
A New Era of Open-Source
System-on-Chip Design

Christopher Batten

Computer Systems Laboratory
Electrical and Computer Engineering

Cornell University

• Open-Source HW • PyMTL3 Motivation Overview Demo PyMTL3&OSH Celerity Arch Celerity Case Study Celerity&OSH

Motivating Trends in Computer Architecture

Transistors
(Thousands)

MIPS
R2K

Intel
P4

Data collected by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, C. Batten

1975 1980 1985 1990 1995 2000 2005 2010 2015

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

DEC
Alpha
21264

Typical
Power (W)

Frequency
(MHz)

SPECint
Performance

~9%/year

~15%/year

Number
of Cores

Intel 48-Core Prototype

AMD 4-Core Opteron
 Data-Parallelism via

 GPGPUs & Vector

Hardware
Specialization

 Fine-Grain Task-

 Level Parallelism

 Instruction Set

 Specialization

 Subgraph

 Specialization

 Application-Specific

 Accelerators

 Domain-Specific

 Accelerators

 Coarse-Grain

 Reconfig Arrays

 Field-Programmable

 Gate Arrays

Cornell University Christopher Batten 2 / 51

• Open-Source HW • PyMTL3 Motivation Overview Demo PyMTL3&OSH Celerity Arch Celerity Case Study Celerity&OSH

Hardware Specialization from Cloud to IoT

Cloud
Computing

Internet
of

Things

Google TPU
I Training is done using the

TensorFlow C++ framework
I Training can take weeks
I Google TPU is custom chip to

accelerate training and inference

Movidius Myriad 2
I Custom chip for ML on

embedded IoT devices
I Specifically focused on vision

processing
I 12 specialized vector VLIW

processors

Cornell University Christopher Batten 3 / 51

• Open-Source HW • PyMTL3 Motivation Overview Demo PyMTL3&OSH Celerity Arch Celerity Case Study Celerity&OSH

I Graphcore
I Nervana
I Cerebras
I Wave Computing
I Horizon Robotics
I Cambricon
I DeePhi
I Esperanto
I SambaNova
I Eyeriss
I Tenstorrent
I Mythic
I ThinkForce
I Groq
I Lightmatter

How can we accelerate
innovation in

accelerator-centric
system-on-chip design?

Cornell University Christopher Batten 4 / 51

• Open-Source HW • PyMTL3 Motivation Overview Demo PyMTL3&OSH Celerity Arch Celerity Case Study Celerity&OSH

Software Innovation Today

Your proprietary code
 • Instagram
 • $500K seed with 13 people → $1B

Open-source software
 • Python
 • Django
 • Memcached
 • Postgres/SQL
 • Redis
 • nginx
 • Apache, Gnuicorn
 • Linux
 • GCC

"What Powers Instagram:
Hundreds of Instances,

Dozens of Technologies"
https://goo.gl/76fWrM

Like climbing an iceberg – much is hidden!

Adapted from M. Taylor, “Open Source HW in 2030,” Arch 2030 Workshop @ ISCA’16

Cornell University Christopher Batten 5 / 51

• Open-Source HW • PyMTL3 Motivation Overview Demo PyMTL3&OSH Celerity Arch Celerity Case Study Celerity&OSH

Hardware Innovation Today

Closed source
 • ARM A57, A7, M4, M0
 • ARM on-chip interconnect
 • Standard cells, I/O pads, DDR Phy
 • SRAM memory compilers
 • VCS, Modelsim
 • DC, ICC, Formality, Primetime
 • Stratus, Innovus, Voltus
 • Calibre DRC/RCX/LVS, SPICE

What you have to build
 • New machine learning accelerator
 • Other unrelated components,
 anything you cannot afford to buy
 or for which COTS IP does not do

Like climbing a mountain – nothing is hidden!

Adapted from M. Taylor, “Open Source HW in 2030,” Arch 2030 Workshop @ ISCA’16

Cornell University Christopher Batten 6 / 51

• Open-Source HW • PyMTL3 Motivation Overview Demo PyMTL3&OSH Celerity Arch Celerity Case Study Celerity&OSH

Chip Costs Are Skyrocketing

$120M

$500K

Adapted from M. Taylor, “Open Source HW in 2030,” Arch 2030 Workshop @ ISCA’16; original: International Business Strategies & T. Austin.

Cornell University Christopher Batten 7 / 51

• Open-Source HW • PyMTL3 Motivation Overview Demo PyMTL3&OSH Celerity Arch Celerity Case Study Celerity&OSH

Minimum Viable Product/Prototype

$120M

$5M

$500K for
4x Performance Penalty
(post-Dennard scaling)

Adapted from M. Taylor, “Open Source HW in 2030,” Arch 2030 Workshop @ ISCA’16; original: International Business Strategies & T. Austin.

Cornell University Christopher Batten 8 / 51

• Open-Source HW • PyMTL3 Motivation Overview Demo PyMTL3&OSH Celerity Arch Celerity Case Study Celerity&OSH

Minimum Viable Product/Prototype

$120M

Can we use open-source
software/hardware to

address remaining costs?

Adapted from M. Taylor, “Open Source HW in 2030,” Arch 2030 Workshop @ ISCA’16; original: International Business Strategies & T. Austin.

Cornell University Christopher Batten 8 / 51

• Open-Source HW • PyMTL3 Motivation Overview Demo PyMTL3&OSH Celerity Arch Celerity Case Study Celerity&OSH

How can HW design be more like SW design?

