
Intra-Core Loop-Task Accelerators for
Task-Based Parallel Programs

Christopher Batten

Computer Systems Laboratory
School of Electrical and Computer Engineering

Cornell University

Spring 2018

• Research Overview • LTA Motivation LTA SW LTA HW LTA Evaluation

Motivating Trends in Computer Architecture

Transistors
(Thousands)

MIPS
R2K

Intel
P4

Data collected by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, C. Batten
1975 1980 1985 1990 1995 2000 2005 2010 2015

100

101

102

103

104

105

106

107

DEC
Alpha
21264

Typical
Power (W)

Frequency
(MHz)

SPECint
Performance

~9%/year

~15%/year

Number
of Cores

Intel 48-Core Prototype

AMD 4-Core Opteron
 Data-Parallelism via
 GPGPUs & Vector

Hardware
Specialization

 Fine-Grain Task-
 Level Parallelism
 Instruction Set
 Specialization
 Subgraph
 Specialization
 Application-Specific
 Accelerators
 Domain-Specific
 Accelerators
 Coarse-Grain
 Reconfig Arrays
 Field-Programmable
 Gate Arrays

Cornell University Christopher Batten 2 / 29

• Research Overview • LTA Motivation LTA SW LTA HW LTA Evaluation

Performance (Tasks per Second)

En
er

gy
 E

ffi
ci

en
cy

 (T
as

ks
 p

er
 J

ou
le

)

Simple
Processor

Design Power
Constraint

High-Performance
Architectures

Embedded
Architectures

Design
Performance
Constraint

Flex
ibil

ity
vs.

 Spe
cia

liza
tio

n
Custom
ASIC

Less Flexible
Accelerator

More Flexible
Accelerator

Cornell University Christopher Batten 3 / 29

• Research Overview • LTA Motivation LTA SW LTA HW LTA Evaluation

Vertically Integrated Research Methodology

Our research involves reconsidering all aspects of the computing stack
including applications, programming frameworks, compiler optimizations,
runtime systems, instruction set design, microarchitecture design, VLSI

implementation, and hardware design methodologies

Cross
Compiler

Functional
Simulator

Binary

Applications

Functional-Level
Model

Cycle-Level
Simulator

Cycle-Level
Model

Layout

Register-Transfer-Level Model

RTL
Simulator

Gate-Level Model

Gate-Level
Simulator

Switching Activity

Power
Analysis

Synthesis
Place&Route

Key Metrics: Cycle Count,
Cycle Time, Area, Energy

Experimenting with full-chip
layout, FPGA prototypes, and
test chips is a key part of our

research methodology

Cornell University Christopher Batten 4 / 29

• Research Overview • LTA Motivation LTA SW LTA HW LTA Evaluation

Projects Within the Batten Research Group

PL

ISA

uArch

RTL

VLSI

Circuits

Tech

Compiler

Apps

Algos

GPGPU
Architecture

[ISCA'13]

(AFOSR)

[MICRO'14a]

Integrated
Voltage

Regulation
[MICRO'14b]

[TCAS'18]

Accelerator
Centric

SoC Design
[HOTCHIPS'17]

(DARPA,NSF)

[DAC'16] [FPGA'17]

Deep
Processing
in Memory

(NSF,SRC)

Accel for
Loop-Level
Parallelism
[MICRO'14c]

(DARPA,AFOSR,

NSF)

Accel for
Task-Level
Parallelism

[MICRO'17]

(AFOSR,NSF)

[ISCA'16]

PyMTL/Pydgin
Frameworks

[MICRO'14d]

(NSF,DARPA)
[DAC'18]

[ISPASS'15,'16]

Accel for
Task-Level
Parallelism

[MICRO'17]

Cornell University Christopher Batten 5 / 29

Research Overview • LTA Motivation • LTA SW LTA HW LTA Evaluation

Cornell University Ji Kim 3/21Cornell University Ji Kim 3/21Cornell University Ji Yun Kim 3

