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This document describes a preliminary model for a Lux/AiiA Synchronized Relaxation
Oscillator (LASRO), which uses the Lux quorum sensing positive feedback mechanism cou-
pled with AiiA, an enzyme which actively degrades the acylhomoserine lactone (HSL) com-
ponent of the positive feedback loop to create synchronized population level oscillations.
Figure 1 illustrates the full system we are investigating. Essentially this is the standard
Lux quorum-sensing system with the expression of AiiA coupled to the expression of LuxI.

A similar relaxation oscillator has been proposed which uses the λ bacteriophage cI

repressor positive feedback loop and the RcsA protease for cI [2]. This system was later
altered to use cII and FtsH and extended to include a cell-to-cell signaling mechanism
which theoretically enabled synchronized population level oscillations [4]. The LASRO
system introduced in this document differs from these earlier proposals since it effectively
integrates the oscillator and synchronization subsystems into a single system. The relaxation
oscillator proposed by the summer students at the California Institute of Technology uses a
significantly different negative feedback loop; a repressor protein is able to repress the same
operator normally targeted by the positive feedback activator [5].

To gain some qualitative insight we will initially work under the rapid equilibrium ap-

proximation. This approximation assumes that that the timescale of protein-protein and
protein-DNA interactions are significantly faster than the other chemical reactions and thus
we can consider these protein reactions to be at equilibrium. We begin our analysis by exam-
ining a simple model for a bistable positive-feedback network. Insight into the bistability
of this simple network will give us a better understanding of the relaxation oscillator’s
dynamics. We then self-couple this simple positive feedback network to derive a greatly
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Figure 1: System Diagram for Lux/AiiA Synchronized Relaxation Oscillator
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Figure 2: System Diagram for Bistable Positive-Feedback Network

(a) Multimerization nA ⇀↽ An K1 = (A)n/(An)
(b) Activation O + An ⇀↽ OAn K2 = (O)(An)/(OAn)
(c) Leakage O → O + A + Z kleak

(d) Synthesis OAn → OAn + A + Z ksynth

(e) Protein Decay A → kadeg

(f) Protein Decay Z → kzdeg

(g) Decay of A by B A + B → B kAB

Table 1: Chemical Equations for LASRO Without Negative Feedback

simplified model of the full LASRO system. We examine how various parameters influence
this simplified system’s oscillatory behavior. We will then reconsider the rapid equilibrium
approximation before investigating the simplified LASRO system with biologically plausi-
ble parameters. We conclude with one possible strategy for actually building the LASRO
system.

1 The Bistable Positive-Feedback Network

This section outlines a basic model for a bistable positive-feedback network. Figure 2 and
Table 1 illustrate the system and the chemical equations which govern it. Essentially, the
system consists of self-activated expression of a protein A and an input protein B which
enzymatically degrades A.

Under the rapid equilibrium approximation we can assume that reaction (a) and (b)
are in equilibrium with respect to the reactions (c) through (g). We can use the fact that
there is a constant amount of total operator (OT ) to derive an equation for the free operator
concentration (O) in terms of the concentration of (A). We also make use of the equilibrium
equation for reaction (a) and (b).

(OT ) = (O) + (OAn) = (O) + K(O)(A)n = [1 + K(A)n] (O) (1)

(O) =
OT

1 + K(A)n
(2)

where K is the total equilibrium association constant (K = (K1K2)
−1).
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We now write an equation for the change in the concentration of (A) with respect to
time using the chemical equations (c), (d), (e), and (g). We then use Equation 2 and the
equilibrium equation for reactions (a) and (b) to derive d(A)/dt as a function of (A) and
(B).

d

dt
(A) = kleak(O) + ksynth(OAn) − kAB(A)(B) − kadeg(A) (3)

= kleak(O) + ksynthK(A)n(O) − kAB(A)(B) − kadeg(A) (4)

=
kleak(OT )

1 + K(A)n
+

ksynthK(A)n(OT )

1 + K(A)n
− kAB(A)(B) − kadeg(A) (5)

=
βleak

1 + K(A)n
+

βsynthK(A)n

1 + K(A)n
− kAB(A)(B) − kadeg(A) (6)

where βleak = kleak(OT ) and βsynth = ksynth(OT ). The rate of change in A has four terms:
a leakage term, a synthesis term, a enzymatic degradation term due to AB interactions,
and a standard degradation term. We can use a similar analysis to derive the change in (Z)
over time.

d

dt
(Z) =

βleak

1 + K(A)n)
+

βsynthK(A)n

1 + K(A)n
− kzdeg(Z) (7)

The transfer curve for A versus B and Z versus B can be found by setting Equations 6
and 7 equal to zero. The resulting equation will be difficult to solve analytically for (A) or
(Z) in terms of (B), but simple to solve for (B) in terms of (A) or (Z). To plot the transfer
curve, one need only try a range of values for (A) to determine the corresponding input
concentrations.