Open-Source Software Hardware

high-level
languages

Python, Ruby, R,
Javascript, Julia

Chisel, PyMTL, PyRTL, MyHDL,
JHDL, Cλash

libraries C++ STL,
Python std libs

BaseJump

systems Linux, Apache, MySQL,
memcached

Rocket, Pulp/Ariane, OpenPiton,
Boom, FabScalar, MIAOW, Nyuzi

standards POSIX RISC-V ISA, RoCC, TileLink

tools GCC, LLVM, CPython,
MRI, PyPy, V8

Icarus Verilog, Verilator, qflow,
Yosys, TimberWolf, qrouter,
magic, klayout, ngspice

methodologies agile software design agile hardware design

cloud IaaS, elastic computing IaaS, elastic CAD

Cornell University Christopher Batten 9 / 51

• Open-Source HW • PyMTL3 Motivation Overview Demo PyMTL3&OSH Celerity Arch Celerity Case Study Celerity&OSH

Ubuntu Server 16.04 LTS (ami-43a15f3e)

% sudo apt-get update

% sudo apt-get -y install build-essential qflow

% mkdir qflow && cd qflow

% wget http://opencircuitdesign.com/qflow/example/map9v3.v

% qflow synthesize place route map9v3 # yosys, graywolf, qrouter

% wget http://opencircuitdesign.com/qflow/example/osu035_stdcells.gds2

% magic # design def/lef -> magic format

>>> lef read /usr/share/qflow/tech/osu035/osu035_stdcells.lef

>>> def read map9v3.def

>>> writeall force map9v3

% magic # stdcell gds -> magic format

>>> gds read osu035_stdcells.gds2

>>> writeall force

% magic map9v3

>>> gds write map9v3 # design + stdcells magic format -> gds

% sudo apt-get -y install libqt4-dev-bin libqt4-dev libz-dev

% wget http://www.klayout.org/downloads/source/klayout-0.24.9.tar.gz

% tar -xzvf klayout-0.24.9.tar.gz && cd klayout-0.24.9

% ./build.sh -noruby -nopython

% wget http://www.csl.cornell.edu/~cbatten/scmos.lyp

% ./bin.linux-64-gcc-release/klayout -l scmos.lyp ../map9v3.gds

Cornell University Christopher Batten 10 / 51

• Open-Source HW • PyMTL3 Motivation Overview Demo PyMTL3&OSH Celerity Arch Celerity Case Study Celerity&OSH

“I’m doing a (free) operating system
(just a hobby, won’t be big and professional like gnu)

for 386(486) AT clones.”
— Linus Torvalds, 1991

Cornell University Christopher Batten 11 / 51

• Open-Source HW • PyMTL3 Motivation Overview Demo PyMTL3&OSH Celerity Arch Celerity Case Study Celerity&OSH

Cornell University Christopher Batten 12 / 51

• Open-Source HW • PyMTL3 Motivation Overview Demo PyMTL3&OSH Celerity Arch Celerity Case Study Celerity&OSH

OpenROAD: The Future of Open-Source EDA?

I Open-source RV32IM core from UW

I 17K standard-cell instances

I 66K bits of SRAM

I TSMC 65LP technology

I DRC-clean RTL-to-GDS

Cornell University Christopher Batten 13 / 51

Open-Source HW PyMTL3 Motivation Overview Demo PyMTL3&OSH Celerity Arch Celerity Case Study Celerity&OSH
Open-Source HW PyMTL3 Motivation Overview Demo PyMTL3&OSH Celerity Arch Celerity Case Study Celerity&OSH Batten Research Group

1 from pymtl3 import *

2

3 class RegIncrRTL(Component):

4

5 def construct(s, nbits):

6 s.in_ = InPort (nbits)

7 s.out = OutPort(nbits)

8 s.tmp = Wire (nbits)

9

10 @update_ff

11 def seq_logic():

12 s.tmp <<= s.in_

13

14 @update

15 def comb_logic():

16 s.out @= s.tmp + 1

Cornell University Christopher Batten 2 / 47

A New Era of
Open-Source SoC Design

I The PyMTL3 Framework
. PyMTL3 Motivation
. PyMTL3 Overview
. PyMTL3 Demo
. PyMTL3 & Open-Source Hardware

I The Celerity SoC
. Celerity Architecture
. Celerity Case Study
. Celerity & Open-Source Hardware

I A Call to Action

Cornell University Christopher Batten 14 / 51

Open-Source HW • PyMTL3 Motivation • Overview Demo PyMTL3&OSH Celerity Arch Celerity Case Study Celerity&OSH

Multi-Level Modeling Methodologies

Applications

Transistors

Algorithms

Compilers

Instruction Set Architecture

Microarchitecture

VLSI

Cycle-Level Modeling

– Behavior

– Cycle-Approximate

– Analytical Area, Energy, Timing

Functional-Level Modeling

– Behavior

Register-Transfer-Level Modeling

– Behavior

– Cycle-Accurate Timing

– Gate-Level Area, Energy, Timing

Cornell University Christopher Batten 15 / 51

Open-Source HW • PyMTL3 Motivation • Overview Demo PyMTL3&OSH Celerity Arch Celerity Case Study Celerity&OSH

Multi-Level Modeling Methodologies

Cycle-Level Modeling

Functional-Level Modeling

Register-Transfer-Level Modeling

– Algorithm/ISA Development

– MATLAB/Python, C++ ISA Sim

– Design-Space Exploration

– C++ Simulation Framework

– gem5, SESC, McPAT

– Prototyping & AET Validation

– Verilog, VHDL Languages

– HW-Focused Concurrent Structural

– SW-Focused Object-Oriented

– EDA Toolflow

Multi-Level Modeling

Challenge

FL, CL, RTL modeling

use very different

languages, patterns,

tools, and methodologies

SystemC is a good example
of a unified multi-level
modeling framework

Is SystemC the best
we can do in terms of

productive
multi-level modeling?

Cornell University Christopher Batten 15 / 51

Open-Source HW • PyMTL3 Motivation • Overview Demo PyMTL3&OSH Celerity Arch Celerity Case Study Celerity&OSH

Traditional RTL Design Methodologies

RTL

Sim

TB

 HDL
(Verilog)

FPGA/
 ASIC

synth

Fast edit-sim-debug loop

Difficult to create highly
parameterized generators

Single language for
structural, behavioral, + TB

HDL
Hardware Description

Language

RTL

Sim

TB

 HDL
(Verilog)

RTL

 Mixed
(Verilog+Perl)

TB

gen

gen

FPGA/
 ASIC

synth

Slower edit-sim-debug loop

Easier to create highly
parameterized generators

Multiple languages create
"semantic gap"

Example: Genesis2

HPF
Hardware Preprocessing

Framework

RTL

Sim

 HDL
(Verilog)

RTL

Host Language
 (Scala)

TB TB

FPGA/
 ASIC

gen

gen

synth

Slower edit-sim-debug loop

Easier to create highly
parameterized generators

Cannot use power of host
language for verification

Example: Chisel

HGF
Hardware Generation

Framework

Single language for
structural + behavioral

Is Chisel the best we can do in terms of a
productive RTL design methodology?