Inter-Core
● Task-Based Parallel Programming Frameworks

○ Intel TBB, Cilk

Cornell University Christopher Batten 6 / 29

Research Overview • LTA Motivation • LTA SW LTA HW LTA Evaluation

Cornell University Ji Kim 4/21Cornell University Ji Kim 4/21Cornell University Ji Yun Kim 4

Inter-Core
● Task-Based Parallel Programming Frameworks

○ Intel TBB, Cilk

Cornell University Christopher Batten 6 / 29

Research Overview • LTA Motivation • LTA SW LTA HW LTA Evaluation

Cornell University Ji Kim 5/21Cornell University Ji Kim 5/21Cornell University Ji Yun Kim 5

Inter-Core
● Task-Based Parallel Programming Frameworks

○ Intel TBB, Cilk

Intra-Core
● Packed-SIMD Vectorization

○ Intel AVX, Arm NEON

Cornell University Christopher Batten 6 / 29

Research Overview • LTA Motivation • LTA SW LTA HW LTA Evaluation

Challenges of Combining Tasks and Vectors

Cornell University Ji Kim 9/21Cornell University Ji Kim 9/21Cornell University Ji Yun Kim

Challenges of Combining Tasks and Vectors

9

Challenge #1: Intra-Core Parallel Abstraction Gap

void app_kernel_tbb_avx(int N, float* src, float* dst) {
// Pack data into padded aligned chunks
// src -> src_chunks[NUM_CHUNKS * SIMD_WIDTH]
// dst -> dst_chunks[NUM_CHUNKS * SIMD_WIDTH]
...

// Use TBB across cores
parallel_for (range(0, NUM_CHUNKS, TASK_SIZE), [&] (range r) {
for (int i = r.begin(); i < r.end(); i++) {
// Use packed-SIMD within a core
#pragma simd vlen(SIMD_WIDTH)
for (int j = 0; j < SIMD_WIDTH; j++) {
if (src_chunks[i][j] > THRESHOLD)
aligned_dst[i] = DoLightCompute(aligned_src[i]);

else
aligned_dst[i] = DoHeavyCompute(aligned_src[i]);

...

...

Cornell University Christopher Batten 7 / 29

Research Overview • LTA Motivation • LTA SW LTA HW LTA Evaluation

Challenges of Combining Tasks and Vectors

Cornell University Ji Kim 10/21Cornell University Ji Kim 10/21Cornell University Ji Yun Kim

Challenges of Combining Tasks and Vectors

10

Challenge #1: Intra-Core Parallel Abstraction Gap

void app_kernel_tbb_avx(int N, float* src, float* dst) {
// Pack data into padded aligned chunks
// src -> src_chunks[NUM_CHUNKS * SIMD_WIDTH]
// dst -> dst_chunks[NUM_CHUNKS * SIMD_WIDTH]
...

// Use TBB across cores
parallel_for (range(0, NUM_CHUNKS, TASK_SIZE), [&] (range r) {
for (int i = r.begin(); i < r.end(); i++) {
// Use packed-SIMD within a core
#pragma simd vlen(SIMD_WIDTH)
for (int j = 0; j < SIMD_WIDTH; j++) {
if (src_chunks[i][j] > THRESHOLD)
aligned_dst[i] = DoLightCompute(aligned_src[i]);

else
aligned_dst[i] = DoHeavyCompute(aligned_src[i]);

...

...

Cornell University Christopher Batten 7 / 29

Research Overview • LTA Motivation • LTA SW LTA HW LTA Evaluation

Challenges of Combining Tasks and Vectors

Cornell University Ji Kim 12/21Cornell University Ji Kim 12/21Cornell University Ji Yun Kim

Challenges of Combining Tasks and Vectors

12

Challenge #1: Intra-Core Parallel Abstraction Gap

void app_kernel_tbb_avx(int N, float* src, float* dst) {
// Pack data into padded aligned chunks
// src -> src_chunks[NUM_CHUNKS * SIMD_WIDTH]
// dst -> dst_chunks[NUM_CHUNKS * SIMD_WIDTH]
...

