
An Architectural Framework for Accelerating Dynamic
Parallel Algorithms on Reconfigurable Hardware

Tao Chen, Shreesha Srinath, Christopher Batten and G. Edward Suh
Cornell University

Ithaca, NY 14850, USA
{tc466, ss2783, cbatten, gs272}@cornell.edu

Abstract—In this paper, we propose ParallelXL, an architec-
tural framework for building application-specific parallel acceler-
ators with low manual effort. The framework introduces a task-
based computation model with explicit continuation passing to
support dynamic parallelism in addition to static parallelism. In
contrast, today’s high-level design frameworks for accelerators
focus on static data-level or thread-level parallelism that can
be identified and scheduled at design time. To realize the new
computation model, we develop an accelerator architecture that
efficiently handles dynamic task generation and scheduling as
well as load balancing through work stealing. The architecture
is general enough to support many dynamic parallel constructs
such as fork-join, data-dependent task spawning, and arbitrary
nesting and recursion of tasks, as well as static parallel patterns.
We also introduce a design methodology that includes an archi-
tectural template that allows easily creating parallel accelerators
from high-level descriptions. The proposed framework is studied
through an FPGA prototype as well as detailed simulations.
Evaluation results show that the framework can generate high-
performance accelerators targeting FPGAs for a wide range of
parallel algorithms and achieve an average of 4.0x speedup over
an eight-core out-of-order processor (24.1x over a single core),
while being 11.8x more energy efficient.

I. INTRODUCTION

As the technology scaling slows down, computing systems
need to rely increasingly on hardware accelerators to im-
prove performance and energy efficiency. In particular, field-
programmable gate-arrays (FPGAs) are starting to be deployed
as a general-purpose acceleration platform, and have been
shown to improve performance and/or energy efficiency for
many applications. FPGAs are also becoming more widely
available (e.g., through the cloud [1]), and increasingly inte-
grated with general-purpose cores either through inter-socket
interconnect (e.g., Intel HARP [2], IBM CAPI [3]), or directly
on-chip (e.g., Xilinx Zynq SoCs [4], Intel Stratix SoCs [5]).
These trends indicate that many applications that traditionally
run on general-purpose processors (GPPs) can potentially
benefit from FPGA acceleration.

To achieve high performance either on GPPs or FPGAs,
applications need to exploit parallelism. In particular, dynamic
parallelism, where work is generated at run-time rather than
statically at compile time, is inherent in many modern applica-
tions and algorithms, and is widely used to write parallel soft-
ware for GPPs. For example, hierarchical data structures such
as trees, graphs, or adaptive grids often have data-dependent
execution behavior, where the computation to be performed
is determined at run-time. Recursive algorithms such as many

divide-and-conquer algorithms have dynamic parallelism for
each level of recursion. Algorithms that adaptively explore
space for optimization or process data as in physics simulation
also generate work dynamically.

Unfortunately, today’s high-level design frameworks for
FPGA accelerators do not provide adequate support for dy-
namic work generation or dynamic work scheduling. For
example, C/C++-based high-level synthesis (HLS) [6], [7] and
OpenCL [8] are mostly designed to exploit static data-level or
thread-level parallelism that can be determined and scheduled
at compile time and mapped to a fixed pipeline. Domain-
specific languages such as Liquid Metal [9] and Delite [10]
raise the level of abstraction but also only support static par-
allel patterns. A recent study explored dynamically extracting
parallelism from irregular applications on FPGAs [11], but
still only supports a limited form of pipeline parallelism and
does not provide efficient scheduling of dynamically generated
work on multiple processing elements. Low-level register-
transfer-level (RTL) designs, on the other hand, provide flexi-
bility to implement arbitrary features, but require long design
cycles and significant manual effort, making them unattractive
especially when targeting a diverse range of applications. To
realize the potential of FPGA acceleration for a wide range of
applications, we need a design framework that is capable of
exploiting both static and dynamic parallelism and producing
high-performance accelerators with low manual design effort.

In this paper, we propose ParallelXL, an architectural
framework for accelerating both static and dynamic parallel
algorithms on reconfigurable hardware. ParallelXL takes a
high-level description of a parallel algorithm and outputs the
RTL of an accelerator, which can be mapped to an FPGA using
standard tools. The framework aims to enable accelerating dy-
namic parallel algorithms on FPGAs without manually writing
RTL, and efficiently support a wide range of parallel patterns
with one unified framework. To achieve this goal, we need to
address three major technical challenges; the framework needs
(1) a new parallel computation model that is general enough
while suitable for hardware, (2) an architecture that efficiently
realizes the new computation model in hardware, and (3) a
productive design methodology to automatically generate RTL.

As a parallel computation model, we propose to adopt a
tasked-based programming model with explicit continuation
passing. Task-based parallel programming is becoming in-
creasingly popular for parallel software development (e.g.,

Appears in the Proceedings of the 51st ACM/IEEE Int’l Symp. on Microarchitecture (MICRO-51), October 2018



Intel Cilk Plus [12], [13], Intel Threading Building Blocks
(TBB) [14], and OpenMP [15], [16]). The task-based frame-
works allow diverse types of parallelism to be expressed using
a unified task abstraction, which represents an arbitrary piece
of computation. They support dynamic work generation by
allowing a task to generate child tasks at run-time. To support
a wide range of communication patterns among tasks and
enable efficient hardware implementations, we use explicit
continuation passing to encode inter-task synchronization.

Then, we propose a novel architecture that can execute an
arbitrary computation described using the explicit continuation
passing model. The architecture works as a configurable
template that provides a platform to dynamically create and
schedule tasks, and supports a trade-off between generality
and efficiency. For irregular workloads, the architecture can
adaptively schedule independent tasks to a pool of processing
elements using work-stealing [17]–[19], and supports fine-
grained load balancing. When the computation exhibits a
simple static parallel pattern (e.g., only data-parallel), the
architecture can use static scheduling for efficiency. The ar-
chitecture separates the logical parallelism of the computation
from the physical parallelism of the hardware, and enables
a programmer to express the computation as tasks without
worrying about the low-level details of how these tasks are
mapped to the underlying hardware.

To minimize the manual effort for accelerator designers,
we propose a new design methodology that combines HLS
with the proposed computation model and architecture tem-
plate. The design methodology uses (1) HLS to generate the
application-specific worker from a C++-based description, and
(2) a parameterized RTL implementation of the architecture
template to generate the final accelerator RTL with the desired
architecture features and configuration. The designer does not
need to write any RTL in order to use the framework.

We implemented a number of parallel accelerators using
ParallelXL and prototyped them on the Xilinx Zynq FPGA
to demonstrate that the framework can indeed handle a wide
range of applications and provide performance improvements
on FPGAs today. We further evaluated the framework in the
context of a future SoC with multiple general-purpose cores
and an integrated reconfigurable fabric with a cache-coherent
memory system using detailed simulations. The results suggest
that ParallelXL can generate scalable FPGA-based parallel
accelerators that achieve significant speedup compared to an
optimized parallel software implementation using Intel Cilk
Plus.

The main contributions of this paper include: (1) a general
accelerator architecture based on explicit continuation passing
model, capable of supporting dynamic work generation and
dynamic work scheduling; (2) a design methodology for
such accelerators that leverages the benefits of both HLS
(for the worker implementation) and RTL (for the template
implementation); (3) a prototype of the architecture on a
current-generation FPGA; and (4) a detailed simulation-based
evaluation of the performance, area, and energy of accelerators
built using the framework for future FPGA platforms.

II. COMPUTATION MODEL FOR DYNAMIC PARALLELISM

In this section, we introduce the computation model that
we use in ParallelXL. The model is based on explicit contin-
uation passing, inspired by task-based parallel programming
languages such as MIT Cilk [19], [20], and allows diverse
types of parallelisms to be expressed and scheduled under a
common framework.

