
PyMTL3
A Python Framework for Hardware Modeling,
Generation, Simulation, and Verification

https://pymtl.github.io

Christopher Batten
Electrical and Computer Engineering
Cornell University

PyMTL3 Motivation PyMTL3 Framework PyMTL3 in Practice PyMTL3 JIT PyMTL3 Testing PyMTL3 Gradual Typing

Vertically Integrated Research Methodology

Our research group focuses on accelerator-centric system-on-chip design
across the computing stack including applications, programming frameworks,

compiler optimizations, runtime systems, instruction set design,
microarchitecture design, and VLSI implementation

Cross
Compiler

Functional
Simulator

Binary

Applications

Functional-Level
Model

Cycle-Level
Simulator

Cycle-Level
Model

Layout

Register-Transfer-Level Model

RTL
Simulator

Gate-Level Model

Gate-Level
Simulator

Switching Activity

Power
Analysis

Synthesis
Place&Route

Key Metrics: Cycle Count,
Cycle Time, Area, Energy

Experimenting with full-chip
layout, FPGA prototypes, and
test chips is a key part of our

research methodology

Christopher Batten Spring 2023 @ NVIDIA 2 / 48

PyMTL3 Motivation PyMTL3 Framework PyMTL3 in Practice PyMTL3 JIT PyMTL3 Testing PyMTL3 Gradual Typing

Projects in the Batten Research Group

Computer Architecture

● big.TINY Arch for Dynamic
 Task-Level Parallelism

● Ephemeral Vector Arch
 Using Processing-in-SRAM

● Integrated Rack-Scale Acceleration
 for Computational Pangenomics

HPCA'21/'23, ISCA'20, MICRO'22/18/'17

TGCA TATA
GGCC

GCTA

TAGGCTAGAT

Graph-Based Genomic
Analysis

Manycore
+Xcel Chiplet

Optics
Chiplet

App
Specific
Chiplets

HBM

Domain-Specific
Compilation Flows

● Bit-Serial/Bit-Parallel Bit-Line
 Computing with SRAM

● Accelerator-Centric Prototypes
 in TSMC16nm, GF12nm

Digital VLSI & Circuits
ISCAS'20, NOCS'20, VLSI'19, TCAS-I'18

● Chip-Level Silicon Photonic
 Interconnection Networks

Electronic Design Automation
TCAD'22, DAC'21/'18, IEEE D&T'21, IEEE Micro'20, ICCD'19

● Productive Hardware Modeling,
 Generation, Simulation, Testing

● HLS Methodologies for Dynamic
 Task-Level Parallelism

● New On-Chip Network Logical
 and Physical Design Generators

class Incr(Component):
def construct(s, n):
 s.in_ = InPort (n)
 s.out = OutPort(n)
 @update
 def logic():
 s.out @= s.in_ + 1

Vertically Driven
Research Approach

● Spans Entire Computing Stack
● FPGA Prototypes/Emulation
● ASIC Test Chip Tapeouts

Themes
Power

Performance
Programmability

Post-CMOS

Christopher Batten Spring 2023 @ NVIDIA 3 / 48

• PyMTL3 Motivation • PyMTL3 Framework PyMTL3 in Practice PyMTL3 JIT PyMTL3 Testing PyMTL3 Gradual Typing

Multi-Level Modeling Methodologies

Applications

Transistors

Algorithms

Compilers

Instruction Set Architecture

Microarchitecture

VLSI

Cycle-Level Modeling

– Behavior

– Cycle-Approximate

– Analytical Area, Energy, Timing

Functional-Level Modeling

– Behavior

Register-Transfer-Level Modeling

– Behavior

– Cycle-Accurate Timing

– Gate-Level Area, Energy, Timing

Christopher Batten Spring 2023 @ NVIDIA 4 / 48

• PyMTL3 Motivation • PyMTL3 Framework PyMTL3 in Practice PyMTL3 JIT PyMTL3 Testing PyMTL3 Gradual Typing

Multi-Level Modeling Methodologies

Cycle-Level Modeling

Functional-Level Modeling

Register-Transfer-Level Modeling

– Algorithm/ISA Development

– MATLAB/Python, C++ ISA Sim

– Design-Space Exploration

– C++ Simulation Framework

– gem5, SESC, McPAT

– Prototyping & AET Validation

– Verilog, VHDL Languages

– HW-Focused Concurrent Structural

– SW-Focused Object-Oriented

– EDA Toolflow

Multi-Level Modeling

Challenge

FL, CL, RTL modeling

use very different

languages, patterns,

tools, and methodologies

SystemC is a good example
of a unified multi-level
modeling framework

Is SystemC the best
we can do in terms of

productive
multi-level modeling?

Christopher Batten Spring 2023 @ NVIDIA 4 / 48

• PyMTL3 Motivation • PyMTL3 Framework PyMTL3 in Practice PyMTL3 JIT PyMTL3 Testing PyMTL3 Gradual Typing

Traditional RTL Design Methodologies

RTL

Sim

TB

 HDL
(Verilog)

FPGA/
 ASIC

synth

Fast edit-sim-debug loop

Difficult to create highly
parameterized generators

Single language for
structural, behavioral, + TB

HDL
Hardware Description

Language

RTL

Sim

TB

 HDL
(Verilog)

RTL

 Mixed
(Verilog+Perl)

TB

gen

gen

FPGA/
 ASIC

synth

Slower edit-sim-debug loop

Easier to create highly
parameterized generators

Multiple languages create
"semantic gap"

Example: Genesis2

HPF
Hardware Preprocessing

Framework

RTL

Sim

 HDL
(Verilog)

RTL

Host Language
 (Scala)

TB TB

FPGA/
 ASIC

gen

gen

synth

Slower edit-sim-debug loop

Easier to create highly
parameterized generators

Cannot use power of host
language for verification

Example: Chisel

HGF
Hardware Generation

Framework

Single language for
structural + behavioral

Is Chisel the best we can do in terms of a
productive RTL design methodology?

Christopher Batten Spring 2023 @ NVIDIA 5 / 48

• PyMTL3 Motivation • PyMTL3 Framework PyMTL3 in Practice PyMTL3 JIT PyMTL3 Testing PyMTL3 Gradual Typing

PyMTL Python-based hardware generation,
simulation, and verification framework

which enables productive
multi-level modeling and RTL design

Python

RTL

Cycle-Level

Functional-Level

Test Bench

Multi-Level
Simulation

SystemVerilog

RTL
generate

co-simulate synthesize

FPGA
ASICprototype

bring-up

Christopher Batten Spring 2023 @ NVIDIA 6 / 48

PyMTL3 Motivation • PyMTL3 Framework • PyMTL3 in Practice PyMTL3 JIT PyMTL3 Testing PyMTL3 Gradual Typing

PyMTL3: A Python Framework for Hardware
Modeling, Generation, Simulation, and Verification

PyMTL3 Motivation

PyMTL3 Framework
[IEEE Micro’20,DAC’21]

PyMTL3 in Practice

PyMTL3 JIT
[DAC’18]

PyMTL3 Testing
[IEEE Design&Test’21]

PyMTL3 Gradual Typing
[LATTE’23]

Python

Functional-Level

Cycle-Level

RTL

Multi-Level
Simulation

Test Bench

SystemVerilog

RTL

synth

generate

prototype
bring-up

FPGA
ASIC

co-simulate

Christopher Batten Spring 2023 @ NVIDIA 7 / 48

PyMTL3 Motivation • PyMTL3 Framework • PyMTL3 in Practice PyMTL3 JIT PyMTL3 Testing PyMTL3 Gradual Typing

PyMTL3: A Python Framework for Hardware
Modeling, Generation, Simulation, and Verification

PyMTL3 Motivation

PyMTL3 Framework
[IEEE Micro’20,DAC’21]

PyMTL3 in Practice

PyMTL3 JIT
[DAC’18]

PyMTL3 Testing
[IEEE Design&Test’21]

PyMTL3 Gradual Typing
[LATTE’23]

Python

Functional-Level

Cycle-Level

RTL

Multi-Level
Simulation

Test Bench

SystemVerilog

RTL

synth

generate

prototype
bring-up

FPGA
ASIC

co-simulate

Christopher Batten Spring 2023 @ NVIDIA 8 / 48

PyMTL3 Motivation • PyMTL3 Framework • PyMTL3 in Practice PyMTL3 JIT PyMTL3 Testing PyMTL3 Gradual Typing

PyMTL
▶ PyMTL2: https://github.com/cornell-brg/pymtl

▷ released in 2014
▷ extensive experience using framework in research & teaching

▶ PyMTL3: https://github.com/pymtl/pymtl3
▷ official release in May 2020
▷ adoption of new Python3 features
▷ significant rewrite to improve productivity & performance
▷ cleaner syntax for FL, CL, and RTL modeling
▷ completely new Verilog translation support
▷ first-class support for method-based interfaces

Christopher Batten Spring 2023 @ NVIDIA 9 / 48

PyMTL3 Motivation • PyMTL3 Framework • PyMTL3 in Practice PyMTL3 JIT PyMTL3 Testing PyMTL3 Gradual Typing

The PyMTL3 Framework

Model

PyMTL3
DSL

(Python)

Config

Elaboration
Model

Instance

PyMTL3 In-Memory
Intermediate

Representation
(Python) Simulatable

Model
Test & Sim
Harnesses

PyMTL3
Passes
(Python)

Simulation
Pass

Translation
Pass

Verilog

Analysis
Pass

Analysis
Output

Transform
Pass

New
Model

Christopher Batten Spring 2023 @ NVIDIA 10 / 48

PyMTL3 Motivation • PyMTL3 Framework • PyMTL3 in Practice PyMTL3 JIT PyMTL3 Testing PyMTL3 Gradual Typing

PyMTL3 High-Level Modeling
1 class QueueFL(Component):
2 def construct(s, maxsize):
3 s.q = deque(maxlen=maxsize)
4

5 @non_blocking(
6 lambda s: len(s.q) < s.q.maxlen)
7 def enq(s, value):
8 s.q.appendleft(value)
9

10 @non_blocking(
11 lambda s: len(s.q) > 0)
12 def deq(s):
13 return s.q.pop()

▶ FL/CL components can use
method-based interfaces

▶ Structural composition via
connecting methods

upA

q1 q2

enq
deq enq

deqenq deq

14 class DoubleQueueFL(Component):
15 def construct(s):
16 s.enq = CalleeIfcCL()
17 s.deq = CalleeIfcCL()
18

19 s.q1 = QueueFL(2)
20 s.q2 = QueueFL(2)
21

22 connect(s.enq, s.q1.enq)
23 connect(s.q2.deq, s.deq)
24

25 @update
26 def upA():
27 if s.q1.deq.rdy() and s.q2.enq.rdy():
28 s.q2.enq(s.q1.deq())

Christopher Batten Spring 2023 @ NVIDIA 11 / 48

PyMTL3 Motivation • PyMTL3 Framework • PyMTL3 in Practice PyMTL3 JIT PyMTL3 Testing PyMTL3 Gradual Typing

