
PyMTL3
A Python Framework for Open-Source

Hardware Modeling, Generation, Simulation,
and Verification

https://pymtl.github.io

https://github.com/pymtl/pymtl3-chipkit-isca2020

Christopher Batten
Electrical and Computer Engineering

Cornell University
CHIPKIT Tutorial @ ISCA’20

PyMTL3: A Python Framework for Open-Source Hardware Modeling, Generation, Simulation, and Verification

Multi-Level Modeling Methodologies

Applications

Transistors

Algorithms

Compilers

Instruction Set Architecture

Microarchitecture

VLSI

Cycle-Level Modeling

– Behavior

– Cycle-Approximate

– Analytical Area, Energy, Timing

Functional-Level Modeling

– Behavior

Register-Transfer-Level Modeling

– Behavior

– Cycle-Accurate Timing

– Gate-Level Area, Energy, Timing

Batten Research Group CHIPKIT Tutorial @ ISCA’20 2 / 18

PyMTL3: A Python Framework for Open-Source Hardware Modeling, Generation, Simulation, and Verification

Multi-Level Modeling Methodologies

Cycle-Level Modeling

Functional-Level Modeling

Register-Transfer-Level Modeling

– Algorithm/ISA Development

– MATLAB/Python, C++ ISA Sim

– Design-Space Exploration

– C++ Simulation Framework

– gem5, SESC, McPAT

– Prototyping & AET Validation

– Verilog, VHDL Languages

– HW-Focused Concurrent Structural

– SW-Focused Object-Oriented

– EDA Toolflow

Multi-Level Modeling

Challenge

FL, CL, RTL modeling

use very different

languages, patterns,

tools, and methodologies

SystemC is a good example
of a unified multi-level
modeling framework

Is SystemC the best
we can do in terms of

productive
multi-level modeling?

Batten Research Group CHIPKIT Tutorial @ ISCA’20 2 / 18

PyMTL3: A Python Framework for Open-Source Hardware Modeling, Generation, Simulation, and Verification

Traditional VLSI Design Methodologies

RTL

Sim

TB

 HDL
(Verilog)

FPGA/
 ASIC

synth

Fast edit-sim-debug loop

Difficult to create highly
parameterized generators

Single language for
structural, behavioral, + TB

HDL
Hardware Description

Language

RTL

Sim

TB

 HDL
(Verilog)

RTL

 Mixed
(Verilog+Perl)

TB

gen

gen

FPGA/
 ASIC

synth

Slower edit-sim-debug loop

Easier to create highly
parameterized generators

Multiple languages create
"semantic gap"

Example: Genesis2

HPF
Hardware Preprocessing

Framework

RTL

Sim

 HDL
(Verilog)

RTL

Host Language
 (Scala)

TB TB

FPGA/
 ASIC

gen

gen

synth

Slower edit-sim-debug loop

Easier to create highly
parameterized generators

Cannot use power of host
language for verification

Example: Chisel

HGF
Hardware Generation

Framework

Single language for
structural + behavioral

Is Chisel the best we can do in terms of a
productive VLSI design methodology?

Batten Research Group CHIPKIT Tutorial @ ISCA’20 3 / 18

PyMTL3: A Python Framework for Open-Source Hardware Modeling, Generation, Simulation, and Verification

PyMTL Python-based hardware generation,
simulation, and verification framework

which enables productive
multi-level modeling and VLSI design

Python

Functional-Level

Cycle-Level

RTL

Multi-Level
Simulation

Test Bench

SystemVerilog

RTL

synthesize

generate

prototype
bring-up

FPGA
ASIC

co-simulate

Batten Research Group CHIPKIT Tutorial @ ISCA’20 4 / 18

PyMTL3: A Python Framework for Open-Source Hardware Modeling, Generation, Simulation, and Verification