A. Primitives

A task is a piece of computation that takes as input a number
of arguments, as well as a continuation. More formally, a task
is a tuple (f, args, k), where f is the function, args is a list
of arguments to f , and k is the continuation which points to
another task that should continue after the current task finishes.
Intuitively, a task is analogous to a function call in software,
where f and args are a function pointer and the arguments
to the function, and k points to the caller, which receives the
function’s return value and continues execution.

A task can spawn new tasks while it is executing. The
spawned tasks are called child tasks. Spawning tasks is similar
to function calls except that the parent and child tasks are al-
lowed to run concurrently. The spawned tasks eventually need
to be joined, so we know that they finished and subsequent
computation (that potentially depends on the output of the
child tasks) can proceed. Today’s software frameworks use
special join commands that call into a sophisticated runtime
to perform synchronization, which is difficult to implement
in hardware. Instead, our model uses explicit continuation
passing that leads to a simpler hardware architecture.

A task can be either ready or pending. A task is ready if it
has received all of its arguments, and thus is ready to execute.
A task is pending if some of its arguments are still missing,
for example, because the tasks that produce them have not
completed yet. Each pending task is associated with a join
counter j, whose value is the number of missing arguments.
A task returns a value by sending it to the pending task pointed
by its continuation. Upon receiving the value, the join counter
j of the pending task is decremented. When the join counter
reaches zero, the pending task becomes ready.

B. Continuation Passing

Today’s parallel programming frameworks for software uses
a runtime system to manage synchronizations among tasks.
This approach is challenging to implement in hardware. First,
software can perform control transfers between the user code
and runtime with function calls or setjmp/longjmp, and
easily save and restore the program state using stack frames.
These capabilities are not present in hardware accelerators.
Second, the runtime logic is often quite complex, which would
incur high overhead if implemented in hardware. We address
these challenges by using explicit continuation passing.

Continuation passing style (CPS) is a style of programming
where control is passed explicitly in the form of a continuation
that represents what should be done with the result that the
current procedure generates. Our framework uses continuation
passing to express computation as a dynamic task graph with



A

B

k, argA

k, argB
k

return
value

A Bk

C D

kB1 kB2

(a) (b)

k k

Fig. 1. Continuation passing for (a) sequential composition of tasks, (b) fork-
join. Downward arrows represent spawning tasks. Horizontal arrows represent
creating successor tasks. Dotted arrows represent returning values (arguments).

S

S2

1 0S2

1 0

4

3 S

1

S0
255

0
63

64
127

128
191

192
255

M0,0 M0,1 M0,2

M1,0 M1,1 M1,2

M2,0 M2,1 M2,2

k

k

(a)

(c)

(b)

a. Vector-Vector Add
b. Fibonacci
c. Dynamic Programming

Fig. 2. Task graphs constructed using continuation passing. (a) Vector-vector
add. Node labels represent the start and end indices of the sub-vectors. (b)
Fibonacci. Each numbered node represents the task for fib(n). Nodes labeled
S represent the successor (sum) tasks. (c) Dynamic programming. Solid arrows
represent spawns along which the continuation is passed.

explicit dependence. The continuation passing serves as the
foundation and can be used to construct other abstractions
such as data-parallel loops and fork-join patterns.

In our model, the continuation of a task points to a pending
task (more precisely, one of the pending task’s arguments)
that should receive the current task’s return value. The sim-
plest use of continuation passing is to implement sequential
composition of tasks. Suppose we want to execute tasks A
and B sequentially and return the result to continuation k.
Using continuation passing, we can invoke task A with k as
its continuation. When A finishes, it spawns task B, passing
its own continuation k to B. When B finishes, it returns its
result to k. Figure 1(a) illustrates this operation.

Continuation can also be used to implement the fork-join
pattern, which is a common pattern for dynamically generating
parallel tasks and perform synchronization. Suppose we would
like to run two parallel tasks and combine their results. In this
case, task A creates a pending task B called the successor,
spawns two child tasks C and D, and points their continuations
to B. This completes the fork step. When the child tasks finish,
they send their result values to B. B becomes ready once it
receives the results of both C and D. This completes the join
step. Figure 1(b) illustrates the fork-join operation.

1) Task Graph Examples: Using continuation passing com-
bined with task spawning, both static and dynamic parallel
algorithms can be expressed in our model. When the algorithm
executes, the tasks form a graph that dynamically unfolds.
Here we show three example task graphs from different
algorithms.

The first example computes the sum of two vectors of
length 256. Suppose we allow the vector to be divided into

chunks of length 64. Figure 2(a) shows the task graph. As the
computation is data-parallel, the task graph is very regular. In
addition, only the child tasks perform actual work, and the
parent and successor tasks are used only for synchronization.
In case where the source vectors are very long, it is more
efficient to use recursive decomposition, where the vectors
are recursively divided into smaller and smaller vectors using
multiple levels of intermediate tasks, rather than relying only
on the root task to perform the decomposition.

Consider another example that calculates the nth Fibonacci
number by recursively applying the formula fib(n) = fib(n�
1) + fib(n � 2), and calculate fib(n � 1) and fib(n � 2)
concurrently. This is a typical fork-join pattern. For example,
calculating fib(4) results in the graph shown in Figure 2(b).

This example illustrates why it is challenging to map com-
putations with dynamic task-level parallelism to a hardware
accelerator. First, tasks are created dynamically during exe-
cution, which makes it difficult to enumerate them statically.
Second, the computation involves recursion, which is often
not supported in current hardware design tools. Third, the task
tree is often imbalanced, which makes techniques that partition
work statically inefficient.

Now consider a third example, in which an algorithm
fills a matrix with values. Each element depends on its left
and top neighbor. This pattern is common in many dynamic
programming algorithms. Figure 2(c) shows the task graph for
filling a simple 3x3 matrix. This type of general task-parallel
pattern be expressed using continuation passing, but cannot be
easily expressed in frameworks that only support fork-join.

2) Nesting and Composability: It is apparent from the
examples above that the computation model naturally supports
nested parallelism, where a spawned task can recursively
spawn parallel sub-tasks. Nesting is important for achieving
good parallelization for many algorithms. For example, in
Fibonacci, the degree of parallelism at each task is only two.
Without nesting, only the root task can be parallelized, yielding
a maximum speedup of two. With nesting, all non-overlapping
subtrees of the fib task tree can run in parallel, significantly
increasing the amount of parallelism.

Another feature of the computation model is composability,
which means the computation can be expressed in a combina-
tion of data-parallel, fork-join, or general task-parallel patterns,
and the resulting program should still work. This is from the
fact that all higher-level patterns are ultimately transformed to
the continuation passing primitives.

C. Scheduling the Computation

The model described above enables expressing concurrency
in the computation. However, it is up to the scheduler to
schedule the tasks onto processing elements at run-time for
parallel execution. Our framework supports both dynamic
work scheduling using work stealing [17], [20] for general
dynamic computation, and static task distribution for simple
data-parallel computations. Here, we briefly describe the work
stealing model.



We model each processing element as a datapath that can
process tasks, a local task queue that stores ready tasks, and a
pending task storage that holds pending tasks. Each processing
element operates on its own task queue in a LIFO (Last-In
First-Out) manner, that is, operating on the tail of the queue.
When a processing element is idle, it first tries to dequeue
and execute a task from the tail of its local task queue. If
a task is spawned or a pending task becomes ready, it is
appended to the tail of the task queue. If the task queue is
empty, the processing element (thief) begins work stealing by
randomly selecting another processing element (victim) and
trying to steal a task from the head of victim’s task queue,
that is, the oldest task in the queue. If the continuation of a
task refers to a pending task on another processing element,
and sending the task’s return value caused the pending task
to become ready, the newly created task is transferred back to
the original processing element to be executed. This is needed
to implement greedy scheduling, which means the processing
element that produces the last missing argument of a pending
task should continue execution with the successor task [21].
Greedy scheduling is important for the space bound.

It can be shown that for fully strict computations, where
every task sends its result only to its parent’s successor
task [20], the scheduling policy described above has the same
behavior as Cilk’s scheduler [20], which is provably efficient.
Specifically, it can be shown that the space to store the tasks
required for an execution with P processing elements is bound
by SP  S1P , where S1 is the space required for a serial
execution on one processing element [17]. This bound is
important to put a limit on the task queue sizes.