// Use TBB across cores
parallel_for (range(0, NUM_CHUNKS, TASK_SIZE), [&] (range r) {
for (int i = r.begin(); i < r.end(); i++) {
// Use packed-SIMD within a core
#pragma simd vlen(SIMD_WIDTH)
for (int j = 0; j < SIMD_WIDTH; j++) {
if (src_chunks[i][j] > THRESHOLD)
aligned_dst[i] = DoLightCompute(aligned_src[i]);

else
aligned_dst[i] = DoHeavyCompute(aligned_src[i]);

...

...

Challenge #2: Inefficient Execution of Irregular Tasks

Cornell University Christopher Batten 7 / 29

Research Overview • LTA Motivation • LTA SW LTA HW LTA Evaluation

Native Performance Results

Cornell University Ji Kim 16/21Cornell University Ji Kim 16/21Cornell University Ji Yun Kim 16
Regular Irregular

Native Performance Results

Cornell University Christopher Batten 8 / 29

Research Overview LTA Motivation • LTA SW • LTA HW LTA Evaluation

Loop-Task Accelerator (LTA) Vision

Cornell University Ji Kim 20/21Cornell University Ji Kim 20/21Cornell University Ji Yun Kim

Loop-Task Accelerator (LTA) Vision

20

● Motivation

● Challenge #1: LTA SW

● Challenge #2: LTA HW

● Evaluation

● Conclusion

Cornell University Christopher Batten 9 / 29

Research Overview LTA Motivation • LTA SW • LTA HW LTA Evaluation

LTA SW: API and ISA Hint

Cornell University Ji Kim 23/21Cornell University Ji Kim 23/21Cornell University Ji Yun Kim

LTA SW: API and ISA Hint
void app_kernel_lta(int N, float* src, float* dst) {
LTA_PARALLEL_FOR(0, N, (dst, src), ({
if (src[i] > THRESHOLD)
dst[i] = DoComputeLight(src[i]);

else
dst[i] = DoComputeHeavy(src[i]);

}));
}

void loop_task_func(void* a, int start, int end, int step=1);

23

Hint that hardware can potentially accelerate task execution

Cornell University Christopher Batten 10 / 29

Research Overview LTA Motivation • LTA SW • LTA HW LTA Evaluation

LTA SW: Task-Based Runtime

Cornell University Ji Kim 29/21Cornell University Ji Kim 29/21Cornell University Ji Yun Kim

LTA SW: Task-Based Runtime

29
Cornell University Christopher Batten 11 / 29

Research Overview LTA Motivation LTA SW • LTA HW • LTA Evaluation

Loop-Task Accelerator (LTA) Vision

Cornell University Ji Kim 30/21Cornell University Ji Kim 30/21Cornell University Ji Yun Kim

Loop-Task Accelerator (LTA) Vision

30

● Motivation

● Challenge #1: LTA SW

● Challenge #2: LTA HW

● Evaluation

● Conclusion

Cornell University Christopher Batten 12 / 29

Research Overview LTA Motivation LTA SW • LTA HW • LTA Evaluation

LTA HW: Fully Coupled LTA

Cornell University Ji Kim 35/21Cornell University Ji Kim 35/21Cornell University Ji Yun Kim

LTA HW: Fully-Coupled LTA

35

Coupling better for regular workloads (amortize frontend/memory)

Cornell University Christopher Batten 13 / 29

Research Overview LTA Motivation LTA SW • LTA HW • LTA Evaluation

LTA HW: Fully Decoupled LTA

Cornell University Ji Kim 41/21Cornell University Ji Kim 41/21Cornell University Ji Yun Kim