We will now examine the behavior of this simple positive-feedback network for a given
set of parameters. Unless otherwise stated, we use the following values: bleak = 1, bsynth

= 50, K = 10, kadeg = 0.8, kzdeg = 0.8, kAB = 2, and n = 4. For now our goal is to
simply gain some intuition about the system, and we will use more biologically plausible
parameters later in this document.

Figure 3 shows typical transfer curves for this system. Notice that for some input B
concentrations there are three possible output values. We can use stability analysis to
determine which of these solutions are stable and which are unstable. Figure 4 shows the
vector field for d(A)/dt as well as (A) versus time for several initial conditions. From this
we can see that the upper and lower branches of the transfer curve are stable equilibrium
points while the middle branch is clearly unstable.

Figure 5 shows two trajectories along the transfer curve. The left-hand figure shows that
as (B) increases, the system moves down the upper branch until it reaches the critical point
at (B) = 25. Here (A) sharply decreases and the system “falls off” onto the lower branch.
The right-hand figure shows that as (B) decreases, the system moves back along the lower
branch until it reaches the critical point at (B) = 3. (A) then sharply increases and the
system “jumps” up on the upper branch. This illustrates the hysteresis in the system -
the transfer curve is different depending upon whether we are increasing (B) or decreasing
(B). We can exploit this bi-stability to create a relaxation oscillator by self-coupling the
production of B to the production of A as illustrated in the following section.
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Figure 3: Transfer Curves for Bistable Positive-Feedback Network.
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Figure 4: Stability Analysis for Bistable Positive-Feedback Network. Dashed line on transfer
curve indicates the constant input concentration of B used for the A vs time plots.
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Figure 5: Transfer Curves for Bistable Positive-Feedback Network. Figure on the left is for
increasing B while the figure on the right is for decreasing B.
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Figure 6: System Diagram for Simple LASRO Model

(a) Multimerization nA ⇀↽ An K1 = (A)n/(An)
(b) Activation O + An ⇀↽ OAn K2 = (O)(An)/(OAn)
(c) Leakage O → O + A + Z kleak

(d) Synthesis OAn → OAn + A + Z ksynth

(e) Protein Decay A → kadeg

(f) Protein Decay B → kbdeg

(g) Decay of A by B A + B → B kAB

Table 2: Chemical Equations for LASRO Without Positive Feedback

2 The Relaxation Oscillator

We now self-couple the input and output of the bistable network discussed in the previous
section to create the relaxation oscillator shown in Figure 6. Note that this is a greatly
simplified version of the full Lux/AiiA system shown in Figure 1. Most notably, the simpler
model completely ignores the difference between LuxI, HSL, and LuxR; the positive feedback
is folded into a single protein A. Future work will extend the simple model to include more
of the components shown in the full system. Table 2 lists the chemical equations which
govern this system.

Using an analysis similar to that presented in Section 1, we can derive the following two
differential equations which govern the dynamic behavior of the relaxation oscillator under
the rapid equilibrium approximation.

d

dt
(A) =

βleak

1 + K(A)n
+

βsynthK(A)n

1 + K(A)n
− kAB(A)(B) − kadeg(A) (8)

d

dt
(B) =

βleak

1 + K(A)n
+

βsynthK(A)n

1 + K(A)n
− kbdeg(B) (9)

The left-hand portion of Figure 7 shows the two nullclines for this system of differential
equations. Notice that the nullcline corresponding to Equation 8 is analogous to the transfer
curve shown in Figure 3. The intersection of these nullclines is the equilibrium point of the
oscillator.

Figure 7 and Figure 8 also illustrate how these nullclines change when the parameters
are varied. Notice that as expected changing kbdeg only moves one of the nullclines, while
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changing kadeg moves the other nullcline. Changing N (ie. the cooperativity) changes both
nullclines.

Figures 9, 10, and 11 show the trajectories in state space as well as the concentrations
of A and B over time for several initial conditions. Notice that if the equilibrium point is on
the upper or lower branch of the bistable nullcline, then the system does not oscillate but
instead simply stabilizes at the equilibrium point. This is in contrast to situations where
the equilibrium point is on the middle branch. Here the system will oscillate forming a
limit cycle in state space regardless of the initial conditions. kbdeg is varied to move the
equilibrium point between the three branches.
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Figure 7: Nullclines for LASRO System. Left-hand figure is for the parameters used in
earlier sections. Right-hand figure shows how nullclines change for kbdeg = 0.1 to 2
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Figure 8: Nullclines for LASRO System. Left-hand figure shows how nullclines change for
kadeg = 0.1 to 4. The right-hand figure shows how the nullclines change for n = 2 to 4.
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Figure 9: System Dynamics when Equilibrium Point is on Upper Branch (kbdeg = 0.4)
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Figure 10: System Dynamics when Equilibrium Point is on Middle Branch (kbdeg = 0.8)
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Figure 11: System Dynamics when Equilibrium Point is on Lower Branch (kbdeg = 0.1)
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3 Biologically Plausible Parameters

