
CAPE: A Content-Addressable Processing Engine
Helena Caminal

Cornell University
hc922@cornell.edu

Kailin Yang
Cornell University
ky362@cornell.edu

Srivatsa Srinivasa
Intel Labs*

srivatsa.rs@intel.com

Akshay Krishna Ramanathan
Pennsylvania State University

axr499@psu.edu

Khalid Al-Hawaj
Cornell University
ka429@cornell.edu

Tianshu Wu
Cornell University
tw387@cornell.edu

Vijaykrishnan Narayanan
Pennsylvania State University

vxn9@psu.edu

Christopher Batten
Cornell University
cbatten@cornell.edu

José F. Martı́nez
Cornell University

martinez@cornell.edu

Abstract—Processing-in-memory (PIM) architectures attempt
to overcome the von Neumann bottleneck by combining compu-
tation and storage logic into a single component. The content-
addressable parallel processing paradigm (CAPP) from the
seventies is an in-situ PIM architecture that leverages content-
addressable memories to realize bit-serial arithmetic and logic
operations, via sequences of search and update operations over
multiple memory rows in parallel. In this paper, we set out
to investigate whether the concepts behind classic CAPP can
be used successfully to build an entirely CMOS-based, general-
purpose microarchitecture that can deliver manyfold speedups
while remaining highly programmable. We conduct a full-stack
design of a Content-Addressable Processing Engine (CAPE), built
out of dense push-rule 6T SRAM arrays. CAPE is programmable
using the RISC-V ISA with standard vector extensions. Our
experiments show that CAPE achieves an average speedup of
14 (up to 254) over an area-equivalent (slightly under 9 mm2 at
7 nm) out-of-order processor core with three levels of caches.

Index Terms—Associative processing, associative memory, vec-
tor processors

I. INTRODUCTION

Processing-in-memory (PIM) architecture proposals attempt
to overcome the von Neumann bottleneck by combining com-
putation and storage logic into a single component [15], [17],
[18], [22], [29], [31], [34], [36], [44], [50]. In particular,
in-situ PIM architectures leverage low-level computational
abilities in the memory array itself [12], [16], [21], [30],
[40], [42]. Content-addressable memories (CAMs) arguably
constitute the first in-situ PIM architectures, as they have been
around for more than 60 years [41]. They are equipped with
additional logic per bitcell to perform searches to many cells
simultaneously [35]. Content-addressable parallel processor
(CAPP) designs from the seventies [20], [37], [39] extend
CAMs with the ability to update multiple rows in parallel.
By sequencing such search/update operations, CAPP designs
can also perform a variety of arithmetic and logic operations
(called associative algorithms) in a massively parallel and bit-
serial fashion [20].

Recently, some interesting proposals have emerged that
advocate for leveraging the foundations of CAPP in modern
microarchitectures [33], [49], [51]. However, the proposed

*Work done in part while a Ph.D. student at the Pennsylvania State
University.

solutions entail emerging memory technology [33], [51] or
expensive 12T memory bitcells [49], and they require either
low-level programming [33], [49] or a restrictive programming
language with a custom compilation flow [51].

In this paper, we set out to investigate whether the concepts
behind classic CAPP architectures can be used successfully to
build an entirely CMOS-based, general-purpose microarchi-
tecture that can deliver manyfold speedups while remaining
highly programmable. We conduct a full-stack design of a
Content-Addressable Processing Engine (CAPE), built out of
dense push-rule 6T SRAM arrays. CAPE is programmable
using the RISC-V ISA with standard vector extensions [46].

We envision CAPE to be a standalone core that specializes
in associative computing, and that can be integrated in a tiled
multicore chip alongside other types of compute engines. Our
experiments show that CAPE achieves an average speedups of
14 (up to 254) over an area-equivalent (slightly under 9 mm2

at 7 nm) out-of-order processor core tile with three levels of
caches accross a diverse set of representative applications.

The contributions of this paper include:
• A CMOS-based implementation of an associative-

compute-capable engine based on dense 6T SRAM ar-
rays.

• An optimized data layout on these SRAM arrays that
maximizes operand locality.

• A microarchitecture organization that can perform data-
parallel computations on tens of thousands of vector
elements.

• A system organization able to perform efficient data
transfers to maintain the benefits of its inherent massively
parallel computational power.

• A mapping of the standard RISC-V ISA to this microar-
chitecture, which allows for generality, high programma-
bility, and compatibility with existing compilation flows.

II. ASSOCIATIVE COMPUTING

An associative computing engine [20]: 1) stores data in
vector form, 2) can compare a key against all vector elements
in parallel (search), and 3) can update all matching elements
in bulk with a new value (update). These operations are
typically arranged in search-update pairs, and they are bit-
serial, element-parallel—i.e., a search-update pair operates on

Appears in the Proceedings of the 27th IEEE Int’l Symp. on High-Performance Computer Architecture (HPCA-27), Feb 2021

0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

ci ci+1

bit i=0
Search Update

a = {0, 1, 2} a = {1, 2, 3}Increment a
by one

ai

All carry
bits are 0
(op. done).

c
1

a0a1

1
1

Match

Search

0
0
1

0
1
0

1
0
1

1 X 0

c
0

a0a1

1
0

Match

Update

0
0
1

1
1
1

1
0
1

0 X 1

c
0

a0a1

1
0

Match

Search

0
0
1

1
1
1

0
1
0

1 X 1

c
0

a0a1

1
0

Match

Update

0
0
1

1
0
1

0
1
0

1 X 0

c
0

a0a1

1
0

Match

Search

0
0
1

1
0
1

0
1
0

1 0 X

c
0

a0a1

0
0

Match

Update

0
1
1

1
0
1

0
1
0

0 X1

ai

0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

ci ci+1

bit i=0
Search Update

aiai

0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

ci ci+1

bit i=1
Search Update

aiai

Fig. 1: Associative increment instruction as a bit-serial sequence
of search-update operations to a vector of three two-bit elements.
Carry bit column c is initialized to 1.

the same bit of all the elements of a vector (or several vectors).
The sequence of search-update pairs that operate sequentially
on all the bits of each vector value constitute basically an
instruction in this associative computing paradigm. Associative
algorithms are thus simply sequences of such instructions,
much like a regular program. Consider a vector increment
(Figure 1)—that is, all vector elements go up in value by
one. An associative computing engine would first add 1 to the
least significant bit of all vector elements and remember any
carry. Then, for each element, it would add the corresponding
carry to the next bit; and so forth. Of course, an associative
computing engine cannot “add” bits per se. Instead, it imple-
ments bitwise addition through a sequence of search-update
pairs that essentially follow the truth tables for a half adder,
one bit combination at a time: 1) Search vector elements for
which the ith bit is 0 and the running carry for that element (an
additional bit of storage) is 1, then bulk-update the ith bit of
matching elements to 1 and their running carry to 0. 2) Search
vector elements whose ith bit is 1 and the running carry for
that element is also 1, then bulk-update the ith bit of matching
elements to 0 and the running carry to 1.

Note that, in the example above, we do not bother with
search-update pairs for the two cases where the output is the
same as the input—neither the element’s bit nor the running
carry flip as a result of applying the half adder truth table
(crossed-out entries in the truth tables of Fig. 1). Note also
that some additional support beyond search/update would be
needed, namely: 1) We need two bits of additional storage
per vector element: One bit to serve as the running carry

(initialized to 1 at the beginning of the instruction with a single
bulk-update), and one bit to “tag” matching elements (Match)
in each of the two searches. Fortunately, these extra bits can
be reused across vector element’s bits (in fact, they can be
reused across instructions, even if the vector names change).
2) In order to constrain searches and updates to the ith bit
of each element, we must be able to mask out the other bits.
3) The sequence of operations that implements the increment
instruction needs to be “stored” somewhere (e.g., the micro-
memory of a sequencer).

Associative computing was originally proposed as a bit-
serial paradigm: for each bit it requires multiple search and
update operations. Already for a relatively simple increment
instruction on a 32-bit value this would represent over one
hundred such operations. However, the key is to realize that
this can be done simultaneously to an extremely large number
of vector elements, and therein lies the power of associative
computing. As our results will show, such vector-level paral-
lelism more than makes up for the bit-serial nature of these
operations. And our array organization enables, in some cases,
bit-parallel associative instructions.

In addition to the massive data level parallelism, associa-
tive computing offers unique trade-offs compared to (more
traditional) very long vector architectures. The associative
computing paradigm evidently accelerates search and update
operations commonly found in databases and text-based search
applications (e.g., word count). Moreover, algorithms can be
tuned to align to the strengths of associative engines. An
illustrative example of this is the histogram benchmark (used
in Section VI-E), which builds a histogram from pixel values
found in an image. The thread-parallel code splits an image
and distributes it to different threads that update a shared
data structure for each pixel value. In turn, our vector code
leverages very efficient searches to perform a brute-force
sequence of searches for every possible pixel value (0 to 255),
which leads to a speedup of 13⇥ over an area-comparable
baseline.