PyMTL
I PyMTL2: https://github.com/cornell-brg/pymtl

. released in 2014

. extensive experience using framework in research & teaching

I PyMTL3: https://github.com/pymtl/pymtl3
. official release earlier this month
. adoption of new Python3 features
. significant rewrite to improve productivity & performance
. cleaner syntax for FL, CL, and RTL modeling
. completely new Verilog translation support
. first-class support for method-based interfaces

Batten Research Group CHIPKIT Tutorial @ ISCA’20 5 / 18

PyMTL3: A Python Framework for Open-Source Hardware Modeling, Generation, Simulation, and Verification

The PyMTL3 Framework

Model

PyMTL3
DSL

(Python)

Config

Elaboration
Model

Instance

PyMTL3 In-Memory
Intermediate

Representation
(Python) Simulatable

Model
Test & Sim
Harnesses

PyMTL3
Passes
(Python)

Simulation
Pass

Translation
Pass

Verilog

Analysis
Pass

Analysis
Output

Transform
Pass

New
Model

Batten Research Group CHIPKIT Tutorial @ ISCA’20 6 / 18

PyMTL3: A Python Framework for Open-Source Hardware Modeling, Generation, Simulation, and Verification

PyMTL3 High-Level Modeling
1 class QueueFL(Component):
2 def construct(s, maxsize):
3 s.q = deque(maxlen=maxsize)
4

5 @non_blocking(
6 lambda s: len(s.q) < s.q.maxlen)
7 def enq(s, value):
8 s.q.appendleft(value)
9

10 @non_blocking(
11 lambda s: len(s.q) > 0)
12 def deq(s):
13 return s.q.pop()

I FL/CL components can use
method-based interfaces

I Structural composition via
connecting methods

upA

q1 q2

enq
deq enq

deqenq deq

14 class DoubleQueueFL(Component):
15 def construct(s):
16 s.enq = CalleeIfcCL()
17 s.deq = CalleeIfcCL()
18

19 s.q1 = QueueFL(2)
20 s.q2 = QueueFL(2)
21

22 connect(s.enq, s.q1.enq)
23 connect(s.q2.deq, s.deq)
24

25 @update
26 def upA():
27 if s.q1.deq.rdy() and s.q2.enq.rdy():
28 s.q2.enq(s.q1.deq())

Batten Research Group CHIPKIT Tutorial @ ISCA’20 7 / 18

PyMTL3: A Python Framework for Open-Source Hardware Modeling, Generation, Simulation, and Verification

PyMTL3 Low-Level Modeling
1 from pymtl3 import *

2

3 class RegIncrRTL(Component):

4

5 def construct(s, nbits):

6 s.in_ = InPort (nbits)

7 s.out = OutPort(nbits)

8 s.tmp = Wire (nbits)

9

10 @update_ff

11 def seq_logic():

12 s.tmp <<= s.in_

13

14 @update

15 def comb_logic():

16 s.out @= s.tmp + 1

in_ out
+1

tmp

I RTL components can be translated
into readable Verilog

I This translated Verilog can then be
automatically imported back into
PyMTL for co-simulation via
Verilator

I External Verilog IP can also be
co-simulated via Verilator

Batten Research Group CHIPKIT Tutorial @ ISCA’20 8 / 18

PyMTL3: A Python Framework for Open-Source Hardware Modeling, Generation, Simulation, and Verification

What is PyMTL3 for and not (currently) for?

I PyMTL3 is for ...

. Taking an accelerator design from concept to implementation

. Construction of highly-parameterizable CL models

. Construction of highly-parameterizable RTL design generators

. Rapid design, testing, and exploration of hardware mechanisms

. Interfacing models with other C++ or Verilog frameworks

I PyMTL3 is not (currently) for ...

. Python high-level synthesis

. Many-core simulations with hundreds of cores

. Full-system simulation with real OS support

. Users needing a complex OOO processor model “out of the box”

Let’s see some examples of how PyMTL2 has been used in practice ...