Our analysis so far has relied on relatively arbitrary parameter values and units. We now
take a first step towards narrowing the parameter space around more biologically plausible
parameters. Table 3 lists parameter values which are at least approximately on the order of
what might be reasonable in biology. All concentrations are in nanomolar units (nM). We
assume that the protein-protein and protein-DNA forward reactions are diffusion limited
and that the reverse reactions are similar to the lambda phage system. The half-life of
protein A is assumed to be around 10 minutes which is similar to what is used in Elowitz’s
repressilator model [1]. Furthermore, we assume that a more aggressive degradation tail
can enable half-times on the order of two minutes for protein B. The enzymatic decay rate
is admittedly rather arbitrary owing to the fact that the little data that is available in the
literature is more applicable to the full Lux/AiiA system as opposed to the greatly simplified
system studied here. Regardless, assuming that the enzymatic decay rate is twice the normal
degradation rate of protein A seems reasonable. We use a hill coefficient of four; it is largely
believed that the LuxR system binds as a dimer [6, 7] and we assume that the LuxR-HSL
binding adds additional cooperativity [4] although this may be optimistic. Finally the fully
activated synthesis rate is assumed to be on the order of a couple of proteins per second
per promoter and the leakage rate is assumed to be at least two orders of magnitude less
than the fully induced rate.

Figure 12 illustrates the simple LASRO system under the biologically plausible param-
eters listed in Table 3. The system dynamics are similar to those presented in the earlier
sections. Notice the large discrepancy between the concentration range for protein A (up to
50 nM) versus protein B (up to 6500 nM). Although this is similar to the analytical results
described in [2], it is still a reason for concern since such small concentrations of A (on the
order of tens of proteins) could result in significant variation due to stochastic effects. The
period of the oscillator is around ten minutes which seems very fast; in the next section we

Parameter Symbol Value Comment

Forward rate for multimerization ka1 0.002 nM−1s−1 Diffusion limited

Reverse rate for multimerization kd1 0.02 s−1 Tighter than DNA binding

Forward rate for DNA binding ka2 0.002 nM−1s−1 Diffusion limited

Reverse rate for DNA binding kd2 0.04 s−1 Similar to lambda DNA binding

Equilibrium association constant K 0.005 nM−2 (K1K2)
−1 = (ka1/kd1) ∗ (ka2/kd2)

Protein degradation rate of A kadeg 0.0012 s−1 Half-life of 10 min

Protein degradation rate of B kbdeg 0.0058 s−1 Half-life of 2 min

Enzymatic decay rate of A by B kAB 0.0024 s−1 Twice as effective as kadeg

Total operator concentration (OT ) 50 nM Medium copy count

Cooperativity N 4 Hill coefficient

Leakage synthesis rate kleak 0.01 s−1 Significantly less than ksynth

Fully activated synthesis rate ksynth 2 s−1 2 proteins per sec per plasmid copy

Leakage parameter bleak 0.5 nMs−1 kleak(OT )

Synthesis parameter bsynth 100 nMs−1 ksynth(OT )

Table 3: Biologically Plausible Parameters
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Figure 12: System Dynamics under Biologically Plausible Parameters

will show that without the rapid equilibrium approximation the system oscillates with a
more reasonable period possibly suggesting that this approximation is less applicable than
previously thought.

4 Revisiting the Rapid Equilibrium Approximation

Up until this point our analysis has fallen into one of two categories: (a) analytical analysis of
static behavior or (b) numerical analysis of dynamic behavior under the rapid equilibrium
approximation. In this section we revisit the rapid equilibrium approximation by fully
simulating all of the chemical reactions without assuming that the protein-protein and
protein-DNA reactions are at equilibrium. Instead we use the kinetic rate constants listed
in Table 3. We simulate this system using a numerical differential equation solver for various
initial conditions.

The first task is to validate the analytical static behavior described earlier in this doc-
ument using the full dynamic model. These results should be similar since the static be-
havior is independent of the rapid equilibrium approximation (i.e. the whole system is at
equilibrium). We do this by initializing the full dynamic model and then observing the con-
centrations of each species after a very long time period. Figure 13 compares the analytical
transfer curve to the transfer curve derived from the full dynamic model for the bistable
positive-feedback network introduced in Section 1. The solid line represents the analytical
transfer curve while the dashed line with circle markers represents the transfer curve derived
from numerical simulation. Each circle marker is the concentration of A after 24 hours of
simulated time. Upper and lower branches of the numerical simulation are the result of two
different initial values of (A): 100 nM and 0 nM respectively. Although similar, the transfer
curve for the full dynamic model falls off the upper branch significantly earlier than the
analytical model would predict. This behavior deserves further investigation, since we are
unsure whether it is an artifact of the model implementation or an indication of something
more significant. Regardless, the full dynamic model still exhibits the bistability necessary
to make a relaxation oscillator.