D. Function Calls

Traditional HLS tools provide insufficient support of func-
tion calls, especially the ones that are deeply nested or
recursive. This is not surprising because executing recursive
function calls usually requires a stack, which a hardware
accelerator does not have. As a result, these tools can only
handle simple functions that can be inlined. Our computation
model naturally supports recursive function calls by reusing
the task spawn and continuation mechanisms. This is similar
to how classic continuation passing style programs handle
function calls.

III. ACCELERATOR ARCHITECTURE

The accelerator architecture implements the computation
model described in Section II. Specifically, the architecture
is designed to fulfill two major goals: (1) implementing task
spawning and explicit continuation passing in hardware, and
(2) scheduling the computation. Figure 3(a) shows the high-
level system architecture, with the accelerator shown in the
shaded box. The accelerator consists of multiple tiles, and
each tile is composed of a configurable number of processing
elements (PEs), each with a unique ID. A tile serves as a basic
building block in the architecture, which is a fully-functional
task processing engine. The accelerator can consist of any

TABLE I
COMPARISON BETWEEN TILE ARCHITECTURES.

Pattern FlexArch LiteArch

Data-Parallel Yes Yes
Fork-Join Yes No

General Task-Parallel Yes No

Task Scheduling Work-Stealing Static Distribution

number of tiles without changing its functionality. This tile-
based architecture enables an accelerator designer to easily
scale the number of tiles and PEs, and also reduces design
effort as one component is reused multiple times. The tiles
are connected together using an on-chip network. Each tile
has an L1 cache, shared by the PEs in that tile.

In this study, we present the architecture in the context of
an integrated CPU-FPGA SoC where general-purpose cores
and FPGA fabric share a single address space as well as the
last-level cache through a cache-coherent interconnect. The
integrated SoC platform is becoming increasingly popular and
attractive for general-purpose acceleration because it allows
fine-grained data sharing between the CPU and FPGA. For
applications that do not need fine-grained sharing, the pro-
posed architecture can also be adapted to discrete FPGAs with
changes to the memory hierarchy.

We present two variants of our architecture, named
FlexArch and LiteArch, which support different trade-off
points between flexibility and overhead. FlexArch supports the
full continuation passing model, and allows programmers to
implement algorithms using many parallel patterns including
data-parallel and fork-join patterns as well as nesting in
flexible ways. It uses work-stealing for task scheduling. In
comparison, LiteArch only supports the data-parallel pattern,
and uses static task distribution for task scheduling. LiteArch
is intended as a lightweight alternative for applications where
a static data-parallel pattern is sufficient. Table I summarizes
the features of the two architectures.

A. FlexArch Tile and PE Architecture

Figure 3(b) shows the architecture of a FlexArch tile.
A tile contains multiple processing elements, as well as a
pending task storage (P-Store), an argument/task router, and
network interfaces (Net IF). These components are connected
via intra-tile buses. Each PE consists of a worker and a task
management unit (TMU).

The worker performs task-specific computations. Because
this is the part that an accelerator designer needs to describe
for each application, the architecture is designed to keep the
worker simple. We factor out common functionalities such as
task management into separate modules that can be reused,
and provide the worker an interface to communicate with these
modules by sending and receiving messages. It has a task_in
port for receiving a task, a task_out port for spawning a task,
an arg_out port for returning a result value, and a pair of
cont_req and cont_resp ports for creating a successor task



Memory Controller

Last-Level Cache

Argument / Task Network

CPU

L1$

IF

Work Stealing Network

L1$

PE PE

Tile

L1$

PE PE

Tile

Worker

P-Store TMU

Net IF

task
out

cont
req
cont
resp

Cache Interface

task
in

steal
req

steal
resp

queue

arg
out

Arg/Task
Router

Work Stealing Network Arg/Task Network

arg

task

Net IF

PE

steal arg
task

cont

PE

steal arg
task

cont

arg task

task

mem
req

mem
resp

Worker

arg
out

Cache Interface

task
in

TMU
queue

Arg/Task Network

mem
req

mem
resp

PE

task arg

task arg

Net IF
task arg

PE

task arg

(a) (b) (c)

Fig. 3. Accelerator architecture. (a) System architecture. The accelerator is shown in the shaded box. (b) FlexArch tile. (c) LiteArch tile.

and receiving a continuation that points to it. The worker also
has a memory port. The architecture does not stipulate how
the worker is implemented as long as it follows the interface
protocol. For example, it can be implemented in either HLS
or RTL. Our architecture currently use homogeneous workers
that can run any task in the computation graph. The type of
a task is identified by the type field in the task message,
which corresponds to the f in the computation model. It is
also possible to extend the architecture to use heterogeneous
workers where each worker is designed to process a subset
of task types. This allows coarse-grained resource sharing at
the tile level, that is, the hardware for a worker is shared
within a tile, rather than dedicated to a PE. In contrast, when
using homogeneous workers, HLS tools perform fine-grained
resource sharing between the logic for different tasks at the
worker level.

The task management unit (TMU) is responsible for feeding
the worker with tasks. Internally, it has a task queue that
stores ready tasks. The task queue is implemented as a double-
ended queue that supports operations on both ends. The worker
enqueues and dequeues tasks at the tail of the queue in a LIFO
order, which is important because it results in much better task
locality than FIFO order, by traversing the task graph in a
depth-first manner. When the task queue becomes empty, the
TMU initiates work stealing. It uses a linear feedback shift
register (LFSR) to pick a random PE as the victim. Then it
sends a steal request to the victim through the network. When
the TMU on the victim PE receives the request (shown as
dotted arrows in Figure 3(b)), it dequeues a task from the head
of its queue and sends it back to the stealing PE. Stealing from
the head is important for efficiency because it enables stealing
a larger chunk of work with each request (i.e. the task at the
head is closer to the root of the task spawn tree).

The P-Store holds pending tasks that are waiting for argu-
ments, and keeps track of whether they are ready for execution.
Its function is analogous to the reservation stations in an out-
of-order processor. A straightforward design is to implement
the P-Store as a centralized structure for the entire accelerator,
where all pending tasks are kept. However, this would lead to
severe contention when scaling up the number of PEs. We
address this challenge by proposing a distributed architecture,

where each tile has a local P-Store, but is still able to access
P-Stores on other tiles over the network. Because of locality
in the processing of the task graph, pending tasks created by
a tile are likely to be consumed within that tile, which means
most accesses would go to the local P-Store without incurring
network traffic.

Each P-Store consists of a control unit, a free list, a join
counter array, a metadata array, and argument arrays. The free
list keeps track of the available entries in the P-Store. When
a PE requests to create a pending task, an entry is allocated,
and a continuation ID is returned. The join counter array stores
the number of missing arguments for each pending task. When
an argument is received, the data is written to the argument
array specified by the continuation, and the join counter is
decremented. If the counter reaches zero, the task that became
ready is sent to the PE that produced the last argument, and
the entry is deallocated.

The argument/task router steers argument and task messages
between local and remote tiles. This is needed for two reasons.
First, when a worker returns an argument, it may refer to
a pending task on a remote tile. Second, when the P-Store
receives an argument from a remote PE and outputs a task,
the task needs to be sent back to the remote PE in order to im-
plement greedy scheduling, which is critical for guaranteeing
the asymptotic bound on space [20].

B. LiteArch Tile and PE Architecture

Figure 3(c) shows the architecture of a LiteArch tile.
Compared to a FlexArch tile, it does not have a P-Store
or argument/task router as there is no support for creating
pending tasks or routing arguments and tasks between tiles. In
this architecture, the accelerator does not have a work stealing
network. Within a PE, the TMU is simplified to remove work
stealing capabilities, and the worker does not have P-Store
ports. This architecture supports the data-parallel pattern with
the host CPU splitting the range into smaller subranges, and
enqueuing the tasks for execution on the PEs.