PyMTL3 Low-Level Modeling
1 from pymtl3 import *

2

3 class RegIncrRTL(Component):

4

5 def construct(s, nbits):

6 s.in_ = InPort (nbits)

7 s.out = OutPort(nbits)

8 s.tmp = Wire (nbits)

9

10 @update_ff

11 def seq_logic():

12 s.tmp <<= s.in_

13

14 @update

15 def comb_logic():

16 s.out @= s.tmp + 1

in_ out
+1

tmp

▶ Hardware modules are Python
classes derived from Component

▶ construct method for constructing
(elaborating) hardware

▶ ports and wires for signals

▶ update blocks for modeling
combinational and sequential logic

Christopher Batten Spring 2023 @ NVIDIA 12 / 48

PyMTL3 Motivation • PyMTL3 Framework • PyMTL3 in Practice PyMTL3 JIT PyMTL3 Testing PyMTL3 Gradual Typing

SystemVerilog RTLIR/Translation Framework

Model

PyMTL3
DSL

(Python)

Config

Elaboration

Model
Instance

PyMTL3
IMIR

(Python)

Test & Sim
Harnesses

Model
w/ RTLIR

PyMTL3
Passes
(Python)

RTLIR
Generation

Verilator SV
Translation

System
Verilog

Translation
Framework

Yosys SV
Translation

System
Verilog

▶ RTLIR simplifies RTL analysis passes and translation
▶ Translation framework simplifies implementing new translation passes

Christopher Batten Spring 2023 @ NVIDIA 13 / 48

PyMTL3 Motivation • PyMTL3 Framework • PyMTL3 in Practice PyMTL3 JIT PyMTL3 Testing PyMTL3 Gradual Typing

SystemVerilog Translation and Import

Pure
PyMTL
Model

Instance

Translation
Pass

System
Verilog

Import
Pass

C Wrapper
Source

PyMTL
Wrapper

Verilator RTL C++
Source

LLVM
GCC

C Shared
Library

PyMTL
Wrapped
SV Model
Instance

CFFI

▶ Translation+import enables easily testing translated SystemVerilog
▶ Also acts like a JIT compiler for improved RTL simulation speed
▶ Can also import external SystemVerilog IP for co-simulation

Christopher Batten Spring 2023 @ NVIDIA 14 / 48

PyMTL3 Motivation • PyMTL3 Framework • PyMTL3 in Practice PyMTL3 JIT PyMTL3 Testing PyMTL3 Gradual Typing

Translating to Readable SystemVerilog
class StepUnit(Component):
def construct(s):

s.word_in = InPort (16)
s.sum1_in = InPort (32)
s.sum2_in = InPort (32)
s.sum1_out = OutPort(32)
s.sum2_out = OutPort(32)

@update
def up_step():

temp1 = b32(s.word_in) + s.sum1_in
s.sum1_out @= temp1 & b32(0xffff)

temp2 = s.sum1_out + s.sum2_in
s.sum2_out @= temp2 & b32(0xffff)

▶ Readable signal names
▶ Generates useful comments
▶ Simple type inference for

temporary variables

module StepUnit

(

input logic [0:0] clk,

input logic [0:0] reset,

input logic [31:0] sum1_in,

output logic [31:0] sum1_out,

input logic [31:0] sum2_in,

output logic [31:0] sum2_out,

input logic [15:0] word_in

);

// Temporary wire definitions

logic [31:0] __up_step$temp1;

logic [31:0] __up_step$temp2;

// PYMTL SOURCE:

// ...

always_comb begin : up_step

__up_step$temp1 = {{16{1’b0}},word_in} + sum1_in;

sum1_out = __up_step$temp1 & 32’d65535;

__up_step$temp2 = sum1_out + sum2_in;

sum2_out = __up_step$temp2 & 32’d65535;

end

endmodule

Christopher Batten Spring 2023 @ NVIDIA 15 / 48

PyMTL3 Motivation • PyMTL3 Framework • PyMTL3 in Practice PyMTL3 JIT PyMTL3 Testing PyMTL3 Gradual Typing

What is PyMTL3 for and not (currently) for?

▶ PyMTL3 is for ...
▷ Taking an accelerator design from concept to implementation
▷ Construction of highly-parameterizable CL models
▷ Construction of highly-parameterizable RTL design generators
▷ Rapid design, testing, and exploration of hardware mechanisms
▷ Interfacing models with other C++ or Verilog frameworks

▶ PyMTL3 is not (currently) for ...
▷ Python high-level synthesis
▷ Many-core simulations with hundreds of cores
▷ Full-system simulation with real OS support
▷ Users needing a complex OOO processor model “out of the box”

Christopher Batten Spring 2023 @ NVIDIA 16 / 48

PyMTL3 Motivation PyMTL3 Framework • PyMTL3 in Practice • PyMTL3 JIT PyMTL3 Testing PyMTL3 Gradual Typing

PyMTL3: A Python Framework for Hardware
Modeling, Generation, Simulation, and Verification

PyMTL3 Motivation

PyMTL3 Framework
[IEEE Micro’20,DAC’21]

PyMTL3 in Practice

PyMTL3 JIT
[DAC’18]

PyMTL3 Testing
[IEEE Design&Test’21]

PyMTL3 Gradual Typing
[LATTE’23]

Python

Functional-Level

Cycle-Level

RTL

Multi-Level
Simulation

Test Bench

SystemVerilog

RTL

synth

generate

prototype
bring-up

FPGA
ASIC

co-simulate

Christopher Batten Spring 2023 @ NVIDIA 17 / 48

PyMTL3 Motivation PyMTL3 Framework • PyMTL3 in Practice • PyMTL3 JIT PyMTL3 Testing PyMTL3 Gradual Typing

PyMTL for Cycle-Level Modeling

Appears in the Proceedings of the 47th Int’l Symp. on Microarchitecture (MICRO-47), December 2014

Architectural Specialization for Inter-Iteration Loop Dependence Patterns

Shreesha Srinath, Berkin Ilbeyi, Mingxing Tan, Gai Liu, Zhiru Zhang, and Christopher Batten

School of Electrical and Computer Engineering, Cornell University, Ithaca, NY
{ss2783,bi45,mt453,gl387,zhiruz,cbatten}@cornell.edu

Abstract—Hardware specialization is an increasingly com-
mon technique to enable improved performance and energy ef-
ficiency in spite of the diminished benefits of technology scal-
ing. This paper proposes a new approach called explicit loop
specialization (XLOOPS) based on the idea of elegantly en-
coding inter-iteration loop dependence patterns in the instruc-
tion set. XLOOPS supports a variety of inter-iteration data-
and control-dependence patterns for both single and nested
loops. The XLOOPS hardware/software abstraction requires
only lightweight changes to a general-purpose compiler to gen-
erate XLOOPS binaries and enables executing these binaries on:
(1) traditional microarchitectures with minimal performance
impact, (2) specialized microarchitectures to improve perfor-
mance and/or energy efficiency, and (3) adaptive microarchitec-
tures that can seamlessly migrate loops between traditional and
specialized execution to dynamically trade-off performance vs.
energy efficiency. We evaluate XLOOPS using a vertically inte-
grated research methodology and show compelling performance
and energy efficiency improvements compared to both simple
and complex general-purpose processors.

I. INTRODUCTION

Serious physical design issues are breaking down tradi-
tional abstractions in computer architecture and motivating
an increasing emphasis on hardware specialization. At the
same time, computer architects have long realized the impor-
tance of focusing on the key loops that often dominate appli-
cation performance. These two trends have led to a diverse ar-
ray of specialized hardware for exploiting intra- and/or inter-
iteration loop dependence patterns.

Hardware specialization to exploit intra-iteration loop
dependence patterns usually involves custom instructions
and/or small reprogrammable functional units well-suited to
accelerating common sequences of operations within an it-
eration. Examples include application-specific instruction-
set processors [1, 6] and techniques for subgraph execu-
tion [4,11]. Hardware specialization to exploit inter-iteration
loop dependence patterns focuses at a higher level on how dif-
ferent loop iterations interact. Examples include data-parallel
accelerators which exploit loops with no inter-iteration de-
pendences [8, 17, 34] and thread-level speculation which ex-
ploit loops with infrequent inter-iteration dependences [19,
30, 31]. Coarse-grained reconfigurable arrays [10, 13] and
weakly programmable application-specific accelerators [33]
target both intra- and inter-iteration loop dependence patterns.

All of these proposals must carefully navigate the tension
between less efficient general architectures and more effi-
cient specialized architectures. Some argue for exposing as
much of the specialized microarchitecture as possible to en-
able flexible software configuration while maintaining effi-
ciency [7, 12]. Unfortunately, this comes at the expense of
a clean hardware/software abstraction; highly configurable
specialized architectures are often tightly coupled to a spe-

cific microarchitectural implementation. A key research chal-
lenge involves creating clean hardware/software abstractions
that are highly flexible, yet still enable efficient execution on
both traditional and specialized microarchitectures.

To address this challenge, we focus on architectural spe-
cialization for inter-iteration loop dependence patterns. Inter-
iteration data-dependence patterns include loops with no
inter-iteration dependences and loops with inter-iteration de-
pendences encoded through registers and/or memory. An in-
teresting data-dependence pattern often found in graph al-
gorithms involves iterations that manipulate a shared data
structure such that the iterations can be executed in any or-
der as long as their updates to memory appear atomic to the
other iterations. Inter-iteration control-dependence patterns
include loops that terminate based on comparing an induction
variable to a loop-invariant fixed bound, or loops that termi-
nate based on a data-dependent-exit condition. An interesting
control-dependence pattern found in more irregular worklist-
based algorithms involves a loop induction variable compared
to a dynamic bound that is monotonically increased during
the loop execution. The inter-iteration dependence pattern
for a given loop will be a combination of a specific data- and
control-dependence pattern, and nested loops can be captured
using the composition of multiple loop patterns.

In this paper, we explore explicit loop specialization
(XLOOPS) which is based on the idea of explicitly en-
coding inter-iteration loop dependence patterns in the in-
struction set to enable exploiting fine-grain loop-level par-
allelism. Section II describes our approach for designing
XLOOPS instruction sets, compilers, and microarchitectures.
Our XLOOPS instruction set can encode: data-dependence
patterns where the loops can appear to execute in any order
both concurrently or atomically; data-dependence patterns
where the loops must preserve ordering constraints expressed
through either register or memory dependences; and control-
dependence patterns based on fixed and dynamic bounds. Our
XLOOPS compiler uses programmer annotations to automat-
ically generate an efficient XLOOPS binary. The XLOOPS
abstraction enables XLOOPS binaries to execute on either
traditional microarchitectures with minimal performance im-
pact or on specialized microarchitectures that exploit fine-
grain loop-level parallelism to improve performance and en-
ergy efficiency. This abstraction also enables adaptive exe-
cution where a loop is seamlessly migrated by hardware be-
tween traditional and specialized microarchitectures in order
to find the optimal performance/efficiency trade-off.