Figure 14 shows the dynamic behavior of the relaxation oscillator using the full dynamic
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Figure 13: Analytical and Numerical Transfer Curves. The solid line represents the analyt-
ical transfer curve while the dashed line with circle markers represents the transfer curve
derived from numerical simulation. Upper and lower branches of the numerical simulation
are the result of two different initial values of (A): 100 nM and 0 nM respectively.
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Figure 14: Oscillatory Dynamics without Rapid Equilibrium Approximation. Left-hand
figure shows the concentration of A for three values of kbdeg (0.05 s−1, 0.01 s−1, 0.001 s−1)
which result in a stable equilibrium point. The middle and right-hand figures show the
concentration of A, An, and B for kbdeg = 0.0058 s−1 which results in stable oscillations.
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Figure 15: Oscillatory Dynamics without Rapid Equilibrium

model and the parameters given in Table 3. The left-hand figure shows the concentration
of A over time for three values of kbdeg. As predicted in Section 2, decreasing kbdeg moves
the equilibrium point down the transfer curve. For kbdeg = 0.05 s−1 the system stabilizes at
(A) ≈ 21 nM and thus the system is on the upper branch of the transfer curve. For kbdeg =
0.001 s−1 the system stabilizes at (A) ≈ 0 nM and thus the system is on the lower branch
of the transfer curve. It is peculiar that for kbdeg = 0.01 s−1 the system stabilizes at (A)
≈ 4 nM, since the transfer curve derived from the full dynamic model implies that this is
not a valid stable equilibrium point. Again the discrepancy in transfer curves needs further
investigation.

Figure 14 also shows the dynamic behavior for kbdeg = 0.0058 s−1 which results in stable
oscillations. This value of kbdeg is between the values tested in the left-hand figure and thus
we can confidently assume that the equilibrium point is on the unstable middle branch.
This analysis illustrates how one can use kbdeg to tune the system’s equilibrium point onto
the middle branch of the transfer curve and thus produce oscillations.

The period of these oscillations is around 25 minutes which is longer than what was
predicted using the rapid equilibrium approximation in Section 3. This is still fast but pos-
sibly more reasonable. The discrepancy implies that the rapid equilibrium approximation
may be inappropriate for this system.

5 Stochastic Modeling

Some very preliminary work has been done on modeling the relaxation oscillator using
stochastic simulators such as the Stochastic Simulation Algorithm (SSA). Using such ap-
proaches one can capture the effects of discrete chemical events as opposed to the continuous
models used in this document so far. Figure 15 illustrates a typical result for a stochastic
simulation of the LASRO relaxation oscillator using parameters similar (but not identical)
to those listed in Table 3. Notice that the quantity of A molecules fluctuates a great deal
and that these fluctuations exceed the range of bistable A values in the transfer curves
we have see so far. This implies that such stochastic simulation is an important step in
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need to be polycistronic.

understanding how the relaxation oscillator will function experimentally. Even with such
fluctuations, we can still observe oscillations in the amount of B. To achieve oscillations in
this simulation it was necessary to add a new chemical reaction which modeled the decay of
the An multimer complex by the B enzyme. The biological foundation for such a reaction
is an important question for future work.

6 Experimental Approach

Based on the insight gained from this document, this section proposes one possible ex-
perimental approach for tuning a LASRO system to oscillate. The first step would be to
construct a system similar to the bistable positive-feedback network described in Section 1
and to verify that this system has bistable behavior. Figure 16 illustrates a system which
could be used to derive transfer curves similar to the one shown in Figure 13. This test con-
struct uses the externally inducible pbad promoter to control the expression of AiiA. The
transfer curves would be in terms of YFP vs CFP fluorescent units. A similar experimental
approach for testing a bistable positive-feedback network was used in [3], but the actual
system was very different. If there is no bistable region in this transfer curve then there is
no hope of oscillations. The system can be tuned to increase the size of this bistable region
and thus increase the chance of oscillations.

Armed with this transfer curve, one could then build a system similar to the relaxation
oscillator shown in Figure 1. To observe the output, a YFP reporter could be added to the
LuxR promoter. We would then observe the steady state amount of YFP to qualitatively
judge if the oscillator is finding an equilibrium point on the upper or lower branch of the
transfer curve. The degradation rate of AiiA can then be tuned using various degradation
tags to move the equilibrium point onto the unstable middle branch. An important exper-
imental question is whether there are enough degradation tags to enable the system to be
fine tuned in this way.
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