or is_terminal triggers invalidation of all related traces.

4.3 Type Freezing Benefits

We use the code in Figure 4 with different read-to-write ra-
tios as micro-benchmarks (using 200K Point and 100K Line

instances) to show the benefit of applying simple and nested
type freezing. The results are shown in Figure 10. As the read-
to-write ratio increases, the benefit of type freezing increases.
While simple and nested type freezing provide significant
dynamic instruction count benefits (1.40× better instruction
count at 100 read-to-write ratio), this does not translate to
the same level of overall performance improvement (1.06×).
This difference is mostly due to microarchitectural cache ef-
fects in modern processors. Without type freezing, when an
attribute is read, its type has to be loaded and checked. This
will cause the type and the neighboring addresses on the
cache line to be brought into the L1 cache.When the attribute
value is read from the storage, this data would likely already
be in the cache since it is located near the type information
in address space, amortizing some of the attribute load cost.
With type freezing, we skip loading the attribute’s type, so
we do not benefit from the spatial locality effect. In the case
where there are more writes than reads, type freezing does
not incur any significant overhead. Also, we observe that
the dynamic instruction count is slightly reduced when the
read-to-write ratio is 1. The reason is that, in certain cases,
type checks in the write path can be optimized away. For

23

Type Freezing: Exploiting Attribute Type Monomorphism in Tracing JIT Compilers CGO ’20, February 22–26, 2020, San Diego, CA, USA

example, even though theoretically we need to read and ver-
ify the types of pt1 and pt2 before storing them into a new
Line instance in method create_lines of Figure 4, no get

or guard_value will be generated. This is because we create
both pt1 and pt2 in the same trace, and thus their type in-
formation is already known. This effect is quite common in
practice. In another scenario, the value to be stored is read
from a type-monomorphic attribute, and this can also elim-
inate the necessity of performing type checks in the write
path.

4.4 Type Freezing Overheads

In the optimized read path, we conduct either one (i.e., ap-
plying simple type freezing only) or three (i.e., applying
both simple and nested type freezing) field reads and com-
parisons. We also need to execute either one or two JIT
hints (i.e., record_exact_class for simple type freezing,
and record_exact_value for nested type freezing). These
additional operations indeed hurt the interpreter perfor-
mance. However, in practice the interpreter executes for
a fraction of the overall execution time for many bench-
marks [17]. Thus, the overhead induced by the extra logic
we added could be considered as not significant1. Once the
code is JIT compiled, reading from known_type, known_map,
or is_terminal yields zero instructions, since all three are
treated as runtime constants by the compiler. Additionally,
record_exact_class and record_exact_value will also
be eliminated from the JIT-compiled trace. Once an attribute
becomes type polymorphic, subsequent reads will take a path
that is the same as the one in the baseline implementation,
and thus incur no performance overhead.
Unlike the read path overheads, the extra computation

(e.g., type checks) in the write path is a true overhead for
both interpreted code and JIT-compiled code. However, this
overhead can be amortized over a number of reads in most
cases, and will not diminish the benefit of type freezing. As
shown in Table 1, most of the applications we studied have
substantially more reads than writes. As in the read path,
once a particular attribute becomes type polymorphic, subse-
quent writes will take the original write path which does not
induce any additional overhead. Also, as we mentioned in
Section 4.3, not every write to a type monomorphic attribute
yields runtime type checks. This phenomenon further re-
duces the type checking overhead induced by type freezing.
We store two additional references (i.e., known_type and

known_map) and a boolean field (i.e., is_terminal), in each
attribute entry in the maps. A previous study on JavaScript
applications has pointed out that the average number ofmaps
ever created in an application is usually small [12]. Table 1
confirms this for our own applications. Most applications
create less than 300 attribute entries, and thus associating

1There are also some mitigating techniques in place in PyPy to reduce the
overhead of maps in the interpreter, such as a software cache.

three additional fields in each attribute entry will not induce
a significant storage overhead.
Once a type-monomorphic attribute becomes type poly-

morphic, all related traces need to be invalidated. If the same
code segment continues to be executed frequently, it needs
to be recompiled, and this time the attribute is treated as
type polymorphic. This may lead to more trace compilation
in a JIT compiler with type freezing than in the baseline. To
prevent frequent recompilation, we add a heuristic to disable
type freezing after seeing a certain number of failures.

