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Manycore architectures integrate hundreds of cores on a single chip by using simple cores and

simple memory systems usually based on software-managed scratchpad memories (SPMs). Such

architectures are notoriously challenging to program, since the programmers need to manually

manage all aspects of data movement and synchronization for both correctness and performance.

This manycore programmability challenge is one of the key barriers to achieving the promise of

manycore architectures. This thesis presents both domain-specific (HB-PyTorch and HB-Arc) and

general-purpose (HB-Rubick) programming frameworks to address the SPM manycore architec-

ture programmability challenge and/or improve performance. HB-PyTorch enables domain ex-

perts to easily accelerate off-the-shelf tensor workloads. Evaluation on three real-world dense and

sparse tensor workloads suggests these workloads can achieve approximately 2–6× performance

improvement when scaled to a future 2,000-core manycore system compared to an 18-core out-of-

order CPU baseline, while potentially achieving higher area-normalized throughput and improved

energy-efficiency compared to GPGPUs. HB-Arc explores the potential of decoupled access/ex-

ecute (DAE) mechanisms, and proposes two software-only techniques, naïve-software DAE and

systolic-software DAE, along with a lightweight hardware access accelerator for further perfor-

mance benefit. However, being domain-specific limits their scope. General purpose dynamic task

parallel programming frameworks offer many advantages over domain-specific frameworks, in-

cluding more flexibility and better load-balancing. Conventional wisdom suggests a work-stealing

runtime, which forms the core of most dynamic task parallel programming models, is ill-suited for

manycore architectures. However, HB-Rubick demonstrates that such a runtime is not just feasi-

ble on manycore architectures with SPMs, but it can also significantly improve the performance

of irregular workloads when executing on these architectures. The proposed dynamic task paral-

lel programming framework enhanced with three optimizations for leveraging unused SPM space

achieves 1.2–28.5× speedup on workloads that benefit from our techniques, and only induces min-



imal overhead for workloads that do not. This thesis provides a small yet important step towards

closing the performance and productivity gap of SPM manycore architectures.
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CHAPTER 1
INTRODUCTION

Parallelism and specialization have been the two main techniques for turning the ever increas-

ing number of transistors provided by Moore’s Law into performance. A simple way to exploit

more parallelism is to have more cores and create manycore architectures [TKM+03, MFN+17,

HDH+10,HVS+07,LSC+13,VGT+20,TFZ+08,BEA+08,Ram11,Kan15,Whe20,Hal20,WGH+07,

LFF+18, kal22, BSP+17, Olo16, ZSB21, DXT+18]. Examples include data-parallel manycore ar-

chitectures such as general-purpose graphics processing unit (GPGPU) and thread-parallel many-

cores such as Tile64 [BEA+08] and Celerity [DXT+18]. The manycore approach trades a few

complex big cores for a large number of simple cores integrated within a single die using a tiled

physical design methodology. Compared to general-purpose multi-cores, the manycore approach

can improve energy efficiency and throughput per unit area on highly parallel workloads. Com-

pared to specialized hardware (i.e., domain- and application-specific accelerators), the manycore

approach is more flexible and can be tailored to accelerate a wider range of applications. How-

ever, the flexibility offered by manycore architectures means programmers must navigate a broad

software design and optimization space. This is compounded by the fact that manycore proces-

sors rely on simple hardware that requires programmers to manage many concerns such as data

coherence among private memories manually in software, write applications in low-level C en-

vironments and/or directly in assembly, and adopt a more restricted programming model. The

cumbersome programming environment coupled with the need for software optimizations to re-

alize the performance promised by hardware is a critical barrier to widespread adoption of most

manycore architectures, especially those with software-managed scratchpad memories (SPMs).

In this thesis, I propose both domain-specific and general-purpose programming frameworks

to improve the programmability and/or the performance of thread-parallel manycore architectures

with software-managed scratchpad memories (i.e., SPM manycore architectures). I first present a

brief introduction on the target SPM manycore architecture and discuss manual performance tun-

ing on the target system. I then introduce two domain-specific frameworks for tensor computation

and decoupled access/execute programming on SPM manycore architectures. Lastly, I present a

general-purpose dynamic task parallel programming framework and evaluate three optimizations

that enable the framework to leverage unused scratchpad space for further performance improve-

ment.
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1.1 The Manycore Architecture Era

Manycore processors date back to the early 2000s, when a few research prototypes were made

to demonstrate the potential of the manycore approach in executing thread-parallel workloads.

Early thread-parallel manycore research prototypes integrated 16–110 cores on a single die. The

MIT RAW processor [TKM+03] integrated 16 simple in-order cores with a 4× 4 2-D mesh on-

chip network (OCN). The Intel Teraflops research chip [HVS+07] contained 80 tiles arranged as

a 10× 8 2-D mesh OCN of floating-point cores and routers. The Godson-T processor [TFZ+08]

from the Institute of Computing Technology (ICT) at the Chinese Academy of Sciences (CAS)

had 64 cores organized into an 8× 8 2-D mesh OCN. The Intel Single-Chip Cloud Computer

(SCC) [HDH+10] was a manycore processor with 48 Pentium cores connected by a 4 × 6 2-

D mesh OCN. The 110-core Execution Migration Machine (EM2) [LSC+13] is a directory-less

shared-memory manycore based on hardware-level thread migration which had a 10 × 11 lay-

out. The industry has adopted the manycore approach as well and products available typically

include 64–256 cores. Examples include the 64-core Tile64 [BEA+08], the 72-core Knights Land-

ing [SGC+16], the 100-core Tile GX100 [Ram11], the 128-core Ampere Altra Max [Whe20],

the 128-core Sunway SW26010 [LFF+18], and the 256-core Kalray MPPA-256 [kal22]. Recent

research prototypes have scaled core counts by an order-of-magnitude to over a thousand cores, in-

cluding the 1000-core KiloCore [BSP+17], the 1024-core Epiphany-V [Olo16], and the 4096-core

Manticore [ZSB21]. GPGPUs are the most widely adopted type of manycore processor. Unlike

the thread-parallel manycore architectures mentioned above, GPGPUs are data-parallel and usu-

ally adopt a single instruction multiple data (SIMD) architecture. While they usually have about a

hundred cores (referred to as stream multiprocessors for NVIDIA GPGPUs and compute units for

AMD GPGPUs), they support thousands of concurrent hardware threads by having one frontend

driving multiple scalar pipelines. For instance, The NVIDIA A100 GPGPU has 6912 CUDA cores

(i.e., scalar pipelines) in 108 SMs [nvi20].

Hardware designers have long realized that it is more difficult to efficiently implement exist-

ing hardware-based cache coherence protocols designed for multi-core processors (e.g., directory-

based MESI and its variants) on manycore architectures as their core count keeps increasing. De-

signing a performance-, complexity-, and area-scalable hardware-based cache coherence proto-

col has been and remains an active area of research [ZSD10, CLS05, ZSM07, Mos05, MHS12,
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(a) The 16-core MIT RAW
Processor [TKM+03]

(b) The 25-core
Piton [MFN+17]

(c) The 48-core Intel
Single-Chip Cloud

Computer [HDH+10]
(d) The 60-core Marvell

ThunderX3 [Hal20]

(e) The 64-core ICT
Godson-T [TFZ+08]

(f) The 72-core Intel
Knights Landing [SGC+16]

(g) The 80-core Intel
Teraflops Research

Chip [HVS+07]
(h) The 100-core

TILE-GX100 [Ram11]

(i) The 108-core NVIDIA
A100 [nvi20]

(j) The 110-core Execution
Migration Machine
(EM2) [LSC+13]

(k) The 128-core Ampere
Altra Max [Whe20]

(l) The 128-core Sunway
SW26010 [LFF+18]

(m) The 256-core Kalray
MPPA-256 [kal22]

(n) The 511-core Celerity
Research Chip [DXT+18]

(o) The 1024-core
KiloCore [BSP+17]

(p) The 1024-core Adapteva
Epiphany-V [Olo16]

Figure 1.1: Examples of Manycore Processors – Chip plots or die photos of selected manycore processors mentioned
in this thesis.
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KNL A100

Figure 1.2: Trend of Processor Core Count and on Chip Memory Hierarchy – This figure shows the number of
cores and their on chip memory hierarchy in selected processors from 2000 to 2022. Filled marker = real chip; unfilled
marker = proposal/simulator only. The data is in part from CPU DB [DKM+12]. See Figure 1.1 for citations.

FLKBF11, BS13, FW15]. When hardware designers scale the number of cores on a single chip

from tens to around a hundred cores, both academia and industry have started moving away from

hardware-based cache coherence and adopting software-centric cache coherence, which requires

programmers to explicitly conduct cache invaldiation and/or dirty data writeback (e.g., Temporal-

Coherence [SSF+13]). Examples include Godson-T [TFZ+08], Teraflops [HVS+07], and GPG-

PUs [nvi20]. As the core count continues scaling into over a thousand cores, software-managed

scratchpad memory (SPM) [BSL+02,KSA+15,DXT+18] has become the common choice [BSP+17,

Olo16, LFF+18, DXT+18]. The trend is illustrated in Figure 1.2. Manycore architectures, espe-

cially these that adopt SPMs are notoriously challenging to program because of their high demand

on programmers. This manycore programmability challenge is one of the key barriers to achieving

the promise of manycore architectures.
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1 # import library
2 import numpy as np
3

4 # create a sequence of float numbers
5 # from 0 to 5 and arrange them as
6 # a 2 by 3 matrix
7 x = np.arrange(6).reshape(2, 3)
8 x = x.astype('f')
9

10 # take sum along the y-axis
11 res = x.sum(axis=1)

(a) Legacy Code with NumPy.

1 # import library
2 import cupy as cp
3

4 # create a sequence of float numbers
5 # from 0 to 5 and arrange them as
6 # a 2 by 3 matrix
7 x = cp.arrange(6).reshape(2, 3)
8 x = x.astype('f')
9

10 # take sum along the y-axis
11 res = x.sum(axis=1)

(b) Ported Code with CuPy.

Figure 1.3: CuPy Example – CuPy is designed to be a drop-in replacement of NumPy and SciPy. Porting a piece of
legacy code to run on GPGPUs is as simple as replacing numpy with cupy in lines 2 and 7.

1.2 Domain-Specific Frameworks

One approach to resolve this programmability challenge of manycore architectures is through

specialized or domain-specific frameworks that provide either ready-to-use hand-optimized op-

erators embedded within a high-level language or carefully designed domain-specific languages

(DSLs). Such domain-specific frameworks played an important role in the adoption of GPGPUs

by simplifying both writing new software and reusing existing software.

CuPy [OUN+17] is an open-source array library for GPGPU-accelerated computing with Python.

CuPy’s programming interface is crafted to be highly compatible with widely used array libraries

on traditional multi-core CPUs like NumPy and SciPy [Oli07]. In most cases it can be used as a

drop-in replacement: simply replace numpy and scipy with cupy and cupyx.scipy in the existing

Python code. See Figure 1.3 for an example. Under the hood, CuPy is built on top of the low-level

CUDA Toolkit [nvi22] framework, which includes cuBLAS for linear algebra, cuRAND for ran-

dom number generation, cuSOLVER for solving dense and sparse linear systems, cuSPARSE for

sparse linear algebra, cuFFT for fast Fourier transformation, cuDNN for deep neural networks and

NCCL for multi-GPU communication to make full use of the GPGPU architecture.

PyTorch [PGM+19] is an open-source deep learning framework that supports various compute

platforms, including traditional multi-core processors and GPGPUs. The programming interface

of PyTorch is designed to be platform agnostic and contains only abstract operators. At runtime,

a dispatching mechanism automatically picks the appropriate platform specific implementations.

This extra layer of abstraction provides high code portability. The same code base can run on
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1 class Autoencoder(nn.Module):
2 def __init__(self):
3 self.encoder = nn.Sequential(
4 nn.ReLu(),
5 nn.BatchNorm1d(800),
6 nn.Dropout(0.5)
7 )
8

9 self.bneck = nn.Linear(800, 400)
10

11 self.decoder = nn.Sequential(
12 nn.ReLu(),
13 nn.BatchNorm1d(400),
14 nn.Dropout(0.5)
15 )
16

17 def forward(self, x):
18 x = self.emb(x).sum(dim=1)
19 x = self.encoder(x)
20 x = self.bneck(x)
21 x = self.decoder(x)
22 x = self.output(x)

(a) Autoencoder model definition.

1 def train(dataloader_train):
2 model = Autoencoder()
3

4 for x, y in dataloader_train:
5 out = model(x)
6 loss = F.MSELoss(out, y)
7

8 opt.zero_grad()
9 loss.backward()

10 opt.step()

(b) Training script on multi-core CPUs.

1 def train(dataloader_train):
2 model = Autoencoder().cuda()
3

4 for x, y in dataloader_train:
5 x = x.cuda()
6 y = y.cuda()
7 out = model(x)
8 loss = F.MSELoss(out, y)
9

10 opt.zero_grad()
11 loss.backward()
12 opt.step()

(c) Training script on GPGPUs.

Figure 1.4: PyTorch Example – Only three lines of code (i.e., lines 2, 5, 6 of (c)) are needed for porting a deep
learning model to run on GPGPUs.

various platforms with only minimal changes. Figure 1.4 shows an example of a deep learning

model written with PyTorch. Only three lines of code are needed for porting the model which

originally trains on multi-core processors (i.e., Figure 1.4 (b)) to leverage GPGPUs (Figure 1.4 (c)),

and none of the code that defines the model (i.e., Figure 1.4 (a)) is changed as they are all platform

agnostic. The abstraction layer also enables constructing new abstract operators with a sequence

of existing operators which further improves encapsulation and programmability.

Other domain-specific framework examples include cuGraph [rap20] and Gunrock [WDP+16]

for graph analytics, TensorFlow [ABC+16] for machine learning, CUVIlib [cuv22] for image pro-

cessing, and Triton Ocean SDK [Sun22] for water simulation. While these frameworks express

domain-specific workloads effectively and achieve high performance, they do not cover all do-

mains. Extending and repurposing them for another domain requires non-trivial effort by pro-

grammers.
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1.3 General-Purpose Frameworks

Unlike domain-specific frameworks that have a narrow focus, general-purpose programming

frameworks provide more flexibility. In the multi-core era, general-purpose parallel programming

frameworks with programmer friendly programming models, especially ones that support dynamic

task parallelism, played a key role in exploiting/expressing parallelism and achieving high perfor-

mance. Task parallelism is a style of parallel programming where the workload is divided into

tasks (i.e., units of computation that can execute in parallel). Dynamic task parallelism is a subset

of task parallelism in which tasks and dependencies among tasks are generated at runtime. Dy-

namically generated tasks are assigned to available worker threads based on a certain scheduling

algorithm. They can express a wide range of parallel patterns, provide automatic load balancing,

and improve portability for legacy code [MRR12]. Examples include Intel Cilk Plus [int13], Intel

Threading Building Blocks (TBB) [int19], and OpenMP [ACD+09, ope13]. Figure 1.5 shows an

example of calculating the Fibonacci sequence with the Intel Cilk Plus framework, which adopts

the fork-join computation model. In such a model, the process in which a task forks two or more

parallel tasks is also referred to as spawning tasks. The newly created tasks are called the child

tasks and the original task is called the parent task. The parent task can continue until it reaches

the point where the join (also commonly referred to as wait or sync) primitive is called. It is then

blocked until all of its child tasks have finished. In this example, the parent task (i.e., fib(n)

spawns two tasks, fib(n - 1) and fib(n - 2). The parent task is suspended with cilk_sync

until both child tasks are finished. It then calculate the result of fib(n) by adding the return values

of both child tasks.

Adopting the dynamic task parallel programming model on manycore architecture can po-

tentially help with resolving the programmability challenge of manycore architectures by both

enabling efficient development of new software and easy porting of existing software. Such a

framework can also yield better performance by providing better load-balancing. However, con-

ventional wisdom suggests a work-stealing runtime, which forms the core of most dynamic task

parallel programming models, is ill-suited for manycore architectures due to the lack of hardware

coherent caches [ZP16, WTCB20].
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1 uint32_t fib(uint32_t n) {
2 uint32_t x, y;
3

4 if (n < 2) {
5 return n;
6 }
7

8 x = cilk_spawn fib(n - 1);
9 y = cilk_spawn fib(n - 2);

10 cilk_sync;
11

12 return (x + y);
13 }

Figure 1.5: Intel Cilk Plus Example – The nth Fibonacci number is calculated by spawning two child tasks, one for
calculating the (n-1)th Fibonacci number and one for calculating the (n-2)th Fibonacci number.

1.4 Thesis Overview

This thesis presents both domain-specific and general-purpose approaches to address the many-

core architecture programmability challenge. I will limit the discussion in this thesis to thread-

parallel manycore architectures with software-managed scratchpad memories (SPM manycore ar-

chitectures). Compared to data-parallel manycore architectures (e.g., GPGPUs), the software stack

of thread-parallel manycore architectures is less explored. How to efficiently program such sys-

tems with thousands of cores remains an open research question. An overview of this thesis is

illustrated in Figure 1.6.

Chapter 2 gives a brief introduction on an open source SPM manycore architecture, Ham-

merBlade (HB), which captures the common features of modern manycore systems. Examples of

these common features include relatively simple cores, software-managed memory systems, mesh-

based on-chip networks, and simple low-level programming interfaces. In Chapter 2.2, I provide

an introduction on the low-level C runtime, CUDA-lite, of the HammerBlade manycore. CUDA-

lite adopts a single-program-multiple-data (SPMD) programming model, and statically scheduled

parallel loops are the only supported parallel pattern. In Chapter 2.4, I discuss the details of hand

tuning and optimizing kernels on the HammerBlade manycore architecture using matrix multipli-

cation as an example. Hand tuning requires programmers to have a deep understanding of both the

kernel to be optimized and the underlying manycore hardware. Hand tuning a kernel also often

involves manual instruction scheduling and writing assembly code directly, which further reduces

the programmability of such systems.
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HB-Arc: 
A Decoupled Access/Execute Framework 

(Chapter 4)

Performance

Pr
og

ra
m
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CUDA-lite 
(Chapter 2) 

HB-Rubick:  
A Dynamic Task Parallel Framework 

(Chapter 5) 

HB-PyTorch:  
A Tensor Processing Framework 

(Chapter 3) 

Figure 1.6: Thesis Overview – This thesis explores implementing the software stack of manycore architectures.
Chapter 2 provides an introduction on the low-level C runtime of the HammerBlade manycore architecture and gives
a case study of hand tuning kernels on HammerBlade by using matrix multiplication as an example; Chapter 3 imple-
ments a tensor processing framework on the HammerBlade manycore; Chapter 4 explores decoupled access/execute
and systolic execution; Chapter 5 describes, to the best of our knownledge, the first implementation of a work-stealing
runtime on manycore architectures with SPMs. Squares = domain-specific frameworks; circles = general-purpose
frameworks.

Chapter 3 presents a domain-specific framework, HB-PyTorch, for tensor processing on the

HammerBlade manycore architecture. In this chapter, I attempt to resolve the manycore architec-

ture programmability challenge by extending PyTorch, a widely adopted tensor processing frame-

work, with a manycore backend. The proposed framework allows deep learning developers to take

their existing deep learning models and run them on the HammerBlade manycore by modifying

a few lines of code. Compared to writing hand optimized kernels from scratch, our framework

significantly improves the programmability of manycore architectures by providing ready-to-use

operators that are embedded in a high-level language. However, compared to implementing a

workload natively with CUDA-lite, the same workload written with HB-PyTorch usually achieves
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lower performance because of the overhead of HB-PyTorch’s Python frontend and more frequent

interaction between the HammerBlade manycore and the host CPU.

Chapter 4 explores software and hardware solutions to enable decoupled access/execute (DAE)

and systolic execution on manycore architectures. I demonstrate that DAE and systolic execution

are feasible solutions to cope with the ever decreasing per core memory bandwidth as the num-

ber of cores keeps increasing in manycore architectures. DAE and systolic execution improves

performance but requires programmers to manually reformat and hand tune their applications.

Chapter 5 discusses a general-purpose framework, HB-Rubick, which supports dynamic task

parallelism on the HammerBlade manycore architecture. While work-stealing runtimes, which

forms the core of most dynamic task parallel programming models, is considered ill-suited for

manycore architectures as they usually lack hardware-based coherent caches, I demonstrate that

such runtimes are more than just feasible on manycore architectures. A work-stealing runtime can

also significantly improve the performance of irregular workloads on such systems with SPMs. I

also explore three optimization techniques to enable the work-stealing runtime to leverage unused

scratchpad space for further performance benefit. Compared to CUDA-lite, the proposed frame-

work supports parallel patterns beyond static parallel loops, provides dynamic load-balancing, and

allows them to be arbitrarily nested. It enables programmers to efficiently express a wider range

of algorithms and achieve high performance on irregular workloads. Moreover, the more familiar

programming model and interface make it much easier to port legacy code written for traditional

multi-core processors to manycore architectures.

Chapter 6 summarizes the contributions of this thesis and discusses directions of future work.

The primary contributions of this thesis are:

• an open-source tensor processing framework, which achieves high performance on SPM

manycore architectures;

• a novel framework, which enables decoupled access/execute (DAE) and systolic execution

on SPM manycore architectures;

• an open-source dynamic task parallel programming framework, which supports arbitrarily

nested parallel patterns and dynamic load balancing on SPM manycore architectures; and

• software and hardware optimizations to enable a work-stealing runtime to leverage unused

scratchpad space and achieve higher performance on SPM manycore architectures.
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CHAPTER 2
A PROGRAMMER’S VIEW OF THE HAMMERBLADE

MANYCORE ARCHITECTURE

Manycore architectures provide thread-level parallelism and flexibility with hundreds to thou-

sands of general purpose cores, which are typically arranged in two-dimensional arrays and in-

terconnected with packet-based mesh-style OCN for communication. This network of cores is

usually surrounded by multiple channels of memory. Cores within the architecture communicate

explicitly through memory [DXT+18] or message passing [Gwe11], implicitly through coherence

protocols [Ram11], or both using inter-core result networks [TLM+04]. Abundant general pur-

pose cores and diverse communication patterns make manycore architectures flexible enough to be

tailored to fit a wide range of parallel applications. Although the manycore software and hardware

design space is broad, there are several common features including relatively simple cores, mesh-

based OCNs, software-managed memory systems, and simple low-level programming interfaces.

In this chapter, I present a brief introduction on an early version of the HammerBlade (HB)

architecture [BFY+21], an open-source manycore which captures these commonly found features.

The HammerBlade manycore is designed and implemented by the Bespoke Silicon Group at the

University of Washington. While the techniques and mechanisms proposed in this dissertation

are implemented and evaluated on the HammerBlade architecture, they are generally applicable to

other manycore architectures as well. Section 2.1 gives an overview of the HammerBlade archi-

tecture hardware. Section 2.2 describes the software stack and the programming interfaces of the

HammerBlade manycore. Section 2.3 discusses our RTL simulation and energy modeling method-

ologies. Section 2.4 presents a detailed example of hand optimizing a widely used kernel, MatMul,

on HammerBlade.