C. Networks

The argument and work stealing networks shown in Fig-
ure 3(a) are two logical networks. Our architecture does not
specify the physical implementation of these two networks,



as long as they are compatible with the network interface
protocol. They can be implemented with different topologies,
or even be combined into one physical network. In our
implementation, each network uses a crossbar.

D. Memory Hierarchy

In our architecture, the accelerators are integrated into the
general-purpose memory hierarchy via the last-level cache, and
share the same address space as the general-purpose cores.
We investigate a single address space, cache-based memory
system for two reasons. First, caches reduce programming
effort by removing the need to manually orchestrate data
transfers, which is a significant portion of the design efforts
in today’s hardware accelerators. Second, caches and a single
address space enable fine-grained data sharing between the
CPU and FPGA, e.g. sharing pointer-based data structures,
which broadens the range of applications that can be mapped
to the architecture. The accelerator has a number of L1 caches
(shown in Figure 3(a)), one per each tile. The architecture
supports cache coherence; the caches can be kept coherent
among themselves and with the last-level cache to support
applications that require fine-grained data sharing. The accel-
erator caches can be implemented using the block RAMs on
FPGAs. Future FPGAs can also include hardened L1 cache
blocks. Also note that the workers can have local memory
structures such as scratchpads that are not a part of the
cache-coherent memory system. Some accelerators rely on
the massive internal memory bandwidth provided by such
local memory to achieve high performance. When a task
is stolen, data movement is performed transparently through
shared memory with coherent caches. The proposed frame-
work can also be used with non-coherent caches or DMA-
based accelerators if fine-grained data sharing is not needed,
and designers are willing to explicitly control data transfers. A
PE can initiate cache flushing or DMA transfers to read input
/ write output data for a task.

Integrating accelerators into the general-purpose memory
hierarchy represents a challenge for traditional HLS tools. The
traditional HLS tools assume a fixed latency for all memory
accesses, and generate large monolithic designs which struggle
when facing the variable memory latency of a general-purpose
memory system [22]; a delay in any memory response would
cause the entire design to stall. Our accelerator architecture
overcomes this problem by making PEs independent so that
one stalled PE would not affect others, and using dynamic
work scheduling to balance the load on the PEs should any
imbalance arise due to memory latencies.

E. CPU-Accelerator Interface

The accelerator contains an interface (IF) block that serves
as the interface between the CPU and the accelerator. The
IF block implements a memory-mapped interface. The CPU
can send tasks to the accelerator and read results back using
memory-mapped accesses. Once the IF receives a task, it needs
to pass it to the PEs for processing. For FlexArch, we leverage
work stealing for this purpose. A PE can steal a task from IF

Architectural
Template

HW
Generation

Accelerator RTL

parameters
(architecture, # of PEs, etc)

HLSC++-Based
Algorithm Desc

Worker
RTL

(created by designer) (provided by framework)

Fig. 4. Accelerator design flow using ParallelXL.

via the work stealing network. For LiteArch, the IF passes the
task via the argument/task network to one of the PEs based
on a static assignment, where the task is then executed.

IV. DESIGN METHODOLOGY AND FRAMEWORK

In this section, we discuss the methodology and software
framework we developed for designing accelerators with low
manual effort. Figure 4 shows the overall design flow using
the ParallelXL framework. Accelerator designers describe the
algorithm using a C++-based worker description format, then
the framework synthesizes the worker RTL using HLS. Next,
the framework combines worker RTL with an architectural
template it provides, and generates the final RTL of the
accelerator.

A. Architectural Template

We implemented the proposed accelerator architecture as
an architecture template in PyMTL [23], [24], a Python-based
hardware generation language. The template is parameterized
so that the designer can configure the architecture (FlexArch or
LiteArch), the number of tiles and PEs, the number of entries
of the task queue and P-Store, as well as the cache size.

B. Algorithm Description Format

While the accelerator architecture does not specify how
the task processing logic (worker) should be implemented,
in practice, high-level synthesis is usually preferred because
of its productivity compared to RTL design. We support the
HLS approach by defining a C++-based worker description
(CPPWD) format. As an example, Figure 5 shows the CPPWD
code for the Fibonacci algorithm described in Section II. The
worker is defined as a function, and the arguments of the
function are the ports of the worker. The function header is
standard for all workers, except for the function name and
task type, which are defined by the designer. The body of the
function defines the Fibonacci algorithm, which recursively
splits the problem into sub-problems by dynamically spawning
child tasks until reaching the base case, and then merging the
results back to obtain the answer. This algorithm is challenging
to express using today’s accelerator design methodologies
because it involves dynamically bounded parallel recursion,
but is trivial to express using our framework.

For the data-parallel pattern, the framework provides a
helper function (parallel_for) similar to Intel TBB [14],
which wraps the details of implementing dynamic spawn-
ing/joining of tasks in an easy-to-use interface. CPPWD also



1 void FibWorkerHLS
2 (
3 TaskInPort<FibTaskType> task_in,
4 TaskOutPort<FibTaskType> task_out,
5 ContReqPort cont_req,
6 ContRespPort cont_resp,
7 ArgOutPort arg_out
8 ) {
9 const FibTaskType task = task_in.read();

10

11 // continuation
12 task_k_t k = task.k;
13

14 if (task.type == FIB) {
15 int n = task.x;
16 if (n < 2)
17 send_arg(Argument(k, n), arg_out);
18 else {
19 // create successor task
20 k = make_successor(SUM, k, 2, cont_req, cont_resp);
21 // spawn tasks
22 spawn(FibTaskType(FIB, k, 1, n-2, 0, 0), task_out);
23 spawn(FibTaskType(FIB, k, 0, n-1, 0, 0), task_out);
24 }
25 } else if (task.type == SUM) {
26 int sum = task.x + task.y;
27 send_arg(Argument(k, sum), arg_out);
28 }
29 }

Fig. 5. C++-based worker description for Fibonacci.

supports the blocked_range concept, which allows splitting
a linear range into blocks of configurable size.

C. Accelerator RTL Generation

The framework generates the accelerator RTL by combining
the synthesized worker RTL with the architecture template
according to the parameters specified by the designer, includ-
ing the choice of the architecture, the number of PEs, the
number of task queue entries, cache size, etc. The framework
then elaborates the template and perform hardware generation
to output the final RTL of the accelerator. Design space
exploration can be done easily by changing the parameters
given to the framework, without rewriting any code.

V. EVALUATION

In this section, we present the evaluation results for the
proposed accelerator framework. We first present a hardware
prototype of accelerators on today’s FPGA platform. Then, in
order to perform a more detailed study of the architecture,
and to avoid the limitations of the current FPGA platform,
we present a simulation-based study in the context of a future
integrated CPU-FPGA SoC.

A. Benchmarks

We use a set of ten benchmark algorithms that cover a
variety of application domains, including linear algebra, graph
search, sorting, combinatorial optimization, image processing,
and bioinformatics. Some of the benchmarks are developed
in house, while others are adapted from benchmark suites
such as Cilk apps [19], Unbalanced Tree Search [25]. and
MachSuite [26]. We coded parallel implementations of these

TABLE II
SUMMARY OF BENCHMARKS. PA: PARALLELIZATION APPROACH,

PF=PARALLEL-FOR, FJ=FORK-JOIN, CP=CONTINUATION PASSING. R/N:
RECURSIVE/NESTED PARALLELISM. DP: DATA-DEPENDENT

PARALLELISM. MP: MEMORY ACCESS PATTERN. MI: MEMORY
INTENSITY.

Name From PA R/N DP MP MI

nw In-house CP Yes Yes Regular Medium
quicksort In-house FJ Yes Yes Regular Medium
cilksort Cilk apps FJ Yes Yes Regular Medium
queens Cilk apps FJ Yes Yes Regular Low

knapsack Cilk apps FJ Yes Yes Regular Low
uts UTS FJ Yes Yes Regular Low

bbgemm MachSuite PF Yes No Regular Medium
bfsqueue MachSuite PF No No Irregular High
spmvcrs MachSuite PF No No Irregular High
stencil2d MachSuite PF No No Regular High

algorithms using the proposed C++-based algorithm descrip-
tion format. Task granularity depends on application charac-
teristics, but is chosen to strike a balance between paralleliza-
tion overhead and load balancing. Table II summarizes the
benchmarks and shows the characteristics of each benchmark.
Among them, the ones that are recursive, or have nested
or data-dependent parallelism are especially challenging to
express in existing accelerator design frameworks, but our
framework allows writing these algorithms.