4.5 Type Freezing Correctness

Here we informally discuss the correctness of type freezing.
Runtime type guards are necessary in the context of tracing
JIT compilers because certain operations after a type guard
are speculatively specialized for a specific type of data (e.g.,
integer add vs. float add). For a specific guard on the type
of the value being read from an attribute, it can be removed
safely as long as the value’s type is the same (i.e., monomor-
phic) for all the instances that have their attribute read at the
point of the guard. Type freezing assumes a stronger require-
ment, in which all instances with this attribute must only
store values of a single type (i.e., attribute type monomor-
phism), and only eliminates type guards for attributes if this
stronger requirement is met. Thus, type freezing does not
affect the correctness of program execution. If at a later point
the invariant is invalidated because a different type is stored
into the attribute we invalidate all the traces that had a guard
removed using PyPy’s existing deoptimization mechanism.
This ensures that no trace that was optimized under the now
wrong assumption will be executed any more.

5 Evaluation
We created three variants of PyPy: PyPy-none is the same
as upstream PyPy; PyPy-simple-freezing is upstream PyPy
extended with simple type freezing; PyPy-nested-freezing is
upstream PyPy with both simple and nested type freezing.
Moreover, PyPy-nested-freezing is translated on our modi-
fied RPython framework, where we incorporated our new
RPython hint, record_exact_class. Type freezing is a pure
software technique that is easy to implement. In total, we
added less than 200 lines of code to the PyPy and RPython
framework code base to realize PyPy-nested-freezing.
We focus our evaluation on applications that frequently

utilize user-defined objects, but we also include applications
that infrequently, or rarely use user-defined objects. We use
bytecodes per attribute read (see BC/AR in Table 1) as an
approximate measure of how often applications utilize user-
defined objects. We include all applications that execute less
than 10 bytecodes per attribute read, and we select a rep-
resentation set from the remaining applications. We also
include gcbench to quantify the overhead of type freezing
when there is almost no attribute type monomorphism, and

24

CGO ’20, February 22–26, 2020, San Diego, CA, USA Lin Cheng, Berkin Ilbeyi, Carl Friedrich Bolz-Tereick, and Christopher Batten

Table 2. Evaluation Environment Setup

Platform A Platform B

Processor Xeon E5620 Xeon Gold 5218
Base Frequency 2.40GHz 2.30GHz
Turbo Frequency 2.66GHz 3.90GHz
Memory 48GB 96GB
GC Nursery 6MB 11MB

OS CentOS 7
Kernel Version 3.10.0-957.21.2.el7.x86_64
Baseline PyPy PyPy 7.2.0

0.7
0.8
0.9
1.0
1.1

N
or
m

P
er
f

(H
ig
he
r
is
b
et
te
r)

de
lt
ab
lu
e

ra
yt
ra
ce

ri
ch
ar
ds

ep
ar
se

te
lc
o

flo
at

ht
m
l5
lib

ch
ao
s

pi
ck
le

sc
im

ar
k

gc
b
en
ch

ge
ns
hi
-x
m
l

ch
am

el
eo
n

m
et
eo
r-
co
nt
es
t

fib

sy
m
py

0.7
0.8
0.9
1.0
1.1

N
or
m

D
yn

In
st
s

(L
ow

er
is
b
et
te
r)

STF @ A

STF + NTF @ A

STF @ B

STF + NTF @ B

Figure 11. Performance and Dynamic Instructions – STF =
simple type freezing; NTF = nested type freezing; A = evaluation
platform A; B = evaluation platform B. Showing 95% confidence
interval over 60 runs. Note that y-axis starts from 0.7 instead of 0.

sympy for the case which there are many polymorphic at-
tributes. Applications selected are indicated with a star (⋆) in
Table 1. We performed our evaluation on two different server
platforms with different microarchitectures (see Table 2). We
measure end-to-end performance by taking statistics over
60 runs.

