
Building Manycore Processor-to-DRAM Networks
with Monolithic Silicon Photonics

Christopher Batten1, Ajay Joshi1, Jason Orcutt1, Anatoly Khilo1

Benjamin Moss1, Charles Holzwarth1, Miloš Popović1, Hanqing Li1
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Seamless On-Chip/Off-Chip Photonic Link

• Light coupled into waveguide on chip A

• Transmitter off : Light extracted by ring modulator

• Transmitter on : Light passes by ring modulator

• Light continues to receiver on chip B

• Light extracted by receiver’s ring filter
and guided to photodetector
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Photonic Component Characterization

Standard CMOS process

• Waveguides

• Ring Modulators

• Ring Filters

• Photodetectors
Simulation 65 nm Test Chip
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Photonic Component: Waveguide
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Photonic Component: Ring Modulator
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Photonic Component: Ring Filter
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Photonic Component: Photodetector
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Silicon photonic’s energy and area advantage

Bandwidth
Energy Density
(pJ/b) (Gb/s/µm)

Global on-chip photonic link 0.25 160-320
Global on-chip optimally repeated M9 wire in 32 nm 1 5

Off-chip photonic link (50 µm coupler pitch) 0.25 13-26
Off-chip electrical SERDES (50 µm pitch) 5 0.2

On-chip/off-chip seamless photonic link 0.25
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Leveraging silicon photonics to
address the memory bandwidth challenge
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Baseline Network Architecture: Mesh Topology

Logical View Physical View
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Analytical modeling of energy and throughput tradeoffs
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Mesh Limited

I/O Limited (5 pJ/b)

• 22 nm – 256 cores @ 2.5 GHz

• Performance will most likely be
energy constrained

• Fixed 8 nJ/cycle energy budget (20W)

• Use simple gate-level models to
estimate energy, ideal throughput
under uniform random traffic, and
zero-load latency
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Mesh Limited

I/O Limited (5 pJ/b)

I/O Limited
(250 fJ/b)

• 22 nm – 256 cores @ 2.5 GHz

• Performance will most likely be
energy constrained

• Fixed 8 nJ/cycle energy budget (20W)

• Use simple gate-level models to
estimate energy, ideal throughput
under uniform random traffic, and
zero-load latency
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Ideal throughput vs. off-chip I/O energy efficiency
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• Decreased off-chip I/O energy,
results in more I/O bandwidth and
mesh bandwidth

• Latency decreases slightly due to
lower serialization latency

• In photonic range almost all of the
energy is being spent on the mesh

• A more energy efficient on-chip
interconnect should further improve
throughput
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Mesh Augmented with Global Crossbar

Logical View Physical View
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Analytical modeling of global crossbar topology
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Simple Mesh
Mesh w/ 4 Groups
Mesh w/ 16 Groups
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• Global crossbar increases energy
efficiency of the on-chip interconnect
improving throughput

• Global traffic is moved from energy-
inefficient mesh channels to energy-
efficient on-chip silicon photonics

• Global crossbar has little impact in
the electrical range since very little
energy is being spent in the on-chip
interconnect to begin with

• Latency decreases due to lower
serialization and hop latency
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Simulation Methodology

• Execution driven cycle-accurate network simulator

• Models pipeline latencies, router contention,
credit-based flow control, and serialization overheads

• Configuration same as in analytical modeling except:

– Mesh networks use dimension ordered routing

– 16 DRAM modules distributed around chip

– Memory channels cache-line interleaved

– Normalized buffering in terms of bits
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Simulation Results

0 2 4 6 8 10

100

200

300

400

500

Total Offered Bandwidth (Kb/cycle)

A
ve

ra
g
e
 L

a
te

n
cy

(c
yc

le
s)

Electrical System (5 pJ/b)
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Photonic System (250 fJ/b)

• Synthetic uniform random traffic
with 256 bit messages

• For simple mesh (no groups) we see
a ≈2× improvement in throughput at
similar latency

• Adding global crossbar improves
performance of photonic system but
has little impact on electrical system

• Throughput is improved by ≈8-10×
and best throughput is ≈5 TB/s

MIT/UCB Christopher Batten 20 / 25



Motivation Photonic Technology Network Architecture Full System Design

Simulation Results

0 2 4 6 8 10

100

200

300

400

500

 

 

Total Offered Bandwidth (Kb/cycle)

A
ve

ra
g
e
 L

a
te

n
cy

(c
yc

le
s)

Electrical System (5 pJ/b)

Simple Mesh
Mesh w/ 4 Groups
Mesh w/ 16 Groups
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Simplified 16-core system design
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Full 256-core system design
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Advantages of photonics for packaging
and system-level integration
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Take Away Points

• Silicon photonics is a promising technology
for increasing the energy efficiency and the
bandwidth density for on-chip and off-chip
interconnect.

• Addressing the manycore bandwidth
challenge requires implementing both
global on-chip interconnect and off-chip I/O
with photonics.

• We can efficiently implement global all-to-all
connectivity with silicon photonics by using
vertical waveguides, horizontal waveguides,
and a ring filter matrix where they cross.
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