Here we give a brief description of each benchmark algo-
rithm, as well as the approach we take to parallelize them:
1� nw implements the Needleman-Wunsch algorithm, which

is a dynamic programming algorithm that aligns two DNA
sequences. The algorithm fills values of a two-dimensional
matrix, where the value of each element depends on its
neighbors on the north, west, and northwest. We parallelize
nw by blocking the matrix, and using continuation passing to
construct the task graph, similar to Figure 2(c). 2� quicksort

implements the classic Quicksort algorithm, which is a divide
and conquer algorithm that recursively partitions an array
into two smaller arrays and sorts them. We use the Hoare
partition scheme [27] in our implementation, and use fork-join
to parallelize across the divide-and-conquer tree. 3� cilksort

is a parallel merge sort algorithm first described in [28]. It
recursively divides an array into smaller arrays and sorts them,
and also performs the merging in parallel. When the sub-array
size gets small, it uses quicksort to sort the sub-array, which
in turn partitions and sorts the sub-arrays, and uses insertion
sort when the sub-array size becomes sufficiently small (tens
of elements). We use fork-join to parallelize across the divide-
and-conquer tree. 4� queens solves the classic N-queens
problem. We use fork-join to parallelize searching of the
solution space. 5� knapsack solves the 0-1 knapsack problem.
Our implementation uses a branch-and-bound algorithm, and
is parallelized using fork-join. 6� uts is a benchmark that
dynamically constructs and searches an unbalanced tree. The
unbalanced nature of the tree stresses the load balancing
capability of the architecture. We use fork-join to parallelize
across the subtrees. 7� bbgemm is a matrix multiplication



kernel that use blocking to achieve good memory locality [29].
We use a block size of 32 and parallelize the loop nest
with two nested parallel-for’s. 8� bfsqueue is a breadth-first
search algorithm that uses a queue to store frontier nodes.
We parallelize across the frontier with a parallel-for loop. 9�
spmvcrs is a sparse matrix-vector multiplication algorithm
using compressed row storage format. We parallelism across
the matrix rows using parallel-for. 10� stencil2d performs
stencil computation on a 2D image. We break the image into
blocks and use parallel-for to parallelize across the blocks.

For each worker that is generated by HLS, we applied
standard HLS optimization techniques such as loop pipelining
and unrolling, and use application-specific local memory struc-
tures such as scratchpads and buffers to achieve high internal
memory bandwidth when possible. In that sense, a single PE
in our architecture can be considered to represent optimized
accelerators designed using today’s HLS tools without addi-
tional parallelization support.

For benchmarks that use fork-join or continuation passing,
we also tried to implement a version that only uses parallel-for,
targeting the LiteArch. The high-level idea is to use multiple
rounds, with each round processing one level of the task
graph using a parallel-for, and at the same time constructing
the next level. This requires the tasks in the same level to
be homogeneous. For benchmarks that cannot be parallelized
this way, we also tried to rewrite the algorithm using a
different approach if that helps mapping it to parallel-for. In
the end, we were able to implement parallel-for versions of nw,
quicksort, queens and knapsack, but not cilksort, due
to the complexity and irregularity of its dynamic task graph.

We also coded a parallel software implementation for each
algorithm using Intel Cilk Plus [30], and compiled with -O3

optimization and auto-vectorization targeting NEON SIMD
extensions.

B. Hardware Prototype on Today’s FPGA

To demonstrate the proposed framework, we implemented
a prototype system using the Xilinx Zynq-7000 [31] FPGA
SoC on Zedboard. The SoC includes two ARM Cortex-A9
cores and an integrated FPGA fabric equivalent to Artix-
7. We implemented the FlexArch template for the FPGA
and generated accelerators using the flow described in Sec-
tion IV-C. The Zynq-7000 platform has some limitations
compared to future integrated CPU-FPGA platforms that we
envision (Figure 3(a)). First, the FPGA fabric does not have a
shared-cache interface that can be used to implement coherent
caches on the FPGA. As a result, we implemented stream
buffers instead of L1 caches to connect PEs to the L2 cache,
and a few benchmarks that rely on fine-grained cache accesses
were not implemented. Second, the bandwidth from the FPGA
to the L2 cache is limited by a single ACP port and is much
lower than the CPU-to-L2 bandwidth. The memory bandwidth
becomes a bottleneck when scaling up the number of PEs.

We compare the performance of the accelerators to an opti-
mized parallel Cilk Plus implementation of the benchmarks
running on the two ARM cores on the SoC. Performance

Fig. 6. Accelerators performance compared to parallel software on Zedboard.

TABLE III
PLATFORM CONFIGURATION.

Technology 28nm

CPU ARM ISA, eight-core, four-issue, out-of-order,
32 entries IQ, 96 entries ROB, 1GHz

CPU L1I/L1D: 32KB, 2-way, 64B line size, 1-cycle
L1 Cache hit latency, next-line prefetcher

Accel logic In FPGA fabric, 200MHz

Accel 32KB, 2-way, 64B line size, 400MHz, 1-cycle
L1 Cache hit latency, next-line prefetcher

L2 Cache 2MB, 8-way, 1GHz, 10-cycle hit latency, inclu-
sive, shared between cores and accelerator

Coherence MOESI snooping protocol

DRAM 64-bit DDR3-1600, 12.8GB/s peak bandwidth

numbers are obtained by comparing whole program execution
time, which include initialization and data transfers. Figure 6
shows the performance of FPGA accelerators with 4 PEs and
8 PEs, normalized to the parallel software implementation.
The results show that the 4-PE accelerators achieve up to 5.9x
speedup over parallel software (geomean 1.8x), and the 8-PE
accelerators achieve up to 11.7x speedup (geomean 2.5x). The
results also reveal the limitations of the Zynq-7000 platform.
For example, the accelerators show a slowdown for spmvcrs,
which is a memory-bound benchmark, because the FPGA has
lower memory bandwidth to the L2 cache compared to the
ARM cores. Similarly, there is little performance improvement
for nw, spmvcrs, and stencil2d when increasing the number
of PEs, again due to limited memory bandwidth.

C. Simulation Methodology

The limitations of today’s FPGA platform makes it difficult
to evaluate the proposed architecture in the context of future
integrated CPU-FPGA platforms with support for cache co-
herent accelerators [3] and higher memory bandwidth. For the
rest of the section, we present a simulation-based study, which
allows us to further explore the design space and perform more
detailed evaluation.

We model a future integrated CPU-FPGA SoC where the
CPU and FPGA share a cache-coherent memory system.
The parameters of the platform are shown in Table III. We
use gem5 [32] to model the integrated CPU-FPGA SoC. To
simulate the accelerators, we modified gem5 by integrating



an RTL simulator (Verilator) into gem5 as a ClockedObject

that is ticked every cycle, similar to gem5’s CPU models. We
wrote adapters to perform synchronization between gem5’s
event-based components (memory-system) and the cycle-based
accelerator RTL simulator. In this way, we can perform
detailed RTL simulations of the accelerators, while retaining
the flexibility in configuring the system components such as
cores, caches, interconnect, and DRAM.

We estimate FPGA resource utilization by synthesizing the
RTL using Vivado targeting Xilinx’s 7-series FPGA to obtain
LUT/FF count, the number of DSP slices, and the number
of block RAMs. We estimate the resource utilization of the
accelerator caches using numbers from Xilinx’s cache IP [33].

To estimate the energy of the accelerators, we run Vivado’s
power estimation tool on the synthesized netlist using signal
activity factors from RTL simulation. We model the energy of
the cores using McPAT [34], using event statistics from gem5
simulations.