III. OVERVIEW OF CAPE

Our goal is to leverage associative computing to deliver
manyfold speedups while remaining highly programmable and
general. We propose a Content-Addressable Processing Engine
(CAPE), an implementation of associative computing as an in-
situ processor-in-memory (PIM) core that uses state-of-the-art
CMOS technology, adopts a contemporary ISA abstraction,
and can be readily integrated into a tiled architecture.

CAPE’s architecture comprises four main blocks (Figure 2).
The Control Processor (CP) is a small in-order core that
runs standard RISC-V code with vector extensions [46]. It
processes scalar instructions locally, and offloads vector in-
structions to the Compute-Storage Block (CSB), which acts as
a coprocessor and is CAPE’s associative computing engine. A
vector instruction commits in the CP only after it completes in
the CSB. In the shadow of an outstanding vector instruction,
subsequent scalar logic/arithmetic ALU instructions may issue
and execute (if not data-dependent with the vector instruction),

Assoc.
µops

Resp.

VArith/
VLogic Cmd Resp.

VMem
Cmd

Control
Processor

`

L2$

VMU

VCU CSB

VLoad
Data VStore

Data

Main memory

CAPE

L1I$ L1D$
Resp.

Heterogeneous
Architecture

core1

core2 core3

Integrated
GPU/
Accel.

CAPE

FPGA

Fig. 2: CAPE System: Control Processor, Compute-Storage Block
(CSB), Vector Memory Unit (VMU), and Vector Control Unit
(VCU).

but not commit.1 Subsequent vector instructions, however, stall
at issue until the outstanding vector instruction commits.

Load/store vector instructions en route to the CSB go
through the Vector Memory Unit (VMU). Other vector in-
structions go through the Vector Control Unit (VCU), which
generates microcode sequences to drive the CSB and carry out
the appropriate operations. VMU and VCU generate/transfer
control/data signals to the CSB. The RISC-V vector register
names in each instruction are used to index the appropriate
vector operands within the CSB. These ultra-long vectors
(order of 104 vector elements) are CAPE’s primary source
of parallelism.

The CSB is composed of tens of thousands of associative
subarrays which can perform massively parallel operations.
Each subarray is made up of 6T bitcells that can readily
support the four microoperations used in CAPE’s compu-
tational model: single-element reads and writes, as well as
highly-efficient multi-element (vector) searches and updates.
The RISC-V variable-length vector support allows for the very
long vectors found in CAPE to be seamlessly leveraged by the
applications.

IV. CAPE’S COMPUTE-STORAGE BLOCK

In this section, we describe the low-level organization of
CAPE’s compute-storage block (CSB). First, we describe
CSB’s memory cell, a binary CAM which leverages a recent
dense push-rule 6T SRAM design [26]. Then, we explain how
these cells and data are arranged to optimize for the in-situ
searches and updates that constitute the basis of associative
computing. Finally, we describe CSB’s support for reduction
operations, which are a staple of many modern vector ISAs.

A. Cell and Subarray

Compared to standard 6T SRAM cells, traditional CAM
cells require extra transistors and wires to enable content
search [35]. Recently, however, Jeloka et al. propose a binary
CAM (BCAM) based on push-rule 6T SRAM cells, which is
able to perform reads, writes, and searches while maintaining
the density of conventional SRAM [26]. The key difference

1As in many vector processing memory models, CAPE does not support
store-load or store-store memory disambiguation between vector and scalar
instructions—the compiler or programmer needs to insert memory fences as
needed.

WLL2

Se
ar
ch

fo
r ’

10
X’

M0 M1 M3

WLR0

WLL0

BLB1 BL1BLB0 BL0 BLB2 BL2

Pre-charge to VDD/2

VDD

GND

GND

VDD

GND

GND

1

0

0

1

0

1

0

1

0

1

1

0

1

0

0

1

1

0

1 0 1

BLB1 BL1BLB0 BL0 BLB2 BL2

Up
da
te

w
ith

 ’X
1X

’ 1

0

1

0

0

1

0

1

1

0

1

0

1

0

1

0

1

0

1

0

X

WLR1

WLL1
WLR2

WLR0

WLL0
WLR1

WLL1
WLR2

WLL2

BLi:= VDD, BLBi = GND

VDD

VDD

GND

GND

GND

GND

(X = “Don’t care”)

X

X

1

(X = “Masked row”)

Fig. 3: Three-by-three illustrative 6-T SRAM array performing
search (top) and update (bottom).

between this design and a conventional SRAM cell is that each
row has two separate wordlines—wordline right (WLR) and
wordline left (WLL)—, each connected to one of the access
transistors of a cell. The design reuses the already existing
wordlines as searchlines, and the bitlines as matchlines (the
latter requires an AND gate per column).

Figure 3 is an illustrative example of a three-by-three
6T SRAM array with split wordlines performing search and
update operations (read and write work as expected for a
conventional SRAM). For a particular vector, it stores vector
elements across columns; thus, different rows mean different
bits of a vector element.

A search operation will look for matches in every column
at the same time. In order to search for a 1, we set WLR
to VDD and WLL to GND. To search for a 0, we set WLR
to GND and WLL to VDD. To exclude a row from a search
(“don’t care”), we set both WLR and WLL to GND. At each
column, ANDing bitlines BL and BLB yields the outcome of
the search for each column: 1 for a full match, or 0 for at
least one bit mismatch. To perform a bulk update across all
columns, we assert both WLR and WLL of the active rows to
be updated, and set all BL/BLB to VDD/GND or GND/VDD
to write 1s or 0s, respectively.

B. Data Layout

We organize the CSB in subarrays of 32 by 32 cells (plus
some peripheral logic, as we will see later). Further, we bit-
slice each vector element across CSB subarrays of the same

0..#vect. elements

...

v0i
ci

bit-serial

se
ar

ch

...

...

bi
t-s

lic
ed

 ve
ct

or
 e

le
m

en
ts

...
...

...
...

0..#vect. elements

...

v2i
v3i

...

...

bi
t-s

lic
ed

 ve
ct

or
 e

le
m

en
ts

...
...

...
...

v20
v30

v2i+1
v3i+1

v231
v331

bit-parallel

0..#vect. elements

...

ci+1up
da

te

...

...

bi
t-s

lic
ed

 ve
ct

or
 e

le
m

en
ts

...
...

...
...

0..#vect. elements
...

v4i

...

...

bi
t-s

lic
ed

 ve
ct

or
 e

le
m

en
ts

...
...

...
...

v40

v4i+1

v431

v0i

v3[0]
v3[1]
v3[2]

v3[MAXVL-1]

...

lanes

2bits 3110 ...

......

...
...

...

v30

...
...

...
...

CSB data layout

v3[0..MAXVL-1]

vec register v3

...
...

v31

v3i

v331

Fig. 4: Mapping of logical vector register to the CSB subarrays
(top). Bit-serial (left half) and bit-parallel (right half) search and
update bit-vector active operands on the Compute-Storage Block
(bottom).

column, such that subarray i will store the ith bit of the vector
elements of all 32 RISC-V vector names for that column
(Figure 4, top). Thus, each 32⇥32 subarray contains the ith

bit for 32 contiguous vector elements of all vector names. For
example, subarray Ski contains the ith bit of v0 � 31[32 · k],
v0� 31[32 · k +1], . . . , v0� 31[32 · k +31]. The total number
of subarrays in the CSB is the number of vector elements in
a vector, times the bit width of each vector element, divided
by 32.

The 32 by 32 geometry, combined with the bit-sliced data
layout, allows CAPE to be clocked fast and minimize data
movement: 1) We keep the access latency of a subarray low.
2) Further, a search-update pair that is part of a bit-serial
instruction can be performed locally by the subarrays that
contain the ith bit of all the vector elements involved, and the
other subarrays can be in sleep mode. Note that this minimizes
data movement by ensuring operand locality across all vector
names in the RISC-V alphabet, to the best of our knowledge,
for the first time, in associative computing. 3) Finally, logic
instructions (e.g., bitwise XOR) can be carried out in a bit-

Match+Acc1

Subarrayi

...

...

Subarrayi+1

...

...

SAi

Row Drivi

MD Drivi

Tag Bits1

Com
parand Bus

Propagation Bus

Subarrayi

...

Subarrayi+1

...

Row Drivi

Col Seli

Tag Bitsi

MD Drivi+1

Data Bus

Com
parand Bus

Propagation Bus

FB Loop
i

search datapath update datapath

Fig. 5: Search (left) and update (right) datapaths in a cross-
section of a CSB chain comprising two subarrays.

parallel fashion, thus involving all subarrays simultaneously.
Figure 4 (bottom) is a simplified example of CAPE’s CSB

structure. The left half is performing a search-update pair as
part of the increment instruction example of Section II. Each
vector element is laid out vertically in a bit-sliced fashion,
and for each vector its vector elements reside in different bit
columns (some in different bit columns of the same subarray,
and some in different subarrays). In the top-left quadrant, the
search operation looks for a particular combination of bits
v0i (data) and ci (carry) on every vector element of v0 and
c, respectively. Once the matching vector elements have been
identified (which is recorded using tag bits, not shown), a bulk
update (bottom) simultaneously updates bits v0i and ci+1 of
every matching vector element. At each step, the subarrays not
involved in the operation can potentially be placed in sleep
mode. The right half of the figure shows another example
involving a logic operation (e.g., v4 = v2^ v3). As indicated
before, logic operations can be carried out in a bit-parallel
fashion, and thus all subarrays are involved.