To make the case for XLOOPS, we use a vertically inte-
grated evaluation methodology. Section III describes the ap-
plication kernels we use for evaluation and modifications to
an LLVM-based compiler to support XLOOPS. Section IV

Using Intra-Core Loop-Task Accelerators to Improve the
Productivity and Performance of Task-Based Parallel Programs

Ji Kim Shunning Jiang Christopher Torng Moyang Wang
Shreesha Srinath Berkin Ilbeyi Khalid Al-Hawaj Christopher Batten

School of Electrical and Computer Engineering, Cornell University, Ithaca, NY
{ jyk46, sj634, clt67, mw828, ss2783, bi45, ka429, cbatten }@cornell.edu

ABSTRACT
Task-based parallel programming frameworks o�er compelling pro-
ductivity and performance bene�ts for modern chip multi-processors
(CMPs). At the same time, CMPs also provide packed-SIMD units
to exploit �ne-grain data parallelism. Two fundamental challenges
make using packed-SIMD units with task-parallel programs partic-
ularly di�cult: (1) the intra-core parallel abstraction gap; and (2) in-
e�cient execution of irregular tasks. To address these challenges,
we propose augmenting CMPs with intra-core loop-task accelerators
(LTAs). We introduce a lightweight hint in the instruction set to el-
egantly encode loop-task execution and an LTA microarchitectural
template that can be con�gured at design time for di�erent amounts
of spatial/temporal decoupling to e�ciently execute both regular
and irregular loop tasks. Compared to an in-order CMP baseline,
CMP+LTA results in an average speedup of 4.2⇥ (1.8⇥ area normal-
ized) and similar energy e�ciency. Compared to an out-of-order
CMP baseline, CMP+LTA results in an average speedup of 2.3⇥
(1.5⇥ area normalized) and also improves energy e�ciency by 3.2⇥.
Our work suggests augmenting CMPs with lightweight LTAs can
improve performance and e�ciency on both regular and irregular
loop-task parallel programs with minimal software changes.

CCS CONCEPTS
• Software and its engineering → Runtime environments; •
Computer systems organization → Multicore architectures;
Single instruction, multiple data;

KEYWORDS
task-parallel programming frameworks; work-stealing run-times;
programmable accelerators

ACM Reference Format:
J. Kim, S. Jiang, C. Torng, M. Wang, S. Srinath, B. Ilbeyi, K. Al-Hawaj, and C.
Batten. 2017. Using Intra-Core Loop-Task Accelerators to Improve the Pro-
ductivity and Performance of Task-Based Parallel Programs . In Proceedings
of The 50th Annual IEEE/ACM International Symposium on Microarchitecture,
Boston, MA, USA, October 14-18, 2017 (MICRO’17), 15 pages.
https://doi.org/10.1145/3123939.3123987

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
MICRO’17, October 14-18, 2017, Boston, MA, USA
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-4952-9/17/10. . . $15.00
https://doi.org/10.1145/3123939.3123987

1 INTRODUCTION
Task-based parallel programming frameworks are one of the most
popular ways to exploit increasing thread counts in CMPs (e.g., In-
tel’s Cilk Plus [29, 41], Intel’s Threading Building Blocks (TBB) [30,
58], and others [5, 10, 36, 40, 56, 57]). Task-based frameworks use a
software runtime to dynamically map many tasks to fewer threads.
Programming with high-level tasks, as opposed to directly using
low-level threads, o�ers many productivity and performance ben-
e�ts including: an elegant encoding of �ne-grain parallelism, im-
plicit synchronization of serial and parallel regions, e�cient load-
balancing of tasks across threads, and portable performance across
a wide range of CMPs.

Packed-SIMD extensions are commonly used in CMPs (e.g., AVX2
in Intel’s Haswell [50], AVX512 in Intel’s Xeon Phi [31], NEON
in ARM’s Cortex processors [26, 27], and MIPS’s SIMD exten-
sions [11]). In this work, we focus on a subset of task parallelism
called loop-task parallelism that can potentially be mapped both
across cores and to intra-core packed-SIMD extensions. Loop-task
parallelism is a common parallel pattern usually captured with the
“parallel for” primitive, where a loop task functor is applied to a
blocked range. Loop-task parallelism is more �exible than �ne-grain
loop-level parallelism, but less general than coarse-grain (possibly
nested/recursive) task-level parallelism. We argue there are two
fundamental challenges that make using packed-SIMD units in this
context particularly di�cult.

Challenge #1: Intra-Core Parallel Abstraction Gap – Packed-
SIMD extensions provide a low-level abstraction of operations on
packed data elements exposed to programmers via compiler intrin-
sics or “auto-vectorization”. Unfortunately, auto-vectorization does
not always guarantee optimal vectorization in real applications [48].
Programmers are forced to use explicit vectorization [19, 24, 38],
i.e., annotating vectorizable loops, explicit SIMD datatypes, SIMD-
aligned memory accesses, converting branches into arithmetic, con-
verting array-of-structs into struct-of-arrays, and annotating non-
overlapping arrays. These optimizations are challenging to perform
in loop-task parallel programs, since tasks can be arbitrarily com-
plex and task sizes/alignments are not known at compile time. More
importantly, this approach requires the programmer to use two
fundamentally di�erent parallel abstractions: tasks for inter-core
parallelism and packed-SIMD for intra-core parallelism. Ultimately,
this challenge reduces programmer productivity and can potentially
prevent “multiplicative speedup” (i.e., the speedup of combining a
task-based parallel runtime with packed-SIMD does not result in
the product of each technique’s speedup in isolation).

Challenge #2: Ine�cient Execution of Irregular Tasks –
Loop tasks are often complex with nested loops and function calls,
data-dependent control �ow, indirect memory accesses, and atomic

PyMTL for RTL Modeling

An Architectural Framework for Accelerating Dynamic
Parallel Algorithms on Reconfigurable Hardware

Tao Chen, Shreesha Srinath, Christopher Batten and G. Edward Suh
Cornell University

Ithaca, NY 14850, USA
{tc466, ss2783, cbatten, gs272}@cornell.edu

Abstract—In this paper, we propose ParallelXL, an architec-
tural framework for building application-specific parallel acceler-
ators with low manual effort. The framework introduces a task-
based computation model with explicit continuation passing to
support dynamic parallelism in addition to static parallelism. In
contrast, today’s high-level design frameworks for accelerators
focus on static data-level or thread-level parallelism that can
be identified and scheduled at design time. To realize the new
computation model, we develop an accelerator architecture that
efficiently handles dynamic task generation and scheduling as
well as load balancing through work stealing. The architecture
is general enough to support many dynamic parallel constructs
such as fork-join, data-dependent task spawning, and arbitrary
nesting and recursion of tasks, as well as static parallel patterns.
We also introduce a design methodology that includes an archi-
tectural template that allows easily creating parallel accelerators
from high-level descriptions. The proposed framework is studied
through an FPGA prototype as well as detailed simulations.
Evaluation results show that the framework can generate high-
performance accelerators targeting FPGAs for a wide range of
parallel algorithms and achieve an average of 4.0x speedup over
an eight-core out-of-order processor (24.1x over a single core),
while being 11.8x more energy efficient.

I. INTRODUCTION

As the technology scaling slows down, computing systems
need to rely increasingly on hardware accelerators to im-
prove performance and energy efficiency. In particular, field-
programmable gate-arrays (FPGAs) are starting to be deployed
as a general-purpose acceleration platform, and have been
shown to improve performance and/or energy efficiency for
many applications. FPGAs are also becoming more widely
available (e.g., through the cloud [1]), and increasingly inte-
grated with general-purpose cores either through inter-socket
interconnect (e.g., Intel HARP [2], IBM CAPI [3]), or directly
on-chip (e.g., Xilinx Zynq SoCs [4], Intel Stratix SoCs [5]).
These trends indicate that many applications that traditionally
run on general-purpose processors (GPPs) can potentially
benefit from FPGA acceleration.

To achieve high performance either on GPPs or FPGAs,
applications need to exploit parallelism. In particular, dynamic
parallelism, where work is generated at run-time rather than
statically at compile time, is inherent in many modern applica-
tions and algorithms, and is widely used to write parallel soft-
ware for GPPs. For example, hierarchical data structures such
as trees, graphs, or adaptive grids often have data-dependent
execution behavior, where the computation to be performed
is determined at run-time. Recursive algorithms such as many

divide-and-conquer algorithms have dynamic parallelism for
each level of recursion. Algorithms that adaptively explore
space for optimization or process data as in physics simulation
also generate work dynamically.

Unfortunately, today’s high-level design frameworks for
FPGA accelerators do not provide adequate support for dy-
namic work generation or dynamic work scheduling. For
example, C/C++-based high-level synthesis (HLS) [6], [7] and
OpenCL [8] are mostly designed to exploit static data-level or
thread-level parallelism that can be determined and scheduled
at compile time and mapped to a fixed pipeline. Domain-
specific languages such as Liquid Metal [9] and Delite [10]
raise the level of abstraction but also only support static par-
allel patterns. A recent study explored dynamically extracting
parallelism from irregular applications on FPGAs [11], but
still only supports a limited form of pipeline parallelism and
does not provide efficient scheduling of dynamically generated
work on multiple processing elements. Low-level register-
transfer-level (RTL) designs, on the other hand, provide flexi-
bility to implement arbitrary features, but require long design
cycles and significant manual effort, making them unattractive
especially when targeting a diverse range of applications. To
realize the potential of FPGA acceleration for a wide range of
applications, we need a design framework that is capable of
exploiting both static and dynamic parallelism and producing
high-performance accelerators with low manual design effort.

In this paper, we propose ParallelXL, an architectural
framework for accelerating both static and dynamic parallel
algorithms on reconfigurable hardware. ParallelXL takes a
high-level description of a parallel algorithm and outputs the
RTL of an accelerator, which can be mapped to an FPGA using
standard tools. The framework aims to enable accelerating dy-
namic parallel algorithms on FPGAs without manually writing
RTL, and efficiently support a wide range of parallel patterns
with one unified framework. To achieve this goal, we need to
address three major technical challenges; the framework needs
(1) a new parallel computation model that is general enough
while suitable for hardware, (2) an architecture that efficiently
realizes the new computation model in hardware, and (3) a
productive design methodology to automatically generate RTL.