Batten Research Group CHIPKIT Tutorial @ ISCA’20 9 / 18

PyMTL3: A Python Framework for Open-Source Hardware Modeling, Generation, Simulation, and Verification

PyMTL2 in Architecture and EDA Research

MICRO’18 T. Chen, S. Srinath, C. Batten, E. Suh. “An Architectural Framework
for Accelerating Dynamic Parallel Algorithms on Reconfigurable
Hardware.”

MICRO’17 J. Kim, S. Jiang, C. Torng, M. Wang, S. Srinath, B. Ilbeyi, K. Al-Hawaj, C.
Batten. “Using Intra-Core Loop-Task Accelerators to Improve the
Productivity and Performance of Task-Based Parallel Programs.”

FPGA’17 H. Dai, R. Zhao, G. Liu, S. Srinath, U. Gupta, C. Batten, Z. Zhang.
“Dynamic Hazard Resolution for Pipelining Irregular Loops in
High-Level Synthesis.”

MICRO’16 T. Chen and E. Suh. “Efficient Data Supply for Hardware
Accelerators with Prefetching and Access/Execute Decoupling.”

DAC’16 R. Zhao, G. Liu, S. Srinath, C. Batten, Z. Zhang. “Improving High-Level
Synthesis with Decoupled Data Structure Optimization.”

MICRO’14 S. Srinath, B. Ilbeyi, M. Tan, G. Liu, Z. Zhang, C. Batten. “Architectural
Specialization for Inter-Iteration Loop Dependence Patterns.”

Batten Research Group CHIPKIT Tutorial @ ISCA’20 10 / 18

PyMTL3: A Python Framework for Open-Source Hardware Modeling, Generation, Simulation, and Verification

PyMTL2 ASIC Tapeout #1 (2016)

Host

Interface

d
e

b
u

g

RISC
Core

Sort

Accel

Memory Arbitration Unit

SRAM

Bank

(4KB)

SRAM

Bank

(4KB)

SRAM

Bank

(4KB)

SRAM

Bank

(4KB)

diff clk (+)

diff clk (−)

single
ended clk

re
s
e

t

Ctrl

Reghost2chip

chip2host

LVDS

Recv
clk

div

clk tree

reset
tree

c
lk

 o
u

t

L
V

D
S

d
iv

id
e

d

c
lk

 o
u

t

L
V

D
S

c
lk

 o
u

t

RISC processor, 16KB SRAM, HLS-generated accelerator
2x2mm, 1.2M-trans, IBM 130nm

95% done using PyMTL2

Batten Research Group CHIPKIT Tutorial @ ISCA’20 11 / 18

PyMTL3: A Python Framework for Open-Source Hardware Modeling, Generation, Simulation, and Verification

PyMTL2 ASIC Tapeout #2 (2018)

Memory

Instruction Memory Arbiter

L1 Data $

(32KB)

LLFU Arbiter

Int Mul/Div

FPU

L1 Instruction $

(32KB)

H
o

s
t

In
te

rf
a

c
e

S
y
n

th
e

s
iz

a
b

le
 P

L
L

ArbiterData

Four RISC-V RV32IMAF cores with “smart” sharing of L1$/LLFU
1x1.2mm, 6.7M-trans, TSMC 28nm

95% done using PyMTL2

Batten Research Group CHIPKIT Tutorial @ ISCA’20 12 / 18

PyMTL3: A Python Framework for Open-Source Hardware Modeling, Generation, Simulation, and Verification

Celerity SoC through DARPA CRAFT Program

I 5× 5mm in TSMC 16 nm FFC
I 385 million transistors
I 511 RISC-V cores

. 5 Linux-capable Rocket cores

. 496-core tiled manycore

. 10-core low-voltage array
I 1 BNN accelerator
I 1 synthesizable PLL
I 1 synthesizable LDO Vreg
I 3 clock domains
I 672-pin flip chip BGA package

PyMTL2 played a small but important role in testing the BNN and
automatically generating appropriate wrappers to interface with the