5.1 Results

Normalized performance and dynamic instructions of each
application are shown in Figure 11. Note that the y-axis
starts from 0.7. As a pure-software technique, simple type
freezing achieves a speedup of 13% and 6% on richards and
deltablue respectively on platform A, while improving the
performance of telco, raytrace and pickle by around 4%. In
the case of applications that access nested user-defined ob-
jects (richards and deltablue) nested type freezing further
boosts the performance by up to 14%. Simple and nested type
freezing combined reduces dynamic instructions of deltablue

and richards by more than 10%. As we have seen in Sec-
tion 4.3, type freezing improves dynamic instruction count
more significantly than the overall performance. This can
correspond to even higher performance gains on mobile and
IoT platforms with simple in-order cores, and can potentially
also lower energy consumption on all systems. The results
on platform B are similar, though a few applications show
different behaviors on different platforms. Less performance
improvement is achieved for pickle and raytrace, while eparse
performs better on platform B.
Type freezing generally does not incur significant over-

heads for the benchmarks that do not benefit from its op-
timizations. For applications that rarely use user-defined
objects (chameleon, meteor-contest, and fib), and applications
that have almost no attribute monomorphism (gcbench),
type freezing does not hurt the performance. Though be-
ing classified as frequently using user-defined objects, float
and html5lib see no performance benefit from type freez-
ing. Further inspection revealed that in both applications,
attribute access only contributes to a small percentage of the
total dynamic instructions executed. A previous study by
Ilbeyi et al. shows that float spends most of its time perform-
ing garbage collection, while html5lib spends most of its time
executing AoT compiled functions, instead of JIT compiled
code [17]. Type freezing targets JIT compiled regions, and
thus cannot help these two applications. For scimark, a large
number of attribute reads are loop invariant, which can be
optimized away by baseline PyPy. Thus in this case, type
freezing only slightly improves performance. Overall, there
are cases where our technique leads to slightly worse perfor-
mance and more dynamic instructions compared to baseline,
but the amount of overhead incurred by type freezing is not
significant for all but one benchmark (i.e., sympy).

While it would be interesting to understand the behavior
of each individual application, there is still no automatic way
to compare the hundreds of traces compiled for each of them.
It is possible that type freezing interferes with other heuris-
tics and mechanisms in PyPy. We suspect this interference
may lead to the case of chaos, in which type freezing does
significantly reduce the number of dynamic instructions, but
without any performance improvement.

5.2 Application-Level Optimizations

The results presented in the previous section require abso-
lutely no changes to the application. In this section, we study
sympy and raytrace and demonstrate how small modifica-
tions to the application (i.e., simply changing how attributes
are initialized) can significantly improve performance.
sympy is the only application that performs consistently

worse when type freezing is enabled. After a detailed analy-
sis, we found that a simple modification can eliminate almost
all of this overhead. sympy is a library for symbolic math-
ematics and it has a core class, Rational, which is used to
store rational numbers. By definition, a rational number is a

25

Type Freezing: Exploiting Attribute Type Monomorphism in Tracing JIT Compilers CGO ’20, February 22–26, 2020, San Diego, CA, USA

0.7

0.8

0.9

1.0

1.1
N
or
m

P
er
f

(H
ig
he
r
is
b
et
te
r)

sympy sympy-opt raytrace raytrace-opt
0.7

0.8

0.9

1.0

1.1

N
or
m

D
yn

In
st
s

(L
ow

er
is
b
et
te
r)

STF @ A STF + NTF @ A STF @ B STF + NTF @ B

Figure 12. Case Study Performance and Dynamic Instruc-
tions – STF = simple type freezing; NTF = nested type freezing; A
= evaluation platform A; B = evaluation platform B. Showing 95%
confidence interval over 60 runs. Note that y-axis starts from 0.7
instead of 0.