Cornell University Christopher Batten 16 / 51

Open-Source HW PyMTL3 Motivation • Overview • Demo PyMTL3&OSH Celerity Arch Celerity Case Study Celerity&OSH

PyMTL Python-based hardware generation,
simulation, and verification framework

which enables productive
multi-level modeling and RTL design

Python

Functional-Level

Cycle-Level

RTL

Test Bench

Multi-Level
Simulation

SystemVerilog

RTL
generate

co-simulate synthesize

FPGA
ASICprototype

bring-up

Cornell University Christopher Batten 17 / 51

Open-Source HW PyMTL3 Motivation • Overview • Demo PyMTL3&OSH Celerity Arch Celerity Case Study Celerity&OSH

PyMTL
I PyMTL2: https://github.com/cornell-brg/pymtl

. released in 2014

. extensive experience using framework in research & teaching

I PyMTL3: https://github.com/pymtl/pymtl3
. official release in May 2020
. adoption of new Python3 features
. significant rewrite to improve productivity & performance
. cleaner syntax for FL, CL, and RTL modeling
. completely new Verilog translation support
. first-class support for method-based interfaces

Cornell University Christopher Batten 18 / 51

Open-Source HW PyMTL3 Motivation • Overview • Demo PyMTL3&OSH Celerity Arch Celerity Case Study Celerity&OSH

The PyMTL3 Framework

Model

PyMTL3
DSL

(Python)

Config

Elaboration
Model

Instance

PyMTL3 In-Memory
Intermediate

Representation
(Python) Simulatable

Model
Test & Sim
Harnesses

PyMTL3
Passes
(Python)

Simulation
Pass

Translation
Pass

Verilog

Analysis
Pass

Analysis
Output

Transform
Pass

New
Model

Cornell University Christopher Batten 19 / 51

Open-Source HW PyMTL3 Motivation • Overview • Demo PyMTL3&OSH Celerity Arch Celerity Case Study Celerity&OSH

PyMTL3 High-Level Modeling
1 class QueueFL(Component):
2 def construct(s, maxsize):
3 s.q = deque(maxlen=maxsize)
4

5 @non_blocking(
6 lambda s: len(s.q) < s.q.maxlen)
7 def enq(s, value):
8 s.q.appendleft(value)
9

10 @non_blocking(
11 lambda s: len(s.q) > 0)
12 def deq(s):
13 return s.q.pop()

I FL/CL components can use
method-based interfaces

I Structural composition via
connecting methods

upA

q1 q2

enq
deq enq

deqenq deq

14 class DoubleQueueFL(Component):
15 def construct(s):
16 s.enq = CalleeIfcCL()
17 s.deq = CalleeIfcCL()
18

19 s.q1 = QueueFL(2)
20 s.q2 = QueueFL(2)
21

22 connect(s.enq, s.q1.enq)
23 connect(s.q2.deq, s.deq)
24

25 @update
26 def upA():
27 if s.q1.deq.rdy() and s.q2.enq.rdy():
28 s.q2.enq(s.q1.deq())

Cornell University Christopher Batten 20 / 51

Open-Source HW PyMTL3 Motivation • Overview • Demo PyMTL3&OSH Celerity Arch Celerity Case Study Celerity&OSH

PyMTL3 Low-Level Modeling
1 from pymtl3 import *

2

3 class RegIncrRTL(Component):

4

5 def construct(s, nbits):

6 s.in_ = InPort (nbits)

7 s.out = OutPort(nbits)

8 s.tmp = Wire (nbits)

9

10 @update_ff

11 def seq_logic():

12 s.tmp <<= s.in_

13

14 @update

15 def comb_logic():

16 s.out @= s.tmp + 1

in_ out
+1

tmp

I Hardware modules are Python
classes derived from Component

I construct method for constructing
(elaborating) hardware

I ports and wires for signals

I update blocks for modeling
combinational and sequential logic

Cornell University Christopher Batten 21 / 51

Open-Source HW PyMTL3 Motivation • Overview • Demo PyMTL3&OSH Celerity Arch Celerity Case Study Celerity&OSH

SystemVerilog Translation and Import

Pure
PyMTL
Model

Instance

Translation
Pass

System
Verilog

Import
Pass

C Wrapper
Source

PyMTL
Wrapper

Verilator RTL C++
Source

LLVM
GCC

C Shared
Library

PyMTL
Wrapped
SV Model
Instance

CFFI

I Translation+import enables easily testing translated SystemVerilog
I Also acts like a JIT compiler for improved RTL simulation speed
I Can also import external SystemVerilog IP for co-simulation

Cornell University Christopher Batten 22 / 51

Open-Source HW PyMTL3 Motivation • Overview • Demo PyMTL3&OSH Celerity Arch Celerity Case Study Celerity&OSH

What is PyMTL3 for and not (currently) for?

I PyMTL3 is for ...

. Taking an accelerator design from concept to implementation

. Construction of highly-parameterizable CL models

. Construction of highly-parameterizable RTL design generators

. Rapid design, testing, and exploration of hardware mechanisms

. Interfacing models with other C++ or Verilog frameworks

I PyMTL3 is not (currently) for ...

. Python high-level synthesis

. Many-core simulations with hundreds of cores

. Full-system simulation with real OS support

. Users needing a complex OOO processor model “out of the box”

Cornell University Christopher Batten 23 / 51

Open-Source HW PyMTL3 Motivation Overview • Demo • PyMTL3&OSH Celerity Arch Celerity Case Study Celerity&OSH

% python3 -m venv pymtl3

% source pymtl3/bin/activate

% pip install pymtl3

% python

>>> from pymtl3 import *

>>> a = Bits8(6)

>>> a

>>> b = Bits8(3)

>>> b

>>> a | b

>>> a << 4

>>> c = (a << 4) | b

>>> c

>>> c[4:8]

>>> from pymtl3.examples.ex00_quickstart \

import FullAdder

>>> import inspect

>>> print(inspect.getsource(FullAdder))

>>> fa = FullAdder()

>>> fa.apply(

DefaultPassGroup(textwave=True))

>>> fa.sim_reset()

>>> fa.a @= 0

>>> fa.b @= 1

>>> fa.cin @= 0

>>> fa.sim_tick()