Rocket core via RoCC

Batten Research Group CHIPKIT Tutorial @ ISCA’20 13 / 18

PyMTL3: A Python Framework for Open-Source Hardware Modeling, Generation, Simulation, and Verification

PyMTL2 in Teaching and POSH

P

I$

D$

Network

Network

Network

P

I$

P

I$

P

I$

D$ D$ D$

Undergraduate Comp Arch Course
Labs use PyMTL for verification,
PyMTL or Verilog for RTL design

Graduate ASIC Design Course
Labs use PyMTL for verification,

PyMTL or Verilog for RTL design, standard ASIC flow

DARPA POSH Open-Source Hardware Program
PyMTL used as a powerful open-source generator

for both design and verification

Batten Research Group CHIPKIT Tutorial @ ISCA’20 14 / 18

PyMTL3: A Python Framework for Open-Source Hardware Modeling, Generation, Simulation, and Verification

Two Upcoming PyMTL3 Publications

Department: Head
Editor: Name, xxxx@email

PyMTL3: A Python Framework
for Open-Source Hardware
Modeling, Generation,
Simulation, and Verification
Shunning Jiang, Peitian Pan, Yanghui Ou, and Christopher Batten
Cornell University

Abstract—We present PyMTL3, a Python framework for open-source hardware modeling,
generation, simulation, and verification. In addition to the compelling benefits from using the
Python language, PyMTL3 is designed to provide productive, flexible, and extensible workflows
for both hardware designers and computer architects. PyMTL3 supports a seamless multi-level
modeling environment and carefully designed modular software architecture using a
sophisticated in-memory intermediate representation and a collection of passes that analyze,
instrument, and transform PyMTL3 hardware models. PyMTL3 can play an important role in
jump-starting the open-source hardware ecosystem.

DUE TO THE BREAKDOWN of transistor scal-
ing and the slowdown of Moore’s law, there
has been an increasing trend towards energy-
efficient system-on-chip (SoC) design using het-
erogeneous architectures with a mix of general-
purpose and specialized computing engines. Het-
erogeneous SoCs emphasize both flexible param-
eterization of a single design block and versatile
composition of numerous different design blocks,
which have imposed significant challenges to
state-of-the-art hardware modeling and verifica-
tion methodologies. Developing, open-sourcing,
and collaborating on hardware generators is a
compelling solution to increase the reuse of
highly parametrized and thoroughly tested hard-

ware blocks in the community. However, the
general lack of high-quality open-source hard-
ware designs and hardware verification method-
ologies have been a major concern that limits the
widespread adoption of open-source hardware.

To respond to these challenges, the open-
source hardware community is augmenting or
even replacing traditional domain-specific hard-
ware description languages (HDLs) with produc-
tive hardware development frameworks empow-
ered by high-level general-purpose programming
languages such as C++, Scala, Perl, and Python.
Hardware preprocessing frameworks (e.g., Gen-
esis2 [1]) intermingle a high-level language
for macro-processing and a low-level HDL for

IT Professional Published by the IEEE Computer Society © 2020 IEEE 1

IEEE Micro Department: Head
Editor: Name, xxxx@email

PyH2: Using PyMTL3 to
Create Productive and
Open-Source Hardware
Testing Methodologies

Shunning Jiang*, Yanghui Ou*, Peitian Pan, Kaishuo Cheng, Yixiao Zhang, and
Christopher Batten
Cornell University

Abstract—The success of the emerging open-source hardware ecosystem critically depends on
thoroughly tested open-source hardware blocks. Unfortunately, it is challenging to adopt
traditional closed-source hardware testing approaches in the open-source hardware community.
To tackle these challenges, we introduce PyH2, our vision for a productive and open-source
testing methodology for open-source hardware. Leveraging PyMTL3, pytest, and hypothesis,
PyH2 attempts to reduce the designers’ effort in creating high-quality property-based random
tests. This paper introduces and quantitatively evaluates the benefits of three PyH2 frameworks:
PyH2G for design generators, PyH2P for processors, and PyH2O for testing hardware with
object-oriented interfaces.