LTA HW: Fully Decoupled LTA

41
Decoupling better for irregular workloads (hide latencies)

Cornell University Christopher Batten 14 / 29

Research Overview LTA Motivation LTA SW • LTA HW • LTA Evaluation

LTA HW: Task-Coupling Taxonomy

Cornell University Ji Kim 46/21Cornell University Ji Kim 46/21Cornell University Ji Yun Kim

LTA HW: Task-Coupling Taxonomy

46

+ Higher Perf on Irregular
- Higher Area/Energy

Task Group (lock-step execution)

More decoupling (more task groups) in either space or time improves
performance on irregular workloads at the cost of area/energy

Cornell University Christopher Batten 15 / 29

Research Overview LTA Motivation LTA SW • LTA HW • LTA Evaluation

LTA HW: Task-Coupling Taxonomy

Cornell University Ji Kim 47/21Cornell University Ji Kim 47/21Cornell University Ji Yun Kim

LTA HW: Task-Coupling Taxonomy

47

Does it matter whether we decouple in space or in time?

Cornell University Christopher Batten 15 / 29

Research Overview LTA Motivation LTA SW • LTA HW • LTA Evaluation

4/1x2/1 4/2x2/1 4/4x2/1

4/1x2/2 4/2x2/2 4/4x2/2
M

or
e

Te
m

po
ra

l C
ou

pl
in

g

More Spatial Decoupling

4 Lanes x 2 Chimes

More Spatial Coupling

M
or

e
Te

m
po

ra
l D

ec
ou

pl
in

g

2/1x4/1 2/2x4/1

2/1x4/2 2/2x4/2

2/1x4/4 2/2x4/4

2 Lanes x 4 Chimes

8/1x4/1 8/2x4/1 8/4x4/1 8/8x4/1

8/1x4/2 8/2x4/2 8/4x4/2 8/8x4/2

8/1x4/4 8/2x4/4 8/4x4/4 8/8x4/4

8 Lanes x 4 Chimes
4/1x8/1 4/2x8/1 4/4x8/1

4/1x8/2 4/2x8/2 4/4x8/2

4/1x8/4 4/2x8/4 4/4x8/4

4/1x8/8 4/2x8/8 4/4x8/8

4 Lanes x 8 Chimes

Cornell University Christopher Batten 16 / 29

Research Overview LTA Motivation LTA SW • LTA HW • LTA Evaluation

LTA HW: Microarchitectural Template

IMem Xbar

Lane
Group

PIB

DMem Xbar

FPU
Group

Lane
Group

Lane
Group

MDU
Group

FPU
Xbar

μTask
Queue

MDU
Xbar

PDB

Mem
Ports

IM
U

T
M

U
D

M
U

L1 Instruction Cache

Task Distributer

L1 Data
Cache

IU Seq

MDU Interface FPU Interface

IU Seq IU Seq

Writeback Arbiter

WQ

WCU

DU

FU

FPU Xbar

DMU

IMUTMU

From
GPP

Lane
Group

4B

32B

y

SLFU

u

IQ

y y y

v v

z chimes per
chime group

y lanes per lane group

gc
chime
groups

μRF
μRF

μRF
μRF
μRF

μRF
μRF
μRF

μRF

MDU Xbar

gc

gcgc gc

gl
y SLFU y

gc

LSU y

RT PFB

PC

Cornell University Christopher Batten 17 / 29

Research Overview LTA Motivation LTA SW LTA HW • LTA Evaluation •

Loop-Task Accelerator (LTA) Vision

Cornell University Ji Kim 48/21Cornell University Ji Kim 48/21Cornell University Ji Yun Kim

Loop-Task Accelerator (LTA) Vision

48

● Motivation

● Challenge #1: LTA SW

● Challenge #2: LTA HW

● Evaluation

● Conclusion

Cornell University Christopher Batten 18 / 29

Research Overview LTA Motivation LTA SW LTA HW • LTA Evaluation •

Evaluation: Methodology

Cornell University Ji Kim 49/21Cornell University Ji Kim 49/21Cornell University Ji Yun Kim