C. Peripheral Logic

Each subarray contains the following peripheral logic (Fig-
ure 5): Match generator (Match): One AND gate per column
to generate the match/mismatch signal (similar to Jeloka et
al. [26]). Tag bits: One flip-flop per column, to store the
output of the Match generator. Tag bit accumulator (Accum):
One OR gate per column, to accumulate searches that update
with the same values, as proposed by previous works [51].
Feedback loop (FB Loop): Used during updates, to transfer
the match/mismatch mask generated by searches to the input
of its own column driver (BL/BLB).

D. Propagation Chain

Typically, bit-serial instructions carry over information from
one step to the next (e.g., carry in a bit-serial increment).
Because we bit-slice vector elements, we need to support
communication of such metadata vertically across consecutive
subarrays, and the subarrays of a column thus form a propa-
gation chain. In general, a chain will have as many subarrays
as the bit width of a vector element. To support this, we add

e = {0, 1, 2, 3} r = 6r += e[k], k=0,..,3Reduce e into
a scalar value r

Match

0
0
1

1 Search

Pop
Count

+

e1

0
0
1

11

+

*2

2 2 r

bit i=1:
e0

0
1
0
1

X

0

Match

0
1
0

1 Search

Pop
Count

+

e1

0
0
1

11

+

*2

2 6 r

bit i=0:
e0

0
1
0
1

X

4

Fig. 6: Associative (bit-serial) reduction sum of a four-element
two-bit vector. Bit-vectors are echoed through the tag bits by
searching for value 1 to each column, from the most to the least
significant bit. Then, the population count (pop count) of the tag
bits is shifted by 2 (multiplied by 2) and accumulated at each
step.

logic to optionally allow the tag bits of subarray i to select the
columns of subarray i + 1 that should be updated (Figure 5,
right). This is how, in the increment example on Figure 1, the
tag bits generated in the search can be used to select the vector
elements to be updated for both subarray i (to update v0i) and
subarray i + 1 (to update ci+1) of every chain.

E. Supporting Reduction Sum Operations

Finally, we discuss CSB’s support for reduction sum (red-
sum) operations, which aggregates the elements of a vector
by adding them to produce a scalar result (Figure 6). This
algorithm flows from the most to the least significant bits of
the input, and the steps for each bit are: 1) search for ‘1’ on
each bit i (mask the rest); 2) the tag bits are reduced into
an integer value (population count); 3) the output of the pop
count is accumulated and multiplied by 2 at each step. CAPE
supports redsum operations across chains, using external logic
composed by: one pop count per chain, a left shift block (to
multiply by two), an adder, and a register to store the scalar
result. In Section VI, we give details on a specific redsum
logic implementation used on a system made up of thousands
of chains.

V. CAPE ARCHITECTURE

In this section, we describe the mapping of the RISC-V
vector abstraction to the CSB (Section IV). We also describe
the micro-architecture of the VCU (Section V-D) and VMU
(Section V-E), which generate control commands for the CSB
and enable efficient data transfers between the CSB and the
main memory, respectively.

A. ISA

Vector architectures have been around for decades [19], and
code vectorization is a well understood way to express data
parallelism. This suggests that a vector ISA abstraction of
the CAPE architecture is an attractive way to make CAPE
highly programmable and versatile. Recently, the RISC-V
Foundation has released a specification for RISC-V vector
extensions [46]. Because of its increasing popularity, free
availability, and support for vector length agnostic (VLA)

RISC-V
vector

Truth
Table

Active
Rows/Sub

Red
Cycles

Total
Cycles

Per-
lane

Inst Ent. Srch Upd (n bits) (n bits) E (pJ)

Arith.

vadd.vv 5 3 1 0 8n + 2 8.4
vsub.vv 5 3 1 0 8n + 2 8.4
vmul.vv 4 4 1 0 4n2 � 4n 99.9

vredsum.vs 1 1 0 n ⇠ n 0.4

Logic
vand.vv 1 2 1 0 3 0.4

vor.vv 1 2 1 0 3 0.4
vxor.vv 2 2 1 0 4 0.5

Comp.
vmseq.vx 1 1 0 n n + 1 0.4
vmseq.vv 2 2 1 n n + 4 0.5
vmslt.vv 5 2 1 0 3n + 6 3.2

Other vmerge.vv 4 3 1 0 4 0.5

TABLE I: Metrics of an illustrative subset of RISC-V vector
instructions supported by CAPE. Left to right: instruction’s
mnemonic and mode, truth table entry count, active rows per
subarray for search and update, reduction cycle count, total cycle
count, and energy per vector lane (pJ).

instructions, we choose RISC-V as the ISA abstraction for
our CAPE architecture.

RISC-V vector names map to the appropriate CAPE loca-
tions transparently through the VCU; the programmer never
sees CAPE’s CSB as addressable memory (although CAPE
can be configured alternatively to be used as a memory-only
tile by the chip, which we briefly address in Section VII).
RISC-V’s VLA support [46], whereby vector length is pro-
grammable, is easily supported in CAPE, by simply masking
out the unused CSB columns or turning off entire chains. The
flexibility that VLA support provides is actually key to CAPE’s
ability to accommodate a variety of applications with different
amount of data-level parallelism.

Table I shows relevant metrics of an illustrative subset
of RISC-V instructions supported by CAPE. Note that logic
instructions are very efficient, because their execution is bit-
parallel. Generally, arithmetic instructions are bit-serial due
to the need to propagate carry/borrow information. Equality-
comparison instructions map directly to CAPE’s bit-parallel
search operation (Figure 4, top-right). However, since each
vector element is bit-sliced, there needs to be a bit-serial
post-processing of each the tag bits in order to generate a
single match/mismatch value. The maximum number of active
rows/subarray during update and search illustrates that our
circuits need only be able to search to at most four rows
and to update to one row.2 Note that arithmetic instructions
(i.e. vadd.vv) will update to two subarrays simultaneously,
but to only one row/subarray. The truth table entry count
corresponds to the number of search-update pairs needed to
execute per bit of the input operands; it is an estimation of the
instruction’s complexity. While some instructions have smaller
truth tables than others, they may traverse them multiple times
(for example, vmul.vv traverses its truth table a quadratically
number of times, compared to vadd.vv).

While CAPE could support floating point with some modi-
fications to the data layout and microcode sequences, we leave
it for future work. With the current chain organization, CAPE
could also handle element types smaller than 32 bits relatively
easily, by configuring the microcode to handle sequences under

2This also the case for the RISC-V vector instructions not shown in Table I.

in3 1 0

in3 1 1

False Falseval

acc

Vect Inst. Chain Cmds

...

Reduce

Sequencer

Chain Ctrl

CSB Sequencer’s FSM

UpdateSearch

Read
TTIdle <<

idx0
in0

Value
Mask

TT Decoder

in0

Se
ar

ch

TT Memory

v0..v31

chain

Ctrl0

Chain Group0

chain

chain..
.

Red0

...
Ctrl1

Chain Group2

Red2

...

Red1

...

Red3

...

Chain Group1 Chain Group3

chain

chain

chain..
.

..
.

...

chain

chain

chain

chain

chain

chain

v0..v31

...

...

GRed0 ...

GRed1 ... From CP To chains

TT
Decoder

TT
Memory

...

...

OR

...

<<

idx3
in3

...

in0...

val

Up
da

te

False
0...

False
0...

True
0...

True

...

1

Re
d

True Trueval

...

Fig. 7: CSB architecture (left), chain controller (bottom-middle),
finite-state machine (FSM) (top-middle), truth-table (TT) decoder
(top-right), and TT Memory (bottom-right).

32 bits, with support for padding/sign extension in some cases
(also handled by the microcode).

B. CAPE Micro-architecture

Recall that the CAPE system is organized into four blocks
(Figure 2) the control processor (CP), the vector control unit
(VCU), the vector memory unit (VMU) and the compute-
storage block (CSB). The CSB is made up of CAPE chains
which have already been described in Section IV-D. In Sec-
tions V-D and V-E, we describe in detail the VCU and the
VMU.

C. Exception Handling

Vector instructions are issued to the VCU/VMU only when
they are committed at the end of the Control Processor’s
pipeline, and thus they are not subject to rollback due to
exceptions triggered by earlier instructions. As for exceptions
triggered by a vector instruction itself, a) load/store operations
can be restarted at the index where a page fault occurred3 and
b) an arithmetic/logic exception would probably be handled
imprecisely, consistently with the ISA specification for vector
instructions.

D. Vector Control Unit

The vector control unit (VCU) breaks down each vector in-
struction into a sequence of commands. Commands include the
four CAPE microoperations (read, write, search and update),
as well as reconfiguration commands (e.g., to reconfigure the
vector length). We implement a distributed design of the VCU,
built from multiple chain controllers, shared across chain
groups (Figure 7, left).

A global control unit maintains a programmable truth table
memory and a set of control status registers (CSRs). When
the VCU receives a vector instruction, it propagates the truth
table data of the corresponding associative algorithm to each
of the chain controllers which store it in a small, dedicated
CAM (global command distribution).