As a parallel computation model, we propose to adopt a
tasked-based programming model with explicit continuation
passing. Task-based parallel programming is becoming in-
creasingly popular for parallel software development (e.g.,

Appears in the Proceedings of the 51st ACM/IEEE Int’l Symp. on Microarchitecture (MICRO-51), October 2018

Appears in the Proceedings of the Int’l Symp. on Networks-on-Chips (NOCS-14), September 2020

Implementing Low-Diameter On-Chip Networks
for Manycore Processors Using a

Tiled Physical Design Methodology
Special Session Paper

Yanghui Ou, Shady Agwa, Christopher Batten
School of Electrical and Computer Engineering, Cornell University, Ithaca, NY

{ yo96, sr972, cbatten }@cornell.edu

Abstract—Manycore processors are now integrating up to 1000
simple cores into a single die, yet these processors still rely on
high-diameter mesh on-chip networks (OCNs) without complex
flow-control nor custom circuits due to three reasons: (1) many-
cores require simple, low-area routers; (2) manycores usually use
standard-cell-based design; and (3) manycores use a tiled phys-
ical design methodology. In this paper, we explore mesh and
torus topologies with internal concentration and/or ruche chan-
nels that require low area overhead and can be implemented using
a traditional standard-cell-based tiled physical design methodol-
ogy. We use a combination of analytical and RTL modeling along
with layout-level results for both hard macros and a 3⇥3 mm 256-
terminal OCN in a 14-nm technology for twelve topologies. Criti-
cally, the networks we study use a tiled physical design methodol-
ogy meaning they: (1) tile a homogeneous hard macro across the
chip; (2) implement chip top-level routing between hard macros
via short wires to neighboring macros; and (3) use timing closure
for the hard macro to quickly close timing at the chip top-level.
Our results suggest that a concentration factor of four and a ruche
factor of two in a 2D-mesh topology can reduce latency by over 2⇥
at similar area and bisection bandwidth for both small and large
messages compared to a 2D-mesh baseline.

I. INTRODUCTION

Today’s network, embedded, and server processors already
integrate tens of processor cores on a single chip, and there
is growing interest in using a manycore approach to integrate
an even larger number of relatively simple cores within a sin-
gle die. Early manycore research prototypes included 16–110
cores [13,14,22,23,32], complemented by manycore processors
in industry with 64–128 cores [3,12,30,33,34]. Recent research
prototypes have scaled core counts by an order-of-magnitude
including the 496-core Celerity [28], 1000-core KiloCore [5],
and 1024-core Epiphany-V [26]. The manycore approach has
demonstrated significant improvements in energy efficiency and
throughput per unit area for highly parallel workloads.

Almost all manycore processors use a simple 2D-mesh on-
chip-network (OCN) topology [3, 5, 12, 22, 23, 28, 33, 34] (pos-
sibly with limited external concentration [13,30]), scaling from

This work was supported in part by NSF CRI Award #1512937, DARPA
POSH Award #FA8650-18-2-7852, DARPA SDH Award #FA8650-18-2-7863,
the Center for Applications Driving Architectures (ADA), one of six centers
of JUMP, a Semiconductor Research Corporation program co-sponsored by
DARPA, and equipment, tool, and/or physical IP donations from Intel, Syn-
opsys, Cadence, and ARM. The U.S. Government is authorized to reproduce
and distribute reprints for Governmental purposes notwithstanding any copy-
right notation thereon. The views and conclusions contained herein are those of
the authors and should not be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, of AFRL, DARPA, or the
U.S. Government.

a 4⇥4 mesh in the RAW processor [32] up to a 32⇥32 mesh
in the Epiphany-V processor [26]. It is well known that the
high diameter of 2D-mesh topologies can significantly increase
packet latency and thus reduce system-level performance [8].
Indeed, there is a rich body of literature proposing numerous
techniques to reduce packet latency in on-chip networks. Novel
OCN flow-control schemes [20,25,27] and/or OCN custom cir-
cuits [6, 18] can be used to reduce router and channel latencies.
Alternatively, novel OCN topologies can reduce the network di-
ameter including concentrated mesh [2], fat-tree [2], flattened
butterfly [19], multi-drop express channels [10, 11], Clos [17],
Slim NoC [4], and asymmetric high-radix topologies [1]. How-
ever, this raises the question: Why do manycore processor sil-
icon implementations continue to use simple high-diameter
on-chip networks given the potential benefit reported in the
literature for adopting novel on-chip network flow-control
schemes, custom circuits, and/or topologies?

Based on our experiences contributing to the Celerity many-
core processor [9,28,29] and building an open-source OCN gen-
erator [31], we argue there are three primary reasons for this gap
between principle and practice.

Manycores Require Simple, Low-Area Routers – Many-
core processors by definition use simple cores leaving mod-
est area for the OCN routers (e.g., 10% of chip area in [26,
28]). Therefore, manycore processors usually use single-stage
routers [5, 13, 26, 28], and protocol deadlock is often through
multiple physical networks [22, 23, 32, 33] as opposed to using
virtual channels. These simple single-stage OCN routers miti-
gate the need for complex flow-control schemes.

Manycores Use Standard-Cell-Based Design – Manycore
processor design teams (and indeed chip design in general) have
been steadily moving towards highly automated standard-cell-
based design methodologies [22,23,26,28]. Unfortunately, this
complicates using more advanced circuit techniques in the liter-
ature to reduce router and/or channel latency.

Manycores Use a Tiled Physical Design Methodology –
Physical design is a critical challenge in implementing many-
core processors. A tiled physical design methodology is the
key to overcoming this challenge and has been used in multiple
manycore implementations [22, 23,26, 28]. A tiled physical de-
sign methodology adheres to the following constraints: (1) the
design is based on tiling a homogeneous hard macro across
the chip; (2) all chip top-level routing between hard macros
must use short wires to neighboring macros; and (3) timing clo-
sure for the hard macro must imply timing closure at the chip

978-1-4673-9030-9/20/$31.00 ©2020 IEEE

Appears in the Proceedings of the 27th IEEE Int’l Symp. on High-Performance Computer Architecture (HPCA-27), Feb 2021

Ultra-Elastic CGRAs for Irregular Loop Specialization
Christopher Torng2*, Peitian Pan1, Yanghui Ou1, Cheng Tan1, and Christopher Batten1

1Cornell University, Ithaca, NY 2Stanford University, Stanford, CA
{ clt67, pp482, yo96, ct535, cbatten }@cornell.edu

Abstract—Reconfigurable accelerator fabrics, including
coarse-grain reconfigurable arrays (CGRAs), have experienced
a resurgence in interest because they allow fast-paced software
algorithm development to continue evolving post-fabrication.
CGRAs traditionally target regular workloads with data-level
parallelism (e.g., neural networks, image processing), but once
integrated into an SoC they remain idle and unused for irregular
workloads. An emerging trend towards repurposing these idle
resources raises important questions for how to efficiently map
and execute general-purpose loops which may have irregular
memory accesses, irregular control flow, and inter-iteration loop
dependencies. Recent work has increasingly leveraged elasticity
in CGRAs to mitigate the first two challenges, but elasticity
alone does not address inter-iteration loop dependencies which
can easily bottleneck overall performance. In this paper, we
address all three challenges for irregular loop specialization
and propose ultra-elastic CGRAs (UE-CGRAs), a novel elastic
CGRA that accelerates true-dependency bottlenecks and saves
energy in irregular loops by overcoming traditional VLSI
challenges. UE-CGRAs allow configurable fine-grain dynamic
voltage and frequency scaling (DVFS) for each of potentially
hundreds of tiny processing elements (PEs) in the CGRA,
enabling chains of connected PEs to “rest” at lower voltages and
frequencies to save energy, while other chains of connected PEs
can “sprint” at higher voltages and frequencies to accelerate
through true-dependency bottlenecks. UE-CGRAs rely on a
novel ratiochronous clocking scheme carefully overlaid on the
inter-PE elastic interconnect to enable low-latency crossings
while remaining fully verifiable with commercial static timing
analysis tools. We present the UE-CGRA analytical model,
compiler, architectural template, and VLSI circuitry, and we
demonstrate how UE-CGRAs can specialize for irregular loops
and improve performance (1.42–1.50⇥) or energy efficiency
(1.24–2.32⇥) with reasonable area overhead compared to
traditional inelastic and elastic CGRAs, while also improving
performance (1.35–3.38⇥) or energy efficiency (up to 1.53⇥)
compared to a RISC-V core.

I. INTRODUCTION

Fast-evolving application domains such as machine learn-
ing, augmented and virtual reality, and intelligence on the
edge have increased the demand for energy-efficient hard-
ware accelerators that remain flexible after fabrication. In
particular, coarse-grain reconfigurable arrays (CGRAs) map
dataflows to a spatial array of simple processing elements
(PEs) and send data directly between PEs to reduce expen-
sive data-movement energy in the memory hierarchy. CGRAs
are well-known for efficiently targeting kernels with regular
data-level parallelism in domains such as neural networks and
image processing [1, 13, 15, 47, 59, 61]. However, once inte-
grated into an SoC, they remain idle and unused for irregular
workloads. There is an emerging trend towards repurposing

*This work was performed while Christopher Torng was affiliated with
Cornell University.

out[0] = input

for i in 1 to N:
 out[i] = func(out[i-1])

func

out[i-1]

A B C D

out[i]

input
bank A B

CDoutput
bank

iter 0
iter 1

A

0 21 3 4 5 6 7

(a) Code with Dep (b) Dataflow Graph

(c) Mapped CGRA (d) Pipeline Diagram

CGRA tile executing 'C' Inter-iteration dependency

Cycle Sc
ra

tc
hp

ad
 M

em
or

ie
s

Unutilized
PEs

M

M

M

M

A

D

EB

G

Sprinting
VF PEs

Nominal
VF PEs

Elastic Itfc
Big Core

Mem

Core

X

I

J

C F

Core

Core

CGRA

Mem Mem Mem

(e) System with Ultra-Elastic CGRA

Bottleneck

B DC
A B DC

H

K

Figure 1. Irregular Loops with Inter-Iteration Loop Dependencies –
CGRAs targeting irregular loops may need to address inter-iteration
loop dependencies, which introduce cycles in the dataflow graph
and greatly reduce throughput. (a) Toy code with a multiple-cycle
inter-iteration dependency; (b) Corresponding dataflow graph with
func() outlined in red; (c) Dataflow graph mapped to four CGRA
PEs and two memory banks; (d) Pipeline diagram illustrating the
inter-iteration dependency; (e) System-level view of a multicore sys-
tem with a UE-CGRA coupled to the memory bus and sprinting a
bottleneck region on an arbitrary kernel.

these idle CGRA resources in general-purpose systems for
accelerating both regular and irregular loops [18, 19, 45, 46].
Architects face three challenges for efficient acceleration of
irregular loops defined by: (1) irregular memory accesses
with variable latencies and non-uniform access patterns, (2)
irregular control flow, and (3) performance bottlenecks due to
inter-iteration loop dependencies.