number that can be expressed as a fraction p
q , where p and

q are integers. Attributes p and q are usually small integers
than can fit into machine registers. However, there are a few
occurrence where they overflow to long integers. When it
happens, these two attributes become type polymorphic. As
a core component of sympy, Rational instances are accessed
in a significant number of traces which are all invalided by
type freezing’s deoptimization mechanism. Invaliding and re-
compiling these traces significantly hurts performance. We
made a minimal change to sympy’s code base by initializing
p and q to None before assigning their actual values. Doing
so makes these two attributes type polymorphic and our
implementation will not even attempt to apply type freezing.
The result is shown as sympy-opt in Figure 12.

raytrace is an another example where a small modification
can enable an application to perform much better with type
freezing. Holkner et al. found that many cases of attribute
type mutation are due to straight forward type casting (e.g.,
switching between integers and floats) [16]. After closely
inspecting our applications, we found that the same phe-
nomenon caused a relatively high polymorphic attribute
read rate in raytrace. While attributes in user-defined objects
of raytrace usually hold float values, they are initialized to
integer zeroes. We made minor changes to raytrace so that
attributes are initiated to float zeroes. The resulting applica-
tion is raytrace-opt. This simple modification decreases the
number of polymorphic attribute reads from nearly 90% to 0%
(see Table 1). From Figure 12 we can observe that comparing
to vanilla raytrace, raytrace-opt achieves better performance
and further reduces dynamic instructions.

6 Related Work
Dot et al. propose a software/hardware hybrid mechanism,
which requires modifying the processor, to exploit attribute
type monomorphism in the context of JavaScript [12]. They
use a standalone data structure, Class List, to profile maps

and discover type monomorphic attributes. When a method
accessing such attributes is JIT compiled, related guards
are speculatively removed, just like in type freezing. Upon
miss-speculation (i.e., a monomorphic attribute becomes
polymorphic), they rely on hardware exceptions to inval-
idate speculatively compiled code. A special hardware cache
is introduced to speedup accesses to frequently used Class
List entries. Type freezing is a pure software technique, and
achieves similar performance improvement. Doh et al.’s work
also exploits the case where another user-defined object is
stored in a type-monomorphic attribute, but the concept of
terminal representation is not mentioned in their work. As
we have shown in Section 4.2, solely observing the type of
user-defined object to be stored is insufficient to capture all
attribute type polymorphism.

Holkner et al. profile production-stage open-source Python
programs, and find that even though dynamic features exist
throughout the entire life cycle of programs, they mostly
happen during startup. They also find attribute type muta-
tion is largely due to straightforward type casting [16]. Xia et
al. conduct static analysis on a large Python code base and re-
veal that 79.7% of the identifiers are type monomorphic [30].

PyPy’s storage strategy optimization is a way to exploit
type monomorphism in collection data structures. It enables
more efficient memory usage and removes type guards in
JIT-compiled code when members of certain data structures
(e.g., Python lists and dictionaries) are typemonomorphic [4].
Dot et al. revealed that guards related to dynamic features
contribute significantly to the total execution time when
running on the start-of-the-art Google V8 JIT compiler [10].
Checked Load uses hardware to perform dynamic type check-
ing [1]. ShortCut targets V8’s unoptimized baseline compiler
and uses special hardware to eliminate type dispatching [9].
Other software/hardware hybrid or hardware only schemes
have been proposed in the literature as well [11, 19, 26, 27].
Type freezing is a pure software mechanism and does not
require any hardware modification. Hackett and Guo [15]
propose to combine unsound static type inference with dy-
namic checks to speculatively emit more specialized code.
Type freezing does not perform any static analysis.

7 Conclusions
In this paper, we propose type freezing, a novel pure soft-
ware scheme for exploiting attribute type monomorphism
in dynamic programming languages. Our evaluation on two
real machines with applications from the PyPy benchmark
suite shows that for applications that can benefit from it,
type freezing improves performance by 5% on average and
up to 16% and reduces dynamic instruction count by 8% on
average and up to 17%. We suspect type freezing can have a
impact in other JIT compilers, and we hope our work inspires
others to explore the potential for this technique in other
tracing JIT compilers or even method JIT compilers.