3Vector-indexed loads/stores are more challenging and left for future work,
and consequently, they have not been used in this work. Software restart
markers may be a solution to this issue at a minimal performance overhead
compared to imprecise solutions [24].

The chain controllers then distribute the commands to the
apropriate subarray(s) in the chain (local command distribu-
tion). The chain controller (Figure 7, center) is composed of
a sequencer, a truth table memory (TTM) and a truth table
decoder. Each TTM entry corresponds to one search-update-
reduce data pack, encoded efficiently to only store values for
the bits involved in the operations. The entries in the TTM
use a standard format to represent any associative algorithm’s
truth table. Four additional bits per TTM entry (valid bits
and accumulator enable) are used to indicate if a search
(with/without accumulation) or update operations are active,
and if the reduction logic is going to be used.

The sequencer implements a simple FSM with five states
(Figure 7, top center): (1) Idle, (2) Read TTM, (3) Generate
comparand and mask for search, (4) Generate data and mask
for update, and (5) reduce. The controller is by default in the
idle state. Once the Control Processor sends a new request,
the sequencer transitions into state (2). The controller keeps
track of one counter, µpc, which helps navigate the entries
in the TTM, and another counter, bit, to keep track of the
bit we are operating on and generating the apropriate idx and
subarray select signal for the chain controller. The counters
are initialized appropriately: µpc=0 every truth table (TT)
loop, and bit is set to either MSB or LSB, depending on the
operation, given an operand size.

The truth table decoder (Figure 7, top-right) produces the
search and update data and masks, from the values stored
in the TTM by shifting them by the appropriate amount and
ORing them to generate a single digital word to used by the
subarray row and column drivers. This approach is similar to
a vertical micro-code scheme. On a 32-bit configuration, the
chain controllers distribute 143 bits of commands through the
chain command buses, as shown in Figure 7.

E. Vector Memory Unit

CAPE communicates with the memory system via the
Vector memory Unit (VMU). When receiving a vector memory
instruction from the control processor, the VMU will break
it into a series of sub-requests to main memory. Each sub-
request accesses a block of memory of the memory system’s
data bus packet size. When the sub-request is served to the
VMU, the CSB consumes it as follows: Similar to the byte
interleaving scheme across different chips of a DRAM DIMM
for optimal throughput, CAPE stores adjacent vector elements
in different chains, which have the ability to perform the
transfer independently, in a single cycle. This allows for the
vector loads and stores to complete a full sub-request transfer
in a single cycle. We design our system in order to ensure that
the sub-request size is smaller than the total number of chains,
so that sub-requests do not need to be buffered in the VMU.
CSB reads and writes are concurrent to the main memory data
transfers.
CAPE’s CSB is cacheless: Due to the large footprint of the
vector memory request and the limited temporal locality, it is
not beneficial to have a data cache between CAPE and the
main memory. As a result, the VMU is directly connected

to the memory bus, and follows the same cache coherence
protocol as the control processor’s caches. Nonetheless, the
cache coherence introduces very trivial performance overhead,
since the CSB and the control processor share small amounts
of data.

F. Reconfigurable Active Window

Set vector length: Variable-length vectors allow for applica-
tions to request a desired amount of data parallelism. In order
to modify the vector length (vl), programmers can use the
standard RISC-V instructions vsetvl or vsetvli, which
will return the maximum amount of lanes supported by the
hardware (MAX_VL) or the exact amount requested, if it is
smaller than MAX_VL. In CAPE, that translates into using
more or fewer columns, or even full chains. As supported
by the RISC-V standard documentation, the elements in any
destination vector register with indices greater than vl (tail
elements) remain unchanged [46].
Set vector start: Similarly to MAX_VL, RISC-V’s standard
CSR vstart is used to specify the index of the first active
element in a vector instruction.
CAPE support for the active window: Setting a vl smaller
than its hardware limit MAX_VL will mask columns that are
stored in different chains. To implement that, each chain
controller locally computes a mask given its chain ID, the
vstart value, the vl value. The mask is used in updates
to generate the column signal: the address bus signals will
contain zeroes on the masked columns. If all elements in
a chain are masked, the chain controller can power-gate its
peripherals while still maintaining the data stored unchanged.

G. Vectorizing for CAPE

Programmers can use RISC-V assembly, vector intrinsics
or a vectorizing compiler to map well-structured data-parallel
code to the CAPE instruction set. Many classic vector op-
timization techniques will directly apply to CAPE including
loop reordering, loop restructuring, and memory access trans-
formations [13], [32]. In this section, we discuss two CAPE-
specific optimizations that can improve performance when
compared to traditional vector architectures.

Vertical vs. Horizontal Operations – Traditional vector
architectures discourage horizontal (i.e., cross-lane) operations
since they are usually implemented using expensive and slow
reduction trees. CAPE’s horizontal operations use a combina-
tion of an intra-chain reduction sum (redsum) primitive and
a modest global bit-serial reduction tree (see Section IV-E).
The ability to bit-serially reduce all rows of all chains si-
multaneously results in performance roughly proportional to
the bitwidth (we give implementation details of the reduction
tree for a system of 1,024 chains in Section VI-C). A vector
redsum instruction is thus eight times faster than an element-
wise vector addition. This trade-off opens new algorithmic
optimizations that favor using vector redsum instructions when
possible.

Replica Vector Load – It can be challenging to fully utilize
CAPE’s long vector registers when applications operate over

Fig. 8: Layout of one CAPE chain made up of 32 subarrays and
its peripherals. Area is 13x175µm2.

Read Write Search
4 Rows

Update
w/o Prop

Update
w/ Prop Red

D (ps) 237 181 227 209 209 217
BS E (pJ) - - 1.0 1.2 1.2 -
BP E (pJ) 2.8 2.4 5.7 3.8 - 8.9

TABLE II: Delay (D) and dynamic energy of bit-serial (BS E)
and bit-parallel (BP E) microoperations executed by one chain.
Note that read requires bidirectional communication.

matrices with a modest number of elements in each dimension.
CAPE includes a new replica vector load instruction (vlrw.v
v1, r1, r2) which loads a chunk of r2 contiguous values,
starting from the address in r1, and replicates them along the
vector register v1. Replica vector loads are particularly useful
when vectorizing dense matrix multiplication in three steps:
(1) a unit-stride vector load reads multiple rows from the first
matrix into one vector register; (2) a replica vector load reads a
single row from the (transposed) second matrix and replicates
this row into a second vector register; and (3) iterate over the
rows and use vmul and vredsum to efficiently calculate the
partial product.

VI. EVALUATION

In this section, we discuss our circuit, instruction, and
system modeling. Subsection A, Microoperation modeling
provides delay and energy estimates for each CAPE microop-
eration on one chain. Subsection B, Instruction modeling com-
bines these circuit-level estimates with an associative behav-
ioral emulator to estimate the delay and energy for each vector
instruction. Subsection C, System modeling integrates these
instruction-level estimates into a cycle-approximate gem5-
based [14] simulation model capable of executing binaries for
both micro-benchmarks and complete applications. We use this
multi-level modeling approach to explore system-level trade-
offs.

A. Microoperation Modeling

We simulate a memory subarray of 32 columns by 36 rows
(32 rows: 1 row/vector name, and 4 additional rows for meta-
data) based on the 6T bicell from Jeloka et al.’s design with
split wordlines [26] (Figure 3). A CAPE subarray consists of
SRAM bitcells, precharge circuitry, write drivers, search AND
gates, tag bit accumulator and tag bits. All of these are de-
signed using ASAP 7nm PDK circuit simulation libraries [45].
The latency and energy results incorporate wordline, bitline
resistance and capacitances. We then model this subarray as
a black box and instantiate it in the synthesized chain design
using Synopsys DC compiler [7]. Synthesis results are further
fed into an auto-place and route tool [9] for floorplan and
placement to generate a chain layout (Figure 8). The control
signals are routed to all the subarrays which are driven by wire
repeaters to reduce the overall delay.

Delay of CAPE Primitives – Conventional wisdom might
suggest that parallel microoperations (i.e. search and update)

should be significantly slower (potentially 32 times since
they might operate on 32 elements per chain) than reads
or writes. In CAPE, both the circuit design and data layout
enable very efficient searches and udpates, since they are
done across columns (with their own independent circuitry)
and not rows. Searches are only done to at most four rows
simultaneously, which speeds up the sensing of the search
outcome. Updates write to at most one row per subarray, which
essentially turns them into single-row conventional writes. In
addition, updates do not use a (priority) encoder or address
decoder, but rather re-use the outcome of searches (stored in
the tag bits) to conditionally update columns. Overall, CAPE’s
microoperation delays are balanced and range between 181
and 237 picoseconds (Table II). The reduced size of the
SRAM arrays enables very fast accesses (90 ps). For that
reason microoperation delays are largely dominated by the
peripheral logic (i.e. AND and OR gates, flip-flop) and the
local command distribution delay of the control signals (55 ps).
Read is the slowest microoperation (Table II), explained by the
round-trip wire delay: once to transfer the control signals to
all subarrays, and another one to transfer back the data read
to the controller.