Recent work has increasingly leveraged elasticity in
CGRAs to robustly address the first two challenges with
latency-insensitive handshaking in both the memory inter-
faces and in the interconnect [13, 18, 19, 21, 45]. Traditional
latency-sensitive CGRAs statically schedule computation at
compile time and function incorrectly for any irregularity in
memory access latency and/or control flow. In contrast, elas-
tic CGRAs determine control and data flow dynamically at
runtime, triggering computation when all operands have be-
come available. Unfortunately, elastic CGRAs still struggle
to achieve high performance in the presence of inter-iteration
loop dependencies. Figure 1(a-d) shows a code example with
a multi-cycle inter-iteration loop dependency. The corre-
sponding dataflow graph and mapped CGRA are shown to-
gether with a pipeline diagram illustrating how throughput
is limited to one iteration every four cycles. Note that this
simple example could be the performance-limiting loop in
a kernel with pointer-chasing behavior. While performance
could still be improved by parallelizing over an outer loop
(not shown) with additional resources, there is little room to
mitigate the true-dependency bottleneck in the inner loop.

big.VLITTLE: On-Demand Data-Parallel Acceleration
for Mobile Systems on Chip

Tuan Ta, Khalid Al-Hawaj, Nick Cebry, Yanghui Ou, Eric Hall, Courtney Golden, and Christopher Batten
School of Electrical and Computer Engineering, Cornell University, Ithaca, NY

{qtt2,ka429,nfc35,yo96,ewh73,ckg35,cbatten}@cornell.edu

Abstract—Single-ISA heterogeneous multi-core architectures
offer a compelling high-performance and high-efficiency solu-
tion to executing task-parallel workloads in mobile systems on
chip (SoCs). In addition to task-parallel workloads, many data-
parallel applications, such as machine learning, computer vi-
sion, and data analytics, increasingly run on mobile SoCs to
provide real-time user interactions. Next-generation scalable
vector architectures, such as the RISC-V Vector Extension and
Arm SVE, have recently emerged as unified vector abstractions
for both large- and small-scale systems. In this paper, we pro-
pose novel area-efficient high-performance architectures called
big.VLITTLE that support next-generation vector architectures
to efficiently accelerate data-parallel workloads in conventional
big.LITTLE systems. big.VLITTLE architectures reconfigure
multiple little cores on demand to work as a decoupled vec-
tor engine when executing data-parallel workloads. Our results
show that a big.VLITTLE system can achieve 1.6� performance
speedup over an area-comparable big.LITTLE system equipped
with an integrated vector unit across multiple data-parallel ap-
plications and 1.7� speedup compared to an aggressive decou-
pled vector engine for task-parallel workloads.

I. INTRODUCTION

Modern mobile systems on chip (SoCs) adopt single-
ISA heterogeneous multi-core architectures (e.g., Arm
big.LITTLE) to offer a compelling high-performance and
high-efficiency solution for task-parallel workloads [36, 38]
in many commercial devices [3, 14, 21–23]. These architec-
tures consist of several high-performance power-hungry out-
of-order big cores and multiple high-efficiency low-power
in-order little cores. This ISA homogeneity and micro-
architecture heterogeneity enable high performance and ef-
ficiency by seamlessly distributing high- and low-intensity
compute tasks to high-performance and high-efficiency cores
respectively [51, 72].

In addition to task-parallel workloads, data-parallel appli-
cations are emerging in mobile SoCs to fully utilize their in-
creasing compute power and sensing capabilities. Workloads
such as augmented and virtual reality (AR/VR) [12, 24], nat-
ural language processing [7, 13], facial and voice recogni-
tion [47], and image processing [65] increasingly rely on in-
device computing power instead of cloud servers to deliver
real-time interactions with humans [42, 49, 68, 69, 71]. These
applications often use compute-intensive data-parallel com-
puter vision, machine learning, and data analytic algorithms
to process a large amount of data in real time. Since mobile
SoCs operate under a tight power and area budget, such in-
creasing computational demand poses a significant challenge
to design both high-performance and high-efficiency mo-
bile architectures to accelerate data-parallel workloads.

The need to efficiently accelerate data-parallel workloads
has led to an emergence of next-generation scalable vector

architectures exemplified by the RISC-V Vector Extension
(RVV) [53] and the Arm Scalable Vector Extension (Arm
SVE) [61]. Traditional vector architectures are typically im-
plemented as either large high-performance variable-length
decoupled vector engines [15, 32, 56, 63] in super-computing
systems or modest area-efficient fixed-length packed-SIMD
integrated vector units (e.g., Intel AVX) in mobile and desk-
top systems. Next-generation vector architectures strive to
provide unified scalable vector abstractions for both large de-
coupled vector engines that yield superior performance with
significant area overheads and small integrated vector units
that require modest extra silicon area with modest perfor-
mance improvement compared to an out-of-order scalar core.

In this paper, we propose novel area-efficient high-
performance architectures called big.VLITTLE that adopt
next-generation vector architectures to accelerate data-
parallel workloads in widely used big.LITTLE systems.
big.VLITTLE architectures achieve both high performance
and area efficiency by reconfiguring a cluster of little cores as
a decoupled vector engine on demand when executing data-
parallel workloads. When a big.VLITTLE system executes
in vector mode, its big core fetches, decodes, and sends vec-
tor instructions to its associated cluster of little cores, which
allows decoupling memory accesses and vector computation.
Little cores reconfigure their scalar pipelines into vector exe-
cution lanes, leverage their physical register files to store vec-
tor register elements, transform their level-one cache subsys-
tem to provide high memory bandwidth, and work together
as a decoupled vector engine.

Due to its reconfigurability, big.VLITTLE architectures do
not need to add area-expensive components such as wide ex-
ecution pipelines and vector register files typically required
in large decoupled vector engines. Compared to integrated
vector units, big.VLITTLE systems can provide longer vec-
tor length and higher memory bandwidth, which results in
better performance. When not executing in vector mode,
big.VLITTLE systems incur no performance overhead for
multi-threaded task-parallel workloads since they operate in
the same way as equivalent big.LITTLE systems. Our cycle-
level performance evaluation shows that a big.VLITTLE
system with one big and four little cores can achieve
1.6� speedup over an area-comparable big.LITTLE sys-
tem equipped with an integrated vector unit for data-parallel
workloads from the Rodinia suite [10], RiVec suite [50], and
a genomics benchmark suite. For task-parallel applications,
the big.VLITTLE system is 1.7� faster than an aggressive de-
coupled vector engine for applications from the Ligra bench-
mark suite [58]. Our post-synthesis area evaluation shows the

1

Appears in the Proceedings of the 55th ACM/IEEE Int’l Symp. on Microarchitecture (MICRO-55), October 2022

Christopher Batten Spring 2023 @ NVIDIA 18 / 48

PyMTL3 Motivation PyMTL3 Framework • PyMTL3 in Practice • PyMTL3 JIT PyMTL3 Testing PyMTL3 Gradual Typing

PyMTL has be used in many chip tapeouts

2015 2016 2017 2018 2019 2020 2021 2022 2023

Chip Tapeouts In Fab or Being Tested

CIFER
GF 12nm

HammerBlade
GF 12nm

OC-FPGA
Intel 16

BRGTC1
GF 130nm

2x2mm

Celerity
TSMC 16nm

5x5mm

BRGTC2
TSMC 28nm
1x1.25mm

BRGTC4
TSMC 180nm

2x2.5mm

BRGTC5
TSMC 180nm

2x2.5mm

TSMC 180nm, 28nm, 16nm; SkyWater 130nm
GF 130nm, 12nm; Intel 16

▶ Simple RISC-V cores
▶ Coarse-grain reconfigurable arrays
▶ Clustered manycore architectures

▶ Mesh on-chip networks
▶ Crossbar interconnects

Christopher Batten Spring 2023 @ NVIDIA 19 / 48

PyMTL3 Motivation PyMTL3 Framework • PyMTL3 in Practice • PyMTL3 JIT PyMTL3 Testing PyMTL3 Gradual Typing

BRG Test Chip #1 (2016)

Host

Interface

d
e

b
u

g

RISC
Core

Sort

Accel

Memory Arbitration Unit

SRAM

Bank

(4KB)

SRAM

Bank

(4KB)

SRAM

Bank

(4KB)

SRAM

Bank

(4KB)

diff clk (+)

diff clk (−)

single
ended clk

re
s
e

t

Ctrl

Reghost2chip

chip2host

LVDS

Recv
clk

div

clk tree

reset
tree

c
lk

 o
u

t

LV
D

S

d
iv

id
e

d

c
lk

 o
u

t

LV
D

S
c
lk

 o
u

t

RISC processor, 16KB SRAM, HLS-generated accelerator
2x2mm, 1.2M-trans, IBM 130nm

95% done using PyMTL2

Christopher Batten Spring 2023 @ NVIDIA 20 / 48

PyMTL3 Motivation PyMTL3 Framework • PyMTL3 in Practice • PyMTL3 JIT PyMTL3 Testing PyMTL3 Gradual Typing

BRG Test Chip #2 (2018)

Memory

Instruction Memory Arbiter

L1 Data $

(32KB)

LLFU Arbiter

Int Mul/Div

FPU

L1 Instruction $

(32KB)

H
o

s
t

In
te

rf
a

c
e

S
y
n

th
e

s
iz

a
b

le
 P

L
L

ArbiterData

Four RISC-V RV32IMAF cores with “smart” sharing of L1$/LLFU
1x1.2mm, 6.7M-trans, TSMC 28nm

95% done using PyMTL2

Christopher Batten Spring 2023 @ NVIDIA 21 / 48

PyMTL3 Motivation PyMTL3 Framework • PyMTL3 in Practice • PyMTL3 JIT PyMTL3 Testing PyMTL3 Gradual Typing

BRG Test Chip #5 (2022)

▶ Three undergraduates → MEng
▶ 2×2.5mm in TSMC 180nm
▶ RISC-V RV32IM micro-controller
▶ 16KB of instruction SRAM, 16KB of data SRAM
▶ SPI interface for config, SPI master, GP I/O
▶ 100% done using PyMTL3 (including chip bring-up)

Christopher Batten Spring 2023 @ NVIDIA 22 / 48

PyMTL3 Motivation PyMTL3 Framework • PyMTL3 in Practice • PyMTL3 JIT PyMTL3 Testing PyMTL3 Gradual Typing

Celerity SoC: BNN Xcel for DARPA CRAFT (2017)

Target Workload: High-Performance Embedded Computing

▶ 5× 5mm in TSMC 16 nm FFC
▶ 385 million transistors
▶ 511 RISC-V cores

▷ 5 Linux-capable Rocket cores
▷ 496-core tiled manycore
▷ 10-core low-voltage array

▶ 1 BNN accelerator
▶ 1 synthesizable PLL
▶ 1 synthesizable LDO Vreg
▶ 3 clock domains
▶ 672-pin flip chip BGA pkg
▶ 9-months from PDK access to

tape-out
[HotChips’17,IEEE Micro’18,VLSI’19,SSCL’19]

Christopher Batten Spring 2023 @ NVIDIA 23 / 48

PyMTL3 Motivation PyMTL3 Framework • PyMTL3 in Practice • PyMTL3 JIT PyMTL3 Testing PyMTL3 Gradual Typing

Cifery SoC: TinyCore Cluster for DARPA POSH (2021)