2.1 HammerBlade Manycore Hardware

The full HammerBlade CPU-manycore heterogeneous system includes a traditional multicore

CPU and an HammerBlade co-processor each with its own dedicated DRAM memory; the mul-

ticore CPU uses DDR4 DRAM for high capacity, while the manycore co-processor uses die-

stacked HBM2 DRAM for higher bandwidth. The HammerBlade manycore co-processor includes

2000 simple cores interconnected to the on-chip HBM2 memory controllers through a global net-
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Figure 2.1: HammerBlade CPU-Manycore Heterogeneous System Hardware – (a) target system includes a CPU
with its own attached DRAM and a manycore co-processor also with its own attached DRAM; (b) manycore co-
processor includes 16×8 simple cores (C) and 32 last-level cache (L) banks interconnected via mesh-based on-chip
network; (c) each core is a RISC-V RV32IMAF processor (RV32) with 4 KB instruction cache and 4 KB scratchpad
memory.

work. In this thesis, we study an early version of the HammerBlade mancyore which includes

128 cores arranged into an 16×8 grid interconnected via an on-chip mesh network, illustrated in

Figure 2.1. This 128-core HammerBlade co-processor includes a last-level cache (LLC) which

is shared among all cores. The LLC is divided into 32 address-interleaved banks located at the

top and bottom of the mesh. Each core is a simple, ultra-efficient RISC-V core supporting the

RV32IMAF instruction set including basic arithmetic operations, atomic memory operations (han-

dled in the LLC banks), and single-precision floating point operations. Each core also includes a

4-KB instruction cache and 4-KB software-managed scratchpad memory (SPM).

2.1.1 Core Microarchitecture

The core uses a single-issue, in-order, five-stage integer pipeline with additional long-latency

functional units including a two-cycle pipelined integer multiplier, a three-cycle pipelined floating-

point unit, and a 32-cycle iterative divider. The core implementation has been carefully optimized

to ensure it can achieve the highest performance in the least amount of area and energy. A critical

feature of the core microarchitecture is support for non-speculative runahead execution, also called

stall-on-use, in the spirit of prior work [DM97, CHA+15]. After a remote load is injected into

the on-chip network, the core will continue executing subsequent independent instructions. The
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core will not wait for the load data to return until it reaches a dependent instruction. Note that

this mechanism is completely non-speculative and does not include any form of rollback and re-

execution. Careful instruction scheduling can enable many remote loads to be in flight at once.

2.1.2 Memory System

The memory system for the manycore co-processor has four hierarchical levels: HBM2 DRAM,

LLC, core-remote SPM, and core-local SPM. Each level is designed to exploit memory parallelism

and exposes a trade-off between latency and capacity. Core-local SPM has the lowest latency and

smallest capacity, and HBM2 has the highest latency and largest capacity. HBM2 provides two

sources of memory-level parallelism. First, HBM2 provides channel-level parallelism with eight

independent physical channel interfaces per package with a maximum data transfer rate of 32 GB/s

per channel. Second, HBM2 provides bank-level parallelism through pipelined commands. Com-

mands for opening/closing banks and reading data can overlap to hide the latency of long-running

commands. Compared to traditional DDR4 DRAM, HBM2 provides more bandwidth and paral-

lelism per-package, but overall system performance depends on carefully exploiting channel- and

bank-level parallelism. To this end, the banked LLCs are designed to exploit bank-level parallelism

within a channel. As mentioned previously, each bank of the LLC is connected to a column in the

manycore architecture. The top LLC banks share one HBM2 channel, and the bottom LLC banks

share a second HBM2 channel. Each LLC bank is mapped to a unique address range, and each port

is mapped to an exclusive set of HBM2 banks within the HBM2 channel. The core-local SPMs

eliminate coherence overhead and false sharing, and enable software to keep stack-allocated data

local and stage remote data for reuse. Critically, every core can also directly access any SPM in

the system by using regular load and store instructions creating a partitioned global address space

(PGAS) and enabling new optimizations and programming models.

2.1.3 On-Chip Network

The cores and memory system are all interconnected through a highly optimized 2D-mesh-

with-ruching on-chip network (OCN) based on an earlier silicon-validated design [RZAH+19a,

RZAH+19b, JDZ+20, OAB20]. The network uses dimension-ordered routing, single-flit packets,

and includes two physical networks to avoid protocol-level deadlock. The OCN preserves ordering
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between endpoints. Every word in the SPMs, all configuration registers, and the HBM2 DRAM

are mapped into a single unified physical address space, and all packets are single-word memory

request/response packets using this unified address space.

2.1.4 Area and Timing

The small-scale 128-core HammerBlade manycore has been implemented in RTL and validated

in silicon to enable accurate cycle-level simulation and performance analysis, and a state-of-the-art

commercial standard-cell-based toolflow was used to characterize area and timing in an advanced

GF CMOS 14 nm technology node. Preliminary area analysis suggests a single core requires ap-

proximately 30,000 µm2, meaning a 128-core HammerBlade manycore (including 32 LLC banks)

is approximately 5 mm2 and the future full 2000-core manycore co-processor in the target sys-

tem is only 80 mm2. Timing analysis suggests the manycore co-processor can easily run at 1 GHz

and could reach 2 GHz with sufficient physical design optimization. The 128-core HammerBlade

manycore running at 1–2 GHz is able to achieve 256–512 GFLOP/s with fused multiply-add oper-

ations. This means the total peak throughput of the full 2000-core HammerBlade is 4–8 TFLOP/s

with an impressive area normalized throughput of 50–100 GFLOP/s/mm2. Scaling the target many-

core architecture to 10,000+ cores is certainly feasible, although studying the performance impli-

cations of such scale-up manycore architectures is left for future work.

2.2 HammerBlade Manycore Software

As is the case with similar architectures, programming HammerBlade without loss of domain

generality requires use of a low-level C runtime environment. Concerns such as data placement,

synchronization, and load-balancing are left entirely to the programmers, and this demands both

an extensive domain knowledge for their application and for the underlying hardware from them.

2.2.1 CUDA-lite

The HammerBlade manycore low-level C runtime, CUDA-lite, adopts a data-parallel program-

ming model similar to CUDA with support for thread groups analogous to a thread block in the

CUDA programming model. Like CUDA, CUDA-lite focuses on static parallel loops and assumes
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an offloading execution model, in which the host CPU configurates the device, allocates device

memory, copies input data from host to device, launches the kernel, and copies results back from

device to host once the device finishes execution. Once a device kernel is launched, execution

on the host CPU is blocked until the kernel returns. Unlike CUDA, CUDA-lite does not support

context-switching and keeps a one-to-one mapping between threads and cores.

A critical difference between manycore thread groups and CUDA thread blocks is how they

are mapped onto hardware. Thread groups are defined as a rectangle with dimensions specified

by the programmer. Unlike CUDA thread blocks, whose multidimensionality is only a software

abstraction, manycore thread group dimensions map to a set of cores that are physically arranged

in the specified geometry with respect to the OCN. The target manycore runtime thereby exposes

physical locality of compute resources in its programming model. Cores can communicate through

the use of direct remote scratchpad access for fine-grained synchronization and sharing. This

allows software programmers to arrange thread groups in a manner that is most advantageous to

the memory access and communication patterns of the workload.

Writing applications for the HammerBlade manycore architecture can be challenging. Pro-

grammers who are new to the platform often struggle with both its unfamiliar programming/mem-

ory models and the hardware details they need to be aware of. One example would be the way

HammerBlade and CUDA-lite utilizes the core-local SPM. By default, HammerBlade/CUDA-lite

allocates .sdata, .sbss, and the stack in SPM. Doing so creates two aspects that a programmer

should be aware of: (1) variables in application code that are declared as global (i.e., located in

either .sdata or .sbss) are, actually, not global but thread local variables. Each core will get

their unique copy in their SPM, unless the variable is explicitly marked as DRAM allocated with

__attribute__ ((section (".dram"))). This is a common pitfall as many programmers im-

plement inter-core communication with global variables. And (2) it is difficult to determine the

stack space size ahead-of-time, and it is easy to run into stack overflow. As we have mentioned

in Section 2.1, each core has a 4KB SPM, which is small by the standard of modern applications.

When the stack and user defined buffers are sharing the 4KB SPM with .sdata and .sbss, pro-

grammers must minimize their stack usage to prevent potential stack overflow. To make things

even worse, programmers are usually unable to determine the available stack space ahead-of-time

without looking at the disassembly of their compiled programs.
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2.2.2 Running Example

Figure 2.2 illustrates the target CPU-manycore heterogeneous system software in more de-

tail. The host function (Figure 2.2 (a)) configures the manycore co-processor (lines 6–9), allocates

memory on the device (lines 11–17), copies data from the host to device (lines 20), launches exe-

cution on the manycore co-processor (lines 22–27), and copies data back to the host (line 36–38)

when the co-processor has finished execution. In the device function (Figure 2.2 (b)), each core

accumulates non-overlapping ranges of the input array into partial sums (lines 12–17) and stores

the partial sums into core_0’s scratchpad through direct remote scratchpad access (lines 18–22).

Then core_0 further accumulates these partial sums to yield the final result (lines 27–32). Vari-

ables with a __ prefix (i.e., __group_x, __group_y, and __core_id) are defined by the manycore

software runtime.

Lines 18–22 in Figure 2.2 (b) demonstrate the common way to conduct remote scratchpad

access. To access a peer’s scratchpad memory, we need to have a pointer to the data we would like

to access. In this parallel reduce example, all cores write their partial results into the buf allocated

in core_0’s SPM, which means every core needs to have a pointer to it. One approach is to have

core_0 communicate this pointer to other cores through DRAM. Another approach is to have

every core calculate this pointer through a local pointer (i.e., a pointer to a variable on the core’s

own scratchpad). This is the approach we take in this example. The idea is to let every core have

exactly the same memory layout in their SPMs. This is why even though only the buf in core_0’s

SPM is used, it is allocated on all 128 cores (lines 8 in Figure 2.2 (b)). Then we can use the X and

Y coordinates of the remote core (i.e., (0,0) in this case for core_0) and the corresponding local

pointer (i.e., buf in line 19), to calculate a pointer to the buf in core_0’s SPM (i.e., remote_buf).

2.3 Evaluation Methodology

In this section, I briefly introduce the HammerBlade manycore architecture RTL simulation

and energy modeling methodologies.
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1 float acc_host(float* A, uint32_t N) {
2 // configurate thread group
3 mc_dim_t tg_dim = {.x = 1, .y = 1};
4 mc_dim_t grid_dim = {.x = 16, .y = 8};
5

6 // configurate HB device
7 mc_dev_t dev;
8 mc_dev_init(&dev);
9 mc_dev_program_init(&dev);

10

11 // allocate memory on device
12 uint32_t wordsz = sizeof(float);
13 uint32_t nbytes = N * wordsz;
14 eva_t A_dev
15 eva_t B_dev;
16 mc_dev_malloc(&dev, nbytes, &A_dev);
17 mc_dev_malloc(&dev, wordsz, &B_dev);
18

19 // copy data from host to device
20 mc_dev_memcpy(&dev, A_dev, A, nbytes);
21

22 // launch kernel on device
23 uint32_t mc_argv[3] = {A_dev, B_dev, N};
24 mc_kernel_enqueue(&dev, grid_dim,
25 tg_dim, "acc_dev",
26 mc_argv, 3);
27 mc_dev_tile_groups_execute(&dev);
28

29 // copy data from device to host
30 float B;
31 mc_dev_memcpy(&dev,
32 &B, B_dev, wordsz);
33

34 return B;
35 }

(a) Host Code

1 int acc_dev(float* A, float* B, uint32_t N) {
2 // index calculation
3 uint32_t ncores = (__group_x) * (__group_y);
4 uint32_t M = N / ncores;
5 uint32_t s = __core_id * M;
6

7 // buffer for final reduction
8 float buf[ncores];
9

10 // local partial reduction
11 float partial = 0.0f;
12 for (uint32_t i = s; i < s+M; i++) {
13 if (i < N) {
14 partial += A[i];
15 }
16 }
17

18 // get remote pointer of buf on core_0
19 float* remote_buf = mc_remote_ptr(0, 0, buf);
20

21 // remote scratchpad access
22 remote_buf[__core_id] = partial;
23

24 // synchronizaiton
25 mc_barrier();
26

27 // final reduction by core_0
28 float acc = 0.0f;
29 if (__core_id == 0) {
30 for (uint32_t i = 0; i < ncores; i++)
31 acc += buf[i];
32 }
33 *B = acc;
34

35 // end of kernel synchronization
36 mc_barrier();
37

38 return 0;
39 }

(b) Device Code

Figure 2.2: CUDA-lite Parallel Reduce Example – This example demonstrates in-strachpad parallel accumulation:
each core computes a partial sum of input array and stores partial sum into core_0’s scratchpad. Then core_0 further
accumulates partial sums to produce final result.
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2.3.1 RTL Simulation

The performance results in this thesis are produced using cycle-accurate and RTL simulation

that is co-simulated with native execution of applications. We directly simulate the 128-core Ham-

merBlade system using tapeout-verified RTL that is co-simulated with the application software

running on the host. RTL simulation is controlled by the CUDA-lite runtime library through the

SystemVerilog Direct Programming Interface (DPI). This interface can emulate a tightly coupled

system-on-chip host, like a BlackParrot [PGW+20] RISC-V SoC, or an inter-system connection

like PCIe. This framework executes the host code natively while the CUDA-lite device code is

executed in RTL.

The HammerBlade system can be simulated using commercial simulators like Synopsys VCS,

or Verilator, an open-source simulator. The two simulators provide equivalent features and similar

execution speeds. We used detailed statistics from these frameworks to analyze performance, and

CAD tools to measure the impact of new features on performance, energy, and area. Since the

HammerBlade manycore architecture is entirely open source and does not depend on any closed-

source or licensed IP, this means that the entire system can be simulated by any interested users.

HammerBlade co-simulation uses DRAMSim3 [LYR+20,RCBJ11], a timing accurate simula-

tor for modeling DRAM to model the performance of the memory system. Cycle-accurate RTL

simulations of DRAM slow simulation speed down by orders of magnitude and therefore dras-

tically increase iteration time. DRAMSim3 is an empirically validated [RCBJ11], academically

accepted, open-source, C++ simulator for DRAM. By using C++, DRAMSim3 avoids the issues

caused by direct RTL simulation of DRAM while providing more flexibility and introspection. In

addition to modeling command timing, DRAMSim3 also measures the dynamic and static power

of DRAM chips. This information is used to optimize the efficiency of applications on the Ham-

merBlade manycore architecture.

RTL simulation has multiple methods for instrumentation: non-invasive profiling, tracing (de-

bugging), and switching activity logging. The non-invasive profiling uses non-invasive SystemVer-

ilog bind modules to instantiate non-synthesizable code without modifying the tapeout-ready RTL.

These modules count events that occur in different parts of the architecture, for example, stalls and

instructions executed in the HammerBlade manycore, congestion and backpressure in the network,

hits and misses in the cache, and commands to the memory system. After an RTL simulation com-
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Figure 2.3: HammerBlade Energy Modeling Methodology – Workloads are run on RTL simulation of a small scale
128-core HammerBlade manycore using Synopsys VCS to produce activity factors. Individual cores and LLC banks
are pushed through a standard-cell synthesis flow using Synopsys Design Compiler (DC) to generate gate-level (GL)
netlists including Verilog, liberty files, and SPEF files to capture interconnect capactitance. The GL netlist and activity
factors are input into Synopsys PrimeTime (PT) for power analysis to generate detailed hierarchical power estimates.

pletes these modules produce a table that is parsed and analyzed to produce statistics about regions

of interest within the code.

2.3.2 Energy Modeling

We improve our RTL simulation flow to generate activity factors in the industry-standard SAIF

format. These activity factors capture the number of toggles on every net in the entire RTL model

for each kernel in a specific workload. We then take the various blocks in the HammerBlade system

and push them individually through synthesis using Synopsys Design Compiler (DC). For example,

we push the RTL for a single HammerBlade manycore core and a single LLC bank through the

synthesis flow. This produces detailed gate-level netlists for each of these components. A gate-

level netlist actually includes many different views including: a Verilog representation of the gate-

level connectivity; the Liberty files which capture the input gate capacitance, internal dynamic

power, and leakage power for each standard cell; and a SPEF file that captures the interconnect

capacitance throughout the design. We can then combine these gate-level netlists and the activity

factors for power analysis using Synopsys PrimeTime (PT) to generate detailed hierarchical power
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estimates. Figure 2.3 illustrates the proposed energy modeling methodology, which is using the GF

12/14 nm technology node, a commercial standard cell library, and a commercial SRAM memory

compiler.

This kind of detailed energy analysis for full workloads across an entire 128-core HammerBlade

chip can be extremely time consuming, so we use a combination of temporal and spatial sampling.

For kernels that have extremely long runtimes, we use a portion of the execution trace to gener-

ate a truncated SAIF file which can then be used to estimate the energy of the entire execution.

For almost all kernels, we use the same gate-level netlist of the HammerBlade manycore core and

LLC bank to do energy analysis for many different instances of that component throughout the

design. For example, we spatially sample about 12% of the cores and LLC banks to determine the

energy and then project the energy of the entire HammerBlade manycore. We have conducted time

consuming full system analysis to help validate that this approach produces little error.

Our energy modeling methodology accurately captures leakage power by leveraging the stan-

dard cell and SRAM Liberty models. Our energy modeling methodology also includes clock

power, and we have carefully calibrated the tools to ensure that our clock power estimates are rea-

sonable without the need for clock-tree synthesis during place-and-route. We assume 1 pJ/b for the

energy of the on-chip memory controller. For the host power, we assume our HammerBlade sys-

tem will include BlackParrot RISC-V cores to execute the host code. RISC-V systems have been

shown to have very high performance with good energy efficiency on this kind of host code. We

accurately measure the host time during co-simulation and then assume a constant 1W of power

consumed by the host processor.

We use a a set of energy microbenchmarks to characterize the energy required for a variety of

RISC-V instructions on a HammerBlade manycore core. Each energy microbenchmark consists of

100 instructions carefully crafted in assembly along with special instructions to precisely start and

stop performance and energy profiling at the beginning and end of the 100-instruction sequence

(see Figure 2.4). We can then use the energy modeling methodology described above and divide

by 100 to estimate the energy required for each type of instruction. We can also explore how

much energy in the HammerBlade manycore core is consumed by the register file, instruction

cache (I-Cache), scratchpad data memory (SPM), integer arithmetic logic unit (ALU), floating

point unit (FPU), mesh network, clock tree, L2 cache, and the HBM memory controller. The other

category includes pipeline registers, control logic, and other miscellaneous logic. We can see that
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1 extern "C" __attribute__ ((noinline))
2 int kernel_energy_fadd() {
3 //------------------------------------
4 // Calling Convention Prologue
5 //------------------------------------
6 __asm__ __volatile__ (
7 "addi sp, sp, -48;"
8 "sw s0, 44(sp);"
9 ...

10 "sw s11, 0(sp);"
11 );
12 __asm__ __volatile__ (
13 "lui t0,0xe39c;"
14 ...
15 "lui t6,0x7c8e3;"
16 "fcvt.s.w ft0,t0;"
17 ...
18 "fcvt.s.w fs10,t6;"
19 );
20 //------------------------------------
21 mc_saif_start();
22 //------------------------------------
23 // 100 back to back adds
24 __asm__ __volatile__ (
25 "fadd.s ft0, ft1, ft2;"
26 "fadd.s ft1, ft2, ft3;"
27 "fadd.s ft2, ft3, ft4;"
28 "fadd.s ft3, ft4, ft5;"
29 ...
30 "fadd.s fa6, fa7, fs2;"
31 "fadd.s fa7, fs2, fs3;"
32 "fadd.s fs2, fs3, fs4;"
33 "fadd.s fs3, fs4, fs5;"
34 );
35 //------------------------------------
36 mc_saif_end();
37 //------------------------------------
38 // Calling Convention Epilogue
39 //------------------------------------
40 __asm__ __volatile__ (
41 "lw s0, 44(sp);"
42 ...
43 "lw s11, 0(sp);"
44 "addi sp, sp, 48;"
45 );
46

47 mc_barrier();
48 return 0;
49 }

(a) fadd energy microbenchmark.

1 extern "C" __attribute__ ((noinline))
2 int kernel_energy_branch() {
3 //------------------------------------
4 // Calling Convention Prologue
5 //------------------------------------
6 __asm__ __volatile__ (
7 "addi sp, sp, -48;"
8 "sw s0, 44(sp);"
9 ...

10 "sw s11, 0(sp);"
11 );
12 __asm__ __volatile__ (
13 "li t0, 0xb08aa953;"
14 ...
15 "li t6, 0x0198e2f3;"
16 );
17 //------------------------------------
18 mc_saif_start();
19 //------------------------------------
20 // 100 back to back adds
21 __asm__ __volatile__ (
22 "m0: beq t0, t0, m99;"
23 "m1: beq t1, t1, m98;"
24 ...
25 "m49: beq t6, t6, m50;"
26 "m50: beq t0, t0, ms;"
27 "m51: beq t1, t1, m49;"
28 ...
29 "m98: beq t5, t5, m2;"
30 "m99: beq t6, t6, m1;"
31 "ms: nop;"
32 );
33 //------------------------------------
34 mc_saif_end();
35 //------------------------------------
36 // Calling Convention Epilogue
37 //------------------------------------
38 __asm__ __volatile__ (
39 "lw s0, 44(sp);"
40 ...
41 "lw s11, 0(sp);"
42 "addi sp, sp, 48;"
43 );
44

45 mc_barrier();
46 return 0;
47 }

(b) Taken branch energy microbenchmark.

Figure 2.4: Energy Microbenchmark Examples Each energy microbenchmark is written directly in inline assembly
and consists of 100 instructions carefully crafted in assembly along with special instructions to precisely start and stop
performance and energy profiling.
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Figure 2.5: HammerBlade Per-Instruction Energy Breakdown – microbenchmarks were run on HammerBlade
manycore cores to explore the energy breakdown across various components: register file (Regfile), instruction cache
(I-Cache), scratchpad memory (SPM), integer arithmetic logic unit (ALU), floating-point unit (FPU), mesh network,
clock tree, L2 cache, and memory controllers (MC). The other category includes pipeline registers, control logic, and
other miscellaneous logic. All energy results include leakage and clock power.

on average, arithmetic instructions consume less than 10 pJ. Floating-point operations consume

more energy in the FPU but less energy in the control logic of the processor pipeline. Instructions

consume significant energy in the instruction cache owing to the standard von Neumann paradigm.

Results are summarized in Figure 2.5. One important takeaway from this plot is that, loading data

from higher level of the memory hierarchy consumes much more energy than loading data from

SPM (see bars flw-SPM and flw-L2hit in Figure 2.5). This implies that keeping data in SPM is

critical to achieve not only high performance but also high energy efficiency.

2.4 Case Study: Optimizing the Matrix Multiplication Kernel

In this section, we use matrix multiplication as a case study to demonstrate the process of hand

optimizing a kernel on the HammerBlade manycore architecture. Matrix multiplication (MatMul)

is a key kernel in the center of applications from various domains, such as image processing and

deep learning. As we have mentioned in Section 2.2, hand tuning a kernel puts high demands on
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1 void MatMul(float* A, float* B, float* C) {
2 for (uint32_t i = 0; i < N; i++) {
3 for (uint32_t j = 0; j < N; i++) {
4 for (uint32_t k = 0; k < N; i++) {
5 C[i][j] = C[i][j] + A[i][k] * B[k][j];
6 }
7 }
8 }
9 }

Figure 2.6: Three Nested For-Loops of MatMul – The computation of MatMul can be represented as three nested
for-loops.

the programmers, who must have a deep understanding of both the kernel they are optimizing and

the underlying hardware they are targeting. Optimizing the MatMul kernel involves data move-

ment management, SPM space management, DRAM access pattern improvement, unrolling, and

instruction arrangement.