Energy of CAPE Primitives – CAPE’s operand bit-slicing
across the subarrays in a chain forces reads and writes to
access a single bitcell (same row and column) of all subarrays
in a chain. In turn, the same data layout allows for search and
updates to maintain most subarrays in a chain idle, reducing
the dynamic energy. For searches, only one subarray/chain will
be active (because of operand locality); and for update, only
one or two (if propagation is needed) subarrays/chain will be
active. We show dynamic energy estimates of a single chain in
Table II, which include local command distribution of the 184
bits to all subarrays, array access, as well as peripheral logic
energy consumption. We show estimates for dynamic energy
of the bit-serial (BS E) and bit-parallel (BP E) flavours of each
microoperation. Note that bit-parallel microoperations are very
energy-efficient given the shared control logic and command
distribution.

B. Instruction Modeling

We use the chain layout, delay, and energy modeling from
the previous section and combine them with the associative
behavioral emulator to derive detailed ISA instruction-level
energy and delay modeling for an entire chain.

Delay of CAPE Instructions – The associative emulator
models the associative behavior of subarrays with read, write,
search and update capability. We implement the associative
algorithms required for each vector instruction and extract mi-
crooperation mix count for a configuration of 32-bit operand.

Energy of CAPE Instructions – We combine the associa-
tive emulator’s microoperation statistics with the microoper-
ation energy modeling in Table II to estimate the energy of
each CAPE instruction executing on a single chain.

In Table I we can see the energy spent for each vector in-
struction per scalar operation (that is, per vector lane). As ex-
pected, arithmetic instructions are the most energy consuming

Baseline Core CAPE’s Ctrl Processor

System
configuration

out-of-order core, 3.6GHz
32 kB/32kB/1MB L1D/L1I/L2
5.5MB L3 (shared), 512B LL cache line

in-order core, 2.7GHz
32 kB/32kB/1MB L1D/L1I/L2
512B L2 cache line

Core
configuration

8-issue, 224 ROB, 72 LQ, 56 SQ
4/4/4/3/1 IntAdd/IntMul/FP/Mem/Br units
TournamentBP, 4,096 BTB, 16 RAS

2-issue in-order, 5 LSQ
4/1/1/1 Int/FP/Mem/Br units
TournamentBP, 4,096 BTB, 16 RAS

L1 D/I cache 8-way, LRU,MESI, 2 tag/data latency 8-way, LRU, 2 tag/data latency
L2 cache 16-way,LRU,MESI,14 tag/data latency 16-way,LRU,14 tag/data latency
L3 cache 11-way, LRU, 50 tag/data latency, shared N./A.
Main memory 4H HBM, 8 channels, 16GBps/512MB per channel

TABLE III: Experimental setup

explained by their large cycle count. Vector multiplication is
clearly the most energy expensive instruction, it performs more
than 3,000 searches and udpates, combined. Logic instructions
(vand, vor, vxor) are very efficient, since they perform
very few (bit-parallel) microoperations. vredsum includes the
energy consumed in doing the bit-parallel search, 3.0 pJ, as
well as the energy consumed by the reduction logic, 8.9 pJ.

CAPE Cycle Time – The system’s critical path is 237 ps
(4.22 GHz), wich corresponds to the slowest microoperation
(read). We conservatively reduce by 65% the maximum CAPE
frequency to 2.7 GHz to account for clock skew and uncer-
tainty.

C. System Modeling

We use the modeling from the previous sections to derive
our global reduction logic and command distribution models
as well as our system-level simulation framework.

Reduction Logic – We have synthesized the global reduc-
tion logic described in Section IV-E for a system of 1,024
chains. The global reduction is pipelined into 5 stages with a
critical path of 217 ps. We estimate the number of stages to
model different CSB capacities by replicating or removing the
different pipeline stages.

Global Command Distribution – It includes the delay
between the VCU and each of the chain controllers, and it
is estimated using a first-order approximation of wire delay
on Metal 4 of an H-Tree that distributes the VCU signals
control to each of the chain controllers, using wire repeaters
to improve the delay. The global command distribution is
pipelined and is not included as part of the cycle time: it adds
a constant number of cycles of overhead per vector instruction.

System Methodology – We model the CAPE System
by extending the gem5 cycle-approximate simulator frame-
work [14]. The control processor is modeled using the RISC-
V RV64G MinorCPU and is configured as a dual-issue, in-
order, five-stage pipeline. We modified the MinorCPU to send
commands to the VMU or VCU. The simulator accurately
models the global reduction tree and command distribution
delays. We have developed detailed timing models of CAPE’s
VMU, VCU, and CSB. The VMU is connected to an HBM
memory system [27] to perform data transfers to/from the
CSB. We model the CSB delays of each vector instruction
as described in Section VI-B.

Area Reference – We want to be able to make area-
equivalent comparisons. To that end, we estimate the area
of our baseline out-of-order CPU based on a high-end Intel
Skylake processor in 14 nm technology. Each Skylake tile
contains a processor, more than 1MB of private caches, and

1.375 MB of shared LLC [11]. To scale down the tile area to
7 nm, we apply an estimated scaling factor of 1.8⇥ based on
the area ratio between 14 nm and 7 nm High-Density SRAM
bitcells [1], [3]. Furthermore, we subtract the area for AVX
and floating-point support. (Later in the section, we assess the
impact of adding an aggressive SIMD engine to the baseline,
using a commercial-grade model and assuming no extra area
overhead.) As a result, we estimate that one tile’s area is about
8.8 mm2.

CAPE32k and CAPE131k – We choose two design points
of CAPE – CAPE32k and CAPE131K, corresponding to two
different available vector length MAX VL: 32,768 lanes and
131,072 lanes. Their CSBs have 1,024 and 4,096 chains
respectively, with 4.5MB and 18MB of capacity. From the mi-
crooperation modeling (Section VI-A), we know one chain in
CAPE takes 2,434. Therefore, the CSB of CAPE32k including
the pipelined reduction tree takes 2.8 mm2, whereas the area of
CAPE131k’s CSB is 11.3 mm2. We then estimate the area of
CP based on an in-order ARM Cortex-A53 core [6]. One such
core built in 16 nm takes 0.6 mm2 whereas 512kB L2 takes
0.7 mm2. We scale the area down to 7 nm by 2.74⇥ based on
16 nm and 7 nm HD SRAM bitcell area [2], [3]. In total, the
area of the CP with 1MB L2 is around 0.73 mm2. Besides,
we estimate the total area of micro-memory in VCU based on
the truth table entry count of all the vector instructions that
we support. Each entry requires twelve 7 nm SRAM bitcells
(Figure 7). We find the total area requirement of VCU’s TT
memory is merely 0.002 and 0.007 mm2 for CAPE32k and
CAPE131k. Since the total area of CAPE32k’s CSB, CP and
TT memory is much smaller than one (area-reference) tile–
3.5 vs. 8.8 mm2, we pessimistically assume that the difference
in area is taken up completely by the VMU and VCU’s
sequencer and TT decoder. We apply the same area budget
as in CAPE32k for the VMU and VCU (8.8 � 3.5 mm2) to
similarly estimate the area of CAPE131k, and the total is
below the area of two CPU tiles with caches (17.3 mm2). We
manually vectorize the applications using RISC-V vector in-
trinsics, which are ran for different CSB capacities (MAX VL)
without any code modifications.

Baselines – We choose our baselines to be general-purpose,
area comparable to CAPE32k (and CAPE131k), processing
engines: one (and two) RISC-V RV64G out-of-order and 8-
issue cores (connected to the same HBM memory system [27]
as CAPE) running sequential (and pthreads) versions of the
apps. When running a parallel (pthreads) version, we indicate
in our plots how many cores we use (up to three, based
on the area study above). When we run sequential codes of
the benchmarks on the same multicore machine, we utilizes
the extended shared cache capacity of two other (idle) cores.
Table III summarizes the architectural configuration.

Thermal Design Power – We derive the thermal design
power (TDP) of CAPE32k using the results from the SPICE
simulation and CACTI. For each step in the CAPE primitives,
e.g., WL drive, BL precharge, etc, we calculate the power
using its delay and total energy (dynamic plus leakage). The
associative algorithms used by RISC-V vector instructions

2
5

2
6

2
7

2
8

2
9

2
10

2
11

2
12

2
13

2
14

2
15

2
16

2
17

2
18

2
19

MAX VL

0

5

10

15

20

25

30

35

40

45 Speedup w.r.t. Seq. Code

vld
vst
vvadd
vvmul
dotpro
redsum
idxsrch
srch

Fig. 9: Speedup of microbenchmarks for different CSB capacities.
Vertical red line corresponds to CAPE32k.

need to update 3 columns, search 32 columns, or read/write 32
columns. We find the peak power is achieved when writing to
32 columns (accounting 15.85 mW per chain). Thus, the TDP
of CAPE32k with 1,024 chains is 16.23 W, including both
leakage and dynamic power. Besides, according to the result
from CACTI, the total leakage power of CAPE32k is 0.48
W. The total power of the reduction logic is 32.12 mW, and
is power gated when performing a write operation (hence it
does not contribute to the TDP). In order to estimate the peak
power of the CAPE control processor, we reference to the TDP
of a state-of-the-art processor based on 7nm technology that
operates as the similar frequency as CAPE control CPU [4].
The processor consists of 32 out-of-order superscalar cores and
three level of caches, and has 180 W TDP. We pessimistically
estimate the TPD of the CP the same as one core, i.e., 5.63 W.
We also pessimistically assume the VMU and VCU are both
as power-hungry as the control processor. In total, the TDP of
CAPE32k is 33.12 W.