▶ 4× 4mm in GF 12 nm
▶ 450 million transistors
▶ 4 Linux-capable Ariane cores
▶ 1 Embedded FPGA
▶ 3 TinyCore clusters

▷ 6 RISC-V RV32IMAF cores
▷ 4KB private L1 data cache
▷ Pairs share icache, MDU, FPU
▷ Software-centric coherence

▶ Mesh-based on-chip network

 IEEE CICC 2023 2

 Fig. 1. SoC Architecture

 Fig. 2. eFPGA Architecture

 Fig. 3. Lab Evaluation Setup

 Fig. 4. Maximum Operating Frequency vs. Supply Voltage

† Estimated power dissipation, excluding the eFPGA’s configuration clock power

 based on post-layout power analysis

** Measured when the eFPGA emulates a 64-bit LFSR

‡ Measured when the eFPGA emulates an INT8-precision, complex, 64-point FFT

* Measured power dissipation, including full-chip static power and the dynamic power

 of the eFPGA-emulated user design (FFT)

 Fig. 5. Comparison to the State of the Art

* The CPUs, OCN, cache system, and the eFPGA controller run at full speed

 (740MHz at 0.8V). Fmax indicates the maximum operating frequency of the

 eFPGA-emulated design

 Fig. 6. Performance and Efficiency Gains of Offloaded Benchmarks

[CICC’23]

Christopher Batten Spring 2023 @ NVIDIA 24 / 48

PyMTL3 Motivation PyMTL3 Framework • PyMTL3 in Practice • PyMTL3 JIT PyMTL3 Testing PyMTL3 Gradual Typing

HammerBlade SoC: CGRA for DARPA SDH (2022)

PEPEPEPEPE PEPEPE

PEPEPEPEPE PEPEPE

PEPEPEPEPE PEPEPE

PEPEPEPEPE PEPEPE

PEPEPEPEPE PEPEPE

PEPEPEPEPE PEPEPE

PEPEPEPEPE PEPEPE

PEPEPEPEPE PEPEPE

MEMEMEMEME MEMEME

SPM

ME

ME

ME

ME

ME

ME

ME

ME

SPMSPMSPM

S
P

M
S

P
M

S
P

M
S

P
M

CECECECECE CECECE

D
M

A
 E

n
g

in
e

DMA Engine

func

M
U
L

A
L
U

en

in_n_rdy
in_n_val

in_n_data

in_w_rdy
in_w_val

in_w_data

in_s_rdy
in_s_val

in_s_data

in_e_rdy
in_e_val

in_e_data

out_w_data

out_n_data

out_s_data

out_e_data

Accum

bypass0

bypass1

br
cond

cfg_immediate

out_n_val
out_n_rdy

out_w_val
out_w_rdy

out_s_val
out_s_rdy

out_e_val
out_e_rdy

▶ Elastic latency-insensitive interfaces
simplify compilation & MC integration

▶ 32-bit fxp/fp add, subtract, multiply,
madd, accumulator

▶ copy0, copy1, sll, srl, and, or, xor, eq,
ne, gt, geq, lt, leq

▶ phi and branch for control flow
▶ concurrent routing bypass paths

Christopher Batten Spring 2023 @ NVIDIA 25 / 48

PyMTL3 Motivation PyMTL3 Framework • PyMTL3 in Practice • PyMTL3 JIT PyMTL3 Testing PyMTL3 Gradual Typing

PyMTL3 for Undergraduate and Graduate Courses

P

I$

D$

Network

Network

Network

P

I$

P

I$

P

I$

D$ D$ D$

Computer Arch Course
Labs use PyMTL for verification,
PyMTL or Verilog for RTL design

Chip Design Course
Labs use PyMTL for
verification, PyMTL or
Verilog for RTL design,
standard ASIC flow

First Teaching Tapeout
in 10+ years!

Four student projects
All use PyMTL for testing

Two use PyMTL for design

Christopher Batten Spring 2023 @ NVIDIA 26 / 48

PyMTL3 Motivation PyMTL3 Framework • PyMTL3 in Practice • PyMTL3 JIT PyMTL3 Testing PyMTL3 Gradual Typing

% python3 -m venv pymtl3

% source pymtl3/bin/activate

% pip install pymtl3

% python

>>> from pymtl3 import *

>>> a = Bits8(6)

>>> a

>>> b = Bits8(3)

>>> b

>>> a | b

>>> a << 4

>>> c = (a << 4) | b

>>> c

>>> c[4:8]

>>> from pymtl3.examples.ex00_quickstart \

import FullAdder

>>> import inspect

>>> print(inspect.getsource(FullAdder))

>>> fa = FullAdder()

>>> fa.apply(

DefaultPassGroup(textwave=True))

>>> fa.sim_reset()

>>> fa.a @= 0

>>> fa.b @= 1

>>> fa.cin @= 0

>>> fa.sim_tick()

>>> fa.a @= 1

>>> fa.b @= 0

>>> fa.cin @= 1

>>> fa.sim_tick()

>>> fa.print_textwave()

Christopher Batten Spring 2023 @ NVIDIA 27 / 48

PyMTL3 Motivation PyMTL3 Framework PyMTL3 in Practice • PyMTL3 JIT • PyMTL3 Testing PyMTL3 Gradual Typing

PyMTL3: A Python Framework for Hardware
Modeling, Generation, Simulation, and Verification

PyMTL3 Motivation

PyMTL3 Framework
[IEEE Micro’20,DAC’21]

PyMTL3 in Practice

PyMTL3 JIT
[DAC’18]

PyMTL3 Testing
[IEEE Design&Test’21]

PyMTL3 Gradual Typing
[LATTE’23]

Python

Functional-Level

Cycle-Level

RTL

Multi-Level
Simulation

Test Bench

SystemVerilog

RTL

synth

generate

prototype
bring-up

FPGA
ASIC

co-simulate

Christopher Batten Spring 2023 @ NVIDIA 28 / 48

PyMTL3 Motivation PyMTL3 Framework PyMTL3 in Practice • PyMTL3 JIT • PyMTL3 Testing PyMTL3 Gradual Typing

Evaluating HDLs, HGFs, and HGSFs

▶ Apple-to-apple comparison of simulator performance

▶ 64-bit radix-four integer iterative divider

▶ All implementations use same control/datapath split
with the same level of detail

▶ Modeling and simulation frameworks:
▷ Verilog: Commercial verilog simulator, Icarus, Verilator
▷ HGF: Chisel
▷ HGSFs: PyMTL, MyHDL, PyRTL, Migen

Christopher Batten Spring 2023 @ NVIDIA 29 / 48

PyMTL3 Motivation PyMTL3 Framework PyMTL3 in Practice • PyMTL3 JIT • PyMTL3 Testing PyMTL3 Gradual Typing

Productivity/Performance Gap

▶ Higher is better

▶ Log scale (gap is larger than it seems)

▶ Commercial Verilog simulator is
20× faster than Icarus

▶ Verilator requires C++ testbench,
only works with synthesizable code,
takes significant time to compile,
but is 200× faster than Icarus

Christopher Batten Spring 2023 @ NVIDIA 30 / 48

PyMTL3 Motivation PyMTL3 Framework PyMTL3 in Practice • PyMTL3 JIT • PyMTL3 Testing PyMTL3 Gradual Typing

Productivity/Performance Gap

▶ Chisel (HGF) generates Verilog and uses Verilog simulator

Christopher Batten Spring 2023 @ NVIDIA 30 / 48

PyMTL3 Motivation PyMTL3 Framework PyMTL3 in Practice • PyMTL3 JIT • PyMTL3 Testing PyMTL3 Gradual Typing

Productivity/Performance Gap

▶ Using CPython interpreter, Python-based HGSFs are much slower
than commercial Verilog simulators; even slower than Icarus!

Christopher Batten Spring 2023 @ NVIDIA 30 / 48

PyMTL3 Motivation PyMTL3 Framework PyMTL3 in Practice • PyMTL3 JIT • PyMTL3 Testing PyMTL3 Gradual Typing

Productivity/Performance Gap

▶ Using PyPy JIT compiler, Python-based HGSFs achieve ≈10×
speedup, but still significantly slower than commercial Verilog
simulator

Christopher Batten Spring 2023 @ NVIDIA 30 / 48

PyMTL3 Motivation PyMTL3 Framework PyMTL3 in Practice • PyMTL3 JIT • PyMTL3 Testing PyMTL3 Gradual Typing

Productivity/Performance Gap

▶ Hybrid C/C++ co-simulation improves performance but:
▷ only works for a synthesizable subset
▷ may require designer to simultaneously work with C/C++ and Python

Christopher Batten Spring 2023 @ NVIDIA 30 / 48

PyMTL3 Motivation PyMTL3 Framework PyMTL3 in Practice • PyMTL3 JIT • PyMTL3 Testing PyMTL3 Gradual Typing

Productivity/Performance Gap

▶ PyMTL3 achieves impressive simulation performance by
co-optimizing the framework and JIT

Christopher Batten Spring 2023 @ NVIDIA 30 / 48

PyMTL3 Motivation PyMTL3 Framework PyMTL3 in Practice • PyMTL3 JIT • PyMTL3 Testing PyMTL3 Gradual Typing

PyMTL3 Performance

Technique Divider 1-Core 16-core 32-core

Event-Driven 24K CPS 6.6K CPS 155 CPS 66 CPS

JIT-Aware HGSF
+ Static Scheduling 13× 2.6× 1× 1.1×
+ Schedule Unrolling 16× 24× 0.4× 0.2×
+ Heuristic Toposort 18× 26× 0.5× 0.3×
+ Trace Breaking 19× 34× 2× 1.5×
+ Consolidation 27× 34× 47× 42×
HGSF-Aware JIT
+ RPython Constructs 96× 48× 62× 61×
+ Huge Loop Support 96× 49× 65× 67×
▶ RISC-V RV32IM five-stage pipelined cores
▶ Only models cores, no interconnect nor caches

Christopher Batten Spring 2023 @ NVIDIA 31 / 48

PyMTL3 Motivation PyMTL3 Framework PyMTL3 in Practice PyMTL3 JIT • PyMTL3 Testing • PyMTL3 Gradual Typing

PyMTL3: A Python Framework for Hardware
Modeling, Generation, Simulation, and Verification

PyMTL3 Motivation

PyMTL3 Framework
[IEEE Micro’20,DAC’21]

PyMTL3 in Practice

PyMTL3 JIT
[DAC’18]

PyMTL3 Testing
[IEEE Design&Test’21]

PyMTL3 Gradual Typing
[LATTE’23]

Python

Functional-Level

Cycle-Level

RTL

Multi-Level
Simulation

Test Bench

SystemVerilog

RTL

synth

generate

prototype
bring-up

FPGA
ASIC

co-simulate

Christopher Batten Spring 2023 @ NVIDIA 32 / 48

PyMTL3 Motivation PyMTL3 Framework PyMTL3 in Practice PyMTL3 JIT • PyMTL3 Testing • PyMTL3 Gradual Typing