2.4.1 Naïve MatMul

Figure 2.6 illustrates the well-known definition of MatMul, which can be represented as three

nested for-loops. Without loss of generality, we assume both input matrices are square matrices

that have the same size. The computation is straightforward: take one row i from matrix A and

one column j from matrix B. Then the element (i,j) in the output matrix C is yielded by accu-

mulating the products of an element-wise multiplication of row i and column j. Having a simple

kernel like MatMul run functionally correct on the HammerBlade manycore is relatively simple, as

long as we do not explicitly utilize the scratchpad memories. We can implement a naïve MatMul

kernel on HammerBlade by making a few minor tweaks to the three nested for-loops shown in

Figure 2.6. Figure 2.7 and Figure 2.8 show the host and device code, respectively. While this naïve

version is functionally correct, it does not achieve high performance. In this section, we will add

optimizations to this navie MatMul implementation and by the end of the section, arrive at a highly

optimized MatMul kernel. Note that the host code stays the same as we add optimizations to the

device code.

There are generally two ways to improve the performance of the MatMul kernel: improving

arithmetic intensity and reducing control flow overhead. Both are important on HammerBlade.

Memory bandwidth, especially the LLC bandwidth, is a key limiting factor for applications running
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1 void matmul_host(float* A, float* B, float* C, uint32_t N) {
2 // configurate thread group
3 mc_dim_t tg_dim = {.x = 1, .y = 1};
4 mc_dim_t grid_dim = {.x = 16, .y = 8};
5

6 // configurate HB device
7 mc_dev_t dev;
8 mc_dev_init(&dev);
9 mc_dev_program_init(&dev);

10

11 // allocate memory on device
12 uint32_t nbytes = N * N * sizeof(float);
13 eva_t A_dev
14 eva_t B_dev;
15 eva_t C_dev;
16 mc_dev_malloc(&dev, nbytes, &A_dev);
17 mc_dev_malloc(&dev, nbytes, &B_dev);
18 mc_dev_malloc(&dev, nbytes, &C_dev);
19

20 // copy data from host to device
21 mc_dev_memcpy(&dev, A_dev, A, nbytes);
22 mc_dev_memcpy(&dev, B_dev, B, nbytes);
23

24 // launch kernel on device
25 uint32_t mc_argv[4] = {A_dev, B_dev, C_dev, N};
26 mc_kernel_enqueue(&dev, grid_dim, tg_dim,
27 "acc_dev", mc_argv, 4);
28 mc_dev_tile_groups_execute(&dev);
29

30 // copy data from device to host
31 mc_dev_memcpy(&dev, &C, C_dev, nbytes);
32

33 return;
34 }

Figure 2.7: MatMul Kernel Host Code – the host code is the same for all device versions.

on HammerBlade. Recall that the HammerBlade manycore has 128 cores arranged into a 16×8

grid, and 32 LLC banks located at the top and bottom of the grid. In each cycle, one LLC bank can

fulfill at most one request and respond with one word (4B), and the total LLC bandwidth is 128B

per cycle, or 1B per core. Loading from DRAM incurs long latency even if the data is cached

by the LLC due to contention in the LLC and/or congestion in the OCN. Thus, improving data

reuse (i.e., reducing loads from DRAM and increasing arithmetic intensity) is key to achieve high

performance. Reducing control flow overhead is also important. Each core in HammerBlade is a

single-issue in-order processor, and thus every instruction that is not a fused-multiply-add (FMA)

instruction limits peak performance. Besides these two general approaches, we can also exploit
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1 int matmul_naive(float* A, float* B, float* C, uint32_t N) {
2 // parallelize outer loop
3 // core interleaved
4 for (uint32_t i = __core_id; i < N; i += ((__group_x) * (__group_y))) {
5 for (uint32_t j = 0; j < N; i++) {
6 float res = 0.0f;
7 for (uint32_t k = 0; k < N; i++) {
8 res += A[i * N + k] * B[k * N + j];
9 }

10 C[i * N + j] = res;
11 }
12 }
13

14 // end of kernel synchronization
15 mc_barrier();
16

17 return 0;
18 }

Figure 2.8: Naive MatMul Device Code

the non-speculative runahead execution to hide memory latency by having multiple DRAM loads

in flight at the same time on the HammerBlade manycore.

2.4.2 Optimization 1: Tiling into SPM

The first optimization we can add is tiling. Unlike the naïve implementation which parallelizes

the outer loop, and moves to another output element only after the current output element is fully

computed, the tiled MatMul works on a block (i.e., multiple output elements in a square), and

loads input matrices in blocks as well. A single input element can be used to compute multiple

output elements in the block. By doing so, we can increase arithmetic intensity as we reduce the

number of DRAM accesses. The tiled MatMul helper functions and device code are illustrated in

Figure 2.9 and Figure 2.10, respectively. Without loss of generality, we assume the input matrices

have input size N as a multiple of BLOCK_DIM. This a reasonable assumption as padding is a well

known and widely adopted technique. Besides tiling, one should also note that we also adopt

a 2-D spatial block distribution (see lines 13–14 in Figure 2.10) to have a more LLC friendly

DRAM access pattern. Imagine the case where we have two sufficiently large input matrices, in

which num_blk is larger than 128. In this case, a 1-D distribution scheme will touch 128 unique

blocks of matrix A and 1 block of matrix B. However, the 2-D scheme shown in Figure 2.10 will

have the HammerBlade grid access 16 blocks of matrix A and 8 blocks of matrix B. Thus, the 2-D
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1 #define BLOCK_DIM 16
2

3 void dram_to_spm_naive(float* dst, float* src, uint32_t r_idx,
4 uint32_t c_idx, uint32_t N) {
5 float* src_base = src + r_idx * BLOCK_DIM * N + c_idx * BLOCK_DIM;
6 for (uint32_t i = 0; i < BLOCK_DIM; i++) {
7 for (uint32_t j = 0; j < BLOCK_DIM; j++) {
8 dst[i * BLOCK_DIM + j] = src_base[j]
9 }

10 src_base += N;
11 }
12 }
13

14 void compute_naive(float* result, float* sp_mat1, float* sp_mat2) {
15 for (uint32_t iii = 0; iii < BLOCK_DIM; iii++) {
16 for (uint32_t jjj = 0; jjj < BLOCK_DIM; jjj++) {
17 float tmp = result[iii * BLOCK_DIM + jjj];
18 for (uint32_t kkk = 0; kkk < BLOCK_DIM; kkk++) {
19 tmp += sp_mat1[iii * BLOCK_DIM + kkk]
20 * sp_mat2[kkk * BLOCK_DIM + jjj];
21 }
22 result[iii * BLOCK_DIM + jjj] = tmp;
23 }
24 }
25 }

Figure 2.9: Tiled MatMul Helper Functions – only showes dram_to_spm_naive; spm_to_dram is implemented
similarly.

scheme both increases data reuse in the LLC by accessing fewer unique blocks (i.e., 24 v.s. 129),

and eliminates LLC hot spots by avoiding all cores accessing the same block of matrix B. We

choose to use a 16× 16 block size based on SPM capacity. The three SPM buffers consume in

total 3KB SPM space leaving 1KB for global variables and the stack.

2.4.3 Optimization 2: Tiling into Registers

The tiled MatMul we just introduced reduces DRAM accesses. Similarly, we would like to

reduce the number of accesses to the SPM buffer. While the SPM has a much lower latency, recall

that ideally we would like to (though will never be able to) eliminate every instruction that is not

an FMA. The second optimization we add is called tiling into registers: we keep as much data as

possible in the registers to eliminate SPM loads/stores. Figure 2.11 illustrates the new compute

helper function. The tiling into registers scheme uses a 4× 4 sub-block size and fully unrolls the

inner compute loop to both allow intermediate values to be kept in the register file and reduce

28



1 #define BLOCK_DIM 16
2

3 int matmul_tiled(float* A, float* B, float* C, uint32_t N) {
4

5 // calculate number of blocks
6 uint32_t num_blk = (N + BLOCK_DIM - 1) / BLOCK_DIM;
7

8 // create buffer in SPM
9 float sp_mat1[BLOCK_DIM * BLOCK_DIM];

10 float sp_mat2[BLOCK_DIM * BLOCK_DIM];
11 float sp_result[BLOCK_DIM * BLOCK_DIM];
12

13 for (uint32_t rr = __core_y; rr < num_blk; rr += __group_y) {
14 for (uint32_t rc = __core_x; rc < num_blk; rc += __group_x) {
15

16 // initialize scratchpad result (init to 0's)
17 reset_sp(sp_result);
18

19 // process blocks
20 for (uint32_t mid = 0; mid < num_blk; mid++) {
21 dram_to_spm_naive(sp_mat1, A, rr, mid, N);
22 dram_to_spm_naive(sp_mat2, B, mid, rc, N);
23 compute_naive(sp_result, sp_mat1, sp_mat2);
24 }
25

26 // copy this block back into DRAM
27 spm_to_dram(C, sp_result, rr, rc);
28 }
29 }
30

31 // end of kernel synchronization
32 mc_barrier();
33

34 return 0;
35 }

Figure 2.10: Tiled MatMul Device Code

control flow overhead. Note that lines 6–11, lines 15–24, and lines 43–47 are crafted carefully so

that the compiler will generate load and store instructions using register offset addressing with the

same base address register, which yields fewer dynamic instructions than having load instructions

that each read a different base address register.

2.4.4 Optimization 3: Copying with Non-Spectualive Runahead Execution

The last optimization we applied to the MatMul kernel is to unroll the copying-to-SPM helper

function and rearrange instructions to leverage non-speculative runahead execution. The new
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1 #define BLOCK_DIM 16
2

3 void compute(float* result, float* sp_mat1, float* sp_mat2) {
4 for (int iii = 0; iii < BLOCK_DIM; iii += 4) {
5 for(int jjj = 0; jjj < BLOCK_DIM; jjj += 4) {
6 int dest_base = iii * BLOCK_DIM + jjj;
7 register float res00 = dest[dest_base + 0 + 0];
8 register float res03 = dest[dest_base + 0 + 3];
9 ...

10 register float res32 = dest[dest_base + 3 * BLOCK_DIM + 2];
11 register float res33 = dest[dest_base + 3 * BLOCK_DIM + 3];
12 for(int kkk = 0; kkk < BLOCK_DIM; kkk++) {
13 // for iiii in 0...4
14 // for jjjj in 0...4
15 int mat1_base = kkk + iii * BLOCK_DIM;
16 register float mat1_0 = sp_mat1[mat1_base + 0];
17 register float mat1_1 = sp_mat1[mat1_base + BLOCK_DIM];
18 register float mat1_2 = sp_mat1[mat1_base + 2 * BLOCK_DIM];
19 register float mat1_3 = sp_mat1[mat1_base + 3 * BLOCK_DIM];
20 int mat2_base = kkk * BLOCK_DIM + jjj;
21 register float mat2_0 = sp_mat2[mat2_base + 0];
22 register float mat2_1 = sp_mat2[mat2_base + 1];
23 register float mat2_2 = sp_mat2[mat2_base + 2];
24 register float mat2_3 = sp_mat2[mat2_base + 3];
25 // compute
26 res00 += mat1_0 * mat2_0;
27 res01 += mat1_0 * mat2_1;
28 res02 += mat1_0 * mat2_2;
29 res03 += mat1_0 * mat2_3;
30 res10 += mat1_1 * mat2_0;
31 res11 += mat1_1 * mat2_1;
32 res12 += mat1_1 * mat2_2;
33 res13 += mat1_1 * mat2_3;
34 res20 += mat1_2 * mat2_0;
35 res21 += mat1_2 * mat2_1;
36 res22 += mat1_2 * mat2_2;
37 res23 += mat1_2 * mat2_3;
38 res30 += mat1_3 * mat2_0;
39 res31 += mat1_3 * mat2_1;
40 res32 += mat1_3 * mat2_2;
41 res33 += mat1_3 * mat2_3;
42 }
43 dest[dest_base + 0 + 0] = res00;
44 dest[dest_base + 0 + 1] = res01;
45 ...
46 dest[dest_base + 3 * BLOCK_DIM + 2] = res32;
47 dest[dest_base + 3 * BLOCK_DIM + 3] = res33;
48 }
49 }
50 }

Figure 2.11: Tiling into Register – Similar to the idea of tiling MatMul, we reduce SPM accesses by keeping input
values and partial results in the register file.
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1 #define BLOCK_DIM 16
2

3 void dram_to_spm(float* dst, float* src, uint32_t r_idx,
4 uint32_t c_idx, uint32_t N) {
5 float* src_base = src + r_idx * BLOCK_DIM * N + c_idx * BLOCK_DIM;
6 for (uint32_t i = 0; i < BLOCK_DIM; i++) {
7 // fully unroll for (uint32_t j = 0; j < BLOCK_DIM; j++)
8 register float tmp0 = src_base[0];
9 register float tmp1 = src_base[1];

10 register float tmp2 = src_base[2];
11 register float tmp3 = src_base[3];
12 register float tmp4 = src_base[4];
13 register float tmp5 = src_base[5];
14 register float tmp6 = src_base[6];
15 register float tmp7 = src_base[7];
16 register float tmp10 = src_base[8];
17 register float tmp11 = src_base[9];
18 register float tmp12 = src_base[10];
19 register float tmp13 = src_base[11];
20 register float tmp14 = src_base[12];
21 register float tmp15 = src_base[13];
22 register float tmp16 = src_base[14];
23 register float tmp17 = src_base[15];
24 // prevent compiler from rearranging loads and stores
25 asm volatile("": : :"memory");
26 dst[0] = tmp0;
27 dst[1] = tmp1;
28 dst[2] = tmp2;
29 dst[3] = tmp3;
30 dst[4] = tmp4;
31 dst[5] = tmp5;
32 dst[6] = tmp6;
33 dst[7] = tmp7;
34 dst[8] = tmp10;
35 dst[9] = tmp11;
36 dst[10] = tmp12;
37 dst[11] = tmp13;
38 dst[12] = tmp14;
39 dst[13] = tmp15;
40 dst[14] = tmp16;
41 dst[15] = tmp17;
42 // bump src pointer to next row
43 src_base += N;
44 }
45 }

Figure 2.12: Leveraging Non-Speculative Runahead Execution – We unroll the copy to SPM helper function for
both overhead reduction and leveraging non-speculative runhead execution and control flow.
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helper function dram_to_spm is illustrated in Figure 2.12. We first fully unrolled the inner loop

(i.e., unroll for (int j = 0; j < BLOCK_DIM; j++)) and then micro-managed the instruc-

tions. Namely, we separated DRAM loads and SPM writes with a compiler fence (i.e., asm

volatile("": : :"memory");) which prevents the compiler from rearranging instructions

before and after this fence. The goal is to exploit the non-speculative runahead execution mech-

anism. Recall that this feature allows a core to continue executing subsequent independent in-

structions even if there are pending loads. By placing load instructions before any of the store

instructions, we allow the core to issue all 16 loads before it is stalled for load-use dependencies

(i.e., stores in this case). Unrolling the inner loop helps with both memory latency hiding (i.e.,

through having multiple concurrent inflight DRAM loads) and control flow overhead reduction.

2.4.5 Performance Evaluation

We conducted micro-benchmarking of the MatMul kernel with 256× 256 input matrices. We

ran four versions of the MatMul kernel: (1) Naive MatMul (see Figure 2.8), (2) Tiled MatMul

(see Figure 2.10 and Figure 2.9), (3) Tiled MatMul with tiling into registers (see Figure 2.11), and

(4) Tiled MatMul with both tiling into registers and copying-to-SPM with non-speculative runahead

execution (see Figure 2.12). Their execution time breakdown is illustrated in Figure 2.13. From

the figure we can observe that applying tiling (Section 2.4.2) is able to improve the performance

of MatMul kernel by 3×. The benefit comes from replacing most of the DRAM load instructions

(i.e., light yellow in Figure 2.13) with SPM loads (i.e., purple in the figure), in which doing so

significantly reduces the number of stall cycles due to dependent DRAM load (i.e., yellow in

the figure). However, the breakdown reveals that tiling introduces additional instructions and we

observe an increase in total number of dynamic instructions when comparing Tiled MatMul to

Naïve MatMul. Tiling into registers helps with reducing both SPM accesses and other instructions

as it exploits reuse of input data in the register file. Tiled MatMul with both tiling into registers

and copying with non-speculative runahead execution yields the best performance. The final hand

optimized MatMul kernel can achieve 9× speedup compared to Naïve MatMul. Non-speculative

runahead execution can significantly reduce the number of stall cycles due to DRAM dependency

as it allows multiple concurrent DRAM loads inflight. However, a new category of stall, Stall_OCN

(green in the figure), appears when we apply this technique. This indicates OCN has become

congested when cores are issuing multiple back to back DRAM requests.
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Figure 2.13: MatMul Execution Time Breakdown – Execution time breakdown of the four versions of MatMul we
introduced in this section. Ran with 256×256 input matrices.
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CHAPTER 3
HB-PYTORCH: A TENSOR PROCESSING FRAMEWORK FOR

SPM MANYCORE ARCHITECTURES

As seen in Chapter 2, manycore architectures with software-managed scratchpad memories

usually require programmers to express their applications in low-level C environments and/or di-

rectly in assembly, rely on them to explicitly manage data coherence among private caches/mem-

ories, and adopt a more restricted programming model. The unfamiliar programming model and

the broad software design and optimization space are the key reasons why such architectures have

not yet been widely accepted. One approach to resolve this programmability challenge of many-

core architectures is to provide specialized or domain-specific frameworks. Such frameworks that

provide ready-to-use hand-optimized operators embedded within a high-level language played an

essential role in the adoption of GPGPUs.

In this chapter, I demonstrate the potential for a domain-specific programming framework ap-

proach to address the manycore programmability challenge by extending the PyTorch framework

for both dense and sparse tensor processing on the HammerBlade manycore. Our extended Py-

Torch framework currently provides over 100 hand-optimized operators. Section 3.1 provides a

detailed description of the tensor processing library which supports both dense and sparse ten-

sor operations, and Section 3.2 evaluates three real-world workloads using the extended PyTorch

tensor processing framework including: a dense residual neural network for computer vision, a

dense deep-learning autoencoder-based recommender system for movie recommendations, and a

sparse local graph clustering system based on an iterative shrinkage-thresholding algorithm for

personalized page ranking.

3.1 A Tensor Processing Framework

PyTorch [PGM+19] is a widely adopted open-source tensor processing framework that pro-

vides an easy to use Python frontend for highly optimized tensor operators implemented in a low-

level C++ ATen library [zde20]. In this section, we first present our tensor processing framework

for CPU-manycore heterogeneous systems developed from PyTorch. We then evaluate and an-

alyze a set of representative operators with micro-benchmarks on the target system to identify

performance bottlenecks.
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Figure 3.1: Different Backends for Extended PyTorch Framework –
(a) native execution on CPU without new backend; (b) emulation backend:
host code executes natively on CPU, device code also executes natively on
CPU for functional testing; (c) cosimulation backend: host code executes
natively on CPU, device code executes on Verilog RTL simulator for cycle-
accurate performance evaluation; (d) prototype backend: host code executes
natively on CPU, device code executes on a real FPGA/ASIC prototype.

3.1.1 PyTorch on CPU-Manycore Heterogeneous Systems

We extend PyTorch and build an open-source tensor processing framework for CPU-manycore

heterogeneous systems to address the manycore programmability challenge. PyTorch’s Python-

level operators are platform agnostic; a dynamic dispatcher in ATen chooses the appropriate im-

plementation for execution at runtime. The actual ATen operators can be either platform agnostic

or platform specific. Platform specific implementations are grouped into backends (e.g., a CPU

backend or a GPGPU backend). Platform agnostic operators are part of the CPU backend as well.

New platforms can be easily supported by plugging new backends into ATen’s dynamic dispatcher.

We extend PyTorch with a new ATen backend to support both dense and sparse tensor processing

on the target manycore co-processor. With our framework, tensor workloads can run exclusively

on the CPU of the target heterogeneous system without any changes to the code. In this sce-

nario, the CPU backend supports the framework’s Python APIs and data is stored in CPU host

memory (see Figure 3.1(a)). One can also choose to accelerate tensor workloads on the manycore

co-processor with minimal changes to the existing code (see Figure 3.2(a)). Only changing three

lines is necessary: one for migrating the neural network model to the manycore co-processor and

two for migrating the input data and expected labels. PyTorch operators that are platform specific
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1 class Autoencoder(nn.Module):
2 def __init__(self):
3 ...
4 self.encoder = nn.Sequential(
5 nn.ReLu(),
6 nn.BatchNorm1d(800),
7 nn.Dropout(0.5)
8 )
9

10 self.bneck = nn.Linear(800, 400)
11

12 self.decoder = nn.Sequential(
13 nn.ReLu(),
14 nn.BatchNorm1d(400),
15 nn.Dropout(0.5)
16 )
17 ...
18

19 def forward(self, x):
20 x = self.emb(x).sum(dim=1)
21 x = self.encoder(x)
22 x = self.bneck(x)
23 x = self.decoder(x)
24 x = self.output(x)
25

26 model = Autoencoder().manycore()
27 ...
28 for x, y in dataloader_train:
29 x = x.manycore()
30 y = y.manycore()
31

32 out = model(x)
33 loss = F.MSELoss(out, y)
34

35 opt.zero_grad()
36 loss.backward()
37 opt.step()

(a) Python Frontend

1 Tensor relu(const Tensor self) {
2 Tensor res = opt_result.value_or(Tensor());
3 auto iter =
4 TensorIterator::binary_op(res, self, self);
5 return at::threshold(iter,0,0);
6 }

(b) Platform Agnostic ATen Operator

1 void threshold_kernel_mc(TensorIterator& iter,
2 Scalar t, Scalar v) {
3 AT_DISPATCH_FLOAT_TYPE_ONLY(iter.dtype(),
4 "threshold_mc",
5 [&]() {
6 offload_op_binary(iter, t.to<scalar_t>(),
7 v.to<sclar_t>(),
8 "tensorlib_threshold");
9 });

10 }

(c) Manycore Backend CPU Host Function

1 int tensorlib_threshold(mc_tensor_t* res_p,
2 mc_tensor_t* self_p,
3 float* threshold_p,
4 float* value_p) {
5 MCTensor<float> res(res_p);
6 MCTensor<float> self(self_p);
7 float threshold = *threshold_p;
8 float value = *value_p;
9

10 mc_tiled_foreach(res, self, [&] (float self_v) {
11 return (self_v <= threshold) ? value : self_v;
12 });
13

14 mc_barrier ();
15 return 0;
16 }

(d) Manycore Backend Device Function

Figure 3.2: Extended PyTorch Framework for CPU-Manycore Heterogeneous Systems – Blue lines 26, 29–30
in (a) are the only changes required to port an existing workload (e.g., training a deep neural network) written with
PyTorch to run on the target CPU-manycore heterogeneous system. Red lines show the (simplified) dispatch chain for
the PyTorch ReLu operator: Python frontend (a) dispatches to platform agnostic ATen operator (b), which dispatches
to manycore backend CPU host function (c), which finally launches the manycore device function (d).
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Figure 3.3: CSR and CBSR Sparse Tensor Formats

ATen PyTorch
Operator Description Operator AI Input

MatMul Matrix Multiplication mm High 256×256×256
Conv2D 2D Convolution convolution Medium 32×32 input w/ 16 channels, 16 3×3 Filters, 32 Images Batch
AddMV Matrix-Vector Mult addmv Low 1024×128
SpMV Sparse Matrix-Vector Mult mv Low FB-Johns55, 5157×5157 sparse matrix, density 1.4%
Sum Reduction sum Low One Tensor w/ 192,000 Elements
EmbBack Backprop of Embedding Embedding Low 600×100 Embedding Table, 256 Records Batch, 50 Entries per Record
Add Element-Wise Add torch.add Low Two Tensors w/ 131,072 Elements Each

Table 3.1: Operator Micro-Benchmarking – Inputs used in the operator micro-benchmarking. See Figure 3.4. AI =
arithmetic intensity.

will be dispatched to the manycore backend, and data will be automatically migrated as needed

(see Figure 3.1(d)).