D. Microbenchmarks

We first evaluate CAPE using eight microbenchmarks.
Each benchmark loads one/two vectors with 524,288 32-bit
elements each (which fits in the baseline’s L3 cache). In
Figure 9, we show the performance of CAPE for different
CSB capacities (MAX VL), normalized to the multicore (Ta-
ble III) running a non-parallel sequential version of the micro-
benchmarks. For the baseline experiments, we warm up the
caches before we start measuring performance.

Scalability Study– Memory-intensive benchmarks (vld and
vst) show CAPE’s ability to move data in and out of the CSB at
different capacity design points. CAPE can achieve a speedup
of 6.6 to 10.5 by efficiently moving large blocks of data from
DRAM into the CSB with a single vector instruction, while
the sequential baseline requires additional loop overhead and
address calculation. In addition, the CPU still needs to serve
requests across different levels of the cache hierarchy, even if
L3 is warmed up.

Search-based benchmarks (srch and idxsrch) are repre-
sentative operations of database workloads and text-parsing
(i.e. word count) applications. Both perform constant-vector

comparisons (vmseq.vx) to search a key in a vector. In ad-
dition, idxsrch performs a sequential post-processing for every
matching element, with the intention to mimic the behavior of
the text-parsing phoenix apps shown in Section VI-E. CAPE’s
ability to search efficiently enables a 42.5 speedup for srch,
whereas idxsrch’s performance is eventually dominated by the
sequential part of the algorithm for larger CSB capacities,
achieving a speedup of 10⇥ at MAX VL=32k.

Arithmetic-intensive benchmarks (vvadd, vvmul, dotpro,
and redsum) perform vector-vector addition, multiplication,
multiply-accumulate, and reduction sum, respectively (besides
loading/storing the input/output data). Their performance sug-
gests that for moderate CSB capacities, CAPE’s large data-
parallelism is able to compensate for the bit-serial latencies.
For very large CSB capacities (� 216), however, the overhead
of global command distribution and data transfers limit their
performance.

CAPE Roofline Model– To characterize CAPE’s compu-
tational capabilities and scalability, we constructed a Roofline
model [47] of CAPE at various CSB capacities (Figure 10),
simbolized by different MAX VL values. We adapt the tradi-
tional Roofline model metrics to capture CAPE’s peculiarities.
In the context of CAPE, a unit of work is defined as a
vector element micro-operation (either a search or an update)
performed on an element of a vector. The x-axis displays
the element micro-operational intensity in vector element
microoperations per byte of memory traffic between DRAM
and the VMU, and the y-axis displays the attainable vector
element micro-operational throughput in giga micro-operations
per second. Higher intensity leads to higher utilization of data
loaded into the CSB, and higher throughput suggests that
the CSB is able to perform element micro-operations at a
higher rate on average. The system’s memory bandwidth is
dominated by HBM’s theoretical peak (128 GB/s). CAPE’s
theoretical maximum througput is obtained from a case that
would execute 1 µop/cycle, without CP, VCU, and global
command distribution overheads.

We can classify the microbenchmarks into two groups
(Figure 10): constant-intensity and increasing-intensity, with
increasing CSB capacity (MAX VL). Most benchmarks fall
in the first category, explained by the linear decrease in vector
instructions as MAX VL scales up. The second category
only contains idxsrch, which still performs a serialized post-
processing of each of the matches generated by the parallel
search. As MAX VL increases, the constant-intensity apps
move from the compute-bound region to the memory bound
region, and their throughput approaches the memory-bound
roofline. This behavior suggests that constant-intensity apps
are able to efficiently utilize CAPE’s increasing computational
cabilities. Ultimately, the speedup plateaus due to the limit
of the peak memory BW. This phenomenon demonstrates
CAPE’s need for a high throughput memory system for large
CSB capacities, justifying our use of HBM. In contrast, idxsrch
remains in the memory-bound region for all MAX VL, but far
from the roofline peak throughput, indicating that it cannot
fully utilize CAPE’s increasing computational capacity. This

Memory BW (128GB/s)

1024

4096

Peak Throughput for MAX_VL = 16384Microbenchmarks

srch

idxsrch

vvaddredsum

dotprovvmul

Operational Intensity (Vector Element Microops/byte)

Memory BW (128GB/s)

32768

Peak Throughput for MAX_VL = 131072Phoenix Apps
lreg kmeans

matmul

pca

strmatch
hist

wrdcnt

revidx

Fig. 10: Roofline plots of microbenchmarks and Phoenix apps for
CAPE at various CSB capacities. The star is a random reference
point to help reconcile the different axis scales across the two
plots.

Application Input Size #Cyc. on One O3CPU #Inst. of Seq. Code
Linear Regression 500MB 4.4 billion 3.8 billion
Histogram 1.4GB 13.6 billion 13.1 billion
Kmeans 100k 5.0 billion 6.6 billion
Matrix Multiply 1,000⇥1,000 7.0 billion 11.0 billion
PCA 1,500⇥1,500 16.6 billion 15.2 billion
String Match 500 MB 68.3 billion 52.0 billion
Word Count 10MB 4.9 billion 4.1 billion
Reverse Index 100MB 0.6 billion 0.9 billion

TABLE IV: Statistics of the Phoenix Benchmark Suite apps.

matches the underwhelming scalability of idxsrch at larger
MAX VL (Figure 9).

E. Phoenix Benchmarks

We use all the applications in the Phoenix Benchmark
Suite [38] to evaluate CAPE’s performance. Table IV shows
the properties of each application.

Fig. 11: Performance of the Phoenix Benchmarks for two- and
three-core CPUs, CAPE32k and CAPE131k, normalized to a
single CPU core. Single- and two-core CPUs are roughly area-
equivalent to CAPE32k and CAPE131k, respectively.

Fig. 12: Performance of the Phoenix Benchmarks for ARM
SVE SIMD implementations of 128-, 256-, and 512-bit vectors,
normalized to a single-core running ARM scalar code.

Results– In Figure 11 we show speedup of CAPE32k
and CAPE131k, which have comparable area to one and
two out-of-order cores with their caches (see baselines in
Section VI-C). We also show performance of a three-core
system, for reference. We see that CAPE32k accelerates all
applications by 14⇥ on average, compared to one core, at a
similar area design point. Both matrix multiply (matmul) and
PCA (pca) are matrix-based applications with relatively small
input sizes. However, the for-loop inter-iteration dependencies
found in pca prevented us from using the CAPE-specific
instruction vldr (Section V-G) that increases CAPE’s vector
utilization, enabling a significant increase in parallelism neces-
sary to compensate the bit-serial costly vmul.vv instruction.

CAPE131k accelerates the apps by 14.4⇥ on average,
compared to two cores, at a similar area design point. String
match (strmatch), word count (wrdcnt) and reverse index
(revidx) show worse performance, compared to CAPE32k.
This scalability bottleneck is explained by the the sequential
traversing of the input file, as well as the serialized post-
processing of each match (similar to idxsrch of Section VI-D).
In turn, the dramatic increase in peformance for Kmeans
(kmeans) is due to its algorithmic nature. For CAPE32k,
Kmean’s dataset does not fit in the CSB, which results in
having to load it multiple times. Instead, Kmean’s dataset fits
in CAPE131k’s CSB, which translates into having to load it
one single time and reuse it until the solution converges. In
addition, the number of vector instructions inside the for-loops
in the program is minimized due to the possibility to fully
unroll all the iterations.

Comparison with SIMD baseline– One could argue that
CAPE is a vector-first compute core, where non-vector instruc-
tions are supported by an adjoining scalar engine (CAPE’s
small Control Processor, already included in the area esti-
mation and the simulations). In contrast, today’s CPUs are
typically scalar-first compute cores, where vector instructions
may be supported by an adjoining vector engine (e.g., Intel
AVX [10] or ARM SVE [43]). To tease out whether CAPE
indeed constitutes an attractive compute tile for vectorizable
code, we conduct an additional simulation experiment us-
ing a commercial-grade model of an ARM core with SVE
support [43]. Specifically, we use ARM’s upstream gem5
model [8], configured to match our RISC-V out-of-order
baseline’s size and latency (Table III), and equipped with
four SIMD ALUs. We manually vectorize the applications
using SVE intrinsics [5]. Although the standalone core in
the ARM configuration is similar to that of our baseline,
direct quantitative comparisons are tricky because of the
different ISAs and compilation flows. Nevertheless, the results
in Figure 12 shows speedups for the Phoenix Benchmarks
running on the three SIMD configurations, normalized to a
scalar-only run. The results in Figure 11 (CAPE32k vs RISC-
V baseline) and Figure 12 (ARM+SVE vs ARM baseline)
suggest that CAPE32k can achieve, on average, more than five
times as much performance as the 512-bit SVE configuration
(comparable to Intel’s most aggressive SIMD implementation,
AVX-512).