D. Performance Results

1) Scalability: Here we present the scalability of the pro-
posed accelerator architecture using parallel speedup, which
is the speedup of a n-PE implementation over a single PE
implementation. In our experiments, we configure each tile
to have 4 PEs and simulate up to 8 tiles (32 PEs) for both
FlexArch and LiteArch. For comparison, we also show the
scalability of the CilkPlus baseline on 1 to 8 cores. Because a
PE is much smaller and lower-power than an out-of-order core,
we can fit more PEs than cores in the same area and power
budget. On the memory system side, the 8-tile and 8-core
configurations have the same number of L1 caches. Table IV
shows the scalability results. Comparing the software and
accelerators results, the accelerators achieve similar speedups
(from 1 to 8 cores/PEs) compared to CilkPlus, which is a
state-of-the-art task-based parallel programming framework
and runtime. In addition, the accelerators continue to get more
speedups with more PEs for most benchmarks. This shows that
the proposed accelerator architecture is effective in harnessing
the parallelism in applications.

Comparing the two accelerator architectures, LiteArch ac-
celerators match the scalability of the FlexArch accelerators
when algorithms map naturally to the data-parallel pattern
(bbgemm, bfsqueue, spmvcrs and stencil2d) However, for
benchmarks that have dynamic data-dependent parallelism or
are irregular (parallelized with fork-join or explicit continua-
tion passing), FlexArch accelerators generally achieves better
scalability, except for knapsack. The knapsack implemen-
tation on LiteArch uses a different algorithm that sacrifices
algorithmic efficiency in order to map to parallel-for. Though
it has good scalability, we will see later that the absolute
performance is actually much lower. These results indicate
that LiteArch is adequate to support regular data-parallel
algorithms. FlexArch, on the other hand, is a better fit for
most other parallel algorithms. This is because although some
of these algorithms can be rewritten to map to LiteArch, their
dynamic and irregular nature makes the implementation less

efficient, due to less effective load balancing and/or reduced
algorithmic efficiency.

The results also show that some benchmarks have better
scalability than others. For example, the two sorting algo-
rithms, cilksort and quicksort, show similar speedups
when there are only a small number of cores/PEs. However,
when the number of cores/PEs increases, cilksort can con-
tinue to scale its performance, achieving 26.20x speedup with
32 PEs using FlexArch, while the performance of quicksort
quickly tapers off. The reason is that these two algorithms
have different amount of dynamic parallelism. quicksort

has a significant non-parallelizable portion. Specifically, the
partitioning step is performed serially, thus the achievable
speedup is limited by Amdahl’s law. In contrast, cilksort
(a.k.a. parallel merge sort) generates a large number of parallel
tasks during execution, hence it achieves better scalability.

The results also indicate that the FlexArch architecture
achieves good load balancing using its hardware-based work
stealing mechanism. For example, uts (Unbalanced Tree
Search) is particularly difficult to load balance and requires
frequent work stealing operations. CilkPlus only achieves
3.91x speedup with 8 cores. In comparison, the FlexArch
accelerator achieves 6.50x speedup with 8 PEs, and is able
to continue to scale the performance with more PEs. The
hardware implementation of work stealing is more efficient
than software because it incurs less overhead. A work stealing
operation may require hundreds of instructions in software,
but only needs several cycles on the accelerator.

2) Normalized Performance: Figure 7 shows the perfor-
mance of FPGA accelerators normalized to a single out-of-
order core. The horizontal line represents the performance of
parallel software using CilkPlus running on eight cores. The
numbers are obtained by comparing whole program execution
time. The results show that the accelerators outperform the
8-core software implementation for most benchmarks. When
using 32 PEs, the FlexArch accelerators are up to 9.1x (ge-
omean 4.0x) faster than eight cores, and up to 69.5x (geomean
24.1x) faster than a single core. For many applications, the
accelerators can outperform an 8-core processor that has a
much higher frequency because each PE can perform more
operations in a cycle than a processor core. We use standard
HLS optimizations (loop pipelining and unrolling) to increase
internal parallelism with a PE. In addition, the PEs also exploit
application-specific parallelism. For example, in queens, each
PE is designed to check multiple candidate locations on a
chessboard in parallel. These types of optimizations require
hardware customization, and are difficult to implement in
processors. On the other hand, the accelerators cannot sig-
nificantly outperform an 8-core processor for quicksort and
spmvcrs. As discussed earlier, quicksort has a significant
serial portion, so the processor with a high frequency runs
faster. spmvcrs is limited by memory bandwidth, as a result
all implementations eventually reach similar performance.

The LiteArch accelerators achieve similar performance as
the FlexArch accelerators for data-parallel benchmarks. For
most other benchmarks, FlexArch significantly outperforms



TABLE IV
BENCHMARK SCALABILITY. THE NUMBERS ARE THE SPEEDUP OF A N-CORE/PE IMPLEMENTATION OVER A SINGLE CORE/PE IMPLEMENTATION.

Benchmark
OOO CPU Flex Accelerator Lite Accelerator

1-C 2-C 4-C 8-C 1-PE 2-PE 4-PE 8-PE 16-PE 32-PE 1-PE 2-PE 4-PE 8-PE 16-PE 32-PE

nw 1.00 1.74 3.21 5.54 1.00 1.98 3.69 7.11 13.23 21.19 1.00 1.81 3.09 5.10 7.54 9.90
quicksort 1.00 1.91 3.42 5.40 1.00 1.89 3.24 5.15 6.52 6.81 1.00 1.61 2.54 3.46 4.55 5.17
cilksort 1.00 1.98 3.78 7.05 1.00 1.99 3.50 6.94 13.66 26.20 N/A N/A N/A N/A N/A N/A
queens 1.00 1.99 3.92 7.65 1.00 1.89 3.10 6.20 12.12 24.20 1.00 2.00 3.96 7.45 12.08 13.21

knapsack 1.00 2.05 3.92 8.20 1.00 1.97 3.22 6.13 12.55 23.94 1.00 1.93 3.80 7.64 15.15 29.99
uts 1.00 1.75 2.81 3.91 1.00 1.95 3.66 6.50 11.32 15.64 1.00 1.92 3.52 5.76 7.51 7.44

bbgemm 1.00 1.99 3.85 7.04 1.00 1.99 3.88 7.50 13.38 17.48 1.00 1.95 3.42 6.39 11.29 18.27
bfsqueue 1.00 1.77 3.11 4.64 1.00 1.78 3.36 6.13 9.93 12.40 1.00 1.56 4.23 6.95 9.99 12.55
spmvcrs 1.00 1.95 3.50 5.45 1.00 1.99 3.59 6.86 13.16 16.51 1.00 1.93 2.91 5.52 10.16 17.42
stencil2d 1.00 1.99 3.85 7.04 1.00 1.99 3.17 6.22 12.12 20.13 1.00 1.98 2.73 5.36 10.32 17.35

geomean 1.00 1.91 3.52 6.04 1.00 1.94 3.43 6.44 11.57 17.35 1.00 1.85 3.31 5.82 9.37 12.98

Fig. 7. Normalized accelerator performance. The x-axis is the number of workers (PEs). The y-axis is performance normalized to a single OOO core. The
horizontal bar indicates the performance of an eight-core CilkPlus implementation.

LiteArch, especially with a large number of PEs. Also note
that the performance difference of knapsack comes from the
algorithmic inefficiency as discussed earlier.

These results also demonstrate that FPGA accelerators need
to exploit parallelism in order to provide performance benefits
over parallel software. Traditional HLS tools that use sequen-
tial C/C++ code as input can only generate accelerators that
roughly match the performance of a single PE, which is often
slower than parallel software. Our framework enables easily
mapping diverse parallel algorithms to FPGA and achieve
compelling performance (and shown later, energy) advantages
over parallel software.