An example workload using the proposed framework is shown in Figure 3.2. When PyTorch

operator nn.ReLu() is used in Python code, its ATen counterpart relu() is called. In this case,

relu() is platform agnostic (i.e., runs on the CPU), and is implemented by reusing a platform-

specific ATen operator (i.e., threshold()). Since model in line 26 of Figure 3.2(a) is on the

manycore co-processor, the call to threshold() in line 5 of Figure 3.2(b) is dispatched to the

manycore implementation (Figure 3.2(c)), and compute is then offloaded to the manycore co-

processor (Figure 3.2(d)).
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Figure 3.4: ATen Operator Micro-Benchmarking – Scalability of a representative set of ATen operators. See
Table 3.1 for operator description and input sizes. Normalized to single core performance.

We have ported over 100 tensor operators including matrix multiplication, 2D convolution,

most element-wise operators (e.g., add, subtract), reductions (e.g., sum, mean), and sparse oper-

ators (e.g., sparse matrix-vector multiplication). All operators are hand-tuned and aggressively

optimized: scratchpad memory is utilized to enable data reuse and increase arithmetic intensity;

stall-on-use is leveraged to exploit pipeline parallelism and hide memory latency; unrolling is used

to balance instruction cache performance and loop overhead.

For sparse operators, prior work has shown that the layout of sparse tensors can significantly

impact performance [FOS+14, SJS+20, SJL+20]. In our framework, we implement a novel cyclic

bank sparse row (CBSR) tensor layout. CBSR is designed to reduce LLC bank conflicts and net-

work congestion by ensuring cores only access LLC banks located in the same column. Figure 3.3

shows an example using traditional compressed sparse row (CSR), CBSR and CBSR+Padding for-

mats for a 4×4 sparse matrix. In this simplified example, our architecture has one DRAM channel

with four LLC banks. Each core only accesses one row of the sparse matrix. The data block

size within each bank is two data elements and follows the cyclic memory partitioning scheme

of [WLZ+13]. In CSR, the indices of non-zero values of different rows may fall into the same

bank, which leads to memory bank conflicts when different cores access either column indices or

values (i.e., C0 accesses v2 and C1 accesses v3). Using CBSR can eliminate the memory bank

conflict between cores when accessing either indices or values, but memory conflicts still remain

when one core is accessing the indices and the other core is accessing the values (i.e., C0 is ac-
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Figure 3.5: Per Core Cycles Per Instruction – Cycles per instruction continues to increase with the number of active
cores. Memory latency dominates execution time in all four operators when using 128 cores. Stall-on-Network =
load request cannot be sent due to OCN contention; Stall-on-Use = load request has been sent but response haven’t
received; memory latency = Stall-on-Network + Stall-on-Use.
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cessing v0 and C1 is accessing column indices of v3). CBSR+Padding makes indices and values

aligned to the same LLC bank, and memory bank conflicts can be completely eliminated.

Our tensor processing framework and the emulation infrastructure are open-source1. We use

state-of-the-art test-driven design based on pytest2, Hypothesis [MHDmoc19]3, and continuous

integration4. Operator development proceeds through three levels of emulation, simulation, and

finally hardware execution:

Emulation Backend We first develop both the CPU and manycore functions of PyTorch op-

erators using the emulation backend (Figure 3.1(b)). Emulation provides the same APIs as the

actual manycore co-processor runtime. It enables functional verification, fast turnaround time, and

standard debugging tools (e.g, gdb) on manycore device functions. When building with the emula-

tion backend, offloading uses native function calls, data migration uses regular memory copy, and

device functions will be executed natively on the host.

Cosimulation Backend After functional verification, we move to cycle-accurate RTL simula-

tion (Figure 3.1(c)). In this environment, we again verify correctness, and iterate to optimize

performance with architectural counters. The cosimulation backend leverages an RTL simulator

(e.g., Verilator5) to model a small-scale version of the HammerBlade system running at 1GHz

with 16 columns and 8 rows. To model DRAM timing we use the open-source DRAMSim3 li-

brary [LYR+20], a timing accurate simulator. Architectural performance counters are inserted

using non-synthesizable SystemVerilog bind statements for no-cost performance analysis of ker-

nels. The RTL for this design has been validated in silicon. Host code executes natively on an Intel

Xeon E7-8867v4 CPU. See Section 2.3 for more details.

Prototype Backend Eventually, we plan to support moving to a real FPGA/ASIC prototype

(Figure 3.1(d)). Preliminary work has demonstrated the feasibility of using an FPGA prototype to

study larger workloads than possible in simulation.
1https://github.com/cornell-brg/hb-pytorch
2https://pytest.org
3https://github.com/HypothesisWorks/hypothesis
4https://travis-ci.com/github/cornell-brg/hb-pytorch
5https://github.com/verilator/verilator

40



3.1.2 Micro-Benchmarking

We conduct a scalability study on a set of representative PyTorch operators shown in Table 3.1.

These operators vary in arithmetic intensity and enable understanding the performance of our

framework on the target CPU-manycore heterogeneous system. Figure 3.4 shows that arithmetic-

intensive operators, such as MatMul and Conv2D, scale well and achieve a sustained throughput

of 78.5 GFLOP/s and 68.0 GFLOP/s, respectively. Memory-intensive dense operators, such as

AddMV, Sum, and Add, show only moderate scalability, as they can easily saturate the many-

core co-processor’s memory bandwidth. EmbBack is implemented with fine-grained locking, in

which each embedding entry is associated with a spin-lock to resolve update conflicts and scales

well up to 64 active cores. However, increased memory latency, instead of lock contention, is

the primary reason EmbBack scales poorly to 128 active cores. SpMV scales better than other

memory-intensive operators because of the CBSR tensor layout, which is specifically designed to

avoid LLC bank conflicts on the target manycore co-processor.

We study four operators that are critical to many real-world tensor workloads in more detail:

MatMul, Conv2D, AddMV, and SpMV. Figure 3.5 shows that the cycles per instruction (CPI)

increases with the number of active cores. For arithmetic-intensive operators such as MatMul

and Conv2D, the number of stall-on-network cycles (i.e., load/store requests to LLC cannot be

sent due to network congestion) reduces overall performance after reaching 64 active cores (see

Figure 3.5 (a–b)). Even with only one active core, MatMul and Conv2D cannot hide enough

memory latency to avoid stall-on-use (i.e., true data dependency). Both MatMul and Conv2D can

use tiling. Larger tiling blocks increase data reuse resulting in higher arithmetic intensity and

thus better performance. However, the necessity of moving large data blocks to the scratchpads

with in-order scalar cores introduces phased behavior into these arithmetic-intensive operators. A

data-loading phase moves a large block of data into the scratchpad, followed by an execute phase

to consume the data block. To move data to the scratchpads, we use a pair of regular load and

store instructions. A core first loads a word into one of its registers and then explicitly stores the

data into its core-local scratchpad. We can hide memory latency by unrolling the loop so that the

instruction stream has a long sequence of loads followed by a long sequence of stores. With stall-

on-use, we are able to have many memory requests in-flight which amortizes the memory latency.

However, even after applying these optimizations, memory latency still contributes significantly to

the overall execution time.
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For memory-intensive operators, such as AddMV and SpMV, the number of stall cycles in-

creases quickly beyond 16 active cores (see Figure 3.5 (c–d)). This is likely due to a limited

number of LLC banks. With more active cores than available LLC banks, even if memory ac-

cesses from cores can be evenly distributed, LLC contention remains. Figure 3.5 shows that unlike

AddMV, SpMV execution time is dominated by stall-on-use cycles instead of stall-on-network

cycles. This indicates the CSBR tensor layout is able to significantly reduce network congestion.

3.2 First-Order Analysis of SW/HW Scalability

In this section, we conduct first-order end-to-end evaluation on three tensor workloads to eval-

uate our framework’s ability to enable optimized dense and sparse tensor processing on CPU-

manycore heterogeneous systems with minimal modifications to existing workloads. We first in-

troduce the workloads and then describe our evaluation methodology. We finish by estimating the

performance of the these workloads when scaled to a future 2,000-core CPU-manycore heteroge-

neous system against an aggressive multicore CPU.

3.2.1 Emerging Tensor Workloads

Residual Neural Network (ResNet) – Residual neural networks are one form of convolutional

neural networks (CNNs) for image classification, which won the 2015 ImageNet Large Scale Vi-

sual Recognition Challenge by allowing the network’s accuracy to scale with its depth [HZRS15].

ResNet introduces residual blocks, which are shortcut connections between non-neighboring lay-

ers, to overcome a number of training difficulties (e.g., vanishing gradient problem) faced by con-

ventional CNN models. In this work, we build and train a 9-layer ResNet model (i.e., ResNet-9)

on the CIFAR-10 dataset. See Figure 3.6.

Recommender System (RecSys) – The input to a recommender system is a list of items a user

has previously “liked”, and the output is a list of items with scores predicting how much the user

might like an unseen item. An autoencoder is a specific kind of unsupervised artificial neural

network that learns to copy its input to its output through an intermediate “bottleneck” layer for

dimensionality reduction. In this work, we build and train this recommender system on the Movie-

Lens 10M dataset. The implementation of RecSys is illustrated in Figure 3.2 (a).
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Local Graph Clustering (LGC-ISTA) – Local graph clustering is an approximate variant of

the personalized PageRank algorithm [PBMW99]. Its goal is to find a cluster of nodes that are

neighbors of a given seed node. We implement iterative shrinkage-thresholding, which minimizes

the loss function of a graph signal vector such that all nodes in the neighborhood of the seed node

are associated with high scores, while other nodes receive low scores. The algorithm uses the

input adjacency matrix and degree matrix to generate a sparse matrix. It then iteratively updates

the gradient, vector, and loss function using SpMV, element-wise multiply, add, and subtraction

operations. We run 50 iterations for each seed node on the FB-Johns55 dataset. See Figure 3.7.

3.2.2 Methodology

A common practice to evaluate full-size workloads on simulators is to extract each occurrence

of the kernels, and evaluate them individually with either random data or reconstructed data outside

of PyTorch. However, this approach leads to inaccuracies since random or reconstructed data

may not represent the actual data layout during execution. To address this challenge, we have

developed a re-dispatching approach that automates the evaluation process and preserves runtime

data layout. We first determine which operators in a workload we would like to evaluate, flag them,

and then start running the workload on the CPU. When a call-site is reached the execution is forked

into a CPU instance (running natively), and a manycore instance (running on an RTL simulator).

After both runs return, manycore results are validated against CPU results. With re-dispatching,

workload evaluation can be easily parallelized by launching many copies of the workload; one

copy for each kernel of interest.

Since it is not feasible to simulate a 2,000-core manycore architecture at reasonable simulation

speed, we simulate a smaller 128-core heterogeneous system running 1/16 of the work using the co-

simulation infrastructure described in Section 3.1. We then scale the performance of the manycore

co-processor to a full 2,000-core system assuming weak scaling. We compare the scaled perfor-

mance against the performance of running the full workload on the host multicore CPU, which is

an aggressive 18-core out-of-order superscalar running at 2.4GHz (Intel Xeon E7-8867v4).
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1 class Block(nn.Module):
2 def __init__(self, in_channels, out_channels, residual=False):
3 super().__init__()
4 self.layers = nn.Sequential(
5 nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1,
6 padding=1, bias=False),
7 nn.BatchNorm2d(out_channels),
8 nn.ReLU(),
9 )

10 self.skip = None
11 if residual:
12 self.skip = nn.Conv2d(in_channels, out_channels, kernel_size=1,
13 stride=1, padding=0, bias=False)
14

15 def forward(self, xin):
16 x = self.layers(xin)
17 if self.skip:
18 x = x + self.skip(xin)
19 return x
20

21 class ResNet(nn.Module):
22 def __init__(self):
23 super(ResNet, self).__init__()
24 self.conv = nn.Sequential(
25 nn.Conv2d(3, 16, kernel_size=3, stride=1,
26 padding=1, bias=False),
27 nn.BatchNorm2d(16),
28 nn.ReLU(),
29 Block(16, 32, True),
30 nn.MaxPool2d(kernel_size=(2, 2), stride=2),
31 Block(32, 64, True),
32 nn.MaxPool2d(kernel_size=(2, 2), stride=2),
33 Block(64, 128, True),
34 nn.MaxPool2d(kernel_size=(8, 8)), # global pooling
35 )
36

37 self.fc = nn.Linear(128, 2)
38

39 self.logsoftmax = nn.LogSoftmax(dim=-1)
40

41 def forward(self, data):
42 x = self.conv(data)
43 x = x.view(x.shape[0], -1)
44 x = self.fc(x)
45 x = x * 0.125 # scale layer
46 x = self.logsoftmax(x)
47 return x

Figure 3.6: ResNet Model
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1 # ISTA algorithm
2

3 def ista(seeds, adj, alpha, rho, iters):
4 out = []
5 # Compute degree vectors/matrices
6 d = np.asarray(adj.sum(axis=-1)).squeeze()
7 d_sqrt = np.sqrt(d)
8 dn_sqrt = 1 / d_sqrt
9

10 D = sparse.diags(d)
11 Dn_sqrt = sparse.diags(dn_sqrt)
12 # Normalized adjacency matrix
13 Q = D - ((1 - alpha) / 2) * (D + adj)
14 Q = Dn_sqrt @ Q @ Dn_sqrt
15

16 for seed in tqdm(seeds):
17 # Make personalized distribution
18 s = np.zeros(adj.shape[0])
19 s[seed] = 1
20 # Initialize
21 q = np.zeros(adj.shape[0], dtype=np.float64)
22 rad = rho * alpha * d_sqrt
23 grad0 = -alpha * dn_sqrt * s
24 grad = grad0
25 # Run
26 for _ in range(iters):
27 q = q - grad - rad
28 q = np.maximum(q, 0)
29 tmp = Q @ q
30 grad = grad0 + tmp
31

32 out.append(q * d_sqrt)
33

34 return np.column_stack(out)

Figure 3.7: ISTA algorithm

3.2.3 Results

By leveraging 2D convolution operators with SAD implementations in ResNet, we estimate

ResNet can achieve 2× better performance on the target manycore system than on the aggressive

multicore CPU (see Table 3.2). 2D convolution operators run much faster on the manycore system

by exploiting massive parallelism, but batch normalization and its backward pass (i.e., BatchNorm

and BatchNormBack) perform worse on the manycore system compared to the CPU. This is be-

cause frequent synchronization is needed in batch normalization operators, and synchronizing the

manycore system currently involves higher overhead than synchronizing a multicore CPU. Com-
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Figure 3.8: RecSys Kernel-Level Energy Breakdown – Energy for each kernel executing on the HammerBlade
manycore is shown broken down into various components: register file (Regfile), instruction cache (I-Cache), scratch-
pad memory (SPM), integer arithmetic logic unit (ALU), floating-point unit (FPU), mesh network, clock tree, LLC,
memory controllers (MC), and the host energy. The other category includes pipeline registers, control logic, and other
miscellaneous logic. All energy results include leakage. Kernels sorted based on required work per kernel.

pared to having 2D convolution operators implemented with a traditional data-parallel approach,

we are able to train ResNet-9 13% faster with systolic-accelerated DAE. Specifically, we observed

that Conv2D-fB with systolic-accelerated DAE achieves 2.1× better performance than its data-

parallel counterpart, which is higher than we have observed in microbenchmarks (see Table 4.1).

Further inspection reveals that unlike the microbenchmarks we used in prior sections, inputs to

convolution layers in ResNet do not fit in the LLC. Unstructured memory accesses in the data-

parallel implementation lead to significantly more LLC misses.

We estimate RecSys can achieve 5.9× better performance on the target manycore system than

on the multicore CPU. Compute intensive operators, such as AddMM and AddMMBack, generally

have better performance on the target system because the manycore can better exploit the paral-

lelism in these operators. We also observe that the largest performance improvement comes from

embedding (Emb), EmbBack, and Sum. This improvement can be traced to two causes: (1) these

operators are memory intensive, and compared to a multicore CPU, the manycore co-processor

has a much higher total memory bandwidth (1TB/s); and (2) we apply optimization techniques

that are not available by default in the CPU ATen backend such as kernel fusion and intermedi-
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ATen Baseline MC Total MC Host MC Device
Operator Time (ms) Time (ms) Time (ms) Time (ms)

Conv2DBack 169.9 45.2 0.9 44.3
Conv2D 77.1 21.9 1.3 20.6
BatchNormBack 18.8 38.2 0.5 37.7
BatchNorm 17.8 36.9 1.9 35.0
Relu 8.5 2.2 0.5 1.7
ThresholdBack 6.3 3.1 0.4 2.7
MaxPool2DBack 6.2 1.2 0.5 0.7
MaxPool2D 5.6 1.1 0.7 0.4
Sqrt 4.3 1.8 0.9 0.9
ZerosLike 3.8 3.0 1.6 1.4
Add 3.3 6.2 2.6 3.6
AddCDiv 3.1 2.2 0.9 1.3
Div 3.1 3.0 1.3 1.7
Other 58.4 32.7 27.6 5.1

Data Transfer 0.0 0.03 0.03 0.0

Total (1 Epoch) 611.2 (s) 310.5 (s) 65.0 (s) 245.5 (s)

Table 3.2: ResNet Execution Breakdown –One training epoch; 1563 batches per epoch; 32 images per batch. MC =
target CPU-manycore system. MC total = MC host + MC device.

ate value removal. On the manycore co-processor, we are able to fuse Emb and Sum together to

eliminate intermediate value reads and writes. We also explored leveraging systolic-accelerated

DAE MatMul in RecSys. However, the dimensions of MatMul instances in RecSys generally

lead to severe internal fragmentation [WWB19], and thus worse than baseline performance due to

wasted computation. TPUv1 faced a similar issue. Unlike specialized hardware accelerators, we

have the flexibility of falling back to a data-parallel implementation with a manycore architecture.

We believe other workloads which have more systolic DAE friendly MatMul dimensions will see

significant benefits.

We estimate LGC-ISTA can achieve 5.7× better performance on the target manycore system

than on the multicore CPU. We observe that unlike RecSys, clustering spends more time on the

CPU host than on the co-processor. This is because the input graph has high sparsity, and thus

manycore device functions for those operations will not run for long enough time to cover the

offloading overhead.

In summary, we estimate all three workloads will be able to achieve much higher (i.e., up to

5.9×) performance on the target CPU-manycore heterogeneous system compared to an aggressive

multicore CPU baseline. Note that the weak scaling approach we adopt is optimistic and meant for
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ATen Baseline MC Total MC Host MC Device
Operator Time (ms) Time (ms) Time (ms) Time (ms)

EmbBack 427.8 8.2 1.2 6.0
Emb 94.8 1.4 0.5 0.9
Sum 35.7 0.0 0.0 0.0
AddmmBack 23.3 16.4 2.4 14.0
ZerosLike 15.1 4.9 3.9 1.0
CrossEntropyLoss 14.4 10.6 2.7 8.9
Addmm 11.1 7.7 0.5 7.2
BatchNorm 10.1 11.6 1.6 10.0
Addcdiv 8.3 5.4 2.2 3.2
Sqrt 8.3 8.5 1.9 6.6
Div 8.1 7.8 3.4 4.4
BatchNormBack 8.0 8.6 0.6 8.0
Add 7.9 8.9 5.1 3.8
Mul 7.4 11.6 6.6 5.0
Dropout 6.9 6.1 1.4 4.7
Other 17.9 12.4 5.4 7.0

Data Transfer 0.0 3.5 3.5 0.0

Total (1 Epoch) 185.5 (s) 31.5 (s) 11.2 (s) 20.3 (s)

Table 3.3: Recsys Execution Breakdown – One training epoch; 273 batches per epoch; 256 users per batch. MC =
target CPU-manycore system. MC total = MC host + MC device.

demonstrating the potential of a future full manycore system, rather than as a rigorous comparison.

While computing 1/16 of the output on a 128-core system demonstrates that we have enough soft-

ware parallelism to fully utilize the 2,000-core system, various architectural challenges (e.g., LLC

coherence, DRAM channel scaling, and cross channel data movement) must be solved with mini-

mal performance penalty to realize the estimated performance. This work provides a software stack

that lays the groundwork for researchers to explore solutions to these challenges in future work. To

help estimate how a future 2,000-core system might compare to a GPGPU, we can consider a pre-

viously proposed manycore architecture with 496 RISC-V cores [RZAH+19b, RZAH+19a]. This

prior work has shown the ability to achieve 93.04 Giga RISC-V instructions/s per watt and 45.57

GRVIS/ mmsq. Given these prior results, the target CPU-manycore heterogeneous system can po-

tentially achieve significantly higher area-normalized throughput and energy efficiency compared

to GPGPUs. Again, this work provides a software stack that can enable more detailed comparative

analysis of manycore architectures versus GPGPUs and other programmable accelerators.
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ATen Baseline MC Total MC Host MC Device
Operator Time (ms) Time (ms) Time (ms) Time (ms)

SpMV 23960.0 2267.4 1776.0 491.4
Sub 365.9 1120.0 1024.0 96.0
Add 368.8 544.0 496.0 48.0
Max 759.5 480.0 432.0 48.0
Mul 31.1 65.9 56.3 9.6
Clone 0.2 9.6 9.0 0.6

Data Transfer 0.0 2.3 2.3 0.0

Total 25.5(s) 4.5(s) 3.8(s) 0.7(s)

Table 3.4: Local Graph Clustering Execution Breakdown –Personalized PageRank for 500 seed nodes; 50 itera-
tions per seed node. MC = target CPU-manycore system. MC total = MC host + MC device.

3.2.4 Energy Estimation on RecSys

We also conduct an energy analysis with RecSys using the energy modeling methodology dis-

cussed in Section 2.3.2. Figure 3.8 plots the energy breakdown for every kernel across various

components within the HammerBlade manycore tiles and in the network, clock tree, LLC, mem-

ory controllers, and host processor. The dense mm/addmm kernels consume about 50% of the overall

energy. Other important kernels include the complex binary_cross_entropy and batch_norm

kernels which simply require a significant number of instructions.

3.3 Related Work

Domain-specific programming frameworks express their targeting applications effectively and

achieve high performance, and played an important rule in the adoption of GPGPUs and other

domain-specific and application-specific accelerators. Examples include CuPy [OUN+17] for ar-

ray computation, cuGraph [rap20] and Gunrock [WDP+16] for graph analytics, CUVIlib [cuv22]

for image processing, and Triton Ocean SDK [Sun22] for water simulation. PyTorch [PGM+19]

is an open-source deep earning framework.