26

CGO ’20, February 22–26, 2020, San Diego, CA, USA Lin Cheng, Berkin Ilbeyi, Carl Friedrich Bolz-Tereick, and Christopher Batten

A Artifact Appendix
A.1 Abstract

This guide describes how to setup PyPy with Type Freezing
and run both the micro-benchmark and PyPy benchmark
experiments we did in this paper. This guide provides in-
structions to:

• build PyPy from source
• import prebuilt Docker image
• run the micro-benchmark experiments in Figure 10
• run PyPy benchmark experiments in Figure 11 & 12

We have built and tested PyPy and our experiments on a
x86_64machine with Intel processor. Building PyPy requires
approximately 1GB of disk and 6GB of memory. We provide
a script to setup dependencies and build PyPy from source as
well as a prebuilt Docker image. We also provide scripts to
run both experiments, which automatically generate figures
similar to Figure 10 and Figure 11 & 12. We have shown in
this paper that behavior and performance of each application
is non-trivially affected by the machine it runs on, and thus
the generated plots may not exactly match these two figures.

A.2 Artifact Checklist

• Program: Our customized PyPy, along with both micro-
benchmarks in Figure 10 and PyPy benchmarks in Figure 11
& 12, are included in both the source code tarball and the
Docker image.

• Compilation: We have included a script for building PyPy,
which is our main software artifact, from source. A prebuilt
PyPy is included in the Docker image. Building PyPy from
source takes around 1 hour, depending on the machine it
runs on. Importing Docker image only takes a few minutes.

• Data Set: All necessary data sets are included.
• Environment: We have tested our customized PyPy and
evaluation scripts on Ubuntu 18.04. Our experiments rely on
perf to collect data from CPU performance counters. perf
is available through mainstream packages. Root privilege
is required to modify perf configuration file, run Docker,
and install necessary dependencies for building PyPy from
source.

• Hardware:We have tested our customized PyPy on x86_64

machines with Intel processors. It is recommended to run
our experiments on Intel processors with Westmere or later
microarchitectures.

• Execution:We provide scripts to run both experiments as
described in this paper. A more detailed description of how
to use them is included in README. We also provides a script
to run functional unit tests, which is recommended before
running either experiments. Running on an idle machine as
the sole user is preferred. Running the unit tests and both
experiments takes around 4 hours, but it can vary between
machines.

• Output: Running the scripts as instructed in README yields
two plots, which should be similar to Figure 10 and Figure 11
& 12 respectively.

• Publicly Available?: Source code and a prebuilt Docker
image are publicly available at
https://doi.org/10.5281/zenodo.3542289

• Code Licenses: MIT License; Creative Commons Attribu-
tion 4.0 International

A.3 Description

A.3.1 How Delivered

Both the source code and a prebuilt Docker image are publicly
available at
https://doi.org/10.5281/zenodo.3542289

A.3.2 Hardware Dependencies

We have tested our customized PyPy on x86_64 machines with
Intel processors. It is recommended to run our experiments on Intel
processors with Westmere or later microarchitectures.

A.3.3 Software Dependencies

We have tested our customized PyPy and evaluation scripts on
Ubuntu 18.04. Our experiments rely on perf to collect data from
CPU performance counters. perf is available through mainstream
packages. Root privilege is required to modify perf configuration
file, run Docker, and install necessary dependencies for building
PyPy from source. A detailed description of how to install perf is
included in README.

A.4 Installation

• Option 1. Install Locally on Ubuntu
– Download and extract type-freezing-source.tar.gz
– Extract files

$ tar -xzvf type -freezing -source.tar.gz

$ cd type -freezing -source

$ unzip pyxcel -artifact -master.zip

$ cd pyxcel -artifact -master

– Create build directory

$ mkdir -p build

– Run installation script

$ chmod +x ./setup/setup -ubuntu.sh

$./setup/setup -ubuntu.sh -d build

Note that if you are running as root, you need to edit
./setup/setup-ubuntu.sh and remove two occurrences
of sudo.