Roofline Study– Similar to the microbenchmarks section,
we also plot the Phoenix apps using the Roofline model. By
looking at Figure 11 and Figure 10, we can extract that the
speedups of constant-intensity applications (matmul, lreg, hist,
kmeans) improve from CAPE32k to CAPE131k. However, the
speedup of variable-intensity applications (wrdcnt, revidx, str-
match) worsens; an exception is pca, whose speedup remained
unchanged for reasons discussed in the last section and is
reflected in its fixed position on the Roofline plot. Kmeans’
change in intensity is explained by its algorithmic nature,
previously discussed in the Results section. Unlike the other
variable-intensity applications, its throughput on CAPE131k is
much larger and closer to the compute-bound roofline, which
leads to a dramatic increase in speedup: 426⇥ with respect to
an area comparable multicore system.

As expected, the throughput of constant-intensity apps shifts
from compute-bound towards memory bound, explained by
their vertical movement in the roofline space, with increased
CSB capacity. This indicates that these apps are able to
effectively utilize the increased computational capabilities of
CAPE, until they are limited by the memory, which highlithgts
CAPE’s need for a high throughput memory system like HBM.

In contrast, the throughput of variable-intensity applications
remain far from the memory-bound roofline, suggesting that
they take advantage of the increased computational capability
to a much lesser degree. Like the microbenchmark idxs-
rch, these text-based applications must sequentially traverse
through the matches of parallel searches, and perform actions
that are difficult to vectorize. As a result of Amdahl’s law, any
speedup from the vectorized regions is overshadowed by the
cost of sequential regions, causing overall speedup to plateau.
Coupled with increasing command distribution, the speedup
in fact decreases as CAPE scales up.

VII. MEMORY-ONLY MODE

Although CAPE’s primary mission is to implement a RISC-
V vector ISA efficiently as an associate computing tile,
CAPE’s CSB could alternatively be reconfigured as storage
by the chip whenever it may be more advantageous. In this
section, we briefly outline three examples of CAPE’s use as
a memory-only tile; a detailed description of these or other
possible mechanisms is out of the scope of the paper. In
general, some additional support is needed to accept external
requests.
Scratchpad: A scratchpad is simply a block of physical mem-
ory which can be typically accessed directly using ordinary
loads and stores (i.e., mapped into the virtual addressing
space). In a multicore chip, a scratchpad may be useful, for
example, to store private data or to exchange noncacheable
data across cores. To support this mode, all is needed is for the
VMU to be able to take in memory requests from remote nodes
through the system interconnect and perform the appropriate
physical address indexing.
Key-value storage: The scratchpad above can be further
customized to operate as key-value storage, which is simply a
repository of key-value pairs, where a value can be read from

or written to by first finding its unique key (or, if it is not
found, by first allocating a new key-value pair). Because the
CSB is content-addressable, it naturally supports this mode.
Assuming, for example, that both key and value are 32-bit
wide, and that each CSB chain is made up of 32 subarrays,
then a chain can store 16 ⇥ 32 = 512 key-value pairs (that’s
about half a million key-value pairs in the smaller CAPE
configuration of our evaluation, CAPE32k). Again, as in the
case of the scratchpad, the VMU should be able to take in key-
value requests from the system, and contain the appropriate
indexing logic. To insert new key-value pairs, the VCU may
assist by running a microprogram that scans the CSB looking
for free entries, and/or the control processor may execute a
small program that maintains a free list.
Cache: The CSB can leverage key-value storage functionality
to work as a shared victim cache of the L2 caches, an
additional slice of the LLC, etc. To do this, the control
processor and the VCU should be programmed to work closely
with the controller of the cache it is augmenting (e.g., on a
miss, an L2 cache controller sends a message to the CAPE
tile to check if the block is present in the victim cache CAPE
is emulating, concurrently to initiating an LLC access). In
one possible implementation, each cache line (tag and data)
are stored row-wise (since cache blocks can be fairly large);
neither tag nor data are bit-sliced. Jeloka et al.’s row read/write
operations [26] take one/two cycles, respectively. Since the
CSB has 32 rows of subarrays, and each subarray has 32 rows
of bitcells, CAPE as a cache can support up to ten index bits
in the address (1,024 rows). An access to the CAPE cache can
be carried out with a few microinstructions that search for a
tag match among a set of rows and, if a hit is found, command
the VMU to deliver the data block.

VIII. RELATED WORK

PIM architectures bring logic close or into memory to mit-
igate the effects of data movement [15], [17], [18], [22], [29],
[31], [34], [36], [44], [50]. Recent in-situ PIM solutions are
based on bitline computation, enabled either on DRAM [30],
[40] or SRAM [12], [16], [21] memory technology. CAPE’s
associative processing provides an alternative to bitline com-
putation. Most in-situ PIM proposals require a custom ISA
or ISA extensions [12], [16], [40], but Fujiki et al. proposes
to use SIMT as programming abstraction [21]. Our system
provides a direct map to standard RISC-V vector code [46],
able to reuse existing compilation flows.

Recently, some proposals [23], [33], [49], [51] have
emerged proposing to utilize the foundations of traditional
associative processing [20], [37], [39] for modern microar-
chitectures. However, these solutions require emergent tech-
nologies [23], [33], [51], custom compilation flows [23], [51],
expensive 12T memory bitcells [49], or data copies to ensure
operand locality in the associative arrays [51]. Moreover,
[23] does not perform in-situ associative processing, like
CAPE. Other emergent resistive devices with support for
searches do not leverage associative computing [25], require
sophisticated technology scaling techniques to preserve the

accuracy [48], or represent an alternative architectural design
point as processing-in-storage devices. [28].

Zha et al. propose an associative processor based on RRAM
crossbar memory arrays [51]. Their approach is fairly different
from CAPE. First, their algorithmical optimization relies on a
TCAM array, which has a reduced capacity. While Zha et al.’s
compiler is constrained by common SIMD vectorization limi-
tations (e.g. they need to know the unrolling factor at compile
time, no divergence support), CAPE reuses the standard RISC-
V’s vector abstraction resulting in a clean interface compatible
with existing code and compilation flows (An example of it is
its vector length agnostic paradigm, which allows the unrolling
factor to be determined at runtime.). Finally, Zha et al.’s
performance evaluation uses a simplistic fixed-latency timing
model. This methodology fails to capture the interactions
between the memory system or the task dispatching from the
host.

IX. CONCLUSIONS

In this paper, we explored whether the concepts behind
classic associative processing can guide the design of a next-
generation, general-purpose CMOS microarchitecture that can
deliver order-of-magnitude speedups while remaining highly
programmable.

To do that, we conducted a full-stack design of a CMOS-
based implementation of an associative engine based on dense
6T push-rule SRAM arrays. The resulting CAPE microarchi-
tecture is scalable to data-level parallel computations on tens
of thousands of vector elements, and it is fully programmable
via a RISC-V ISA with standard vector instructions. Our
evaluation shows that CAPE achieves average speedup of 14
(up to 254) across eight diverse applications, relative to an
area-equivalent (slightly under 9 mm2 at 7 nm) out-of-order
processor core with three levels of caches.

ACKNOWLEDGMENT

This work was supported in part by the Semiconductor
Research Corporation (SRC) through the Center for Research
on Intelligent Storage and Processing-in-memory (CRISP) and
the Center for Applications Driving Architectures (ADA), two
of six centers of the JUMP program co-sponsored by DARPA;
by SRC and NSF through an E2CDA NSF Award #1740136,
by NSF Award #2008365, and by NSF SHF Award #2008471.
We thank Olalekan Afuye and Alyssa Apsel for early discus-
sions and help with circuit design; Angela Jin, Ysabel Tan,
and Socrates Wong for their help with experiments; Giacomo
Gabrielli and Giacomo Travaglini for their help with some of
the Arm tools; Michael Woodson for his technical support;
and Ameen Akel and Sean Eilert from Micron Technology
for their advice.

REFERENCES

[1] “14 nm lithography process,” https://en.wikichip.org/wiki/14 nm
lithography process.

[2] “16 nm lithography process,” https://en.wikichip.org/wiki/16 nm
lithography process.

[3] “7 nm lithography process,” https://en.wikichip.org/wiki/7 nm
lithography process.

[4] “Amd epyc 7502 processor,” https://www.amd.com/en/products/cpu/
amd-epyc-7502.

[5] “ARM C Language Extensions for SVE,” https://static.docs.arm.com/
100987/0000/acle sve 100987 0000 00 en.pdf.

[6] “Cortex-A53 - Microarchitectures - ARM,” https://en.wikichip.org/wiki/
arm holdings/microarchitectures/cortex-a53.

[7] “DC Ultra: Concurrent Timing, Area, Power, and Test Op-
timization,” https://www.synopsys.com/implementation-and-signoff/rtl-
synthesis-test/dc-ultra.html.

[8] “Git repositories on gem5,” https://gem5.googlesource.com.
[9] “Innovus Implementation System,” https://www.cadence.com/en

US/home/tools/digital-design-and-signoff/soc-implementation-and-
floorplanning/innovus-implementation-system.html.