Various prior work extended existing programming frameworks to emerging compute plat-

forms such as manycore architectures that do not have hardware coherent caches. For exam-

ple, Lee et al. [LKK+11] extended OpenCL [ope11] to support Intel SCC [HDH+10]. Marker
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et al. [MCP+12] ported a dense matrix library, Elemental [PMVdG+13], to SCC. Our work ex-

tended PyTorch to the HammerBlade manycore architecture which captures the common features

of SPM manycore architectures. Domain-specific programming frameworks also contributed to

the adoption of new compute platforms by offering across platform code portability. For exam-

ple, TVM [CMJ+18] supports CPUs, GPUs, and also the VTA [MCV+19] architecture. Tensor-

Flow [ABC+16] has backends for CPUs, GPUs, as well as the Google TPU [J+17]. Our work adds

another backend to these state-of-the-art software stacks.

3.4 Conclusion

Domain-specific frameworks that provide ready-to-use hand-optimized operators embedded

within a high-level language played an essential role in the adoption of GPGPUs. In this chapter,

we address the programmability challenge with a tensor processing framework that abstracts hand-

optimized operators for dense and sparse workloads. Through end-to-end evaluation of dense

and sparse tensor workloads, we show that the proposed framework can potentially achieve up to

5.9× better performance on a 2,000-core CPU-manycore heterogeneous system compared to an

aggressive multicore CPU.
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CHAPTER 4
HB-ARC: A DECOUPLED ACCESS/EXECUTE

FRAMEWORK FOR SPM MANYCORE ARCHITECTURES

Memory latency hiding is now at the center of modern microarchitecture design as the per-

formance gap between compute and memory continues to increase. Multicore CPUs rely on

complex out-of-order execution to hide memory latency, while GPGPUs rely on extreme tem-

poral multithreading with fine-grain context switching. Both of these techniques require extensive

hardware resources and are not applicable to the simple cores used in manycore architectures.

Non-speculative runahead execution (i.e., stall-on-use), which allows independent instructions to

be issued while a long-latency memory instruction is still pending [DM97, MSWP03, MKP05],

is a lightweight mechanism to enable memory latency hiding in simple in-order cores. However,

Section 3.1 shows this technique alone cannot fully resolve the memory latency issue, and it still

dominates the execution time of the HammerBlade manycore for many critical PyTorch operators

(e.g., matrix multiplication, 2D convolution, sparse matrix-vector multiplication, and matrix-vector

multiplication). Moreover, as manycore architectures generally adopt a mesh-like on-chip network

topology, both network bisection bandwidth and the bandwidth to higher levels of the memory

hierarchy become scarcer when scaled to future manycore architectures with thousands of cores,

leading to increased network congestion and memory access latencies.

Decoupled access/execute (DAE) architectures have been proposed in the literature to aid mem-

ory latency hiding by splitting one program into two instruction streams, an access stream and an

execute stream [Smi84, HAM15, TJC+18]. The access stream contains all instructions related to

accessing memory, and the execute stream contains the remaining instructions for computation. If

the access stream can run sufficiently far ahead, the execute stream will no longer stall due to load-

use dependencies. In this chapter, I present HB-Arc1 which explores DAE in the context of the

HammerBlade manycore architecture. Section 4.1 introduces software only techniques to enable

decoupled access/execute and systolic execution on SPM manycore architectures. In Section 4.2,

we propose combining lightweight access accelerators with our software techniques to further

improve area normalized throughput.
1HB-Arc is named after Arc Warden the character in Dota 2, who “creates a copy of himself to split push”.
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Figure 4.1: Moving Data Blocks with Non-Speculative Runahead Execution – Stall Network = load request
cannot be sent due to OCN contention; Stall Remote Load = load request has been sent but response haven’t received;
memory latency = Stall Network + Stall Remote Load. Normalized to memory latency of 1 concurrent load request
per core.

4.1 Software-Enabled DAE

We expect memory latency to become an even more significant issue in future CPU-manycore

heterogeneous systems with thousands of cores and 2D mesh on-chip networks, as bisection band-

width and bandwidth going off the mesh to higher levels of the memory hierarchy scale linearly

while the number of cores scales quadratically. As demonstrated for conventional processors in

prior work [Smi84, HAM15, TJC+18], decoupled access/execute can reduce or eliminate mem-

ory latency and improve performance. In this section, we leverage software-based decoupled

access/execute to realize both latency hiding and data movement reduction in the context of a

manycore architecture. We propose naïve-software DAE and systolic-software DAE, and we then

evaluate their performance against optimized data-parallel baseline implementations.

4.1.1 Naïve-Software DAE

We first explore decoupled access/execute using pairs of cores: one as the access core and

one as the execute core. In a typical DAE architecture, access and execute are connected by

hardware queues for communication. In the context of a PGAS manycore, we leverage remote store
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programming and create software queues in the execute core’s scratchpad for the same purpose.

We refer to this software decoupled access/execute scheme as naïve-software DAE.

In naïve-software DAE, the access core sends requests to higher levels of the memory hierarchy

to load data into its registers. Unlike the data-movement scheme described in Section 3.1, the

access core stores the loaded value into its peer’s scratchpad (i.e., the software queue). When

data becomes available, the execute core reads the data block, performs computation, yields the

queue space, and writes back the results (if necessary). In many DAE architectures, writing back

the results is also done by the access core. However, our early analysis suggested writing results

from an execute core to an access core, and then to higher levels of memory hierarchy provided no

benefit. Thus, in naïve-software DAE, execute cores write results directly back to DRAM. Since

the block currently being processed stays in the software queue (i.e., the execute core pops the

entry only after finishing computation), at least two entries in each software queue are necessary

to enable access/execute decoupling. This puts increased demand on the scratchpad resulting in

smaller tile sizes compared to a data-parallel baseline.

We implement six operators with naïve-software DAE: MatMul, Conv2D, Conv2D-iB (i.e.,

Conv2D backward w.r.t. input images), Conv2D-fB (i.e., Conv2D backward w.r.t. filters), AddMV,

and SpMV. The baselines are hand-tuned data-parallel implementations. We add a second baseline

for each operator, in which we only activate 50% of the cores in the manycore co-processor using

the data parallel implementation. We refer to this second baseline as 50%-idle. We include this

baseline to understand if the benefit of naïve-software DAE comes from fewer cores making mem-

ory requests. Since the target manycore is built with scalar cores, each core can inject at most one

memory request every cycle. With only 50% cores active, the maximum possible new requests per

cycle is halved. This may relieve network congestion and improve operator performance.

Results are summarized in Figure 4.2 and Table 4.1. Compared to the baseline, 50%-idle gen-

erally achieves much lower overall throughput, as expected with half of the cores active. However,

we also observe an increase in per-core throughput, especially in the cases of AddMV and SpMV.

This improvement matches our observation in Section 3.1, that increasing the number of active

cores can reduce performance due to network congestion. We also observe that for these two op-

erators, naïve-software DAE only provides marginal improvement, or hurts performance because

low arithmetic intensity means there is not enough time for the access core to load a block be-

fore the execute core needs to consume this block. However, for arithmetic-intensive operators
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Figure 4.2: Naïve and Systolic Software DAE – TP/CC = throughput per compute core; TP/Sys = overall throughput
per system; MatMul showing 768× 768× 768; Conv2D, Conv2D-iB, and Conv2D-fB showing 32 images batch;
AddMV showing 768×768; SpMV showing FB-Johns55. See Table 4.1 for detailed input specification.

(i.e., MatMul, Conv2D, Conv2D-iB. and Conv2D-fB), naïve-software DAE significantly improves

the per-compute-core throughput. Compared to the baseline, naïve-software DAE is able to im-

prove per-compute-core throughput by 1.5–1.9×. Compared to 50%-idle, naïve-software DAE is

able to improve per-compute-core throughput by 1.3–1.5×, despite using smaller tiling block sizes

than both the baseline and 50%-idle. While this improvement over 50%-idle partially comes from

having 2× the resources and offloading load and address generation instructions to access cores,

the main source of performance benefit comes from memory-latency hiding. In Conv2D, 13%

of the dynamic instructions are related to load and address generation, and these instructions are

offloaded to access cores. However, we observe 53% performance improvement over 50%-idle.

4.1.2 Systolic-Software DAE

While naïve-software DAE implementations show significant per-compute-core improvement,

the overall performance decreases because the per-compute-core improvement does not outweigh

the reduced number of compute cores performing useful work. To translate the high per-compute-

core throughput to an overall performance improvement, we must change the ratio of access to

execute cores. However, having one access core serve two or more execute cores can also degrade
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performance when the execute cores finish faster than the access core can supply data. For example,

in MatMul an access core cannot finish loading data for two execute cores before its execute

counterparts finish consuming their current blocks, and thus the execute cores will need to stall.

Alternatively, multiple access cores could fetch data for a single execute core. Unfortunately,

an asymmetric ratio of access and execute cores results in access cores writing data to execute

cores located multiple hops away, which can increase network congestion and further slow down

data transfers. Instead of having an access core load independent data blocks for each execute

core it serves, we can exploit the fact that the same data is needed by multiple execute cores by

intelligently placing the compute and having execute cores pass data blocks in a systolic fashion

(i.e., in-compute array reuse). We call this scheme systolic-software DAE. Since systolic-software

DAE is only feasible for operators with significant data reuse, we focus on the arithmetic-intensive

operators (i.e., MatMul, Conv2D, Conv2D-iB, and Conv2D-fB) in the following sections.

The systolic-software DAE implementation of MatMul uses a similar approach as output-

stationary systolic hardware accelerators for MatMul, although the systolic-software DAE im-

plementation operates at block granularity instead of scalar value granularity. In systolic-software

DAE, blocks of input data are loaded by access cores on the West and North edges of the many-

core array, and these blocks are passed along either horizontally or vertically (see Figure 4.3(a)).

The systolic-software DAE implementation of Conv2D is implemented in a 1D systolic manner

with replication. An input block is passed along a chain of execute cores, in which each execute

core applies a different filter to the block (see Figure 4.3(b)). MatMul and Conv2D implemented

with systolic-software DAE on a 128-core device has 64% or 88% more respectively execute cores

compared to naïve-software DAE.

We implement the four arithmetic-intensive operators (i.e., MatMul, Conv2D, Conv2D-iB, and

Conv2D-fB) with systolic-software DAE. Results are summarized in Figure 4.2 and the systolic-

software DAE columns of Table 4.1. Conv2D-iB and Conv2D-fB can be implemented in ways

that are similar to Conv2D and MatMul, respectively. Across all four operators, systolic-software

DAE has a per-compute-core throughput that is lower than naïve-software DAE, but still up to

1.5× higher than the data-parallel baseline. This is because execute cores in systolic-software

DAE need to pass data blocks to their neighboring execute cores in addition to performing the

actual computation. Additional instructions for data movement lead to lower throughput. How-

ever, systolic-software DAE benefits from the additional execute cores, and achieves up to 1.25×
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increased system throughput. Note that systolic-software DAE also has fewer compute cores than

the baseline. There are three cases (i.e., Conv2D with a batch size of 2 and Conv2D-fB with a

batch size of 2 and 4) where systolic-software DAE performs worse than the baseline. This is

because in systolic-software DAE data blocks need to be passed from execute core to execute core.

Thus, there is a much longer warmup phase for systolic-software DAE, and this results in worse

performance when the batch size is small.

4.2 Hardware-Accelerated DAE

Naïve-software DAE and systolic-software DAE leverage existing hardware mechanisms in

the CPU-manycore heterogeneous system and demonstrate both per-compute-core and per-system

throughput improvements. However, software-only approaches have two disadvantages. First,

general-purpose cores are area-inefficient for data access tasks. Most access tasks only require

basic integer arithmetic and simple control flow for 1D and 2D array accesses, but cores in the

manycore co-processor are equipped with instruction caches, data scratchpads, and floating point

units. Second, dedicating general-purpose cores to data access tasks reduces the peak throughput of

the manycore co-processor. While systolic-software DAE can help mitigate this issue by reducing

the number of access cores, most operators still require the first column and/or the first row of

cores in the manycore co-processor to load data.
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Baseline 50%-Idle NSD SSD NAD SAD

Operator Input TP/C TP/S TP/C TP/S TP/C TP/S TP/C TP/S TP/C TP/S TP/C TP/S

MatMul 768×48×768 0.53 67.8 0.60 38.3 0.89 57.2 0.67 70.4 0.86 81.5 0.64 79.6
768×96×768 0.56 71.6 0.63 40.1 0.92 58.9 0.74 77.9 0.92 87.9 0.71 88.1
768×192×768 0.60 77.3 0.66 42.5 0.95 60.9 0.78 81.7 0.95 90.6 0.75 93.3
768×384×768 0.60 76.5 0.66 42.5 0.96 61.4 0.80 83.7 0.97 92.1 0.77 95.9
768×768×768 0.57 73.6 0.62 39.9 0.85 54.5 0.80 84.3 0.97 92.4 0.78 96.4

Conv2D Batch Size 2 0.46 58.7 0.52 33.3 0.79 50.4 0.48 57.5 0.74 70.2 0.46 57.5
Batch Size 4 0.50 63.5 0.55 35.3 0.82 52.6 0.58 69.4 0.78 74.0 0.57 71.0
Batch Size 8 0.52 66.2 0.56 35.6 0.84 54.1 0.64 76.2 0.80 75.9 0.63 78.9
Batch Size 16 0.52 67.2 0.56 35.8 0.86 54.7 0.67 80.2 0.81 76.9 0.66 82.0
Batch Size 32 0.53 68.0 0.56 35.9 0.86 55.0 0.68 82.0 0.81 77.4 0.67 83.6
Batch Size 64 0.53 68.2 0.56 35.9 0.86 55.2 0.69 82.5 0.82 77.8 0.68 84.3

Conv2D-iB Batch Size 2 0.46 59.2 0.54 34.4 0.78 50.0 0.49 59.2 0.73 69.7 0.46 56.9
Batch Size 4 0.50 63.7 0.55 35.3 0.82 52.5 0.59 70.8 0.77 73.7 0.57 70.7
Batch Size 8 0.52 66.1 0.56 35.6 0.84 53.6 0.65 77.6 0.80 75.9 0.64 79.7
Batch Size 16 0.52 67.0 0.56 35.7 0.85 54.4 0.68 82.1 0.81 77.2 0.66 81.9
Batch Size 32 0.52 66.9 0.56 35.8 0.86 54.8 0.70 84.0 0.82 77.7 0.67 83.2
Batch Size 64 0.53 68.2 0.56 35.9 0.86 55.0 0.71 85.6 0.82 78.0 0.67 83.6

Conv2D-fB Batch Size 2 0.32 41.3 0.49 31.2 0.64 41.2 0.34 35.4 0.64 60.9 0.28 34.5
Batch Size 4 0.39 49.5 0.53 33.9 0.76 48.5 0.46 48.0 0.72 68.6 0.40 49.4
Batch Size 8 0.44 55.9 0.55 35.0 0.76 48.5 0.56 59.2 0.77 73.2 0.51 64.0
Batch Size 16 0.46 58.3 0.56 35.5 0.75 48.0 0.64 66.7 0.79 75.2 0.58 72.0
Batch Size 32 0.47 60.6 0.56 35.5 0.76 48.6 0.67 70.6 0.80 76.4 0.61 76.2
Batch Size 64 0.47 60.0 0.56 35.9 0.76 48.6 0.69 72.9 0.80 75.9 0.63 78.9

AddMV 256×256 0.02 3.0 0.04 2.5 0.04 2.4 – – – – – –
512×512 0.02 3.1 0.04 2.5 0.04 2.7 – – – – – –
768×768 0.03 4.4 0.05 3.5 0.05 3.4 – – – – – –
1024×1024 0.03 3.7 0.04 2.9 0.05 3.1 – – – – – –

SpMV FB-Johns55 0.04 4.9 0.05 3.2 0.05 3.5 – – – – – –
Facebook 0.02 2.9 0.03 2.2 0.04 2.5 – – – – – –
Cora 0.01 1.0 0.01 0.8 0.02 1.0 – – – – – –
CiteSeer 0.01 0.9 0.01 0.7 0.01 0.9 – – – – – –

Table 4.1: Operator Throughput –MatMul = matrix multiplication; Conv2D = 2D convolution; Conv2D-iB = 2D
convolution backward w.r.t. input image; Conv2D-fB = 2D convolution backward w.r.t. filters; AddMV = general
matrix-vector multiplication; SpMV = sparse matrix-vector multiplication; TP/C = throughput per compute core;
TP/S = overall throughput per system; NSD = naïve-software DAE; SSD = systolic-software DAE; NAD = naïve-
accelerated DAE; SAD = systolic-accelerated DAE. The target system has 128 cores. Conv2D, Conv2D-iB, Conv2D-
fB are run with 16-channel 32×32 images with 32 3×3 filters. FB-Johns55 has sparsity of 1.4×10−2; Facebook has
sparsity of 5.4×10−3; Cora has sparsity of 1.4×10−3; CiteSeer has sparsity of 8.3×10−4. Per system throughput in
naïve-accelerated DAE and systolic-accelerated DAE are area-normalized to baseline manycore. All numbers are in
GFLOP/s.
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1 float* src = imap.data()
2 + img_id * strides[0]
3 + chnl_id * strides[1]
4 + blk_y * strides[2]
5 + blk_x * strides[3];
6

7 if ( pad_first_col )
8 pad_col(buf, 0);
9 if ( pad_last_col )

10 pad_col(buf, dim_x-1);
11 if ( pad_first_row )
12 pad_row(buf, 0);
13 if ( pad_last_row )
14 pad_row(buf, dim_y-1);
15

16 for r in range(0, dim_y) {
17 for c in range(0, dim_x)
18 buf[offset+c] = *(src+c);
19 src += strides[2];
20 offset += dim_x;
21 }

(a) Data Access Pseudo Code

imap.data() (in L2$)

*src

di
m

_y

buf (in scratchpad)

...padding

dim_x

(b) Data Access Illustration

Figure 4.4: Conv2D Forward Data Access – In the Conv2D forward kernel, the access cores run program in (a) and
load input feature map blocks into the target data scratchpad as shown in (b). Note the access cores calculate src and
pad zeros (in red) to the imap buffer.

We adopt a software/hardware co-design approach to address these challenges. We design and

implement an access accelerator (AX), a configurable hardware unit that streams data from the

LLC to the scratchpad of a target execute core. Compared to general-purpose cores, an access ac-

celerator is significantly more area efficient, yet still provides the benefits of decoupled access/ex-

ecute. This light-weight access accelerator also achieves the same peak computation throughput

as the baseline manycore with very low area overhead. While having hardware engines that are

dedicated for moving data (e.g., DMA engines) is not a new idea, the proposed access accelerator

is unique in its ability to act as a first-class citizen in both the mesh-based on-chip network and the

remote store programming model.

4.2.1 Access Accelerator Design

Data Access Tasks – Figure 4.4 shows the data access pseudocode of the Conv2D kernel and

illustrates how the access cores load data from the LLC and pad zeros to the input feature map

block. While we explored several operators with software-only DAE schemes, their data access
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patterns are all similar. In general, data access tasks involve two nested for loops that load a matrix

of size dim_x by dim_y into the scratchpad of the target execute core and an optional padding

process that pads zeros around the matrix. This generic data access pattern can be efficiently

implemented as an access accelerator that correctly performs common data access tasks given the

metadata about the accesses (i.e., the source address, dimensions, strides, padding information,

and the destination address).

Accelerator Design – Figure 4.5(a) shows the architecture of the access accelerator and how

it is connected to a mesh network router. At the core of the access accelerator is a configurable

address generator and a padding engine. These two modules generate a stream of memory requests.

Since the mesh network in the target manycore system is only point-to-point ordered, the access

accelerator also includes a reorder queue to reorder the memory responses from different LLC

banks. The request arbiter arbitrates between memory read requests to the LLC and remote store

requests to the target scratchpad because there is only one master interface exposed by the mesh

network router. Finally, an address translator is required because the execute cores configure access

accelerators using virtual addresses.

Accelerator Integration – Figure 4.5(b) illustrates how access accelerators are integrated into

the target manycore array. In the baseline manycore, each mesh network router is connected to

a RISC-V core. To integrate the access accelerators, we extend the mesh network and instantiate

access accelerators at the top row and the left-most column. This composition works particularly

well with systolic-software DAE implementations where most on-chip network traffic is between

neighboring cores or accelerators. This composition also ensures a fair comparison with the base-

line manycore system for two reasons. First, the access accelerator manycore (AX manycore)

has the same number of LLC banks and the same DRAM bandwidth as the baseline manycore.

Second, the AX manycore has the same effective mesh network bandwidth as the baseline. The

AX manycore mesh network does have larger bisection bandwidth than in the baseline manycore.

However, this additional bandwidth does not translate into improved throughput because the extra

network links and routers are mostly used to provide access to LLC banks to the access accelera-

tors. The AX is a first-class citizen in the remote store programming model: execute cores control

a neighbor AX by performing remote stores into the AX’s memory-mapped control registers, and

the AX performs remote stores into its neighboring execute core’s scratchpad upon receiving data

from the LLC.
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Figure 4.5: Access Accelerator Architecture and Integration – (a) architecture of the access accelerator and how
it connects to a mesh network router; (b) access accelerators integrated in the first row and first column of the target
manycore. X = access accelerator (AX), L = LLC bank, C = compute core (CC).

4.2.2 Access Accelerator Evaluation

Area – Figure 4.6 compares the post-place-and-route area of an access accelerator in a CMOS

14/16 nm technology and a general-purpose core from prior work in a similar process [RZAH+19a].

We can see from the figure that the access accelerator is highly area-efficient. The network router

and endpoint consumes about 40% and the accelerator data path consumes about 30% of the access

accelerator area. The transmit adapter (TX) includes a 32-element FIFO to buffer responses from

the LLC, and consumes around 30% of the accelerator area. Overall, the access accelerator is 5×
smaller than the general-purpose core, making it an area-efficient choice for data access tasks. The

AX manycore (with an extra AX row and AX column as shown in Figure 4.5(b)) only increases

the overall area by 2.9% compared to the baseline manycore.

Naïve-Accelerated DAE – Similar to the naïve-software DAE evaluation (NSD, see Sec-

tion 4.1.1), we evaluate the area efficiency of the access accelerators using a naïve-accelerated

DAE (NAD) composition. In NAD, each execute core is paired with an access accelerator that

replaces the access core. Figure 4.7(a) and the NAD column of Table 4.1 shows the per-compute-

core throughput and the area-normalized per-system throughput of different operators under NAD.