E. Resource Utilization

Table V shows the per-PE and per-tile resource utilization
of the accelerators. Each tile consists of four PEs and a cache.
The DSP blocks are mainly used to implement multipliers, and
the BRAMs are used as local scratchpads and buffers, task

storage, and caches. The results show that the LiteArch accel-
erators generally use less resources than the FlexArch acceler-
ators. The reduction is most apparent for regular data-parallel
benchmarks (bbgemm, bfsqueue, spmvcrs, and stencil2d)
whose tasks graphs can be determined statically. On the other
hand, the resource reduction by using LiteArch for other
benchmarks is less significant, as the task graphs need to be
constructed dynamically in both architectures.

To put the resource utilization numbers into context, we
studied how many PEs can be mapped to typical FPGA
devices. We experimented with two FPGA devices: a low-
cost FPGA (Artix XC7A75T) similar to the one on Zedboard,
and a mainstream FPGA (Kintex XC7K160T). The low-cost
FPGA can fit on average 4 tiles (16 PEs) for FlexArch, and
5 tiles (20 PEs) for LiteArch. The mainstream FPGA can fit
8 tiles (32 PEs) for most benchmarks (except for cilksort)
for both FlexArch and LiteArch.



TABLE V
ACCELERATORS RESOURCE UTILIZATION. EACH TILE CONSISTS OF FOUR PES AND A CACHE. DSPS ARE SHOWN IN THE NUMBER OF DSP48 SLICES.

BRAMS ARE SHOWN IN THE NUMBER OF RAM18’S (EACH RAM36 COUNTS AS TWO RAM18’S).

Benchmark Flex PE Flex Tile (incl. Cache) Lite PE Lite Tile (incl. Cache)

LUT FF DSP RAM LUT FF DSP RAM LUT FF DSP RAM LUT FF DSP RAM

nw 1487 1547 3 7 8914 8668 12 51 1273 1346 1 4 6431 6838 4 36
quicksort 1828 1484 0 6 10618 8484 0 47 1857 1490 0 2 8665 7387 0 28
cilksort 5961 3785 0 8 27233 17622 0 58 N/A N/A N/A N/A N/A N/A N/A N/A
queens 549 535 0 4 5744 4684 0 40 704 606 0 0 4164 3851 0 20

knapsack 737 770 5 5 6083 5674 20 45 575 466 0 0 3591 3295 0 20
uts 2227 2216 0 5 11510 11438 0 44 2541 2158 0 0 10997 10063 0 20

bbgemm 1551 1789 15 19 9671 9620 60 100 1019 1361 15 14 5401 6736 60 76
bfsqueue 1481 1190 0 6 9353 7348 0 48 887 822 0 1 4901 4791 0 24
spmvcrs 1441 1273 3 13 9303 7660 12 76 875 905 3 8 4777 5119 12 52
stencil2d 1741 2334 12 10 10316 11905 48 64 1200 1964 12 5 6175 9359 48 40

Fig. 8. Normalized performance and energy efficiency. Energy efficiency is
the inverse of energy consumption. Both performance and energy efficiency
are normalized to the CilkPlus implementation on 8 OOO cores. Points to the
right of the vertical line have better performance. Points above the horizontal
line have better energy efficiency. The diagonal line represents the iso-power
line. Points above the diagonal line have lower power. Points for the same
benchmark are linked. Note that both axes are in log scale.

F. Power and Energy Efficiency

Figure 8 shows the performance and energy efficiency of the
accelerators (16-PE configuration) normalized to a CilkPlus
implementation on eight out-of-order cores. The results show
that the proposed accelerators are lower power and more
energy efficient for all benchmarks, with most benchmarks
showing more than 10x gain in energy efficiency. Comparing
the two accelerator architectures, there exists a clear trend in
the performance/energy efficiency profile: FlexArch usually
achieves better performance, while LiteArch often have better
energy efficiency. On average, FlexArch achieves a normalized
energy efficiency of 11.8x compared to the out-of-order cores,
while LiteArch achieves 15.3x.

G. Cache Size Customization

The accelerator L1 cache (tile cache) are built using the
BRAMs in the FPGA fabric. The size of the cache can
be customized according to application characteristics. For
benchmarks that are not memory intensive, or have good
locality, the cache sizes can be made smaller to reduce BRAM
usage without significantly degrading performance. Figure 9

shows the performance of the FlexArch accelerators (16-PE
configuration) when varying the L1 cache size from 4kB to
32kB. The benchmarks that have an irregular memory access
pattern (bfsqueue and spmvcrs) show the largest perfor-
mance loss. nw and bbgemm also showed some performance
loss because the reduced temporal reuse with smaller cache
sizes. The other benchmarks perform relatively well even with
a small cache size. Among them, cilksort, quicksort,
and stencil2d have good locality, and the other three have
relatively low memory intensity.

Fig. 9. Performance when varying accelerator L1 cache size.

VI. RELATED WORK

Task-Based Parallel Programming. Task-based parallel
programming was first proposed in [35], and recently gained
popularity with the introduction of languages and frameworks
such as Cilk [12] and Intel TBB [14]. Task-based programming
has been shown to allow programmers to think at a higher
level while providing good performance and load balancing.
Carbon [36] implements hardware task queues in a processor
that can be accessed using special instructions. Our work is
inspired by task-based programming, but uses the task-based
framework for hardware acceleration.

Work stealing was developed along with task-based pro-
gramming and has been extensively studied [14], [17], [20].
It has been shown to have provable bounds in terms of the
space and time needed for a parallel execution compared to
serial execution [17], and also works well in practice. We
implement work stealing in hardware and show that it can
efficiently distribute and balance load in parallel accelerators.



Design Methodologies for Parallel Accelerators. Generat-
ing parallel accelerators from a high-level description was ex-
plored and implemented in several languages and frameworks
[7]–[10], [37]. For example, OpenCL [8] has been adopted for
generating accelerators based on data parallelism. Delite [10]
is a domain-specific language for generating accelerators based
on a collection of parallel patterns. Liquid Metal [9] ex-
tends Java to support accelerators with pipeline parallelism.
Legup [7] supports a subset of POSIX threads. Kiwi [37]
extends C# to generate accelerators with threads and channels.
The existing frameworks require parallelism to be specified at
compile time and statically scheduled. As a result, it is difficult
to map dynamic or irregular algorithms to these frameworks.
The proposed framework supports dynamic parallelism with
dynamic work generation and dynamic scheduling.

A few prior studies explored dynamic parallelism in hard-
ware. Li et al. [11] propose to extract parallelism from irregular
applications by considering dynamic data dependencies [11].
It focuses on pipeline parallelism within a single thread of
execution. Our work targets many types of parallelism includ-
ing data-parallel, fork-join and general task parallelism. We
focus on efficient scheduling of dynamically generated tasks
onto multiple processing elements for parallel (multithreaded)
execution, and propose a hardware-based work-stealing mech-
anism to achieve good load balancing. Ramanathan et al. [38]
explored implementing software-based work stealing runtimes
on FPGAs using OpenCL atomic operations, which incurs high
performance and resource overhead. In contrast, we propose a
hardware architecture that implements native support for work
stealing, which is more efficient, more scalable, and uses less
resources.

VII. CONCLUSION

In this paper, we introduce ParallelXL, an architectural
framework to design high-performance parallel accelerators
with low manual effort using techniques inspired by task-based
parallel programming. We propose an accelerator architecture
that implements a task-based computation model with explicit
continuation passing, and handles task distribution and load
balancing efficiently using work stealing. The architecture
supports dynamic and nested parallelism in addition to static
parallelism, and can execute both irregular and regular appli-
cations efficiently. We also introduce a design methodology
that allows creating task-parallel accelerators from high-level
descriptions. Evaluation results show that our approach can
generate high-performance and energy-efficient accelerators
targeting FPGAs with low manual effort. While we focus on
FPGAs in this paper, we believe that the methodology has
potential to be adopted to generate ASIC accelerators as well.

ACKNOLWEDGEMENTS

This work was supported in part by the Office of Naval
Research (ONR) grant #N0014-15-1-2175, NSF XPS Award
#1337240, NSF CRI Award #1512937, AFOSR YIP Award
#FA9550-15-1-0194, and donations from Intel and Xilinx.