[10] “Intel 64 and ia-32 architectures software developer’s manual volume
2a: Instruction set reference.” Intel Corporation. 2015.

[11] “Skylake (server) Microarchitectures,” https://en.wikichip.org/wiki/intel/
microarchitectures/skylake (server)#Extreme Core Count .28XCC.29.

[12] S. Aga, S. Jeloka, A. Subramaniyan, S. Narayanasamy, D. Blaauw, and
R. Das, “Compute Caches,” in 2017 IEEE International Symposium on
High Performance Computer Architecture, 2017.

[13] D. F. Bacon, S. L. Graham, and O. J. Sharp, “Compiler transformations
for high-performance computing,” ACM Computing Surveys, 1994.

[14] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5 simulator,”
SIGARCH Computer Architecture News, 2011.

[15] J. Draper, J. Chame, M. Hall, C. Steele, T. Barrett, J. LaCoss,
J. Granacki, J. Shin, C. Chen, C. W. Kang, I. Kim, and G. Daglikoca,
“The Architecture of the DIVA Processing-in-memory Chip,” in Pro-
ceedings of the 16th International Conference on Supercomputing, 2002.

[16] C. Eckert, X. Wang, J. Wang, A. Subramaniyan, R. Iyer, D. Sylvester,
D. Blaaauw, and R. Das, “Neural Cache: Bit-Serial In-Cache Accel-
eration of Deep Neural Networks,” in 2018 ACM/IEEE 45th Annual
International Symposium on Computer Architecture, 2018.

[17] D. G. Elliott, W. M. Snelgrove, and M. Stumm, “Computational RAM:
A Memory-SIMD Hybrid and its Application to DSP,” in 1992 Pro-
ceedings of the IEEE Custom Integrated Circuits Conference, 1992.

[18] D. G. Elliott, M. Stumm, W. M. Snelgrove, C. Cojocaru, and R. Mcken-
zie, “Computational RAM: implementing processors in memory,” IEEE
Design Test of Computers, 1999.

[19] R. Espasa, M. Valero, and J. E. Smith, “Vector Architectures: Past,
present and future,” in Proceedings of the 12th International Conference
on Supercomputing, 1998.

[20] C. C. Foster, Content Addressable Parallel Processors. John Wiley &
Sons, Inc., 1976.

[21] D. Fujiki, S. Mahlke, and R. Das, “Duality Cache for Data Parallel
Acceleration,” in Proceedings of the 46th International Symposium on
Computer Architecture, 2019.

[22] M. Gokhale, B. Holmes, and K. Iobst, “Processing in memory: the
Terasys massively parallel PIM array,” Computer, 1995.

[23] Q. Guo, X. Guo, R. Patel, E. Ipek, and E. G. Friedman, “AC-DIMM:
Associative Computing with STT-MRAM,” in Proceedings of the 40th
Annual International Symposium on Computer Architecture, 2013.

[24] M. Hampton and K. Asanović, “Implementing virtual memory in a
vector processor with software restart markers,” in Proceedings of the
20th Annual International Conference on Supercomputing. Association
for Computing Machinery, 2006.

[25] M. Imani, S. Gupta, Y. Kim, and T. Rosing, “FloatPIM: In-memory
acceleration of deep neural network training with high precision,” in
2019 ACM/IEEE 46th Annual International Symposium on Computer
Architecture (ISCA), 2019.

[26] S. Jeloka, N. B. Akesh, D. Sylvester, and D. Blaauw, “A 28 nm
configurable memory (TCAM/BCAM/SRAM) using push-rule 6t bit cell
enabling logic-in-memory,” IEEE Journal of Solid-State Circuits, 2016.

[27] Joonyoung Kim and Younsu Kim, “HBM: Memory solution for
bandwidth-hungry processors,” in 2014 IEEE Hot Chips 26 Symposium
(HCS), 2014.

[28] R. Kaplan, L. Yavits, and R. Ginosar, “PRINS: Processing-in-storage ac-
celeration of machine learning,” IEEE Transactions on Nanotechnology,
2018.

[29] P. M. Kogge, “EXECUBE- A new architecture for scaleable MPPs,” in
Proceedings of the 1994 International Conference on Parallel Process-
ing, 1994.

[30] S. Li, D. Niu, K. T. Malladi, H. Zheng, B. Brennan, and Y. Xie, “DRISA:
A DRAM-based reconfigurable in-situ accelerator,” in 2017 50th Annual
IEEE/ACM International Symposium on Microarchitecture, 2017.

[31] K. Mai, T. Paaske, N. Jayasena, R. Ho, W. J. Dally, and M. Horowitz,
“Smart Memories: a modular reconfigurable architecture,” in Proceed-
ings of 27th International Symposium on Computer Architecture, 2000.

[32] S. Maleki, Y. Gao, M. Garzaran, T. Wong, and D. Padua, “An Evaluation
of Vectorizing Compilers,” in Proceedings of the 28th Int’l Conf. on
Parallel Architectures and Compilation Techniques, 2011.

[33] A. Morad, L. Yavits, S. Kvatinsky, and R. Ginosar, “Resistive GP-SIMD
processing-in-memory,” ACM Trans. Archit. Code Optim., 2016.

[34] M. Oskin, F. T. Chong, and T. Sherwood, “Active Pages: a computation
model for intelligent memory,” in Proceedings. 25th Annual Interna-
tional Symposium on Computer Architecture, 1998.

[35] K. Pagiamtzis and A. Sheikholeslami, “Content-addressable memory
(CAM) circuits and architectures: a tutorial and survey,” IEEE Journal
of Solid-State Circuits, 2006.

[36] D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton,
C. Kozyrakis, R. Thomas, and K. Yelick, “A case for intelligent RAM,”
IEEE Micro, 1997.

[37] J. Potter, J. Baker, S. Scott, A. Bansal, C. Leangsuksun, and C. Asthagiri,
“ASC: an associative-computing paradigm,” Computer, 1994.

[38] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and C. Kozyrakis,
“Evaluating MapReduce for multi-core and multiprocessor systems,”
in 2007 IEEE 13th International Symposium on High Performance
Computer Architecture, 2007.

[39] G. E. Sayre, “Staran: An associative approach to multiprocessor archi-
tecture,” in Computer Architecture.Springer Berlin Heidelberg, 1976.

[40] V. Seshadri, D. Lee, T. Mullins, H. Hassan, A. Boroumand, J. Kim,
M. A. Kozuch, O. Mutlu, P. B. Gibbons, and T. C. Mowry, “Ambit:
In-memory accelerator for bulk bitwise operations using commodity
DRAM technology,” in 2017 50th Annual IEEE/ACM International
Symposium on Microarchitecture, 2017.

[41] A. E. Slade and H. O. McMahon, “A cryotron catalog memory system,”
in Eastern Joint Computer Conference: New Developments in Comput-
ers, 1957.

[42] P. Srivastava, M. Kang, S. K. Gonugondla, S. Lim, J. Choi, V. Adve,
N. S. Kim, and N. Shanbhag, “PROMISE: An end-to-end design of
a programmable mixed-signal accelerator for machine-learning algo-
rithms,” in 2018 ACM/IEEE 45th Annual International Symposium on
Computer Architecture, 2018.

[43] N. Stephens, S. Biles, M. Boettcher, J. Eapen, M. Eyole, G. Gabrielli,
M. Horsnell, G. Magklis, A. Martinez, N. Premillieu, A. Reid, A. Rico,
and P. Walker, “The ARM Scalable Vector Extension,” IEEE Micro,
2017.

[44] H. S. Stone, “A logic-in-memory computer,” IEEE Transactions on
Computers, 1970.

[45] V. Vashishtha, M. Vangala, and L. T. Clark, “ASAP7 predictive design
kit development and cell design technology co-optimization: Invited
paper,” in 2017 IEEE/ACM International Conference on Computer-
Aided Design, 2017.

[46] A. Waterman, Y. Lee, D. A. Patterson, and K. Asanovic, “The RISC-
V instruction set manual. Volume I User-level ISA,” https://www.amd.
com/en/products/cpu/amd-epyc-7502, 2014.

[47] S. Williams, A. Waterman, and D. Patterson, “Roofline: an insightful
visual performance model for multicore architectures,” Communications
of the ACM, 2009.

[48] H. E. Yantır, A. M. Eltawil, and F. J. Kurdahi, “Low-power resistive as-
sociative processor implementation through the multi-compare,” in 25th
IEEE International Conference on Electronics, Circuits and Systems
(ICECS), 2018.

[49] L. Yavits, A. Morad, and R. Ginosar, “Computer architecture with
associative processor replacing last-level cache and simd accelerator,”
IEEE Transactions on Computers, 2015.

[50] Yi Kang, Wei Huang, Seung-Moon Yoo, D. Keen, Zhenzhou Ge, V. Lam,
P. Pattnaik, and J. Torrellas, “FlexRAM: toward an advanced intelligent
memory system,” in Proceedings 1999 IEEE International Conference
on Computer Design: VLSI in Computers and Processors, 1999.

[51] Y. Zha and J. Li, “Hyper-AP: Enhancing associative processing through
a full-stack optimization,” in 2020 ACM/IEEE 47th Annual International
Symposium on Computer Architecture, 2020.