We can see that compared to NSD, NAD has similar per-compute-core throughput since both

access cores and access accelerators are able to decouple data access from the computation on
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Figure 4.7: Naïve and Systolic Accelerated DAE – TP/CC = throughput per compute core; TP/Sys = overall through-
put per system; MatMul showing 768×768×768; Conv2D, Conv2D-iB, and Conv2D-fB showing 32 images batch;
AddMV showing 768×768; SpMV showing FB-Johns55. See Table 4.1 for detailed input specification.

execute cores. However, NAD has significantly higher area-normalized per-system throughput

(46% on average) than NSD. This difference is the largest on the matrix multiplication (MatMul)

operator, where NAD achieves 52% higher area-normalized per-system throughput. The superior

area-normalized per-system throughput of NAD over NSD confirms that our access accelerator

is significantly more area-efficient on data access tasks than general-purpose cores, and still pro-

vides the same throughput benefits of DAE. We did not implement and evaluate NAD versions

of memory-intensive operators (i.e., AddMV and SpMV). NAD cannot address the fact that these

operators are largely limited by memory bandwidth. Prior evaluation has shown that a data-parallel

scheme is more effective (see Section 4.1.1).
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Systolic-Accelerated DAE – As discussed earlier, systolic-software DAE dedicates multiple

general-purpose cores to load data at the cost of manycore compute resources. Based on the

systolic-software DAE (SSD, see Section 4.1.2), we create the systolic-accelerated DAE com-

position (SAD), which uses the access accelerator manycore described in Section 4.2.1 to run

systolic-software DAE implementations. Figure 4.7(b) and the SAD column of Table 4.1 shows

the per-compute-core throughput and area-normalized per-system throughput of different operators

under SAD. We can see that compared to SSD, SAD has similar per-compute-core throughput since

both designs are able to achieve decoupled access/execute. In terms of overall area-normalized

per-system throughput, SAD has an average of 4.8% better throughput than SSD. On MatMul,

SAD is able to achieve 13.9% better average throughput than SSD. On the target 16×8 manycore

array, the SSD approach uses eight (Conv2D and Conv2D-iB) or 23 (MatMul and Conv2D-fB)

general-purpose cores for data accesses. Therefore, the maximum overall per system throughput

improvement of SAD on the same manycore is 6% or 18% (depending on the kernel). In addition,

the execute cores in SAD need to perform remote memory stores to configure the access accelera-

tors for every input feature map block, which occupies computation cycles. Despite having more

moderate throughput improvements over the highly optimized SSD design, SAD still achieves the

highest area-normalized throughput on the four evaluated kernels among all six designs (baseline,

50%-idle, NSD, SSD, NAD, SAD). Compared to the baseline, the AX manycore introduces one

extra cycle to the memory latency when accessing LLC banks in the north. However, this should

have negligible performance impact on operators that cannot leverage SAD, as our prior results

in Section 3.1.2 have shown that network congestion is the main source of stalls for operators

implemented with a data-parallel scheme.

4.3 Related Work

A wide variety of coarse-grain parallel architectures have been developed over the past decade

to exploit pipeline parallelism. Architectures like Eyeriss [CKES16] and DianNao [CDS+14] are

domain-specific accelerators for convolutional neural networks. Later versions support operations

on sparse tensors. These proposals demonstrate similar parallel dataflow patterns. The TPU [J+17]

and VTA [MCJ+18] architectures integrate systolic matrix-multiply and vector processing units to

accelerate more general machine learning computations. More general purpose architectures also
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exist: RAW [TLM+04] uses an inter-processor scalar operand network to forward results between

processors. Plasticine [PZK+17] contains a mesh of general-purpose compute units for processing

workloads from machine learning, data, and graph analytics. These architectures exploit pipeline

parallelism by composing coarse grain functional units, similar to our work.

Many architectural solutions have been proposed to decouple memory and compute opera-

tions [Smi84]. Decoupled Supply Compute (DeSC) [HAM15] is an automatic extension of DAE

for general-purpose CMPs that uses a “Supplier Device” and a “Compute Device”, similar to

our naïve-software DAE approach. The Load Slice Core [CHA+15] is a form of restricted out-

of-order machine. With an additional pipeline, load and address generation slices can be issued

out-of-order and speculatively with respect to compute slices, while remaining in-order within a

slice. Slice formation is handled by hardware. Tran et al. [TJC+18] proposed a SW/HW co-design

method. Instructions are grouped into access and execute phases at compile time. Access phases

can run and commit out-of-order with respect to execute phases at runtime. Both techniques rely

on hardware that is more complex than the target manycore architecture provides (e.g., superscalar

cores). Manticore [ZSB21] introduces custom ISA extensions to leverage DAE and improve FPU

utilization. Techniques proposed in this work aim to enable DAE in the context of a manycore with

thousands of simple stall-on-use in-order scalar cores, and with existing programming model and

core microarchitecture. The Cell processor [GHF+06] includes per-core DMA engines to overlap

computation with data transfer. The Epiphany processor [Olo16] also includes a DMA engine.

This prior work explores pairs of memory and compute engines, while our approach extends this

idea with AX’s along the periphery of the target architecture. Our approach is more similar to

CoRAM [CHM11], where a control thread can manage multiple scratchpads on an FPGA device.

Recent work has shown the potential of using a chiplet-based approach to scale the target manycore

architecture to thousands of cores [VGT+20, ZSB21].

Several high-level languages have been created to express complex pipeline parallelism in pro-

gramming. StreamIt [GTA06] exposed pipeline parallelism for the RAW architecture. More recent

work has enabled pipeline parallelism for general-purpose machines. Interstellar [YGL+20] is an

extension to Halide’s scheduling with pipeline parallelism expressions. Spatial [KFP+18] is a

general-purpose DSL for expressing pipelines and can target Plasticine [PZK+17]. These lan-

guages are higher-level than our own development language and can be used in the future to ease

programmer expression of pipeline parallelism on manycore architectures.
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4.4 Conclusion

In this chapter, I identify memory latency as the key limiting factor for performance on SPM

manycore architectures and refer to it as the manycore memory latency challenge. I address this

challenge by exploring both software and hardware-accelerated decoupled access/execute schemes

on the manycore co-processor. Operators implemented with the proposed techniques achieve up to

1.32× throughput improvement, compared to an aggressive data-parallel baseline.
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CHAPTER 5
HB-RUBICK: A DYNAMIC TASK PARALLEL FRAMEWORK

FOR SPM MANYCORE ARCHITECTURES

In Chapter 3 and Chapter 4, I introduced two domain-specific frameworks, one for dense and

sparse tensor processing and one for enabling decoupled access/execute on SPM manycore archi-

tectures. While HB-PyTorch can significantly improve the programmability of HammerBlade, it

suffers from relatively low performance compared to implementing the same workload directly

with CUDA-lite. While HB-Arc provides considerable performance gain over CUDA-lite, it re-

quires programmers to manually reformat and hand tune their applications. More importantly,

both frameworks are domain-specific frameworks. Even though such frameworks express domain-

specific workloads effectively and/or achieve high performance, not every domain is covered. Ex-

tending and re-purposing these frameworks for another domain requires non-trivial efforts by pro-

grammers.

In this chapter, we take inspiration from the success of the dynamic task parallel programming

model in the multi-core era, and attempt to address the programmability challenge of SPM many-

core architectures as well improve performance by offering a dynamic task parallel programming

framework, HB-Rubick1 , that is similar to those that thrived on multi-core systems (e.g., Intel Cilk

Plus [int13], Intel Threading Building Blocks (TBB) [int19], and OpenMP [ACD+09, ope13]).

These programming frameworks allow parallel tasks to be generated and mapped to hardware

dynamically through a software runtime. They can express a wide range of parallel patterns, pro-

vide automatic load balancing, and improve portability for legacy code [MRR12]. Our approach

allows dynamic task parallel applications written for traditional hardware-based cache coherent

multi-cores to work on manycore architectures with only minimal changes to the software. While

conventional wisdom believes implementing a work-stealing runtime is either not viable or not

beneficial on systems that do not have caches [ZP16, WTCB20], our evaluation demonstrates that

our proposed task parallel programming framework can achieve 1.2×–28.5× speedup for work-

loads that benefit from our techniques, and only induce minimal overhead for workloads that do

not.

In Section 5.1, I provide a general background on work-stealing runtimes. In Section 5.2,

I describe in detail how to implement a work-stealing runtime, which is the core component of
1HB-Rubick is named after Rubick the character in Dota 2, who “always seeks a new spell to steal”.
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dynamic task parallel frameworks, on manycore architectures with software-managed SPMs. In

Section 5.3, I discuss three optimizations for enabling the runtime to leverage SPMs and achieve

high performance. In Section 5.4 and Section 5.5, I use a cycle-accurate RTL evaluation method-

ology to demonstrate the potential of our approach with four categories of workloads: static-

balanced, static-unbalanced, dynamic-balanced, and dynamic-unbalanced. Section 5.6 discusses

related work of this chapter.

5.1 Programming Models for Dynamic Task Parallelism

Task parallelism is a style of parallel programming where the workload is divided into tasks

(i.e., units of computation that can execute in parallel). Dynamic task parallelism is a kind of task

parallelism in which tasks and dependencies among tasks are generated at runtime. Dynamically

generated tasks are assigned to available worker threads based on a certain scheduling algorithm.

The most adopted computation model for dynamic task parallelism is the fork-join model. It

was first introduced by MIT Cilk [BJK+95] and then adopted by various parallel programming

frameworks [Lei09,int13,Rei07,int19,CGS+05,SML17]. Fork-join parallelism naturally describes

the parallel execution of a program: the program starts running serially and only one control flow

exists. At the beginning of the parallel region, the serial control flow forks into two or more

independent control flows that can be executed in parallel. At the end of the parallel region, these

independent control flows join into a single control flow and serial execution resumes. In a task

parallel programming framework that adopts the fork-join model, the process in which a task forks

two or more parallel tasks is also referred to as spawning tasks. The newly created tasks are called

the child tasks and the original task is called the parent. The parent task can continue until it reaches

the point where join (also commonly referred to as wait) primitive is called. The parent task blocks

until all of its child tasks have finished. This model serves as a basis to express many complex

parallel patterns, including divide-and-conquer, parallel loop, reduction, and nesting [Rei07]. The

fork-join model has the following properties: (1) a task can only wait for its children to join (e.g.

no waiting on locks); (2) a task cannot complete until all of its children complete and join it. This

set of properties is called fully-strict in Cilk literature [BJK+96, FLR98].

Work-stealing is likely the most widely-adopted scheduling algorithm for task parallel pro-

gramming frameworks [BL99]. In a typical work-stealing runtime, each thread is associated with

a task queue to store tasks that are ready for execution. The task queue is usually implemented
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with a double-ended queue (deque). When a task spawns a child task, it enqueues the child on to

the task queue of the executing thread. When a thread becomes idle, either because a parent task is

waiting for its child tasks to return or the thread has no active task running, it attempts to dequeue

from its own task queue from the end (i.e., in last-in-first-out (LIFO) order). If the task queue is

not empty and a task is popped, the thread starts executing this task. If the task queue is empty,

the thread then attempts to steal a task from the head of the task queue of another thread (i.e., in

first-in-first-out (FIFO) order). The stealing thread becomes a thief, and the thread whose tasks are

stolen becomes a victim. Stealing in FIFO order allows the thief to steal a task that locates higher

in the task graph, which typically contains more work. The stealing mechanism automatically bal-

ances the workload across threads. It leads to better locality and helps establish time and space

bounds [BL99, FLR98].

5.2 Supporting Dynamic Task Parallelism on SPM Manycore

In this chapter, we propose to resolve the manycore architecture programmability challenge by

implementing a TBB/Cilk-like dynamic task parallel programming framework on such systems.

Compared to the typical low-level C runtimes provided by these architectures which usually adopt

the SPMD programming model, the proposed framework supports parallel patterns beyond simple

static parallel loops, allows parallel patterns to be arbitrarily nested, and provides dynamic load

balancing. Compared to prior work on resolving the programmability challenge, which takes a

domain-specific approach, our parallel programming framework is general-purposed and provides

a programming interface that programmers who have used either Cilk/TBB or OpenMP are familiar

with. This enables simple porting of legacy code to manycore architectures.

The core component of the proposed TBB/Cilk-like dynamic task parallel programming frame-

work is a work-stealing runtime. While how to implement work-stealing runtimes on systems with

hardware-based coherence [BJK+95], software-centric coherence [LZF08, WTCB20, TCM18],

and distributed memory [DLS+09, PCM+07, SKK+11] has been studied extensively in the litera-

ture, conventional wisdom claims that implementing such a runtime is either not viable or not ben-

eficial on systems with software-managed scratchpad memories. In this section, we first demon-

strate our programming model using running examples. We then describe a naïve implementation

of a work-stealing runtime on the HammerBlade manycore.
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1 template <typename Func>
2 class FibTask : public Task {
3 public:
4 FibTask( int n_, int* sum_, Task* parent_) :
5 n( n_ ), sum( sum_ ), parent( parent_ );
6

7 Task* execute() {
8 if ( n < 2 ) {
9 *sum = n;

10 return;
11 }
12

13 int x, y;
14 FibTask a( n - 1, &x, this );
15 FibTask b( n - 2, &y, this );
16 this->set_ready_count( 1 );
17

18 task::spawn(b);
19 a.execute();
20

21 task::wait();
22 *sum = x + y;
23 return nullptr;
24 }
25 private:
26 int n;
27 int* sum;
28 Task* parent;
29 };

(a) fib using spawn and wait

1 class Task {
2 public:
3 Task();
4 virtual Task* execute();
5 void set_ready_count(
6 int ready_count );
7 private:
8 int ready_count;
9 };

(b) Task base class

1 int fib( int n ) {
2 if ( n < 2 ) {
3 return n;
4 }
5 int x, y;
6 parallel_invoke(
7 [&]{ x = fib( n - 1 ); },
8 [&]{ y = fib( n - 2 ); }
9 );

10 return x + y;
11 }

(c) fib using parallel_invoke

1 void vvadd( int a[], int b[],
2 int dst[], int n ) {
3 parallel_for( 0, n,
4 [&]( int i ) {
5 dst[i] = a[i] + b[i];
6 });
7 }

(d) vvadd using parallel_for

1 void sum( int a[], int n ) {
2 int ident = 0;
3 parallel_reduce(0, n, ident,
4 [&](int i) {
5 return a[i];
6 },
7 [](int x, int y) {
8 return x + y;
9 });

10 }

(e) sum using parallel_reduce

Figure 5.1: Task-Based Parallel Programs – Examples for calculating the Fibonacci number using (a) a low-level
API with explicit calls to spawn and wait; and (c) a high-level API with templated parallel_invoke pattern.
(b) shows the Task based class in which the FibTask class inherits from in (a). (d) and (e) show alternative templated
patterns parallel_for and parallel_reduce respectively.
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1 template <typename RangeT, typename BodyT>
2 class ParallelForTask : public Task {
3 public:
4 ParallelForTask( const RangeT& range, const BodyT& body )
5 : m_range( range ), m_body( body )
6 {
7 }
8

9 Task* execute()
10 {
11 if ( m_range.divisible() ) {
12 RangeT new_range = m_range.split();
13 Task join_point( 2 );
14

15 ParallelForTask<RangeT, BodyT> right_half( new_range, m_body );
16 right_half.set_successor( &join_point );
17

18 // spawn the right half
19 spawn( &right_half );
20

21 // execute the left half directly
22 execute();
23

24 wait( &join_point );
25 }
26 else {
27 m_body( m_range );
28 }
29 return nullptr;
30 }
31

32 private:
33 RangeT m_range;
34 BodyT m_body;
35 };

Figure 5.2: Implementation of parallel_for

5.2.1 Running Example

We use an application programming interface (API) similar to Intel TBB to illustrate our

programming model (see Figure 5.1). Each task is described by a C++ class derived from the

Task base class (Figure 5.1 (b)) which contains a execute() method and a metadata variable

ready_count, also known as the reference counter. This metadata tracks a task’s unfinished child

tasks. After a task finished execution, it checks if it has a parent task. If so, the child will decre-

ment the ready_count variable of its parent task to signal its completion. A task in wait will

be blocked until its ready_count reaches 0 (i.e., all children have completed their execution).
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1 template <typename RangeT, typename BodyT>
2 class ParallelReduceTask : public Task {
3 public:
4 ParallelReduceTask( const RangeT& range, const BodyT& body )
5 : m_range( range ), m_body( body )
6 {
7 }
8

9 ParallelReduceTask<RangeT, BodyT> split()
10 {
11 return ParallelReduceTask<RangeT, BodyT>( m_range.split(),
12 m_body.split() );
13 }
14

15 Task* execute()
16 {
17 if ( m_range.divisible() ) {
18 Task join_point( 2 );
19 auto right_half = this->split();
20

21 right_half.set_successor( &join_point );
22

23 // spawn the right half
24 spawn( &right_half );
25

26 // execute the left half directly
27 execute();
28

29 wait( &join_point );
30

31 // reduce
32 m_body.reduce( right_half.m_body );
33 }
34 else {
35 m_body( m_range );
36 }
37 return nullptr;
38 }
39

40 BodyT get_body() const { return m_body; }
41

42 private:
43 RangeT m_range;
44 BodyT m_body;
45 };

Figure 5.3: Implementation of parallel_reduce
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This mechanism enforces the ordering between parent and child tasks: a task can not complete

until all of its children complete and join it (see Section 5.1). Programmers overwrite the virtual

execute() function to hold the logic of the concrete task. In this example (Figure 5.1 (a)), af-

ter creating two child tasks a and b, one for fib(n-1) and one for fib(n-2), the parent task

(i.e., fib(n)) puts fib(n-2) onto the task queue and executes fib(n-1) locally, before calling

wait(), which blocks its execution until task fib(n-2) returns. The parent task then calculates

fib(n) by adding the partial results from both tasks and returns. Besides low-level APIs we have

shown above, our framework also provides templated functions that support various parallel pat-

terns. This includes parallel_invoke for divide-and-conquer (Figure 5.1 (c)), parallel_for

for parallel loops (Figure 5.1 (d)), and parallel_reduce for parallel reduction (Figure 5.1 (e)).

Figure 5.2 and Figure 5.3 illustrates how these high level templated functions are implemented

with spawn and wait.

5.2.2 A Naïve Work-Stealing Runtime

The key challenge of implementing a work-stealing runtime on a system like HammerBlade is

to cope with the lack of data coherence mechanisms. Typical work-stealing runtimes are built upon

various shared data structures (e.g., task queues and reference counters). Where to allocate them

and how to keep them coherent is the key question to ask. While possible if carefully implemented,

programmers usually avoid keeping copies of shared data in software-managed scratchpads. In-

stead, they tend to allocate them in the last shared level of the memory hierarchy. While doing so

yields longer memory latency for accessing these shared data, keeping multiple copies of scratch-

pad allocated data coherent is an even worse nightmare that only a few, if not none, highly experi-

enced programmers are willing to face. By allocating all data in the shared memory space, we can

easily implement a naïve work-stealing runtime that runs on the HammerBlade manycore architec-

ture. Namely, the runtime does not utilize the scratchpads at all: all data live in the DRAM address

space (recall that HammerBlade adopts a PGAS memory model, and DRAM has an address space

that is separated from the scratchpads).

Figure 5.4 (a) shows an implementation of the spawn and wait functions for this naïve work-

stealing runtime. spawn enqueues a task pointer onto the current thread’s task queue, and wait

puts the current thread into a scheduling loop. Within the scheduling loop, a thread first check

if all of its child tasks have returned (i.e., ready_count has a non-zero value). If so, the thread
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exits from the scheduling loop and resume the execution of the parent task (line 8). Otherwise,

the thread first attempts to pop a task from the end of its own task queue (i.e., LIFO order, lines

9–15). If there is no task left in the local queue, the current thread becomes a thief and attempts

to steal tasks queue of another thread, the victim, from the head (i.e., FIFO order, lines 17–24).

The victim is selected randomly (line 17). When a task is executed, its parent’s reference counter

is atomically decremented (lines 14 and 23). Readers familiar with Intel TBB-like work-stealing

runtimes may notice that this implementation is very similar to the implementation on traditional

hardware coherent multi-cores. On hardware coherent multi-cores, hardware cache coherence

protocols keep multiple copies of shared data coherent. On HammerBlade, as all data is allocated

in DRAM, there is exactly one copy of every shared data. All cores access the same copy. Note

that the atomics used for reference counter decrements have release semantics associated. This is

necessary to ensure that writes by child tasks are performed before the parent task can exit from

the scheduling loop (i.e., reference counter reaches 0).

5.3 Scratchpad Enhanced Runtime

Prior work has shown that leveraging the scratchpad memory is critical to achieving peak per-

formance on manycore architectures [CPZ+22]. However, scratchpad memories are often under-

utilized due to the high demand they put on programmers, in addition to the fact that not every

workload is able to benefit from leveraging them (e.g., streaming workloads that do not have any

reuse of input data). The naïve work-stealing runtime we introduced in Section 5.2 allocates all

data, including both the stack and runtime data structures such as the task queues, in DRAM. While

this naïve implementation yields a functionally correct work-stealing runtime, it is likely to have

suboptimal performance due to high memory latency and contention at the LLC for applications

that have frequent stack operations, task queue operations, or both. Instead of leaving the scratch-

pad memories unused, we introduce three optimizations which enable work-stealing runtimes to

efficiently leverage scratchpads if they are not claimed by programmers. To the best of our knowl-

edge, this is the first work that describes the implementation of a work-stealing framework which

automatically utilizes scratchpad memories on manycore architectures.

Before the runtime can safely claim scratchpad space for its own, it has to know how much

scratchpad space is reserved by programmers for user code. Reserving scratchpad space on Ham-
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merBlade is realized through two APIs: (1) spm_reserve() and (2) spm_malloc(). spm_reserve()

sets the maximum amount of scratchpad memory a core will use throughout execution. Program-

mers cannot reserve more space than what is available in the hardware (i.e., 4 KB). spm_malloc()

returns a pointer to a chunk of memory allocated in the scratchpad. If the total amount of memory

allocated/requested through spm_malloc() is larger than the amount set by spm_reserve(), it

reports a failure by returning a null pointer. Our work-stealing runtime allocates a buffer at the

top of the scratchpad as requested by the user, and automatically uses the scratchpad space that is

not claimed by the user for both the stack and the task queue. By default, our runtime split the

available space by reserving 512 B space for the task queue and the rest of space available to it

for the task. However, we also provide APIs to allow experienced programmers to fine tune the

runtime usage of the scratchpad. For example, the programmer can instruct the runtime to only

scratchpad allocate the stack but not the task queue.

5.3.1 Scratchpad-Allocated Stack

Allocating stack in scratchpad memories has been mentioned and explored by various prior

works in the literature [CPZ+22]. However, there are two main concerns on doing the same in the

context of a work-stealing runtime: (1) user data can become shared variables; and (2) the stack

can easily overflow the size of the scratchpad (e.g., recursively called runtime functions such as

wait() and divide-and-conquer algorithms with deep recursion depth).