Evaluation: Methodology

• Ported 16 application kernels from PBBS and in-house

benchmark suites with diverse loop-task parallelism

• Scientific computing: N-body simulation, MRI-Q, SGEMM

• Image processing: bilateral filter, RGB-to-CMYK, DCT

• Graph algorithms: breadth-first search, maximal matching

• Search/Sort algorithms: radix sort, substring matching

• gem5 + PyMTL co-simulation for cycle-level performance

• Component/event-based area/energy modeling

• Uses area/energy dictionary backed by VLSI results and McPAT

49

Cornell University Christopher Batten 19 / 29

Research Overview LTA Motivation LTA SW LTA HW • LTA Evaluation •

Evaluation: Design-Space Exploration

Cornell University Ji Kim 52/21Cornell University Ji Kim 52/21Cornell University Ji Yun Kim

Evaluation: Design Space Exploration

52

spatial decoupling

temporal decoupling

resource constraints

Cornell University Christopher Batten 20 / 29

Research Overview LTA Motivation LTA SW LTA HW • LTA Evaluation •

Evaluation: Design-Space Exploration

Cornell University Ji Kim 53/21Cornell University Ji Kim 53/21Cornell University Ji Yun Kim

Evaluation: Design Space Exploration

53

spatial decoupling

temporal decoupling

Prefer spatial decoupling over temporal decoupling

resource constraints

Cornell University Christopher Batten 20 / 29

Research Overview LTA Motivation LTA SW LTA HW • LTA Evaluation •

Evaluation: Design-Space Exploration

Cornell University Ji Kim 55/21Cornell University Ji Kim 55/21Cornell University Ji Yun Kim

Evaluation: Design Space Exploration

55

spatial decoupling

temporal decoupling

resource constraints

Cornell University Christopher Batten 20 / 29

Research Overview LTA Motivation LTA SW LTA HW • LTA Evaluation •

Evaluation: Design-Space Exploration

Cornell University Ji Kim 56/21Cornell University Ji Kim 56/21Cornell University Ji Yun Kim

Evaluation: Design Space Exploration

56

spatial decoupling

temporal decoupling

Reduce spatial decoupling to improve energy efficiency

resource constraints

Cornell University Christopher Batten 20 / 29

Research Overview LTA Motivation LTA SW LTA HW • LTA Evaluation •

Evaluation: Energy Breakdown

8/1x4/1 8/2x4/1 8/4x4/1 8/8x4/1

mriq (regular) sarray (irregular)

I Cache
PIB
TMU
Frontend
Regfile
RT+ROB
SLFU
LLFU
LSU
D Cache

Conservative comparison since IO/O3 running serial baseline,
while LTA is using parallel runtime even on a single core

Cornell University Christopher Batten 21 / 29

Research Overview LTA Motivation LTA SW LTA HW • LTA Evaluation •

Evaluation: Energy Efficiency vs. Performance

0 1 2 3 4 5 6 7 8 9 10 11
Performance

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

En
er

gy
 E

ffi
ci

en
cy

0 1 2 3 4 5 6
Performance

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

In-Order vs IO+LTA Out-of-Order vs IO+LTA

In-Order
Baseline

Out-of-Order
Baseline

Cornell University Christopher Batten 22 / 29

Research Overview LTA Motivation LTA SW LTA HW • LTA Evaluation •

Evaluation: Multicore LTA Performance

Cornell University Ji Kim 61/21Cornell University Ji Kim 61/21Cornell University Ji Yun Kim

Evaluation: Multicore LTA Performance

61
Regular Irregular

4.4x
2.9x

10.7x
5.2x

Cornell University Christopher Batten 23 / 29

Research Overview LTA Motivation LTA SW LTA HW • LTA Evaluation •

Evaluation: Multicore Energy and Area

I Both the baseline CMP and the
CMP+LTA designs use the same
application code and almost the
exact same parallel runtime