Testing RTL Design Generators is Challenging

DISTRIBUTION STATEMENT B. Distribution authorized to U.S. Government agencies only 47

Testing RTL Design Generators is Challenging

Testing a specific ring network instance
requires a number of different test cases

test_ring_1pkt_2x2_0_chnl

test_ring_2pkt_2x2_0_chnl

test_ring_2pkt_2x2_0_chnl

test_ring_self_2x2_0_chnl

test_ring_clockwise_2x2_0_chnl

test_ring_aclockwise_2x2_0_chnl

test_ring_neighbor_2x2_0_chnl

test_ring_tornado_2x2_0_chnl

test_ring_backpressure_2x2_0_chnl

…

A design generator can have many parameters:
topology, routing algorithm, flow control, size,
dimension, channel latency …

pkt(src=0, dst=1, payload=0xdeadbeef)
pkt(src=0, dst=3, payload=0x00000003)
pkt(src=1, dst=0, payload=0x00010000)

pkt(src=1, dst=2, payload=0x00010002)
pkt(src=2, dst=1, payload=0x00020001)
pkt(src=2, dst=3, payload=0x00020003)
pkt(src=3, dst=2, payload=0x00030002)
pkt(src=3, dst=0, payload=0x00030000)

pkt(src=0, dst=1, payload=0x00001000)
pkt(src=1, dst=2, payload=0x10002000)
pkt(src=2, dst=3, payload=0x20003000)
pkt(src=3, dst=0, payload=0x30000000)
pkt(src=0, dst=3, payload=0x00003000)

pkt(src=1, dst=0, payload=0x10000000)
pkt(src=2, dst=1, payload=0x20001000)
pkt(src=3, dst=2, payload=0x30002000)
…

A test case may
have a long
sequence of
transactions

Ideal testing technique:
1.Detect error quickly with small number of

test cases
2.The failing test case has minimal number of

transactions
3.The bug trace has simplest transactions
4.The failing test case has the simplest design

A design generator can have
many parameters: topology, routing,

flow control, channel latency

Christopher Batten Spring 2023 @ NVIDIA 33 / 48

PyMTL3 Motivation PyMTL3 Framework PyMTL3 in Practice PyMTL3 JIT • PyMTL3 Testing • PyMTL3 Gradual Typing

Software Testing Techniques

▶ Complete Random Testing (CRT)
▷ Randomly generate input data
▷ Detects error quickly
▷ Debug complicated test case

▶ Iterative Deepened Testing (IDT)
▷ Gradually increase input complexity
▷ Finds bug with simple input
▷ Takes many test cases to find bug

▶ Property-Based Testing (PBT)
▷ Search strategies, auto shrinking
▷ Detects error quickly
▷ Produces minimal failing test case
▷ Increasingly state-of-the-art in

software testing
DISTRIBUTION STATEMENT B. Distribution authorized to U.S. Government agencies only 48

• Complete Random Testing (CRT)
– Randomly generates input data

– Detects error quickly

– Needs to debug a complicated test case

• Iterative Deepened Testing (IDT)
– Gradually increases the complexity input data

– Finds bug with simple input

– Takes many test cases to find the bug

• Property-Based Testing (PBT)
– Search strategies and auto shrinking

– Detects error quickly

– Produces minimized failing test case

– Increasingly becoming a state-of-the-art

testing methodology for software (e.g.,

Hypothesis)

Software Testing Techniques

Christopher Batten Spring 2023 @ NVIDIA 34 / 48

PyMTL3 Motivation PyMTL3 Framework PyMTL3 in Practice PyMTL3 JIT • PyMTL3 Testing • PyMTL3 Gradual Typing

PyH2 Creatively Adopts PBT for SW to Test HW

▶ PyH2 combines PyMTL3, a unified hardware modeling framework,
with Hypothesis, a PBT framework for Python software and creates a
property-based testing framework for hardware

▶ PyH2 leverages PBT to explore not just the input values for an RTL
design but to also explore the parameter values used to configure
an RTL design generator

CRT IDT PyH2

Small number of test cases to find bug ✓ X ✓
Small number transactions in bug trace X ✓ ✓
Simple transactions in bug trace X ✓ ✓

Simple design instance for bug trace X ✓ ✓

Christopher Batten Spring 2023 @ NVIDIA 35 / 48

PyMTL3 Motivation PyMTL3 Framework PyMTL3 in Practice PyMTL3 JIT • PyMTL3 Testing • PyMTL3 Gradual Typing

PyH2 Example: GCD Unit Generator

DISTRIBUTION STATEMENT B. Distribution authorized to U.S. Government agencies only 50

• GCD unit with or without an input FIFO
• Parametrized by the size of input FIFO and

the bitwidth of the input data
• FIFO size = 0 means there is no input FIFO
• Complete Random Testing (CRT)

– Randomly pick the size of input FIFO and the
bitwidth of input data, randomly generate a
sequence of transactions

• Iterative Deepened Testing (IDT)
– Gradually increase the size of input FIFO, the

bitwidth, and the range of input value

Case Study #1: Greatest Common Divisor (GCD) Unit Generator

is_a_lt_b

b_reg

zero?

re
cv

_m
sg

.a se
nd

_m
sgre

cv
_m

sg
.b

less
than?

a_mux_sel

sub
a_reg

b_reg
_en

a_reg_en

is_b_zero
b_mux

_sel

...

enq deq

N-entry
input FIFO

IDLE CALC DONE

!send_rdy!recv_en

recv_en

send_rdy

is_a_lt_b
/swap !is_b_zero

/sub

is_b_zero

GCD Control FSM
FIFO + GCD datapath is_a_lt_b

b_reg

zero?

re
cv

_m
sg

.a se
nd

_m
sgre

cv
_m

sg
.b

less
than?

a_mux_sel

sub
a_reg

b_reg
_en

a_reg_en

is_b_zero
b_mux

_sel

...

enq deq

N-entry
input FIFO

IDLE CALC DONE

!send_rdy!recv_en

recv_en

send_rdy

is_a_lt_b
/swap !is_b_zero

/sub

is_b_zero

GCD Control FSM
FIFO + GCD datapath

▶ GCD unit w/ or w/o input
FIFO, parameterized by
FIFO size, bitwidth of input

▶ Complete Random Testing
▷ Randomly pick size of input

FIFO and bitwidth of data,
randomly generate a
sequence of transactions

▶ Iterative Deepened Testing
▷ Gradually increase size of

input FIFO, bitwidth, and
range of input value

Christopher Batten Spring 2023 @ NVIDIA 36 / 48

PyMTL3 Motivation PyMTL3 Framework PyMTL3 in Practice PyMTL3 JIT • PyMTL3 Testing • PyMTL3 Gradual Typing

Results of Applying PyH2 to GCD Unit Generator

DISTRIBUTION STATEMENT B. Distribution authorized to U.S. Government agencies only 51

• Four directed bugs
– q-rd-ptr: read pointer of the input FIFO does not increment

when a message is dequeued. Needs at least a 2-entry FIFO
to observe this bug.

– q-wr-ptr: write pointer of the input FIFO does not wrap
around when the FIFO is full. Needs at least a 2-entry FIFO to
observe this bug.

– gcd-idle: does not check valid signal in IDLE state

– gcd-done: does not check ready signal in DONE state

– 200 trials each

• 100 randomly injected bugs
– Each random bug has two trials

– Randomly mutates an expression in the source code

Case Study #1: Results of Applying PyH2 to GCD Unit Generator

Complete
Random
Testing
(CRT)

Iterative
Deepened
Testing
(IDT)

PyH2

▶ Four directed bugs

▷ q-rd-ptr: read pointer of input FIFO does not
increment when a message is dequeued (need
2+ entry FIFO to observe bug)

▷ q-wr-ptr: write pointer of input FIF Odoes not
wrap around when FIFO is full (need 2+ entry
FIFO to observe bug)

▷ gcd-idle: not check valid signal in IDLE

▷ gcd-done: not check ready signal in DONE

▷ 200 trials each

▶ 100 randomly injected bugs

▷ Each random bug has two trials

▷ Randomly mutate expression in source code

Christopher Batten Spring 2023 @ NVIDIA 37 / 48

PyMTL3 Motivation PyMTL3 Framework PyMTL3 in Practice PyMTL3 JIT • PyMTL3 Testing • PyMTL3 Gradual Typing

Results of Applying PyH2 to GCD Unit Generator

DISTRIBUTION STATEMENT B. Distribution authorized to U.S. Government agencies only 52

Case Study #1: Results of Applying PyH2 to GCD Unit Generator

Complete
Random
Testing
(CRT)

Iterative
Deepened
Testing
(IDT)

PyH2

PyH2 requires
few tests
(like CRT)
but also
produces
easy to
debug
failing test
cases
(like IDT)

Christopher Batten Spring 2023 @ NVIDIA 38 / 48

PyMTL3 Motivation PyMTL3 Framework PyMTL3 in Practice PyMTL3 JIT • PyMTL3 Testing • PyMTL3 Gradual Typing

Failing Test Case Shrinking Example

8

--
test case #0
--

- nbits = 4
- qsize = 0
- ntrans = 1
- seq = [TestVector(a=1, b=1)]
--

test case #1
--
- nbits = 31
- qsize = 0
- ntrans = 4

- seq = [TestVector(a=38, b=75), TestVector(a=33, b=72),
TestVector(a=111, b=41), TestVector(a=9, b=113)]

--
test case #2
--

- nbits = 27
- qsize = 10
- ntrans = 3
- seq = [TestVector(a=83, b=100), TestVector(a=128, b=21),

TestVector(a=38, b=66)]

--
shrinking...
--
- nbits = 24
- qsize = 14

- ntrans = 4
- seq = [TestVector(a=104, b=53), TestVector(a=113, b=99),

TestVector(a=110, b=81), TestVector(a=114, b=86)]
--
shrinking...

--
- nbits = 8
- qsize = 4
- ntrans = 2
- seq = [TestVector(a=42, b=92), TestVector(a=67, b=6)]

...