>>> fa.a @= 1

>>> fa.b @= 0

>>> fa.cin @= 1

>>> fa.sim_tick()

>>> fa.print_textwave()

Cornell University Christopher Batten 24 / 51

Open-Source HW PyMTL3 Motivation Overview • Demo • PyMTL3&OSH Celerity Arch Celerity Case Study Celerity&OSH

PyMTL2 ASIC Tapeout #1 (2016)

Host

Interface

d
e

b
u

g

RISC
Core

Sort

Accel

Memory Arbitration Unit

SRAM

Bank

(4KB)

SRAM

Bank

(4KB)

SRAM

Bank

(4KB)

SRAM

Bank

(4KB)

diff clk (+)

diff clk (−)

single
ended clk

re
s
e

t

Ctrl

Reghost2chip

chip2host

LVDS

Recv
clk

div

clk tree

reset
tree

c
lk

 o
u

t

L
V

D
S

d
iv

id
e

d

c
lk

 o
u

t

L
V

D
S

c
lk

 o
u

t

RISC processor, 16KB SRAM, HLS-generated accelerator
2x2mm, 1.2M-trans, IBM 130nm

95% done using PyMTL2

Cornell University Christopher Batten 25 / 51

Open-Source HW PyMTL3 Motivation Overview • Demo • PyMTL3&OSH Celerity Arch Celerity Case Study Celerity&OSH

PyMTL2 ASIC Tapeout #2 (2018)

Memory

Instruction Memory Arbiter

L1 Data $

(32KB)

LLFU Arbiter

Int Mul/Div

FPU

L1 Instruction $

(32KB)

H
o

s
t
In

te
rf

a
c
e

S
y
n

th
e

s
iz

a
b

le
 P

L
L

ArbiterData

Four RISC-V RV32IMAF cores with “smart” sharing of L1$/LLFU
1x1.2mm, 6.7M-trans, TSMC 28nm

95% done using PyMTL2

Cornell University Christopher Batten 26 / 51

Open-Source HW PyMTL3 Motivation Overview Demo • PyMTL3&OSH • Celerity Arch Celerity Case Study Celerity&OSH

PyMTL and Open-Source Hardware

I State-of-the-art in open-source HDL simulators
. Icarus Verilog: Verilog interpreter-based simulator
. Verilator: Verilog AOT-compiled simulator
. GHDL: VHDL AOT-compiled simulator
. No open-source simulator supports modern verification environments

I PyMTL as an open-source design, simulation, verification environment

. Open-source hardware developers can use Verilog RTL for design and
Python, a well-known general-purpose language, for verification

. PyMTL for FL design enables creating high-level golden reference models

. PyMTL for RTL design enables creating highly parameterized hardware
components which is critical for encouraging reuse in an open-source
ecosystem

Cornell University Christopher Batten 27 / 51

Open-Source HW PyMTL3 Motivation Overview Demo • PyMTL3&OSH • Celerity Arch Celerity Case Study Celerity&OSH

PyMTL and Open-Source Hardware

P

I$

D$

Network

Network

Network

P

I$

P

I$

P

I$

D$ D$ D$

Undergraduate Comp Arch Course
Labs use PyMTL for verification,
PyMTL or Verilog for RTL design

Graduate ASIC Design Course
Labs use PyMTL for verification,

PyMTL or Verilog for RTL design, standard ASIC flow

DARPA POSH Open-Source Hardware Program
PyMTL used as a powerful open-source generator

for both design and verification

Cornell University Christopher Batten 28 / 51

Open-Source HW PyMTL3 Motivation Overview Demo • PyMTL3&OSH • Celerity Arch Celerity Case Study Celerity&OSH

PyMTL Publications

I Derek Lockhart, et al., “PyMTL: A Unified
Framework for Vertically Integrated
Computer Architecture Research.” 47th
ACM/IEEE Int’l Symp. on Microarchitecture
(MICRO), Dec. 2014.

I Shunning Jiang, et al., “Mamba: Closing
the Performance Gap in Productive
Hardware Development Frameworks.” 55th
ACM/IEEE Design Automation Conf.
(DAC), June 2018.

I Shunning Jiang, Peitian Pan, et al.,
“PyMTL3: A Python Framework for
Open-Source Hardware Modeling,
Generation, Simulation, and Verification.”
IEEE Micro, 40(4):5866, Jul/Aug. 2020.

I Shunning Jiang*, Yanghui Ou*, et al.,
“PyH2: Using PyMTL3 to Create
Productive and Open-Source Hardware
Testing Methodologies.” IEEE Design &
Test, to appear.

PyMTL3: A Python
Framework for Open-Source
HardwareModeling,
Generation, Simulation,
and Verification

Shunning Jiang, Peitian Pan, Yanghui Ou,
and Christopher Batten
Cornell University

Abstract—In thisarticle,wepresentPyMTL3, aPython framework for open-sourcehardware

modeling, generation, simulation, andverification. Inaddition tocompelling benefits from

using thePython language,PyMTL3 isdesigned toprovideflexible,modular, andextensible

workflows for bothhardwaredesignersandcomputer architects. PyMTL3supports a

seamlessmultilevelmodelingenvironment andcarefully designedmodular software

architectureusing asophisticated in-memory intermediate representationandacollection

of passes that analyze, instrument, and transformPyMTL3hardwaremodels.Webelieve

PyMTL3canplay an important role in jump-starting theopen-sourcehardwareecosystem.

& DUE TO THE breakdown of transistor scaling

and the slowdown of Moore’s law, there has

been an increasing trend toward energy-efficient

system-on-chip (SoC) design using heteroge-

neous architectures with a mix of general-

purpose and specialized computing engines. Het-

erogeneous SoCs emphasize both flexible param-

eterization of a single design block and versatile

composition of numerous different design

blocks, which have imposed significant chal-

lenges to state-of-the-art hardware modeling and

Digital Object Identifier 10.1109/MM.2020.2997638

Date of publication 25 May 2020; date of current version

30 June 2020.

Theme Article: Agile and Open-Source HardwareTheme Article: Agile and Open-Source Hardware

58
0272-1732 ! 2020 IEEE Published by the IEEE Computer Society IEEE Micro

Authorized licensed use limited to: Cornell University Library. Downloaded on July 03,2020 at 00:53:45 UTC from IEEE Xplore. Restrictions apply.