AS Dennard scaling is over and Moore’s
law continues to slow down, modern system-
on-chip (SoC) architectures have been moving
towards heterogeneous compositions of general-
purpose and specialized computing fabrics. This
heterogeneity complicates the already challenging
task of SoC design and verification. Building an
open-source hardware community to amortize the
non-recurring engineering effort of developing
highly parametrized and thoroughly verified hard-

* Shunning Jiang and Yanghui Ou contributed equally to this
work and are listed alphabetically.

ware blocks is a promising solution to the het-
erogeneity challenge. However, the widespread
adoption of open-source hardware has been ob-
structed by the scarcity of such high quality
blocks. We argue that a key missing piece in
the open-source hardware ecosystem is compre-
hensive, productive, and open-source verification
methodologies that reduce the effort required to
create thoroughly tested hardware blocks. Com-
pared to closed-source hardware, verification of
open-source hardware faces several significant
challenges.

First, closed-source hardware is usually

IT Professional Published by the IEEE Computer Society © 2020 IEEE 1

IEEE Design & Test

Batten Research Group CHIPKIT Tutorial @ ISCA’20 15 / 18

PyMTL3: A Python Framework for Open-Source Hardware Modeling, Generation, Simulation, and Verification

PyMTL3 Developers

I Shunning Jiang : Lead researcher and developer for PyMTL3
I Peitian Pan : Leading work on translation & gradually-typed HDL
I Yanghui Ou : Leading work on property-based random testing

I Tuan Ta, Moyang Wang, Khalid Al-Hawaj, Shady Agwal, Lin Cheng

Batten Research Group CHIPKIT Tutorial @ ISCA’20 16 / 18

PyMTL3: A Python Framework for Open-Source Hardware Modeling, Generation, Simulation, and Verification

PyMTL Project Sponsors

Funding partially provided by the
National Science Foundation through

NSF CRI Award #1512937 and
NSF SHF Award #1527065.

Funding partially provided by the
Defense Advanced Research Projects

Agency through a DARPA POSH Award
#FA8650-18-2-7852.

Funding partially provided by the Center
for Applications Driving Architectures
(ADA), one of six centers of JUMP, a

Semiconductor Research Corporation
program co-sponsored by DARPA.

Funding partially provided by an
unrestricted industry gift from the Xilinx

University Program

Batten Research Group CHIPKIT Tutorial @ ISCA’20 17 / 18

PyMTL3: A Python Framework for Open-Source Hardware Modeling, Generation, Simulation, and Verification

This work was supported in part by NSF XPS Award #1337240, NSF CRI
Award #1512937, NSF SHF Award #1527065, AFOSR YIP Award

#FA9550-15-1-0194, DARPA Young Faculty Award #N66001-12-1-4239, a
Xinux University Program industry gift, and the the Center for Applications
Driving Architectures (ADA), one of six centers of JUMP, a Semiconductor
Research Corporation program co-sponsored by DARPA, and equipment,
tool, and/or physical IP donations from Intel, NVIDIA, Synopsys, and ARM.

Thanks to Derek Lockhart, Ji Kim, Shreesha Srinath, Berkin Ilbeyi, Yixiao
Zhang, Jacob Glueck, Aaron Wisner, Gary Zibrat, Christopher Torng, Cheng

Tan, Raymond Yang, Kaishuo Cheng, Jack Weber, Carl Friedrich Bolz,
David MacIver, and Zac Hatfield-Dodds for their help designing, developing,

testing, and using PyMTL2 and PyMTL3

The U.S. Government is authorized to reproduce and distribute reprints for
Government purposes notwithstanding any copyright notation theron. Any
opinions, findings, and conclusions or recommendations expressed in this

publication are those of the author(s) and do not necessarily reflect the
views of any funding agency.

Batten Research Group CHIPKIT Tutorial @ ISCA’20 18 / 18