• Option 2. Import Docker Image
– Download type-freezing-docker.tar.gz

– Load image into Docker

$ sudo docker load --input \

> type -freezing -docker.tar.gz

– Start a new container

$ sudo docker run -it --cap -add SYS_ADMIN \

> type -freezing -docker /bin/bash

– Prebuilt artifact is located at /artifact_top/, this is equiv-
alent to build in option 1.

This information is also available in README. Before start the
experiment workflow, please refer to README for instructions on
preparing perf.

27

Type Freezing: Exploiting Attribute Type Monomorphism in Tracing JIT Compilers CGO ’20, February 22–26, 2020, San Diego, CA, USA

A.5 Experiment Workflow

Our workflow has three parts

• functional tests
• micro-benchmarks
• PyPy benchmarks

A detailed description of how to run each of them is also included
in README. Note that if Docker image is being used, there is no need
to perform the following command since $PYXCEL_TOP is already
set.

$ source setup -env.sh

Note that if Docker image is being used, /artifact_top/ is the
build directory.

If the following error occurred, please refer to README about how
to install perf.

UnboundLocalError: local variable 'fp'

referenced before assignment

A.5.1 Functional Tests

• Go to build directory (/artifact_top/ if using Docker)
• Setup environment variable (skip this if using Docker)

$ source setup -env.sh

• Go to functional test directory

$ cd $PYXCEL_TOP/pyxcel -artifact/functional

• Invoke unit tests

$ pytest ./ -v

All tests should pass.

A.5.2 Micro-Benchmarks

• Go to build directory (/artifact_top/ if using Docker)
• Setup environment variable (skip this if using Docker)

$ source setup -env.sh

• Go to micro-benchmarks directory

$ cd $PYXCEL_TOP/pyxcel -artifact/performance/mbmark

• Create a new directory to host profiling files

$ mkdir -p run; cd run; rm ./*

The following error can be ignored

rm: cannot remove './*': No such file or directory

• Run micro-benchmarks script

$ python \

> $PYXCEL_TOP/pyxcel -artifact/performance/mbmark /\

> run.py

• Plot Figure 10

$ python plot_mbmark.py

Final output is mbmark.pdf.

A.5.3 PyPy Benchmarks

• Go to build directory (/artifact_top/ if using Docker)
• Setup environment variable (skip this if using Docker)

$ source setup -env.sh

• Go to PyPy benchmarks directory

$ cd $PYXCEL_TOP/pyxcel -artifact/performance /\

> benchmarks

• Create a new directory to host profiling files

$ mkdir -p run; cd run; rm ./*

The following error can be ignored

rm: cannot remove './*': No such file or directory

• Run PyPy benchmarks script

$ python \

> $PYXCEL_TOP/pyxcel -artifact/performance /\

> benchmarks/run.py

• Plot Figure 11 & 12

$ python plot_benchmark.py

Final output is cycles.pdf.

A.6 Evaluation and Expected Results

• functional tests - All tests should pass
• micro-benchmarks - Compare generated mbmark.pdf with
Figure 10

• PyPy benchmarks - Compare generated cycles.pdf with
Figure 11 & 12

Acknowledgments
This work was supported in part by NSF SHF Award #1527065, NSF
CRI Award #1512937, and equipment donations from Intel. The
U.S. Government is authorized to reproduce and distribute reprints
for Government purposes notwithstanding any copyright notation
theron. Any opinions, findings, and conclusions or recommenda-
tions expressed in this publication are those of the author(s) and
do not necessarily reflect the views of any funding agency.

References
[1] Owen Anderson, Emily Fortuna, Luis Ceze, and Susan Eggers. 2011.

Checked Load: Architectural Support for JavaScript Type-Checking
on Mobile Processors. Int’l Symp. on High-Performance Computer
Architecture (HPCA) (Feb 2011).

[2] Carl Friedrich Bolz. 2012. Meta-Tracing Just-In-Time Compilation for
RPython. Ph.D. Dissertation. Mathematisch-Naturwissenschaftliche
Fakultät, Heinrich-Heine-Universität Düsseldorf.