I CMP+LTA vs. CMP-IO:
improves energy efficiency by
1.1⇥ geo mean

I CMP+LTA vs. CMP-O3:
improves energy efficiency by
3.2⇥ geo mean

Cornell University Christopher Batten 24 / 29

Research Overview LTA Motivation LTA SW LTA HW • LTA Evaluation •

Related Work

I Challenge #1: Intra-Core Parallel Abstraction Gap
. Persistent threads for GPGPUs (S. Tzeng et al.)
. OpenCL, OpenMP, C++ AMP
. Cilk for packed-SIMD (B. Ren et al.)
. and more ...

I Challenge #2: Inefficient Execution of Irregular Tasks
. Variable warp sizing (T. Rogers et al.)
. Temporal SIMT (S. Keckler et al.)
. Vector-lane threading (S. Rivoire et al.)
. and more ...

I See MICRO’17 paper for detailed references ...

Cornell University Christopher Batten 25 / 29

Research Overview LTA Motivation LTA SW LTA HW LTA Evaluation

LTA Take-Away Points

I Intra-core parallel abstraction gap
and inefficient execution of
irregular tasks are fundamental
challenges for CMPs

I LTAs address both challenges
with a lightweight ISA hint and a
flexible microarchitectural
template

LT
AGPP GPP

Task-Based Parallel
Programming Framework

LTA ISA Hint

Loop-TaskLoop-Task

SIMD SIMD LT
A

LTA HW

LTA SW

I Results suggest in a resource-constrained environment, architects
should favor spatial decoupling over temporal decoupling

Cornell University Christopher Batten 26 / 29

Research Overview LTA Motivation LTA SW LTA HW LTA Evaluation

Upcoming Computer Laboratory Seminar

“A New Era of Open-Source SoC Design”
Wednesday, May 16th @ 4:15pm

Celerity: An Accelerator-Centric
System-on-Chip

CARRV’17, October 14, 2017, Boston, MA, USA T. Ajayi et al.

A
X

I

R
O

C
CRV64G Core

I-CacheD-Cache

A
X

I

R
O

C
CRV64G Core

I-CacheD-Cache

A
X

I

R
O

C
CRV64G Core

I-CacheD-Cache

A
X

I

R
O

C
CRV64G Core

I-CacheD-Cache

A
X

I

R
O

C
CRV64G Core

I-CacheD-Cache

RV32IM
Core

I Mem

X
B

A
R

N
oC

 R
outer

D Mem

B
N

N
 A

cc
el

er
at

or

Off-Chip I/O

Bu
s f

ro
m

 B
SG

 IP
 L

ib
ra

ry

Manycore

General-Purpose
Tier

Massively Parallel
Tier

Specialization
Tier

Figure 1: Celerity SoC Architecture

stack to support new software research ideas. Complete o�-the-
shelf RISC-V processor and memory system implementations (e.g.,
Rocket chip SoC generator) enable rapidly deploying traditional
processors before modifying and/or extending these initial imple-
mentations with new hardware research ideas. Similarly, OCN IP
that is designed within the RISC-V ecosystem (e.g., NASTI, TileLink)
can reduce system-level integration e�ort. Standard veri�cation test
suites can greatly simplify developing new processor microarchi-
tectures, and turn-key FPGA gateware (e.g., framework for running
Rocket cores on various Xilinx Zynq FPGA boards) can help re-
duce engineering e�ort. The entire RISC-V ecosystem has a strong
emphasis on open-source software and hardware which facilities
modifying and/or extending just the component of interest in the
context of a given research idea.