Cornell University Christopher Batten 29 / 51

Open-Source HW PyMTL3 Motivation Overview Demo PyMTL3&OSH Celerity Arch Celerity Case Study Celerity&OSH
Open-Source HW PyMTL3 Motivation Overview Demo PyMTL3&OSH Celerity Arch Celerity Case Study Celerity&OSH Batten Research Group

1 from pymtl3 import *

2

3 class RegIncrRTL(Component):

4

5 def construct(s, nbits):

6 s.in_ = InPort (nbits)

7 s.out = OutPort(nbits)

8 s.tmp = Wire (nbits)

9

10 @update_ff

11 def seq_logic():

12 s.tmp <<= s.in_

13

14 @update

15 def comb_logic():

16 s.out @= s.tmp + 1

Cornell University Christopher Batten 2 / 47

A New Era of
Open-Source SoC Design

I The PyMTL3 Framework
. PyMTL3 Motivation
. PyMTL3 Overview
. PyMTL3 Demo
. PyMTL3 & Open-Source Hardware

I The Celerity SoC
. Celerity Architecture
. Celerity Case Study
. Celerity & Open-Source Hardware

I A Call to Action

Cornell University Christopher Batten 30 / 51

Open-Source HW PyMTL3 Motivation Overview Demo PyMTL3&OSH Celerity Arch Celerity Case Study Celerity&OSH

The Celerity System-on-Chip Team
Tutu Ajayi, Khalid Al-Hawaj, Aporva Amarnath, Steve Dai, Scott

Davidson, Paul Gao, Gai Liu, Atieh Lotfi, Julian Puscar, Anuj Rao, Austin
Rovinski, Loai Salem, Ningxiao Sun, Christopher Torng, Luis Vega,

Bandhav Veluri, Xiaoyang Wang, Shaolin Xie, Chun Zhao, Ritchie Zhao,
Christopher Batten, Ronald G. Dreslinski, Ian Galton, Rajesh K. Gupta,
Patrick P. Mercier, Mani Srivastava, Michael B. Taylor, and Zhiru Zhang

• TSMC 16nm FFC
• 25mm2 die area (5mm x 5mm)
• ~385 million transistors
• 511 RISC-V cores

• 5 Linux-capable “Rocket Cores”
• 496-core mesh tiled array “Manycore”
• 10-core mesh tiled array “Manycore” (low voltage)

• 1 Binarized Neural Network Specialized Accelerator
• On-chip synthesizable PLLs and DC/DC LDO

• Developed in-house
• 3 Clock domains

• 400 MHz – DDR I/O
• 625 MHz – Rocket core + Specialized accelerator
• 1.05 GHz – Manycore array

• 672-pin flip chip BGA package
• 9-months from PDK access to tape-out

Celerity: Chip Overview
• TSMC 16nm FFC
• 25mm2 die area (5mm x 5mm)
• ~385 million transistors
• 511 RISC-V cores

• 5 Linux-capable “Rocket Cores”
• 496-core mesh tiled array “Manycore”
• 10-core mesh tiled array “Manycore” (low voltage)

• 1 Binarized Neural Network Specialized Accelerator
• On-chip synthesizable PLLs and DC/DC LDO

• Developed in-house
• 3 Clock domains

• 400 MHz – DDR I/O
• 625 MHz – Rocket core + Specialized accelerator
• 1.05 GHz – Manycore array

• 672-pin flip chip BGA package
• 9-months from PDK access to tape-out

Celerity: Chip Overview

• TSMC 16nm FFC
• 25mm2 die area (5mm x 5mm)
• ~385 million transistors
• 511 RISC-V cores

• 5 Linux-capable “Rocket Cores”
• 496-core mesh tiled array “Manycore”
• 10-core mesh tiled array “Manycore” (low voltage)

• 1 Binarized Neural Network Specialized Accelerator
• On-chip synthesizable PLLs and DC/DC LDO

• Developed in-house
• 3 Clock domains

• 400 MHz – DDR I/O
• 625 MHz – Rocket core + Specialized accelerator
• 1.05 GHz – Manycore array

• 672-pin flip chip BGA package
• 9-months from PDK access to tape-out

Celerity: Chip Overview

Cornell University Christopher Batten 31 / 51

Open-Source HW PyMTL3 Motivation Overview Demo PyMTL3&OSH • Celerity Arch • Celerity Case Study Celerity&OSH

Celerity System-on-Chip Overview

Target Workload: High-Performance Embedded Computing

I 5× 5mm in TSMC 16 nm FFC
I 385 million transistors
I 511 RISC-V cores

. 5 Linux-capable Rocket cores

. 496-core tiled manycore

. 10-core low-voltage array
I 1 BNN accelerator
I 1 synthesizable PLL
I 1 synthesizable LDO Vreg
I 3 clock domains
I 672-pin flip chip BGA package
I 9-months from PDK access to

tape-out

Cornell University Christopher Batten 32 / 51

Open-Source HW PyMTL3 Motivation Overview Demo PyMTL3&OSH • Celerity Arch • Celerity Case Study Celerity&OSH

Tiered Accelerator Fabrics

Flexibility

Efficiency

• General-purpose computation

• Operating systems, I/O

• Fixed-function

• Extremely energy efficient

• Flexible and energy-efficient

• Exploits coarse- and

 fine-grain parallelism

General-Purpose Tier

Massively Parallel Tier

Specialization Tier

Cornell University Christopher Batten 33 / 51

Open-Source HW PyMTL3 Motivation Overview Demo PyMTL3&OSH • Celerity Arch • Celerity Case Study Celerity&OSH

Celerity: General-Purpose Tier
Of

f-C
hi

p
I/O

A
X

I

R
oC

CRISC-V Rocket Core

I-CacheD-Cache

A
X

I

R
oC

CRISC-V Rocket Core

I-CacheD-Cache

A
X

I

R
oC

CRISC-V Rocket Core

I-CacheD-Cache

A
X

I

R
oC

CRISC-V Rocket Core

I-CacheD-Cache

A
X

I

R
oC

CRISC-V Rocket Core

I-CacheD-Cache

I Role of the General-Purpose Tier
. General-purpose computation
. Exception handling
. Operating system (e.g., TCP/IP)
. Cache memory hierarchy for all tiers