[3] Carl Friedrich Bolz, Antonio Cuni, Maciej Fijalkowski, Samuele Pe-
droni, and Armin Rigo. 2011. Runtime Feedback in a Meta-Tracing
JIT for Efficient Dynamic Languages. Workshop on the Implemen-
tation, Compilation, Optimization of Object-Oriented Languages and
Programming Systems (ICOOOLPS) (Jul 2011).

[4] Carl Friedrich Bolz, Lukas Diekmann, and Laurence Tratt. 2013. Stor-
age Strategies for Collections in Dynamically Typed Languages. ACM
SIGPLAN conf. on Systems, Programming, Languages, and Applications
(OOPSLA) (Oct 2013).

[5] Carl Friedrich Bolz and Laurence Tratt. 2015. The Impact of Meta-
Tracing on VM Design & Implementation. Science of Computer Prog.
98 (Aug 2015), 408–421.

28

CGO ’20, February 22–26, 2020, San Diego, CA, USA Lin Cheng, Berkin Ilbeyi, Carl Friedrich Bolz-Tereick, and Christopher Batten

[6] Oscar Callaú, Romain Robbes, Éric Tanter, and David Röthlisberger.
2013. How (and Why) Developers Use The Dynamic Features of
Programming Languages: The Case of Smalltalk. Empirical Software
Engineering 18, 6 (Dec 2013), 1156–1194.

[7] Stephen Cass. 2018. The 2018 Top Programming Languages. IEEE
Spectrum (Jul 2018).

[8] Craig Chambers, David Ungar, and Elgin Lee. 1989. An Efficient Imple-
mentation of SELF A Dynamically-Typed Object-Oriented Language
Based on Prototypes. ACM SIGPLAN conf. on Systems, Programming,
Languages, and Applications (OOPSLA) (Oct 1989).

[9] Jiho Choi, Thomas Shull, Maria J. Garzaran, and Josep Torrellas. 2017.
ShortCut: Architectural Support for Fast Object Access in Scripting
Languages. Int’l Symp. on Computer Architecture (ISCA) (Jun 2017).

[10] Gem Dot, Alejandro Martínez, and Antonio González. 2015. Analysis
and Optimization of Engines for Dynamically Typed Languages. Int’l
Symp. on Computer Architecture and High Performance Computing
(SBAC-PAD) (Oct 2015).

[11] Gem Dot, Alejandro Martínez, and Antonio González. 2016. Erico:
Effective Removal of Inline Caching Overhead in Dynamic Typed
Languages. Int’l Conf. on High-Performance Computing (HIPC) (Dec
2016).

[12] Gem Dot, Alejandro Martínez, and Antonio González. 2017. Removing
Checks in Dynamically Typed Languages Through Efficient Profiling.
Int’l Symp. on Code Generation and Optimization (CGO) (Feb 2017).

[13] Andreas Gal, Brendan Eich, Mike Shaver, David Anderson, David
Mandelin, Mohammad R. Haghighat, Blake Kaplan, Graydon Hoare,
Boris Zbarsky, Jason Orendorff, Jesse Ruderman, Edwin Smith, Rick
Reitmaier, Michael Bebenita, Mason Chang, and Michael Franz. 2009.
Trace-based Just-in-Time Type Specialization for Dynamic Languages.
ACM SIGPLAN Conf. on Programming Language Design and Implemen-
tation (PLDI) (Jun 2009).

[14] Andreas Gal, Christian W. Probst, and Michael Franz. 2006. Hot-
pathVM: An Effective JIT Compiler for Resource-Constrained Devices.
ACM SIGPLAN/SIGOPS Int’l Conf. on Virtual Execution Environments
(VEE) (Jun 2006).

[15] Brian Hackett and Shu-yu Guo. 2012. Fast and Precise Hybrid Type
Inference for JavaScript. SIGPLAN Not. 47, 6 (Jun 2012), 239–250.