Data in the user code (e.g., y in line 14 of Figure 5.1 (a)) are potential shared variables and

can be accessed by more than one core if the corresponding task b in line 16 is stolen. How-

ever, this is not an issue for manycore architectures which adopt the PGAS memory model (e.g.,

HammerBlade). The PGAS memory model allows every core to read and write any other core’s

scratchpad, and it enables us to keep a unique copy of data in a core’s scratchpad. For example,

assume y mentioned above is allocated in core_0’s scratchpad, and the corresponding task (i.e., b)

is stolen by core_1. When core_1 accesses y through the address taken at line 16 when creating

the task, it performs a direct remote scratchpad access. The y in the scratchpad of the parent task’s

core remains as the only copy of y. The fully-strict properties of dynamic task parallelism (see

Section 5.1) guarantees that reads and writes by core_0 and core_1 to y will not result in any

data-race.
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1 void task::spawn( task* t ) {
2 tq[tid].lock_aq()
3 tq[tid].enq(t)
4 tq[tid].lock_rl()
5 }
6

7 void task::wait( task* p ) {
8 while ( p->rc > 0 ) {
9 tq[tid].lock_aq()

10 task* t = tq[tid].deq()
11 tq[tid].lock_rl()
12 if (t) {
13 t->execute()
14 amo_sub_lr( t->p->rc, 1 )
15 }
16 else {
17 int vid = choose_victim()
18 tq[vid].lock_aq()
19 t = tq[vid].steal()
20 tq[vid].lock_rl()
21 if (t) {
22 t->execute()
23 amo_sub_lr( t->p->rc, 1 )
24 }
25 }
26 }
27 }

(a) Runtime Data in DRAM

1 void task::spawn( task* t ) {
2 spm_lock.lock_aq()
3 spm_tq.enq(t)
4 spm_lock.lock_rl()
5 }
6

7 void task::wait( task* p ) {
8 while ( p->rc > 0 ) {
9 spm_lock.lock_aq()

10 task* t = spm_tq.deq()
11 spm_lock.lock_rl()
12 if (t) {
13 t->execute()
14 amo_sub_lr( t->p->rc, 1 )
15 }
16 else {
17 int vid = choose_victim()
18 TaskQ* remote_tq =
19 get_remote_ptr(vid, &spm_tq)
20 QLock* remote_lock =
21 get_remote_ptr(vid, &spm_lock)
22 remote_lock->lock_aq()
23 t = remote_tq->steal()
24 remote_lock->lock_rl()
25 if (t) {
26 t->execute()
27 amo_sub_lr( t->p->rc, 1 )
28 }
29 }
30 }
31 }

(B) Runtime Data in Scratchpad

Figure 5.4: Work-Stealing Runtime Implementations – Pseudo-code of spawn and wait functions for: (a) having
runtime data in DRAM; and (b) having runtime data in scratchpads. tq = array of task queues; tid = thread id;
lock_aq = acquire lock; lock_lr = release lock; rc = ready count; deq = dequeue from the tail of the task queue;
enq = enqueue to the tail of the task queue; steal = dequeue from the head of the task queue; choose_victim
= random victim selection; amo_sub_lr atomic fetch-and-sub with release semantics; spm_lock = task queue lock
allocated in scratchpad; spm_tq = task queue allocated in scratchpad; get_remote_pointer = calculate the address
of a piece of data in another core’s scratchpad.
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Core Core Core

...
SPM SPM SPM

Shared DRAM

Heap Heap Heap

...
Overflow

Stack
Overflow

Stack
Overflow

Stack

Static Data Static Data Static Data
Lock Lock Lock

Task Queue Task Queue Task Queue
RO Data RO Data RO Data

Stack Stack Stack
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Figure 5.5: Four implementations work stealing – (a) shows a naïve implementation in which stack and tasks
queues are allocated in DRAM. (b) shows optimized stack placement relocated to SPM. (c) places the task queues in
SPM while leaving the stack in DRAM. (d) applies both optimzations.
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Manycore architectures like HammerBlade usually have limited per core scratchpad space (e.g.,

each core in HammerBlade has a 4KB scratchpad memory). Applications running recursive algo-

rithms (e.g., divide-and-conquer) can easily create deep call stacks, which cannot fit in the scratch-

pad memory. When the stack does not fit, ideally we would like to keep the active and more recent

frames (i.e., top frames) in scratchpad memory, since these frames are more likely to be accessed

than older ones. To achieve this, one can either put the base of the stack in DRAM, and only start

allocating in the scratchpad when the stack reaches a certain depth, or one can spill the older stack

frames to DRAM when the scratchpad becomes full. However, both approaches have their caveats:

starting in DRAM requires determining an ideal switching depth which can vary from workload to

workload, while stack spilling cannot be realized without implementing complex hardware/soft-

ware mechanisms. In this chapter, we opt for a simpler but less ideal solution: rather than keeping

the top frames in scratchpads, we keep the bottom frames. When the stack overflows available

SPM space, it automatically goes to DRAM, and we refer to this as overflowing to DRAM. While

overflowing does happen, it only happens in applications with deep recursion depth. We optimize

for the common case in which the stack can fit in scratchpads.

We leveraged a software/hardware co-design approach and extended each core with a light-

weight hardware extension that snoops on the stack pointer register. We added two new control

and status registers (CSRs): one for storing the DRAM overflow threshold (i.e., lowest address

of the stack space in scratchpad), and the other for storing the pointer to DRAM overflow buffer.

When a new frame is pushed onto the stack and the stack pointer is modified, we check if the stack

is overflowed (i.e., new stack pointer has become smaller than the DRAM overflow threshold). If

so, we replace the stack pointer with the pointer to the core’s DRAM overflow buffer and allocating

the new frame in DRAM. Similar checks and replacements are performed when a frame is popped

off the stack. By default, the runtime allocates a 256 KB stack space for each core to enable deep

recursion calls that can produce many stack frames. As we have mentioned before, the runtime

calculates available stack space using the info given by programmers through spm_reserve(). It

then allocates a buffer with proper size for each core in DRAM, and writes both the pointer of the

DRAM allocated buffer and overflow threshold address to corresponding CSRs.

Although we chose to implement overflowing to DRAM on HammerBlade with a software/hard-

ware co-design approach, the same functionality can also be easily implemented in software with

modifications to the compiler on other manycore architectures where making hardware changes is
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not feasible. Namely, we can change the compiler to insert instructions to check if the newly cre-

ated stack fits in the scratchpad. If not, a pointer rewrite scheme can redirect the new stack pointer

to the overflow buffer in DRAM. While the software solution involves adding extra instructions

comparing to our software/hardware co-design approach, this check is light-weighted and the fast

path (i.e., frames other than the frame that crosses the boundary) contains only two instructions: a

load instruction for loading the overflow threshold address and a conditional jump which compares

the stack pointer with the threshold address. The threshold address can and should be allocated in

the scratchpad for low overhead access.

5.3.2 Scratchpad-Allocated Task Queue

A common goal of various parallel programming frameworks is to reduce the overhead of their

runtimes. Our framework is not an exception. In the naïve runtime implementation, all runtime

data structures, including the core local task queues, are allocated in the DRAM. Applications that

have fine-grained tasks tend to induce frequent task queue operations as they generate more tasks

than coarse-grained ones. For these applications, being able to operate the core local task queue

efficiently is key to achieve high performance. The core local scratchpad has a 2-cycle access

latency where the DRAM has an access latency of tens of cycles. Therefore, instead of going

to DRAM for runtime data, we would like to keep them in the scratchpad memories for faster

accesses.

Similar to what we have mentioned in Section 5.3.1, data coherence is not an issue as we keep

only one copy of data and perform remote scratchpad accesses if the data is located in another

core’s scratchpad memory. However, unlike the user data which a pointer to it is passed around,

a core must know the exact location of another core’s task queue to conduct stealing without

first accessing a DRAM allocated centralized data structures, such as the array of pointers to task

queues (i.e., tg[] in Figure 5.4 (a)). Having such a DRAM allocated data structure diminishes the

benefit of keeping stealing traffic away from DRAM. To achieve this, we reserve, by default, the

top 512 B of the scratchpad for the core local task queue. The task queue is allocated at a fixed

offset from the scratchpad base pointer across all cores. Therefore, if we have a pointer to the local

task queue, we can easily calculate the pointer of the task queue of any other cores. Figure 5.4 (b)

shows an implementation of spawn and wait for our runtime which has both the stack and runtime

data structures in the scratchpad memories. The first noticeable difference is instead of loading the
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Figure 5.6: Normalized Remote Scratchpad Load Latency – Remote scratchpad load latency of 128 cores arranged
in 16 rows and 8 columns, normalized to the core which has the highest latency.
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Figure 5.7: Performance Impact of Read-Only Data Duplication – Execution time of six parallel kernels (K1 to
K6) in one iteration of PageRank with and without read-only data duplication optimization.

victim’s queue from an array (line 18 in Figure 5.4 (a)), we calculate the address of victim’s queue

using the address of the local queue (lines 18–19 in Figure 5.4 (b)). We also separate the spin lock

protecting the task queue from the queue itself (lines 2–4 in Figure 5.4 (b)). Doing so allows us

to directly calculate the address of the remote spin lock (lines 20–21 in Figure 5.4 (b)): we do not

need the remote scratchpad access for loading the pointer of the lock as in the case where the lock

is a member of the task queue.

5.3.3 Read-Only Data Duplication

After implementing the two optimizations described above, profiling data collected from the

one of the apps (i.e., Ligra-PR) shows an unexpected pattern. Figure 5.6 shows a heat map of

normalized remote scratchpad access latency measured on each core in the 16×8 mesh. From the

plot we can observe a clear pattern: cores that locate farther away from core_0 (upper left corner)

generally have longer remote scratchpad access latency. Note that, the distance in Y-direction has
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a more significant impact than the distance in X-direction. This is because HammerBlade adopts

X-Y routing and when all other cores trying accessing core_0, the bandwidth in Y-direction is

much scarcer. The difference of latency within the same row is caused by the network topology of

the 2-D mesh-with-ruching OCN [JDZ+20]. Our work-stealing runtime selects victims randomly,

and thus we expect cores read and write their peer core’s scratchpads uniformly and there should

not be any hot spots.

A closer look at the profiling data revealed the causes: (1) when we implement the high-level

templated functions (e.g., paralell_for), we keep a pointer to the user defined lambda function in

the customized task class; and (2) in the user code, we write the lambda functions using & to capture

values, including read-only values (e.g., pointers dst in line 5 of Figure 5.1 (d)), by references. On

systems with hardware-base or software-centric coherence, these read-only data can be cached and

reused. However, in our case, these values are all allocated on the scratchpad of core_0, and other

cores repeatedly load from core_0. This traffic to core_0 causes congestion in the OCN and long

access latency. We resolve this issue by changing both the runtime and user code to duplicate read-

only data that is allocated in the scratchpad (e.g., capture dst in Figure 5.1 (d) by value). We show

the performance impact of the read-only data duplication optimization on PageRank in Figure 5.7.

Each iteration of PageRank is composed of six parallel kernels. The proposed optimization is able

to reduce execution time of all but one kernel, and achieve an overall speedup of 1.57×. Read-only

data duplication applies to the case where the stack is DRAM allocated as well. It helps eliminate

the hot spot in LLC in a similar manner as it eliminates the hot spot in core_0’s SPM. We enable

this optimization for all work-stealing runtime configurations.

5.3.4 Micro-Benchmarking

We use Fib, a widely adopted micro-benchmark for demonstrating work-stealing runtimes in

the literature, to illustrate the benefits of having the runtime leveraging the scratchpads. Figure 5.8

shows its implementation, and Section 5.4.1 provides details on the simulated hardware. Fib is

known for generating significant amount of tasks that contain only minimal amount of compute. It

yields both frequent stack operations (both runtime function calls and user-defined functor calls)

and frequent task queue operations. We evaluate Fib on four variants of the runtime: both stack

and task queue in DRAM which is the naïve implementation we introduced in Section 5.2, stack in

DRAM and task queue in scratchpad, stack in scratchpad and task queue in DRAM, and both stack
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1 int32_t fib_base(int32_t n) {
2 if (n < 2)
3 return n;
4 else
5 return fib_base(n-1) + fib_base(n-2);
6 }
7

8 int32_t fib(int32_t n, int32_t gsize = 2) {
9 if (n <= gsize) {

10 return fib_base(n);
11 }
12

13 int32_t x, y;
14

15 parallel_invoke(
16 [&] { x = fib(n-1, gsize); },
17 [&] { y = fib(n-2, gsize); }
18 );
19

20 return x + y;
21 }
22

23 extern "C" __attribute__ ((noinline))
24 int kernel_fib(int* results, int n, int grain_size) {
25

26 // output
27 int32_t result = -1;
28

29 // --------------------- kernel ------------------------
30 runtime_init();
31

32 sync();
33

34 if (__core_id == 0) {
35 result = fib(n, grain_size);
36 results[0] = result;
37 } else {
38 worker_thread_init();
39 }
40 runtime_end();
41 // --------------------- end of kernel -----------------
42

43 sync();
44 return 0;
45 }

Figure 5.8: Fib Micro-Benchmark
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Figure 5.9: Speedup from Optimizing Data-Placement with SPM in Work-Stealing Runtime – Fib = measured
speedups with the proposed SW/HW co-design scheme; Fib-S = estimated speedups with the 2-instruction SW-only
scheme.

and task queue in scratchpad. Figure 5.5 illustrates the four variants and results are summarized in

Figure 5.9. From the plot we can observe that, as we expected, the naïve runtime implementation

has the worst performance. As we add optimizations and migrate either the stack or the task

queue to scratchpad memories, we observe improved performance due to reduced access latency.

Compared with task queue in SPM, stack in SPM shows better performance and it illustrates that

having low latency access to the stack is more important for Fib. This is caused by: (1) the

task queue is protected by a spin lock and the time spent on getting the lock, instead of accessing

the task queue itself, dominates the execution time of pushing/popping task queues; and (2) stack

operations (e.g., register spilling and saving/restoring saved registers) generate more traffic than

task queue operations. Best performance is achieved when both optimizations are applied (i.e.,

both task queue and stack in SPM).

We also provide a first-order estimation on the impact of implementing the stack overflowing

technique with the 2-instruction scheme in software (Section 5.3.1) by adding an additional 2-

cycle delay to each jal and ret instructions. Results are illustrated in Figure 5.9 as Fib-S. We can

observe that both configurations which have stack in SPM achieve less performance improvement

for Fib-S than for Fib due to the overhead added by the extra instructions. However, both variants

still perform significantly better than the naïve implementation. Note that Fib is close to the worst

case for the potential software overflowing scheme, as it yields extensive amount of tasks and does

little compute and thus frequent stack frame pushing/popping with short-living task body. In more
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Static Runtime Work-Stealing Runtime

DRAM Stack SPM Stack DRAM Stack DRAM Stack SPM Stack SPM Stack
DRAM Queue SPM Queue DRAM Queue SPM Queue

Cat Name PM Input DI(M) C(K) DI(M) C(K) DI(M) C(K) DI(M) C(K) DI(M) C(K) DI(M) C(K)

SB MatMul pf 256 37 543 37 512 38 527 39 556 39 573 38 509
512 289 6914 289 6579 293 5049 295 5333 294 5321 297 5260

SU PageRank npf g14k16 11 1586 11 1685 23 1649 24 1451 23 1425 25 1343
email 11 5679 11 5384 27 1786 29 1638 24 1471 28 1358
c-58 15 5136 15 5136 32 2257 40 2257 33 2044 38 1961

SU BFS npf g14k16 3 1114 3 1062 22 1149 27 1102 21 914 26 871
bundle1 6 1988 6 2065 30 1881 40 1892 29 1604 39 1561
c-58 7 1943 7 1881 27 1852 35 1806 26 1495 33 1440

SU SpMV pf bundle1 4 1483 4 1476 6 1005 7 995 6 1007 8 978
email 2 4144 2 4129 95 4046 132 3820 87 3657 142 4060
c-58 3 3442 3 3444 10 1047 14 1012 11 1019 15 1009

SU SpMatrix pf bundle1 42 50850 42 50718 183 12877 281 13409 189 12911 279 12992
Transpose email 22 47310 22 47343 1112 45864 1569 44351 1112 45456 1622 45391

c-58 24 16570 24 16655 91 7568 123 7325 89 7222 129 7177

DB Matrix ss 512 – – – – 3 496 3 502 3 416 3 421
Transpose 1024 – – – – 8 2238 9 2240 8 2031 8 1969

DU CilkSort ss 16384 – – – – 7 304 9 279 6 264 8 253
131072 – – – – 30 1799 31 1658 29 1305 32 1264

DU NQueens npf 8 4 1094 4 513 8 545 9 546 8 140 8 151
9 19 5371 19 2522 36 2478 37 2508 37 910 37 1026
10 100 24820 100 11691 177 11089 182 11381 181 6695 181 7367

DU UTS npf small-t1 11 90684 11 90228 53 3266 71 3236 55 3280 71 3156
small-t3 13 127199 13 126594 468 21028 663 21209 480 20878 680 20770

Table 5.1: Simulated Workloads – Cat = workload category; SB = static-balanced; SU = static-unbalanced; DB =
dynamic-balanced; DU = dynamic-unbalanced; PM = parallelization methods; pf = parallel_for, npf = nested or
recursive parallel_for and ss = recursive spawn and sync; Input = input dataset; DI = dynamic instruction count in
millions; C = simulated cycles in thousands;

realistic workloads, we expect the overhead of the potential software overflowing scheme to be

much less significant.

5.4 Evaluation Methodology

In this section, we describe our RTL-level cycle-accurate performance modeling methodology.

We used this to quantitatively evaluate the proposed work-stealing runtime. We also give a brief

introduction on the workloads we used in the evaluation.
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5.4.1 Simulated Hardware

We model the HammerBlade manycore architecture using cycle-accurate RTL simulation. We

leverage an RTL simulator (e.g., Verilator2) to model a silicon-validated small-scale early version

of the HammerBlade manycore system running at 1.5 GHz with 16 columns and 8 rows (i.e.,

128-cores in total). The RTL of this design has been validated in silicon. The DRAM timing is

modeled with the timing-accurate open-source DRAMSim3 simulator [LYR+20]. We model a sin-

gle 1.0 GHz HBM2 channel with a bus width of 64 and a burst length of 4, yielding a theoretical

peak bandwidth of 16 GB/s. Performance counters are implemented with nonsynthesizable Sys-

temVerilog bind statements. This allows us to conduct performance analysis without introducing

any overhead to the workloads or modifying the digital logic design. See Section 2.3 for more

details. We also made small changes to the load-store unit (LSU) of HammerBlade cores. The

upstream LSU sends a request to the OCN when accessing a remote pointer that actually points to

a piece of data on the core’s own scratchpad and incurs a longer-than-necessary access latency in

this case. We changed the LSU so that such accesses are handled directly by the core’s scratchpad.

5.4.2 Runtimes

We conduct evaluation on both a traditional static runtime which supports only statically sched-

uled parallel loops and the proposed work-stealing runtime. We implement two variants of the

static runtime, one variant has stacks allocated in DRAM and the other has stacks allocated in the

SPM. We evaluate all four variants of the work-stealing runtime as in Section 5.3.4.

5.4.3 Workloads

We use a group of nine workloads to evaluate our proposed parallel programming framework,

and the applications are summarized in Table 5.1. We select workloads with varied paralleliza-

tion methods. MatMul, SpMV, and SpMatrixTranspose are dense matrix multiplication, sparse

matrix dense vector multiplication, and sparse matrix transpose, respectively. All there work-

loads are implemented in-house and leverage a single parallel loop. PageRank and BFS imple-

ment pull-based PageRank and pull/push hybrid breadth-first search with the Ligra graph process-

ing framework [SB13]. Both mainly use a pair of nested parallel loops: The outer loop iterates
2https://www.veripool.org/verilator/
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1 void uts_v3_kernel( Node* parent, bool init = false )
2 {
3 // Calculate how many children this node should have
4

5 int numChildren, childType;
6

7 numChildren = uts_numChildren( parent );
8 childType = uts_childType( parent );
9

10 // Record number of children in parent
11 parent->numChildren = numChildren;
12

13 // Construct children and push them onto stack
14 int parentHeight = parent->height;
15

16 if ( numChildren > 0 ) {
17

18 // Give a SHA-1 hash to each child
19

20 // Define all nodes, args, tasks on the stack to avoid dynamic
21 // memory management complexity. Need to put all definitions up here
22 // so that they stay in scope. This function is parallelized with
23 // run() and run_and_wait(). After run_and_wait() finishes, these
24 // definitions go out of scope and are automatically cleaned up.
25

26 // Node creation
27 for ( int i = 0; i < numChildren; i++ ) {
28 bsg_print_int(i);
29 Node* child = (Node*)malloc( sizeof(Node) );
30 initNode( child );
31 child->height = parentHeight + 1;
32 child->type = childType;
33

34 for ( int j = 0; j < computeGranularity; j++ ) {
35 // computeGranularity controls number of rng_spawn calls per node
36 rng_spawn( parent->state.state, child->state.state, i );
37 }
38 }
39

40 // Process all children
41 parallel_for( 0, numChildren, [&]( int i ) {
42 uts_v3_kernel( &all_children[i] );
43 } );
44 }
45

46 // No children
47 return;
48 }

Figure 5.10: UTS Benchmark
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Figure 5.11: Anatomy of Workloads – We categorize workloads into four categories based on if he workload lever-
ages dynamic parallelism and if the tasks have load imbalance

over vertices in the active vertex set while the inner loop iterates over a particular vertex’s neigh-

bors. Both MatrixTranspose and CilkSort mainly use recursive spawn-and-sync parallelization

(i.e, parallel_invoke). MatrixTranspose is dense matrix transpose and CilkSort performs paral-

lel mergesort. Both do not have static baseline implementations as spawn-and-sync parallelization

starts with a single task. Without a dynamic runtime, their execution is serialized on a single core.

NQueens uses backtracking to solve the N-queens problem. It is parallelized over the potential po-

sitions of the next queen to be placed on the board and contains recursive parallel loops. UTS is the

Unbalanced Tree Search benchmark introduced by Olivier et al. [OHL+06], which contains recur-

sive parallel loops to enumerate an unbalanced tree (see Figure 5.10. Among these nine workloads,

only MatMul, which allocates a 3 KB buffer, utilizes SPM in user code. We characterize these

nine workloads into four categories (i.e., static-balanced, static-unbalanced, dynamic-balanced,

and dynamic-unbalanced) by two metrics: (1) if the workload leverages dynamic parallelism; and

(2) if the tasks have load imbalance (see Figure 5.11).

5.5 Results

Table 5.1 summarizes the cycles and dynamic instruction counts of simulated configurations.

Figure 5.12 shows speedup of workloads over a static runtime with stack in SPM. We plot Matrix-

Transpose and CilkSort separately in Figure 5.13, as they do not have static baselines. Comparing

the left-most two bars in Figure 5.12, we can see that in the context of the static runtime, allocating

the stack in SPM does not provide significant improvement over allocating the stack in DRAM,

except in the case of NQueens. Workloads other than NQueens do not have frequent stack oper-
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Figure 5.12: Speedup over Static Baseline with Stack in SPM – PR = PageRank, NQ = NQueens, SpMT = Sp-
MatrixTranspose. The work-stealing runtime provides a speedup between 1.2 - 28× and a slowdown of no more than
10%. Applying data-placement optimizations to leverage the SPM provides an additional benefit of as much as 25%
and compensates for any slowdown observed from work-stealing overhead.
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Figure 5.13: Performance of CilkSort and MatrixTranspose – Normalized to having both stack and task queue in
SPM; MatTrans = MatrixTranspose. Note that the X-axis starts at 0.5.

ations when running with the static runtime, and thus leaving the stack in DRAM does not incur

significant overheads. NQueens has heavy reads and writes to the stack as it frequently copies

stack allocated arrays. Allocating the stack in DRAM leads to severe performance degradation.

Comparing static scheduler with stack in SPM with our baseline work-stealing runtime which

has both the stack and the task queue in DRAM, we can observe that we either only incur mini-

mal overheads over a traditional static runtime (e.g., in the cases of MatMul-256 and NQueens-8)

or achieve non-trivial performance improvement (e.g., PR-email and UTS-t1 are able to achieve

3× and 25× better performance, respectively). This demonstrates the benefit of running irregular

workloads with a work-stealing runtime on manycores. As expected, PageRank, SpMV, and SpMa-

trixTranspose show input dependent behavior and achieves different speedup on different inputs

(e.g., PageRank shows only moderate speedup on the synthetic graph g14k16, but achieves 3×
speedup on real-world graph email). MatMul with 512×512 input matrices shows an unexpected

25% performance improvement over the static baseline. This is because while there is no inherent

load imbalance in our tiled implementation, cores experience non-uniform memory latency due to

their locations in the 2-D mesh OCN. Dynamic load-balancing helped mitigate this difference and

scheduled more compute to cores with lower memory latency.