I In Celerity
. 5 Rocket cores from UC Berkeley
. Generated from Chisel
. RV64G ISA
. 5-stage, in-order, scalar processor
. Double-precision floating point
. I-Cache: 16KB 4-way assoc.
. D-Cache: 16KB 4-way assoc.
. 0.97 mm2 per core @ 625 MHz

Cornell University Christopher Batten 34 / 51

Open-Source HW PyMTL3 Motivation Overview Demo PyMTL3&OSH • Celerity Arch • Celerity Case Study Celerity&OSH

Celerity: Massively Parallel Tier
Of

f-C
hi

p
I/O

A
X

I

R
oC

CRISC-V Rocket Core

I-CacheD-Cache

A
X

I

R
oC

CRISC-V Rocket Core

I-CacheD-Cache

A
X

I

R
oC

CRISC-V Rocket Core

I-CacheD-Cache

A
X

I

R
oC

CRISC-V Rocket Core

I-CacheD-Cache

A
X

I

R
oC

CRISC-V Rocket Core

I-CacheD-Cache

RISC-V
Vanilla-5

Core

I Mem

X
B

A
R

N
oC

 R
outer

D Mem

Cornell University Christopher Batten 35 / 51

Open-Source HW PyMTL3 Motivation Overview Demo PyMTL3&OSH • Celerity Arch • Celerity Case Study Celerity&OSH

Celerity: Massively Parallel Tier

I Role of the Massively Parallel Tier
. Improve energy efficiency over general-

purpose tier by exploiting massive
parallelism

I 496 low-power RISC-V Vanilla-5 cores
. RV32IM ISA
. 5-stage, in-order, scalar cores
. 4KB instruction memory per tile
. 4KB data memory per tile
. 0.024 mm2 per tile @ 1.05 GHz

I 16× 31 tiled mesh array
. MIMD programming model
. XY-dimension network-on-chip (NoC)
. 32 b/cycle channels
. Manycore I/O uses same network

Of
f-C

hi
p

I/O

A
X

I

R
oC

CRISC-V Rocket Core

I-CacheD-Cache

A
X

I

R
oC

CRISC-V Rocket Core

I-CacheD-Cache

A
X

I

R
oC

CRISC-V Rocket Core

I-CacheD-Cache
A

X
I

R
oC

CRISC-V Rocket Core

I-CacheD-Cache

A
X

I

R
oC

CRISC-V Rocket Core

I-CacheD-Cache

RISC-V
Vanilla-5

Core

I Mem

X
B

A
R

N
oC

 R
outer

D Mem

Cornell University Christopher Batten 36 / 51

Open-Source HW PyMTL3 Motivation Overview Demo PyMTL3&OSH • Celerity Arch • Celerity Case Study Celerity&OSH

Celerity: Specialization TierCelerity: Specialization Tier
Of

f-C
hi

p
I/O

A
X

I

R
oC

CRISC-V Rocket Core

I-CacheD-Cache

A
X

I

R
oC

CRISC-V Rocket Core

I-CacheD-Cache

A
X

I

R
oC

CRISC-V Rocket Core

I-CacheD-Cache

A
X

I

R
oC

CRISC-V Rocket Core

I-CacheD-Cache

A
X

I

R
oC

CRISC-V Rocket Core

I-CacheD-Cache

RISC-V
Vanilla-5

Core

I Mem

X
B

A
R

N
oC

 R
outer

D Mem

Role of Specialization Tier
Ultra-high-energy efficiency for critical applications

Cornell University Christopher Batten 37 / 51

Open-Source HW PyMTL3 Motivation Overview Demo PyMTL3&OSH Celerity Arch • Celerity Case Study • Celerity&OSH

Case Study: Mapping Flexible Image Recognition
to a Tiered Accelerator Fabric

Convolution Pooling Convolution Pooling Fully-Connected

dog (0.01)
cat (0.04)

boat (0.94)
bird (0.02)

General-Purpose Tier

Specialization Tier

Massively Parallel Tier

I Step 1: Implement the algorithm using the
general-purpose tier

I Step 2: Accelerate algo using either
massively parallel tier OR specialization tier

I Step 3: Improve performance by
cooperatively using both the specialization
AND the massively parallel tier

Cornell University Christopher Batten 38 / 51

Open-Source HW PyMTL3 Motivation Overview Demo PyMTL3&OSH Celerity Arch • Celerity Case Study • Celerity&OSH

Step 1: Algo to App – Binarized Neural Networks
Step 1: Algorithm to Application
Binarized Neural Networks

weights and activations can achieve an accuracy of 89.8% on CIFAR-10

• Performance target requires ultra-low latency (batch size of one) and
high throughput (60 classifications/second)

[3] M. Rastergari, et al. “Xnor-net: Imagenet classification using binary convolutional neural networks,” In European Conference on Computer Vision, 2016.
[4] M. Courbariaux, et al. “Binarized neural networks: Training deep neural networks with weights and activations constrained to +1 or -1,” arXiv preprint arXiv:1602.02830 (2016).

I Training usually uses floating point, while inference usually uses lower
precision weights and activations (often 8-bit or lower) to reduce
implementation complexity

I Recent work has shown single-bit precision weights and activations
can achieve an accuracy of 89.8% on CIFAR-10

I Performance target requires ultra-low latency (batch size of one) and
high throughput (60 classifications/second)

M. Rastergari, et al. “Xnor-net ...” ICCV, 2016; M. Courbariaux, et al. “Binarized neural networks ...” arXiv:1602.02830, 2016.