REFERENCES

[1] “Amazon EC2 F1 instances,” Online Webpage, 2017 (accessed Apr 17,
2018), https://aws.amazon.com/ec2/instance-types/f1/.

[2] P. K. Gupta, “Xeon-FPGA platform for the data center,” Workshop on
the Intersections of Computer Architecture and Reconfigurable Logic
(CARL), Jun 2015.

[3] J. Stuecheli, B. Blaner, C. R. Johns, and M. S. Siegel, “CAPI: A
coherent accelerator processor interface,” IBM Journal of Research and
Development, vol. 59, Jan/Feb 2015.

[4] S. Ahmad, V. Boppana, I. Ganusov, V. Kathail, V. Rajagopalan,
and R. Wittig, “A 16-nm multiprocessing system-on-chip field-
programmable gate array platform,” IEEE Micro, vol. 36, Mar/Apr 2016.

[5] M. Hutton, “Stratix 10: 14nm FPGA delivering 1GHz,” in Hot Chips
27 Symposium (HCS), 2016.

[6] Vivado Design Suite User Guide: High-Level Synthesis, Xilinx, Inc.
[7] J. Choi, S. D. Brown, and J. H. Anderson, “From pthreads to multicore

hardware systems in LegUp high-level synthesis for FPGAs,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 25,
2017.

[8] Intel FPGA SDK for OpenCL Programming Guide, Intel Corporation.
[9] J. S. Auerbach, D. F. Bacon, I. Burcea, P. Cheng, S. J. Fink, R. M.

Rabbah, and S. Shukla, “A compiler and runtime for heterogeneous
computing,” in Proceedings of the 49th Annual Design Automation
Conference 2012 (DAC), 2012.

[10] D. Koeplinger, R. Prabhakar, Y. Zhang, C. Delimitrou, C. Kozyrakis,
and K. Olukotun, “Automatic generation of efficient accelerators for
reconfigurable hardware,” in Proceedings of the 43rd International
Symposium on Computer Architecture (ISCA), 2016.

[11] Z. Li, L. Liu, Y. Deng, S. Yin, Y. Wang, and S. Wei, “Aggressive
pipelining of irregular applications on reconfigurable hardware,” in
Proceedings of the 44th Annual International Symposium on Computer
Architecture (ISCA), 2017.

[12] C. E. Leiserson, “The Cilk++ concurrency platform,” in Proceedings of
the 46th Design Automation Conference, 2009.

[13] “Intel Cilk Plus language extension specification, version 1.2,” Intel Ref-
erence Manual, Sep 2013, https://www.cilkplus.org/sites/default/files/
open specifications/Intel Cilk plus lang spec 1.2.htm.

[14] J. Reinders, Intel Threading Building Blocks: Outfitting C++ For Multi-
Core Processor Parallelism. O’Reilly, 2007.

[15] E. Ayguadé, N. Copty, A. Duran, J. Hoeflinger, Y. Lin, F. Massaioli,
X. Teruel, P. Unnikrishnan, and G. Zhang, “The design of OpenMP
tasks,” IEEE Trans. on Parallel and Distributed Systems (TPDS), vol. 20,
Mar 2009.

[16] “OpenMP application program interface, version 4.0,” OpenMP Archi-
tecture Review Board, Jul 2013, http://www.openmp.org/mp-documents/
OpenMP4.0.0.pdf.

[17] R. D. Blumofe and C. E. Leiserson, “Scheduling multithreaded compu-
tations by work stealing,” Journal of the ACM (JACM), vol. 46, 1999.

[18] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H.
Randall, and Y. Zhou, “Cilk: An efficient multithreaded runtime system,”
Journal of Parallel and Distributed Computing, vol. 37, Aug 1996.

[19] M. Frigo, C. E. Leiserson, and K. H. Randall, “The implementation
of the Cilk-5 multithreaded language,” in Proceedings of the ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation (PLDI), 1998.

[20] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H.
Randall, and Y. Zhou, “Cilk: An efficient multithreaded runtime system,”
in Proceedings of the Fifth ACM SIGPLAN Symposium on Principles &
Practice of Parallel Programming (PPOPP), 1995.

[21] A. Robison, “A primer on scheduling fork-join parallelism with work
stealing,” The C++ Standards Committee, Tech. Rep., 01 2014.

[22] T. Chen and G. E. Suh, “Efficient data supply for hardware accelerators
with prefetching and access/execute decoupling,” in Proceedings of the
49th International Symposium on Microarchitecture (MICRO), 2016.

[23] D. Lockhart, G. Zibrat, and C. Batten, “PyMTL: A unified framework
for vertically integrated computer architecture research,” in Proceedings
of the 47th International Symposium on Microarchitecture (MICRO),
2014.

[24] S. Jiang, B. Ilbeyi, and C. Batten, “Mamba: closing the performance
gap in productive hardware development frameworks,” in Proceedings
of the 55th Annual Design Automation Conference (DAC), 2018.



[25] S. Olivier, J. Huan, J. Liu, J. Prins, J. Dinan, P. Sadayappan, and
C. Tseng, “UTS: an unbalanced tree search benchmark,” in 19th Inter-
national Workshop on Languages and Compilers for Parallel Computing
(LCPC), 2006.

[26] B. Reagen, R. Adolf, Y. S. Shao, G. Wei, and D. M. Brooks, “MachSuite:
Benchmarks for accelerator design and customized architectures,” in
Proceedings of the 2014 IEEE International Symposium on Workload
Characterization (IISWC), 2014.

[27] C. A. R. Hoare, “Algorithm 64: Quicksort,” Communications of the
ACM, vol. 4, 1961.

[28] S. G. Akl and N. Santoro, “Optimal parallel merging and sorting without
memory conflicts,” IEEE Transactions on Computers, vol. 36, 1987.

[29] M. S. Lam, E. E. Rothberg, and M. E. Wolf, “The cache performance
and optimizations of blocked algorithms,” in Proceedings of the Forth
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS-IV), 1991.

[30] “Intel Cilk Plus,” Online Webpage, 2015 (accessed Aug 2015), https:
//software.intel.com/en-us/intel-cilk-plus.

[31] “Zynq-7000 all programmable SoC,” Online Webpage, 2017 (ac-
cessed Apr 17, 2018), https://www.xilinx.com/products/silicon-devices/
soc/zynq-7000.html.

[32] N. L. Binkert, B. M. Beckmann, G. Black, S. K. Reinhardt, A. G.
Saidi, A. Basu, J. Hestness, D. Hower, T. Krishna, S. Sardashti, R. Sen,
K. Sewell, M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5
simulator,” SIGARCH Computer Architecture News, vol. 39, 2011.

[33] “LogiCORE IP system cache v3.0,” Xilinx Product Guide,
https://www.xilinx.com/support/documentation/ip documentation/
system cache/v3 0/pg118 system cache.pdf.

[34] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and
N. P. Jouppi, “McPAT: an integrated power, area, and timing modeling
framework for multicore and manycore architectures,” in Proceedings of
the 42nd International Symposium on Microarchitecture (MICRO-42),
2009.

[35] F. W. Burton and M. R. Sleep, “Executing functional programs on
a virtual tree of processors,” in Proceedings of the 1981 Conference
on Functional Programming Languages and Computer Architecture
(FPCA), 1981.

[36] S. Kumar, C. J. Hughes, and A. D. Nguyen, “Carbon: architectural
support for fine-grained parallelism on chip multiprocessors,” in 34th
International Symposium on Computer Architecture, 2007.

[37] D. J. Greaves and S. Singh, “Kiwi: Synthesis of FPGA circuits from
parallel programs,” in Proceedings of the 16th IEEE International
Symposium on Field-Programmable Custom Computing Machines, 2008.

[38] N. Ramanathan, J. Wickerson, F. Winterstein, and G. A. Constantinides,
“A case for work-stealing on FPGAs with OpenCL atomics,” in Pro-
ceedings of the 2016 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, 2016.