--
shrinking...
--

- nbits = 4
- qsize = 2
- ntrans = 1
- seq = [TestVector(a=2, b=2)]
--

shrinking...
--
- nbits = 4
- qsize = 2
- ntrans = 1

- seq = [TestVector(a=1, b=2)]
--
shrinking...
--
- nbits = 4

- qsize = 1
- ntrans = 1
- seq = [TestVector(a=2, b=2)]

Falsifying example: _run_hypothesis(nbits=4, qsize=2, src_intv=0,

sink_intv=0, seq=data(...))
Draw 1: [TestVector(a=1, b=1), TestVector(a=2, b=2)]
--
shrinking...
--

- nbits = 4
- qsize = 2
- ntrans = 2
- seq = [TestVector(a=1, b=1), TestVector(a=2, b=2)]
--

report
--
- bug found with 3 test cases
- failing test case:
+ ntrans = 2

+ nbits = 4
+ qsize = 2
+ seq = [TestVector(a=1, b=1), TestVector(a=2, b=2)]
+ avg_value = 1.5

Minimized Failing
Test Case

Original Failing
Test Case

Christopher Batten Spring 2023 @ NVIDIA 39 / 48

PyMTL3 Motivation PyMTL3 Framework PyMTL3 in Practice PyMTL3 JIT PyMTL3 Testing • PyMTL3 Gradual Typing •

PyMTL3: A Python Framework for Hardware
Modeling, Generation, Simulation, and Verification

PyMTL3 Motivation

PyMTL3 Framework
[IEEE Micro’20,DAC’21]

PyMTL3 in Practice

PyMTL3 JIT
[DAC’18]

PyMTL3 Testing
[IEEE Design&Test’21]

PyMTL3 Gradual Typing
[LATTE’23]

Python

Functional-Level

Cycle-Level

RTL

Multi-Level
Simulation

Test Bench

SystemVerilog

RTL

synth

generate

prototype
bring-up

FPGA
ASIC

co-simulate

Christopher Batten Spring 2023 @ NVIDIA 40 / 48

PyMTL3 Motivation PyMTL3 Framework PyMTL3 in Practice PyMTL3 JIT PyMTL3 Testing • PyMTL3 Gradual Typing •

Statically Typed
HDLs

Gradually Typed
HDLs

Dynamically Typed
HDLs

✓ Static correctness
guarantees on
generators

✓ Fast simulation

✗ Limited testing &
verification
productivity

✓ Static correctness
guarantees on
generators

✓ High testing &
verification productivity

✓ Disciplined mixed-
type component
composition

✓ Simulation perf
optimizations

✓ High testing &
verification
productivity

✗ No static
correctness
guarantees

✗ Slow simulation

Christopher Batten Spring 2023 @ NVIDIA 41 / 48

PyMTL3 Motivation PyMTL3 Framework PyMTL3 in Practice PyMTL3 JIT PyMTL3 Testing • PyMTL3 Gradual Typing •

Gradually Typed HDLs Enable
Statically Type Checking Hardware Generators

▶ Leverage Python3 standard
type annotation syntax to
annotate bitwidths

▶ Translate the bitwidth
equivalence invariant into
integer constraints

▶ Use SMT solvers to prove or
disprove the invariant

Christopher Batten Spring 2023 @ NVIDIA 42 / 48

PyMTL3 Motivation PyMTL3 Framework PyMTL3 in Practice PyMTL3 JIT PyMTL3 Testing • PyMTL3 Gradual Typing •

Gradually Typed HDLs Enable
Safe Mixed-Type Component Composition

▶ Statically typed components
expect well-typed inputs

▶ Errors propagate past the
origin given ill-typed inputs

▶ During elaboration: each
generator checks the given
parameters against
annotations

▶ During simulation: each
signal assignment checks the
given values against its type

A Mixed-Typed Component Composition with
Statically Typed DUT (divider) and Dynamically

Typed Test Bench

Christopher Batten Spring 2023 @ NVIDIA 43 / 48

PyMTL3 Motivation PyMTL3 Framework PyMTL3 in Practice PyMTL3 JIT PyMTL3 Testing PyMTL3 Gradual Typing

PyMTL3: A Python Framework for Hardware
Modeling, Generation, Simulation, and Verification

PyMTL3 Motivation

PyMTL3 Framework
[IEEE Micro’20,DAC’21]

PyMTL3 in Practice

PyMTL3 JIT
[DAC’18]

PyMTL3 Testing
[IEEE Design&Test’21]

PyMTL3 Gradual Typing
[LATTE’23]

Python

Functional-Level

Cycle-Level

RTL

Multi-Level
Simulation

Test Bench

SystemVerilog

RTL

synth

generate

prototype
bring-up

FPGA
ASIC

co-simulate

Christopher Batten Spring 2023 @ NVIDIA 44 / 48

PyMTL3 Motivation PyMTL3 Framework PyMTL3 in Practice PyMTL3 JIT PyMTL3 Testing PyMTL3 Gradual Typing

PyMTL3 Publications

▶ S. Jiang, et al., “Mamba: Closing the Performance Gap in
Productive Hardware Development Frameworks.” 55th
ACM/IEEE Design Automation Conf. (DAC), June 2018.

▶ S. Jiang, P. Pan, Y. Ou, et al., “PyMTL3: A Python
Framework for Open-Source Hardware Modeling,
Generation, Simulation, and Verification.” IEEE Micro,
40(4):58–66, Jul/Aug. 2020.

▶ S. Jiang*, Y. Ou*, P. Pan, et al., “PyH2: Using PyMTL3 to
Create Productive and Open-Source Hardware Testing
Methodologies.” IEEE Design & Test, 38(2):53–61, Apr.
2021.

▶ S. Jiang, Y. Ou, P. Pan, et al., “UMOC: Unified Modular
Ordering Constraints to Unify Cycle- and
Register-Transfer-Level Modeling.” 58th ACM/IEEE
Design Automation Conf. (DAC), Dec. 2021.

▶ P. Pan, Y. Ou, S. Jiang, et al., “The Case for Gradually
Typed Hardware Description Languages.” Workshop on
Languages, Tools, and Techniques for Accelerator
Design (LATTE), Mar. 2023.

PyMTL3: A Python
Framework for Open-Source
HardwareModeling,
Generation, Simulation,
and Verification

Shunning Jiang, Peitian Pan, Yanghui Ou,
and Christopher Batten
Cornell University

Abstract—In thisarticle,wepresentPyMTL3, aPython framework for open-sourcehardware

modeling, generation, simulation, andverification. Inaddition tocompelling benefits from

using thePython language,PyMTL3 isdesigned toprovideflexible,modular, andextensible

workflows for bothhardwaredesignersandcomputer architects. PyMTL3supports a

seamlessmultilevelmodelingenvironment andcarefully designedmodular software

architectureusing asophisticated in-memory intermediate representationandacollection

of passes that analyze, instrument, and transformPyMTL3hardwaremodels.Webelieve

PyMTL3canplay an important role in jump-starting theopen-sourcehardwareecosystem.

& DUE TO THE breakdown of transistor scaling

and the slowdown of Moore’s law, there has

been an increasing trend toward energy-efficient

system-on-chip (SoC) design using heteroge-

neous architectures with a mix of general-

purpose and specialized computing engines. Het-

erogeneous SoCs emphasize both flexible param-

eterization of a single design block and versatile

composition of numerous different design

blocks, which have imposed significant chal-

lenges to state-of-the-art hardware modeling and

Digital Object Identifier 10.1109/MM.2020.2997638

Date of publication 25 May 2020; date of current version

30 June 2020.

Theme Article: Agile and Open-Source HardwareTheme Article: Agile and Open-Source Hardware

58
0272-1732 ! 2020 IEEE Published by the IEEE Computer Society IEEE Micro

Authorized licensed use limited to: Cornell University Library. Downloaded on July 03,2020 at 00:53:45 UTC from IEEE Xplore. Restrictions apply.

Christopher Batten Spring 2023 @ NVIDIA 45 / 48

PyMTL3 Motivation PyMTL3 Framework PyMTL3 in Practice PyMTL3 JIT PyMTL3 Testing PyMTL3 Gradual Typing

PyMTL3 Developers

▶ Shunning Jiang : Lead researcher and developer for PyMTL3
▶ Peitian Pan : Leading work on translation & gradually-typed HDL
▶ Yanghui Ou : Leading work on property-based random testing

▶ Tuan Ta, Moyang Wang, Khalid Al-Hawaj, Shady Agwal, Lin Cheng

Christopher Batten Spring 2023 @ NVIDIA 46 / 48

PyMTL3 Motivation PyMTL3 Framework PyMTL3 in Practice PyMTL3 JIT PyMTL3 Testing PyMTL3 Gradual Typing

PyMTL3 Project Sponsors

PyMTL3: A Python Framework for Open-Source Hardware Modeling, Generation, Simulation, and Verification

PyMTL Project Sponsors

Funding partially provided by the
National Science Foundation through

NSF CRI Award #1512937 and
NSF SHF Award #1527065.

Funding partially provided by the
Defense Advanced Research Projects

Agency through a DARPA POSH Award
#FA8650-18-2-7852.

Funding partially provided by the Center
for Applications Driving Architectures
(ADA), one of six centers of JUMP, a

Semiconductor Research Corporation
program co-sponsored by DARPA.

Funding partially provided by an
unrestricted industry gift from the Xilinx

University Program

Batten Research Group CHIPKIT Tutorial @ ISCA’20 17 / 18
Christopher Batten Spring 2023 @ NVIDIA 47 / 48

PyMTL3 Motivation PyMTL3 Framework PyMTL3 in Practice PyMTL3 JIT PyMTL3 Testing PyMTL3 Gradual Typing

PyMTL3: A Python Framework for Hardware
Modeling, Generation, Simulation, and Verification

PyMTL3 Motivation

PyMTL3 Framework
[IEEE Micro’20,DAC’21]

PyMTL3 in Practice

PyMTL3 JIT
[DAC’18]

PyMTL3 Testing
[IEEE Design&Test’21]

PyMTL3 Gradual Typing
[LATTE’23]

Python

Functional-Level

Cycle-Level

RTL

Multi-Level
Simulation

Test Bench

SystemVerilog

RTL

synth

generate

prototype
bring-up

FPGA
ASIC

co-simulate

Christopher Batten Spring 2023 @ NVIDIA 48 / 48

PyMTL3 Motivation PyMTL3 Framework PyMTL3 in Practice PyMTL3 JIT PyMTL3 Testing PyMTL3 Gradual Typing

This work was supported in part by NSF XPS Award #1337240, NSF CRI
Award #1512937, NSF SHF Award #1527065, AFOSR YIP Award

#FA9550-15-1-0194, DARPA Young Faculty Award #N66001-12-1-4239,
DARPA POSH Award #FA8650-18-2-7852, a Xinux University Program

industry gift, and the the Center for Applications Driving Architectures (ADA),
one of six centers of JUMP, a Semiconductor Research Corporation program
co-sponsored by DARPA, and equipment, tool, and/or physical IP donations

from Intel, NVIDIA, Synopsys, and ARM.

Thanks to Derek Lockhart, Ji Kim, Shreesha Srinath, Berkin Ilbeyi, Yixiao
Zhang, Jacob Glueck, Aaron Wisner, Gary Zibrat, Christopher Torng, Cheng
Tan, Raymond Yang, Kaishuo Cheng, Jack Weber, Carl Friedrich Bolz, David
MacIver, and Zac Hatfield-Dodds for their help designing, developing, testing,

and using PyMTL2 and PyMTL3

The U.S. Government is authorized to reproduce and distribute reprints for
Government purposes notwithstanding any copyright notation theron. Any
opinions, findings, and conclusions or recommendations expressed in this

publication are those of the author(s) and do not necessarily reflect the views
of any funding agency.

Christopher Batten Spring 2023 @ NVIDIA 49 / 48