Cornell University Christopher Batten 39 / 51

Open-Source HW PyMTL3 Motivation Overview Demo PyMTL3&OSH Celerity Arch • Celerity Case Study • Celerity&OSH

Step 1: Algo to App – Characterizing BNN Execution
Step 1: Algorithm to Application
Characterizing BNN Execution

• Using just the general-purpose tier is 200x slower than performance target
• Binarized convolutional layers consume over 97% of dynamic instruction count
• Perfect acceleration of just the binarized convolutional layers is still 5x slower than performance target
• Perfect acceleration of all layers using the massively parallel tier could meet performance target

but with significant energy consumption

I Using just the general-purpose tier is 200× slower than performance
target of 60 classifications/second

I Binarized convolutional layers consume over 97% of the dynamic
instruction count

I Perfect acceleration of just the binarized convolutional layers is still
5× slower than performance target

Cornell University Christopher Batten 40 / 51

Open-Source HW PyMTL3 Motivation Overview Demo PyMTL3&OSH Celerity Arch • Celerity Case Study • Celerity&OSH

Step 2: App to Accel – BNN Specialized Accelerator

Step 2: Application to Accelerator
BNN Specialized Accelerator

1. Accelerator is
configured to process
a layer through RoCC
command messages

2. Memory Unit starts
streaming the weights
into the accelerator
and unpacking the
binarized weights into
appropriate buffers

3. Binary convolution
compute unit
processes input fmaps
and weights to
produce output fmaps

Cornell University Christopher Batten 41 / 51

Open-Source HW PyMTL3 Motivation Overview Demo PyMTL3&OSH Celerity Arch • Celerity Case Study • Celerity&OSH

Step 2: App to Accel – Design Methodology
Step 2: Application to Accelerator
Design Methodology

o HLS enabled quick implementation of an
accelerator for an emerging algorithm
▪ Algorithm to initial accelerator in weeks
▪ Rapid design-space exploration

o HLS greatly simplified timing closure
▪ Improved clock frequency by 43% in few days
▪ Easily mitigated long paths at the interfaces

with latency insensitive interfaces and
pipeline register insertion

o HLS tools are still evolving
▪ Six weeks to debug tool bug with data-

dependent access to multi-dimensional arrays

SystemCConstraints

StratusHLS

RTL

PyMTL

Wrappers &
Adapters

Final RTL

I Enabled quick implementation of
an accelerator for an emerging
algorithm
. Algo to initial accelerator in weeks
. Rapid design-space exploration

I Greatly simplified timing closure
. Improved clock frequency by 43%

in few days
. Easily mitigated long paths at

interfaces with latency insensitive
design

I Tools are still evolving
. Six weeks to debug tool bug with

data- dependent access to
multi-dimensional arrays

Cornell University Christopher Batten 42 / 51

Open-Source HW PyMTL3 Motivation Overview Demo PyMTL3&OSH Celerity Arch • Celerity Case Study • Celerity&OSH

Performance Benefits of Cooperatively Using the
Specialization and Massively Parallel Tiers

Step 1 Step 2 Step 3
GP Tier Spec Tier Spec+MP Tiers

Runtime (ms) 4,024.0 20.0 3.2

Performance (images/sec) 0.3 50.0 312.5

Power (Watts) 0.1 0.2 0.4

Efficiency (images/J) 2.5 250.0 625.0

Relative Efficiency 1× 100× 250×

I GP Tier: Software implementation assuming ideal performance estimated
with an optimistic one instruction per cycle

I Spec/MP Tier: Full-system post-place-and-route gate-level simulation of the
spec/MP tiers running with a frequency of 625 MHz

Cornell University Christopher Batten 43 / 51

Open-Source HW PyMTL3 Motivation Overview Demo PyMTL3&OSH Celerity Arch Celerity Case Study • Celerity&OSH •

How were we able to build such a complex SoC?

I 5× 5mm in TSMC 16 nm FFC
I 385 million transistors
I mixed-signal design
I front- and back-end design

I in nine months
I with 10 core graduate students
I with little tapeout experience
I across four locations

Open-source software and
hardware was critical to the

success of the project!

Cornell University Christopher Batten 44 / 51

Open-Source HW PyMTL3 Motivation Overview Demo PyMTL3&OSH Celerity Arch Celerity Case Study • Celerity&OSH •

Leveraging the Open-Source RISC-V Ecosystem

I RISC-V Software Toolchain
. Complete, off-the-shelf software stack for

both GP and manycore

I RISC-V Instruction Set Architecture
. Designed to be modular and extensible
. Easy to connect to RoCC interface
. Standard instruction verification suites

I RISC-V Microarchitecture
. Rocket: high-performance RV64G core
. Vanilla-5: high-efficiency RV32IM core
. Standard on-chip network specs

I RISC-V VLSI and System Design
. Previous spins of chips for reference
. Turn-key FPGA gateware

Register-Transfer Level

Circuits

Devices

Instruction Set Architecture

Programming Language

Algorithm

Microarchitecture

Technology

Application

Operating System

Gate Level

Compiler

Developed at UC Berkeley
http://riscv.org

Cornell University Christopher Batten 45 / 51

Open-Source HW PyMTL3 Motivation Overview Demo PyMTL3&OSH Celerity Arch Celerity Case Study • Celerity&OSH •

Leveraging the Open-Source BaseJump Ecosystem

BaseJump DoubleTrouble:
HW Emulation Motherboard

BaseJump Socket:
IO Padring

BaseJump RealTrouble:
Bring-up Motherboard

HD
L

De
sig

n

BaseJump STL:
Standard library of

hardware components

BaseJump Socket:
BGA Package

BaseJump:
Open FPGA

Firmware

Developed at UCSD and
University of Washington http://bjump.org

Cornell University Christopher Batten 46 / 51

Open-Source HW PyMTL3 Motivation Overview Demo PyMTL3&OSH Celerity Arch Celerity Case Study • Celerity&OSH •

Contributing Back to the Open-Source Ecosystem
Of

f-C
hi

p
I/O

A
X

I

R
oC

CRISC-V Rocket Core

I-CacheD-Cache

A
X

I

R
oC

CRISC-V Rocket Core

I-CacheD-Cache

A
X

I

R
oC

CRISC-V Rocket Core

I-CacheD-Cache

A
X

I

R
oC

CRISC-V Rocket Core

I-CacheD-Cache

A
X

I

R
oC

CRISC-V Rocket Core

I-CacheD-Cache

RISC-V
Vanilla-5

Core

I Mem

X
B

A
R

N
oC

 R
outer

D Mem

http://opencelerity.org

Upstream patches to gem5 for multi-core RISC-V simulation

Cornell University Christopher Batten 47 / 51

Open-Source HW PyMTL3 Motivation Overview Demo PyMTL3&OSH Celerity Arch Celerity Case Study • Celerity&OSH •

Celerity Publications

I Tutu Ajayi et al., “Celerity: An Open-Source
RISC-V Tiered Accelerator Fabric.” 29th
ACM/IEEE Symp. on High-Performance
Chips (HOTCHIPS), Aug. 2017.