Different workloads benefit differently from our optimization techniques which leverages the

SPM space not claimed by the programmer. PageRank is able to benefit from both optimizations
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1 int ok(int n, char *a) {
2 int i, j;
3 int p, q;
4 for (i = 0; i < n; i++) {
5 p = a[i];
6 for (j = i + 1; j < n; j++) {
7 q = a[j];
8 if (q == p || q == p - (j - i) || q == p + (j - i))
9 return 0;

10 }
11 }
12 return 1;
13 }
14

15 void nqueens(int n, int j, char *a) {
16

17 if (n == j)
18 return;
19

20 /* try each possible position for queen <j> */
21 parallel_for( 0, n, 1, [&]( int i ) {
22 char b[j+1];
23 for ( int k = 0; k < j; k++ ) {
24 b[k] = a[k];
25 }
26 b[j] = i;
27 if ( ok(j + 1, b) ) {
28 nqueens(n, j + 1, b);
29 }
30 } );
31 }
32

33 extern "C" __attribute__ ((noinline))
34 int kernel_nqueens(int n) {
35 // --------------------- kernel ------------------------
36 runtime_init(dram_buffer);
37 sync();
38

39 if (__bsg_id == 0) {
40 char a[n];
41 nqueens(n, 0, a);
42 } else {
43 worker_thread_init();
44 }
45 runtime_end();
46 // --------------------- end of kernel -----------------
47

48 sync();
49 return 0;
50 }

Figure 5.14: NQueens Benchmark – NQueens involves frequent stack reads and writes as it allocates temporary
buffers in the stack (i.e., lines 22–25)

88



and achieves best performance when both the stack and the task queue are in SPM. BFS can only

outperform the static baseline with optimizations enabled, and SPM-allocated stack has a higher

impact on BFS than SPM-allocated task queue. NQueens utilizes the stack heavily and achieves the

best performance when the SPM is reserved solely for the stack (see Figure 5.14). In this configura-

tion, fewer stack frames are overflowed to DRAM. We also observe that as the input size increases

from 8 to 10, more moderate speedup is achieved by our work-stealing runtime compared to the

static baseline. This is because larger inputs incur deeper stack and with more stack frames over-

flow to DRAM, NQueens becomes more DRAM bandwidth bound. MatrixTranspose and CilkSort

are also able to benefit from having the stack in SPM (see Figure 5.13). SpMV, SpMatrixTrans-

pose, and UTS do not have either frequent stack or frequent task queue operations. Moreover, both

SpMV and SpMatrixTranspose are already DRAM bandwidth bounded. Extra traffic to DRAM

incurred by allocating both stack and task queue in DRAM has only insignificant impact. As a

result, our optimizations do not yield better performance.

Across all workloads, we observe an increment in the number of dynamic instructions on work-

stealing runtimes v.s. on static runtimes (see Table 5.1). This is expected as it is well-known that

the work-stealing runtime adds overheads from various sources (e.g., task creation and scheduling),

especially when with very fine-grained tasks. We also observe an increment in the number of

dynamic instructions when SPM-allocated task queue optimization is enabled. This is because

with reduced task queue access latency, cores can perform stealing attempts faster and fail more

when there is no task to steal. These instructions are executed by idle cores that cannot find ready

tasks and they are not part of the critical path.

We also conduct a scalability study with five workloads: one workload from each workload cat-

egory and the Fib micro-benchmark we used in Section 5.3.4. Results are illustrated in Figure 5.15.

While being a micro-benchmark, Fib shows that our work-stealing runtime scales well and does

not incur significant overhead when scaled to 128 cores. MatMul also shows good scalability it has

high arithmetic intensity and only load from DRAM infrequently. PageRank and MatrixTranspose

are both memory intensive and their scalability is highly limited by memory bandwidth. NQueens

scales the best as with more cores, more stack allocated data can be kept in SPM.

To summarize, the proposed work-stealing runtime: (1) either improves performance of static-

balanced workloads by migrating tasks away from cores that have long memory latency or induces

only minimal overheads; (2) improves performance of irregular workloads which show input de-
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Figure 5.15: Scalability of Workloads – Inputs: Fib = 24; MatMul = 256; PageRank = g14k16; MatrixTranspose =
512; NQueens = 8. Data collected on work-stealing runtime with both task and task queue in SPM.

pendent behavior when there is input induced load imbalance; (3) efficiently supports dynamic-

balanced and dynamic-unbalanced workloads to achieve high performance, and (4) provides high

scalability. Our proposed optimization techniques which automatically leverage SPM are able to

improve performance of applications that have frequent stack and/or frequent task queue opera-

tions (i.e., NQueens, MatrixTranspose, PageRank, and BFS) and incur only minimal overheads on

workloads that cannot benefit from them.

5.6 Related Work

A number of prior work explored implementing work-stealing runtimes on manycore architec-

tures that provide software-centric cache coherence. Long et al. [LZF08] implemented a Cilk-like

runtime on a 64-core manycore architecture with a shared L2 cache and non-coherent private L1

caches. They attacked the shared data coherence issue by leveraging a bloom filter based hardware

mechanism, Coherence Vector, to identify memory locations that should not be cached in non-

coherent private L1 caches. The proposed runtime register all runtime-related shared data (e.g.,

task queues) into the Coherence Vector. For user data that may have parent-child dependency, they
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exploit the DAG-consistency [BFJ+96] and insert L1 invalidate and L1 write-back instructions

in the runtime. Similarly, Wang et al. [WTCB20] worked on a similar system (i.e., big.TINY)

also proposed to insert L1 cache invalidation and write-back instructions at proper locations in

their Cilk-like runtime. Unlike Long et al. who identifies runtime shared data as non-cacheable

locations, Wang et al. proposed to leverage the same self-invalidation and self-flush mechanism

for keeping runtime shared data coherent. For example, after locking a task queue, a core per-

forms a L1 cache invalidation to avoid reading stale data when accessing the task queue. After

push/popping the task queue, a core write dirty data in its L1 cache before releasing the lock on

the corresponding task queue. Doing so ensures the core’s changes to the task queue is visible

to other cores. To mitigate the frequent L1 cache invalidation and write-back induced by task

queue operations, Wang et al. proposed a hardware-based mechanism, direct task stealing, which

makes task queue a private data structure. Stealing is made possible by having the thief sending

a user-level interrupt to the victim. The victim then pops a task from its task queue on behalf of

the thief. Tagliavini et al. [TCM18] implemented an OpenMP runtime on a manycore architecture

that has non-coherent private L1 caches. Similar to both work mentioned above, the private L1

caches need to be self-invalidated and self-flushed at proper time to maintain coherence. Unlike

the two Cilk-like runtimes that have per thread task queues, their proposal leverages a centralized

task queue. All three work studies manycore architectures with software-centric cache coherence,

while our work targets architectures that have only software-managed scratchpads.

Zakkak et al. [ZP16] proposed an implementation of Java virtual machine for manycore ar-

chitectures with only software-managed scratchpads. However, their main focus is on managed

memory and synchronization primitives. For thread scheduling, they proposed to use work-dealing

instead of work-stealing among non-coherent components. Our work, to the best of our knowledge,

describes the first implementation of a Cilk-like work-stealing runtime for manycore architectures

with only software-managed scratchpads. Alvarez et al. [AMC+15] described a task-based paral-

lel runtime which can transparently leverage the scratchpad memories for holding input and output

data in a hybrid memory hierarchy. Prior work also studied work-stealing runtimes on PGAS or

distributed memory clusters, including [DLS+09, PCM+07, SKK+11]. Li et al. [LDCT10] stud-

ies efficient implementation of conditional division on manycore architectures. Unlike traditional

Cilk-like runtimes which splits a task until a predetermined task granularity is reached, condi-

tional division [PLT06] splits a task only if there is an idle core to accept the newly created child
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tasks. Their work focuses on improving the work scheduling efficiency on top of an existing

work-stealing runtime and is orthogonal to ours. Conditional division can be applied on top of

our proposed work-stealing runtime for improved scheduling efficiency and performance. Chen et

al. [CSBS18] and Margerm et al. [MSG+18] explored generating task parallel accelerators while

assuming coherent caches. Our work can be applied to support accelerators with SPMs.

5.7 Conclusion

This chapter demonstrated that, in opposite to conventional wisdom, a work-stealing runtime

is both viable and beneficial on manycore architectures with only software-managed scratchpad

memories. This chapter provides programmers a familiar programming model and interface for

efficiently developing new software and porting existing software on manycore architectures like

HammerBlade, and achieves significant performance improvements over traditional programming

models such as statically scheduled parallel loops (i.e., up to 3.94× speedup for workloads that

can be statically scheduled and up tp 28.5× speedup for workloads that leverage dynamic par-

allelism). This work is a small yet important step towards solving the manycore architecture

programmability challenge. While the work-stealing runtime is evaluated on the HammerBlade

manycore architecture, the general idea is applicable to other PGAS manycore architectures that

have software-managed scratchpad memories.
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CHAPTER 6
CONCLUSION

Technology constraints continue to drive computer architects to increase parallelism. Many-

core processors have been increasingly popular in modern computing platforms. However, while

thread-parallel focused manycore architectures have been proposed and fabricated both in academia

and in industry since early 2000s, their audience is still limited to a small group of experts who

have deep understanding of both the workload and the underlying manycore hardware after nearly

two decades of research and development. This is mainly due to their low-level programming in-

terfaces, their unfamiliar programming model, and their need for software optimization to realize

the promised high performance. A key research challenge remains: how to facilitate programming

on such architectures. As the manycore architectures keep scaling up their core counts and start

adopting software-managed scratchpad memories, this manycore architecture programmability

challenge has also become more important and more challenging to solve. This thesis took inspira-

tion from the success of domain-specific frameworks on data-parallel manycore architectures (e.g.,

GPGPUs) and the success of general-purpose dynamic task parallel programming frameworks on

multi-core processors, and propose both kind of frameworks to address the SPM manycore ar-

chitecture programmability challenge. This thesis illusrates that future manycore architecture can

safely opt for SPMs without worrying about losing programmability, if the correct programming

model and framework are adopted. The rest of this chapter summarizes primary contributions of

this thesis and discusses future research directions.

6.1 Thesis Summary and Contributions

This thesis began by discussing the adoption of the manycore approach. I presented a brief

survey of both thread-parallel focused and data-parallel focused manycore architectures. The sur-

vey showed a trend of abandoning hardware-based coherent caches for software-centric coherent

caches and software-managed scratchpad memories. Manycore architectures with hardware-based

coherent caches typically have at most a hundred cores. Adopting software-centric coherent caches

also cannot push the core count beyond a few hundreds. To reach over a thousand cores in a sin-

gle chip, hardware designers from both academia and industry converged on software-managed
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scratchpad memories. However, abandoning coherent caches for software-managed scratchpads

prevents programmers from using traditional multi-core shared-memory programming models,

making both reusing existing software and writing new software significantly more challenging

on SPM manycore architectures. I then discussed examples of the domain-specific approach,

which helped facilitate the wide adoption of data-parallel focused manycore architectures, espe-

cially GPGPUs. These frameworks provide hand-optimized domain-specific operators and lever-

age domain-specific knowledge to enable more optimizations and realize high performance. I also

discussed the dynamic task parallel programming frameworks that thrived in the multi-core era.

These frameworks usually adopt the fork-join computation model which naturally describes task

parallelism. This chapter motivated the necessity of resolving the SPM manycore programmability

challenge and pointed to two approaches that have had success on attacking similar challenges on

other compute platforms.

This thesis then provided a brief but thorough discussion on the HammerBlade manycore ar-

chitecture developed and implemented in RTL by BSG at the University of Washington. The thesis

provided details on both the hardware and the software of the HammerBlade manycore. Program-

ming HammerBlade is done through its low-level C runtime named CUDA-lite, which adopts a

SPMD execution model. I used a parallel reduction kernel as an example to demonstrate CUDA-

lite. I then introduced our RTL cycle-level evaluation methodology. Lastly I conducted a case

study with the widely used matrix multiplication kernel to illustrate the complexity of hand tuning

a kernel on the HammerBlade manycore with CUDA-lite, which involves unrolling, tiling, manual

instruction scheduling, and manual register allocation.

HB-PyTorch is a domain-specific framework. This thesis extended PyTorch, a widely used

open-source tensor processing framework, with a HammerBlade backend. We implemented and

hand-optimized both dense and sparse tensor processing operators that are essential for running

a wide range of existing deep learning workloads on the HammerBlade manycore without mod-

ifying the model code. Beside enabling easy reuse of existing deep learning models, the tensor

processing framework proposed in the thesis can be used to express other workloads as well. Pro-

grammers can rewrite their workloads with the provided operators and achieve high performance

on the HammerBlade manycore without knowing anything about HammerBlade itself. First-order

estimation of three dense and sparse tensor workloads showed that we are able to achieve much
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higher performance on the full scale 2000-core HammerBlade architecture than on an aggressive

multi-core CPU baseline.

We used selected HB-PyTorch operators as microbenchmarks and identified that memory la-

tency is the key limiting factor even for operators that have high arithmetic intensity. This finding

motivated us to explore software-enabled hardware-accelerated decoupled access/execute and sys-

tolic execution on SPM manycore architectures with other domain-specific frameworks HB-Arc.

HB-Rubick is a general-purpose dynamic task parallel programming framework. This thesis

provided, to the best of my knowledge, the first detailed description of how to extend a work-

stealing runtime to run on SPM manycore architectures. In contrast to conventional wisdom, in

this chapter we demonstrated that it is not only viable but also beneficial to implement a work-

stealing runtime on SPM manycore architectures. The proposed work-stealing runtime improved

performance of irregular workloads, and enabled programmers to express algorithms that leverage

dynamic parallelism. Moreover, HB-Rubick provides programmers a familiar programming inter-

face which eases the reuse of existing code that are written for traditional multi-core processors as

well as the development of new software. HB-Rubick also included three optimizations that can

leverage the unused scratchpad memories for better performance.

The primary contributions of this thesis are reiterated below:

• an open-source tensor processing framework, which achieves high performance on SPM

manycore architectures;

• a novel framework, which enables decoupled access/execute (DAE) and systolic execution

on SPM manycore architectures;

• an open-source dynamic task parallel programming framework, which supports arbitrarily

nested parallel patterns and dynamic load balancing on SPM manycore architectures; and

• software and hardware optimizations to enable a work-stealing runtime to leverage unused

scratchpad space and achieve higher performance on SPM manycore architectures.
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6.2 Future Work

The techniques presented in this thesis are first steps towards closing the programmability gap

of SPM manycore architectures. There are many opportunities to build on the ideas presented in

this thesis. This section discusses some promising research directions for future work.

6.2.1 Improving SPM Utilization

Motivation – Accessing any data that is not allocated in a core’s SPM incurs traffic to the LLC.

As the number of cores in a single chip keeps increasing, each core receives less and less per-core

LLC bandwidth. Thus, keeping as much data as possible in the core local SPM is critical to avoid

hotspots in LLC, avoid congestion in the on-chip network, and achieve high performance in SPM

manycore architectures that have hundreds to thousands of cores.

Research – This research topic has two directions. One direction is to extend the optimizations

that allowed HB-Rubick to automatically leverage unused SPM space for storing stack and task

queues. As I have discussed in Chapter 5, newer stack frames overflowing to DRAM is the main

reason why we observe less speedup as we increase the input of NQueens. One way to improve the

performance of workloads like NQueens that have heavy loads on the stack is to keep newer stack

frames, instead of older ones, in the SPM. Like I have mentioned earlier in this thesis, it is possible

to create software/hardware co-design mechanisms which automatically spills old stack frames to

DRAM. While this approach seems promising, a few open research questions remain: (1) what

should be the spilling granularity? One could create a mechanism which works like a two-entry

software cache in the SPM. When the stack space in SPM fills up, one can spill the older half to

DRAM. One can also create a mechanism which implements a sliding window, which only spills

enough data to DRAM to make space for the newly created stack frame. The tradeoff here is the

complexity of this spilling mechanism and the overhead of spilling. A simple scheme that spills

in large chunks may be also simple to realize with simple hardware or can be implemented easily

in software only, but it incurs longer pauses when copying data to DRAM. A complex scheme can

avoid these long pauses but may be trickier to implement. And (2) will this spilling mechanism

create deadlocks? When a spilling is in progress, all remote SPM accesses to the core must be

buffered. In the case where the buffer in the core is full and creates back pressure to the on-chip
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network, the spilling from this core can also be stalled, causing a potential deadlock: incoming

remote SPM access requests cannot be fulfilled until spilling is done, but these requests congest

the OCN and prevents spilling from finishing. Another direction is to explore ways to either make

leveraging SPM simpler in user code or automatically detect data in user code that can be SPM

allocated.

6.2.2 Scaling to Full-Scale SPM Manycore Architectures

Motivation – While HB-PyTorch, HB-Arc, and HB-Rubick are all proposed to solve the pro-

grammability challenge of SPM manycore architectures, we were unable to evaluate these pro-

posals on a full-scale SPM manycore architecture due to simulation speed. With current RTL

simulation tools, it is not feasible to simulate the full-scale HammerBlade manycore architecture

which has over 2000 cores. If the frameworks I presented in this thesis can achieve good perfor-

mance on the full-scale HammerBlade system remains unclear. It is very likely that additional

optimizations are necessary.

Research – A number of research directions can be explored, including simulators that can fa-

cilitate the cycle-level modeling of the full-scale HammerBlade system, memory models of such

system, and new optimizations in HB-PyTorch, HB-Arc, and HB-Rubick that help achieving high

performance. Key concerns when applying HB-Rubick to a 2000-core system are determining op-

timal task granularity and mitigating work discovery overhead. As the number of cores increases,

one can easily run into the case where the workload cannot provide enough parallelism to leverage

all the available cores. Then one open research question is: how do we determine the best task

granularity? Having each core running only one iteration of the parallel loop may not yield the

best performance as runtime overhead can easily dominate the execution time. It is possible that

in these cases only cores that are closer to LLC banks should be active. Even in the case where

there is enough parallelism, work discovery overhead becomes a problem when scheduling with

hundreds to thousands of cores. All parallel patterns in HB-Rubick are invoked from a single

core (i.e., core_0 in examples presented in Chapter 5). Having hundreds, even thousands, of idle

worker cores trying random stealing from all other 2000 cores is not likely to provide the best per-

formance. One can imagine that we would need either a jump start mechanism which distributes

the newly created tasks to idle cores or hierarchical stealing schemes to reduce cross-chip remote
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accesses, or both. A hardware-based task distribution network could be a feasible option. An-

other aspect one might want to explore is the placement of the master core. In this thesis core_0,

which is located at the top left corner of the 128-core chip, acts as the master core. In the full-scale

system, one may want to place the master core in the middle of the grid for better work distribution.

6.2.3 Cooperative Execution with Cache Coherent Multi-Core CPUs

Motivation – Both frameworks I presented in this thesis assumed an offloading execution model,

in which a host CPU launches the computation on the HammerBlade manycore. Execution on

the host CPU is blocked until the kernel finishes on HammerBlade. This offloading model forces

programmers to reason about which device is more suitable to run a certain workload, and it results

in underutilized computing resources since a workload cannot leverage both the host CPU and the

HammerBlade device at the same time.

Research – Enabling cooperative execution in HB-PyTorch is not simple. PyTorch’s dynamic

dispatching mechanism, which we briefly introduced in Chapter 3, relies on knowing where a piece

of data is allocated. If a tensor is allocated on the HammerBlade manycore, it calls the implemen-

tation in the HammerBlade backend, and if a tensor is allocated on the host CPU, native CPU

backend is called. To implement cooperative execution, one would need to either let the host CPU

and the HammerBlade device to have unified memory, or implement transparent data movement

schemes to copy data from host to HammerBlade or vice versa on demand. Cooperative execution

on HB-Rubick is more interesting and also more challenging. The key research question is how

do we allow the host CPU, which has traditional hardware-based coherent cache, and the Ham-

merBlade manycore, which has software-managed SPMs, to steal from each other while achieving

high performance? One simple idea is to mark cachelines that will be shared with HammerBlade

manycore as non-cacheable. However, the concern here is that the host CPU could be running

at a much higher frequency and is able to make remote SPM access requests much faster than a

HammerBlade core can. The HammerBlade manycore could be hammered by these requests and

have suboptimal performance. Also, off the shelf multi-core processors usually do not support

marking non-cacheable cachelines, which implies that hardware changes are necessary. Another

challenge is to construct a simulation infrastructure that allows us to conduct such cooperative

execution experiments. The current co-simulation infrastructure I introduced in Chapter 2 uses
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the native x86 CPU as the host CPU. To simulate cooperative execution, one would need to also

simulate a multi-core processor, either also in RTL or co-simulated in a cycle-level simulator such

as gem5 [BBB+11].

6.2.4 Cooperative Execution with Accelerators

Motivation – Parallelism and specialization have been the two main techniques for turning the

ever increasing number of transistors provided by Moore’s Law into performance. This thesis went

down the path of parallelism. However, the techniques I presented in HB-Rubick can potentially

be applied to the specialization approach as well. Specialized hardware, for instance applica-

tion specific integrated circuit (ASIC) and domain-specific accelerators, usually adopts scratchpad

memories and relies on direct memory access (DMA) engines to move data in and out local SPMs.

As a result, most of such specialized hardware adopts the offloading execution model and leaves

the host multi-core CPU underutilized.

Research – There are two directions in this research topic. One is to build on top of the po-

tential research I discussed in Section 6.2.3. If we can implement a technique which allows co-

operative execution of SPM manycore architectures and cache coherent multi-core CPUs, we can

extend the same technique to work with ASICs and domain-specific accelerators that leverage

SPMs. Another direction is to eliminate the necessity of hardware coherent caches in task par-

allel accelerators. Such accelerators have been proposed by Chen et al. [CSBS18] and Margerm

et al. [MSG+18]. However, both of them require hardware coherent caches to facilitate work-

stealing on their generated accelerators. The work I presented in Chapter 5 demonstrated that such

work-stealing runtimes can be efficiently implemented on SPM manycore architectures. It is very

likely that work-stealing through direct remote SPM access is also feasible and beneficial on task

parallel accelerators that adopt SPMs. Being able to remove hardware coherent cache from such

accelerators can significantly simplify the memory system design of both the overall system and

accelerator itself.
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6.2.5 Supporting Dynamic Languages on SPM Manycore Architectures

Motivation – Throughout the decades, as processor performance increases, programmability as

well as productivity have become increasingly important when choosing programming languages

for projects of all sizes. Dynamic programming languages, such as Python, JavaScript, Ruby,

Smalltalk, and PHP, have been among the most popular programming languages for the past years

because of their flexibility and ease of use [Cas18, Fog18]. However, how to efficiently support

them on emerging compute platforms such as SPM manycore architectures remains mostly unex-

plored.

Research – One possible way to allow dynamic language programmers to leverage SPM many-

core architectures is through just-in-time (JIT) compilation [Bol12]. We could potentially extend

the widely adopted JIT compiler for GPGPUs, Numba [num19], to include a HB-Rubick backend.

Programmers can write their applications in Python and have Numba compile the Python code

to native code which leverages HB-Rubick. However, in this case the compiler must be able to

statically type check the Python source code and this limitation forces programmers to use only a

restricted subset of Python to express their applications. Dynamic features that made Python pro-

ductive and flexible are generally not allowed and how to support them remains an open research

question.
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