[16] Alex Holkner and James Harland. 2009. Evaluating The Dynamic Be-
haviour of Python Applications. Australasian Conference on Computer
Science (Jan 2009).

[17] Berkin Ilbeyi, Carl Friedrich Bolz-Tereick, and Christopher Batten.
2017. Cross-Layer Workload Characterization of Meta-Tracing JIT
VMs. Int’l Symp. on Workload Characterization (IISWC) (Oct 2017).

[18] JavaScriptCore 2019. JavaScriptCore. Online Webpage.
https://trac.webkit.org/wiki/JavaScriptCore.

[19] Channoh Kim, Jaehyeok Kim, Sungmin Kim, Dooyoung Kim, Namho
Kim, Gitae Na, Young H Oh, Hyeon Gyu Cho, and Jae W Lee. 2017.
Typed Architectures: Architectural Support for Lightweight Scripting.
Int’l Conf. on Architectural Support for Programming Languages and
Operating Systems (ASPLOS) (Apr 2017).

[20] pypy 2014 (accessed Sep 26, 2014). PyPy. Online Webpage.
http://www.pypy.org.

[21] pypybmarks 2014. PyPy Benchmark Suite. Online Webpage. https:
//bitbucket.org/pypy/benchmarks.

[22] Beatrice Åkerblom, Jonathan Stendahl, Mattias Tumlin, and Tobias
Wrigstad. 2014. Tracing Dynamic Features in Python Programs. Work-
ing Conf. on Mining Software Repositories (May 2014).

[23] B. Ramakrishna Rau. 1978. Levels of Representation of Programs and
the Architecture of Universal Host Machines. SIGMICRO Newsl. 9, 4
(Nov 1978), 67–79.

[24] riscv 2019. RISC-V. Online Webpage.
https://riscv.org.

[25] Elder Rodrigues Jr and Ricardo Terra. 2018. How Do Developers Use
Dynamic Features? The Case of Ruby. Computer Languages, Systems
& Structures 53 (Sep 2018), 73–89.

[26] Thomas Shull, Jiho Choi, Maria J Garzaran, and Josep Torrellas. 2019.
NoMap: Speeding-Up JavaScript Using Hardware Transactional Mem-
ory. Int’l Symp. on High-Performance Computer Architecture (HPCA)
(Feb 2019).

[27] Po-An Tsai, Yee Ling Gan, and Daniel Sanchez. 2018. Rethinking The
Memory Hierarchy for Modern Languages. Int’l Symp. on Microarchi-
tecture (MICRO) (Oct 2018).

[28] v8 2019. V8 JavaScript Engine. Online Webpage.
https://code.google.com/p/v8.

[29] Thomas Würthinger, Andreas Wöß, Lukas Stadler, Gilles Duboscq,
Doug Simon, and Christian Wimmer. 2012. Self-Optimizing AST In-
terpreters. Symp. on Dynamic Languages (Oct 2012).

[30] Xinmeng Xia, Xincheng He, Yanyan Yan, Lei Xu, and Baowen Xu. 2018.
An Empirical Study of Dynamic Types for Python Projects. Int’l Conf.
on Software Analysis, Testing, and Evolution (Nov 2018).

29

https://trac.webkit.org/wiki/JavaScriptCore
http://www.pypy.org
https://bitbucket.org/pypy/benchmarks
https://bitbucket.org/pypy/benchmarks
https://riscv.org
https://code.google.com/p/v8

	Abstract
	1 Introduction
	2 Background on JIT Compilation
	3 Attribute Type Monomorphism
	4 Type Freezing
	4.1 Simple Type Freezing
	4.2 Nested Type Freezing
	4.3 Type Freezing Benefits
	4.4 Type Freezing Overheads
	4.5 Type Freezing Correctness

	5 Evaluation
	5.1 Results
	5.2 Application-Level Optimizations

	6 Related Work
	7 Conclusions
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact Checklist
	A.3 Description
	A.4 Installation
	A.5 Experiment Workflow
	A.6 Evaluation and Expected Results

	Acknowledgments
	References