I Scott Davidson et al., “The Celerity
Open-Source 511-Core RISC-V Tiered
Accelerator Fabric: Fast Architectures and
Design Methodologies for Fast Chips.”
IEEE Micro, 38(2):3041, Mar/Apr. 2018.

I Austin Rovinski et al., “A 1.4 GHz 695 Giga
RISC-V Inst/s 496-core Manycore
Processor with Mesh On-Chip Network
and an All-Digital Synthesized PLL in 16nm
CMOS.” IEEE Symp. on VLSI Circuits
(VLSI), June 2019.

I Austin Rovinski et al., ”Evaluating Celerity:
A 16nm 695 Giga-RISC-V Instructions/s
Manycore Processor with Synthesizable
PLL.” IEEE Solid-State Circuits Letters,
2(12):289292, Dec. 2019.

THEME ARTICLE: Hot Chips

The Celerity Open-Source

511-Core RISC-V Tiered

Accelerator Fabric:

Fast Architectures and Design

Methodologies for Fast Chips

Rapidly emerging workloads require rapidly

developed chips. The Celerity 16-nm open-source

SoC was implemented in nine months using an

architectural trifecta to minimize development time: a

general-purpose tier comprised of open-source

Linux-capable RISC-V cores, a massively parallel tier

comprised of a RISC-V tiled manycore array that can

be scaled to arbitrary sizes, and a specialization tier

that uses high-level synthesis (HLS) to create an

algorithmic neural-network accelerator. These tiers

are tied together with an efficient heterogeneous

remote store programming model on top of a flexible

partial global address space memory system.

Emerging workloads have extremely strict energy-effi-
ciency and performance requirements that are difficult to
attain. Increasingly, we see that specialized hardware ac-
celerators are necessary to attain these requirements. But
accelerator development is time-intensive, and accelerator
behavior cannot be easily modified to adapt to changing
workload properties. These factors motivate new architec-

Scott Davidson and Shaolin

Xie

Bespoke Silicon Group

Christopher Torng and

Khalid Al-Hawaj

Cornell University

Austin Rovinski and Tutu

Ajayi

University of Michigan

Luis Vega and Chun Zhao

Bespoke Silicon Group

Ritchie Zhao and Steve Dai

Cornell University

Aporva Amarnath

University of Michigan

Bandhav Veluri, Paul Gao,

and Anuj Rao

Bespoke Silicon Group

Gai Liu

Cornell University

Rajesh K. Gupta

University of California, San
Diego

Zhiru Zhang

Cornell University

Ronald G. Dreslinski

University of Michigan

Christopher Batten

Cornell University

Michael Bedford Taylor

Bespoke Silicon Group

30
IEEE Micro Published by the IEEE Computer Society

0272-1732/18/$33.00 ©2018 IEEEMarch/April 2018

Cornell University Christopher Batten 48 / 51

Open-Source HW PyMTL3 Motivation Overview Demo PyMTL3&OSH Celerity Arch Celerity Case Study Celerity&OSH
Open-Source HW PyMTL3 Motivation Overview Demo PyMTL3&OSH Celerity Arch Celerity Case Study Celerity&OSH Batten Research Group

1 from pymtl3 import *

2

3 class RegIncrRTL(Component):

4

5 def construct(s, nbits):

6 s.in_ = InPort (nbits)

7 s.out = OutPort(nbits)

8 s.tmp = Wire (nbits)

9

10 @update_ff

11 def seq_logic():

12 s.tmp <<= s.in_

13

14 @update

15 def comb_logic():

16 s.out @= s.tmp + 1

Cornell University Christopher Batten 2 / 47

A New Era of
Open-Source SoC Design

I The PyMTL3 Framework
. PyMTL3 Motivation
. PyMTL3 Overview
. PyMTL3 Demo
. PyMTL3 & Open-Source Hardware

I The Celerity SoC
. Celerity Architecture
. Celerity Case Study
. Celerity & Open-Source Hardware

I A Call to Action

Cornell University Christopher Batten 49 / 51

Open-Source HW PyMTL3 Motivation Overview Demo PyMTL3&OSH Celerity Arch Celerity Case Study Celerity&OSH

A Call to Action

I Open-source hardware needs
developers who
. ... are idealistic
. ... have lots of free time
. ... will work for free

I Who might that be?

Students!

I Academics have a practical and
ethical motivation for using,
developing, and promoting
open-source electronic design
automation tools and open-source
hardware designs

Cornell University Christopher Batten 50 / 51

Open-Source HW PyMTL3 Motivation Overview Demo PyMTL3&OSH Celerity Arch Celerity Case Study Celerity&OSH

Cornell University Christopher Batten 51 / 51

Open-Source HW PyMTL3 Motivation Overview Demo PyMTL3&OSH Celerity Arch Celerity Case Study Celerity&OSH

This work was supported in part by NSF XPS Award #1337240, NSF CRI Award
#1512937, NSF SHF Award #1527065, AFOSR YIP Award #FA9550-15-1-0194,

DARPA Young Faculty Award #N66001-12-1-4239, DARPA POSH Award
#FA8650-18-2-7852, DARPA SDH Award #FA8650-18-2-7863, a Xinux University

Program industry gift, and the the Center for Applications Driving Architectures
(ADA), one of six centers of JUMP, a Semiconductor Research Corporation program

co-sponsored by DARPA, and equipment, tool, and/or physical IP donations from
Intel, NVIDIA, Synopsys, and ARM.

Thanks to Derek Lockhart (original PyMTL2 developer), Ji Kim, Shreesha Srinath,
Berkin Ilbeyi, Yixiao Zhang, Jacob Glueck, Aaron Wisner, Gary Zibrat, Christopher

Torng, Cheng Tan, Raymond Yang, Kaishuo Cheng, Jack Weber, Carl Friedrich Bolz,
David MacIver, and Zac Hatfield-Dodds for their help designing, developing, testing,

and using PyMTL2 and PyMTL3

The U.S. Government is authorized to reproduce and distribute reprints for
Government purposes notwithstanding any copyright notation theron. Any opinions,

findings, and conclusions or recommendations expressed in this publication are
those of the author(s) and do not necessarily reflect the views of any funding agency.

Cornell University Christopher Batten 52 / 51