In this paper, we describe our experiences using the RISC-V
ecosystem to build Celerity, an accelerator-centric system-on-chip
(SoC) which uses a tiered accelerator fabric to improve energy e�-
ciency in the context of high-performance embedded systems [1].
The general-purpose tier includes a few fully featured RISC-V proces-
sors capable of running general-purpose software including an oper-
ating system, networking stack, and non-critical control/con�guration
software. This tier is optimized for high �exibility, but of course at
the cost of energy e�ciency. The massively parallel tier includes
hundreds of lightweight RISC-V processors, a distributed, non-
cache-coherent memory system, and a mesh-based interconnect.
This tier is optimized for e�ciently executing applications with
�ne-grain data- and/or thread-level parallelism. The specialization
tier includes application-speci�c accelerators (possibly generated
using high-level synthesis). This tier is optimized for extreme en-
ergy e�ciency, but of course at the cost of �exibility. We envision
a three-step process for mapping algorithms to such fabrics. Step 1:
Implement the algorithm using the general-purpose tier. Step 2:
Accelerate the algorithm using either the massively parallel tier OR
the specialization tier. Step 3: Improve performance and e�ciency
by cooperatively using both the specialization AND the massively
parallel tier. A key feature of tiered accelerator fabrics is the use of
high-throughput parallel links to inter-connect all three tiers.

The Celerity SoC is a 5� 5 mm 385M-transistor chip in TSMC
16 nm designed and implemented by a team of over 20 students and
faculty from the University of Michigan, Cornell University, and

the Bespoke Silicon Group at the University of Washington and
the University of California, San Diego, as part of the DARPA Cir-
cuit Realization At Faster Timescales (CRAFT) program. Figure 1
illustrates the SoC architecture. The Celerity SoC includes �ve
Chisel-generated Rocket RV64G cores in the general-purpose tier, a
496-core RV32IM tiled manycore processor in the massively parallel
tier, and a complex HLS-generated BNN (binarized neural network)
accelerator implemented as a Rocket custom co-processor (RoCC)
in the specialization tier. Celerity also includes tightly integrated
Rocket-to-manycore communication channels, manycore-to-BNN
high-speed links, sleep-mode subsystem with ten RV32IM cores,
fully synthesizable phase-locked-loop clocking subsystem, and dig-
ital low-dropout voltage regulator. The chip was taped out in May
2017, and it will return from the foundry in the fall. The Celerity
SoC is an open-source project, and links to all of the source �les
are available online at http://opencelerity.org.

In the rest of the paper, we describe each of the three tiers in
more detail by answering four key questions: What did we build in
that tier? How did we build it? How did we leverage the RISC-V
ecosystem to facilitate design, implementation, and veri�cation in
that tier? and What were the challenges in leveraging the RISC-V
ecosystem in that tier? Overall, the RISC-V ecosystem played an
important role in enabling a team of junior graduate students to
design and tapeout the highest-performance RISC-V SoC to date in
just nine months.

2 GENERAL-PURPOSE TIER
WITH RV64G CORES

The general-purpose tier uses fully featured RISC-V processors to
execute general-purpose software. This tier is optimized for high
�exibility, at the potential expense of energy e�ciency.

What Did We Build? – The Celerity SoC general-purpose tier
includes �ve RV64G cores. The RV64G instruction set is comprised
of approximately 150 instructions for 64-bit integer arithmetic, sin-
gle and double-precision �oating-point arithmetic, memory access,
unconditional and conditional control �ow, and atomic memory
operations. The cores use a relatively simple �ve-stage, single-issue,
in-order pipeline. The RV64G core includes a memory management
unit and support for RISC-V machine, supervisor, and user privi-
lege levels. It can be used in either a bare-metal mode, with a proxy
kernel (i.e., system calls are proxied to a separate host machine),
or with a RISC-V port of the Linux operating system. The RV64G
cores serve as the interface between the other tiers and the o�-chip
“northbridge” which is implemented as gateware in an FPGA. The
northbridge includes support for initial boot-up, o�-chip DRAM,
and other I/O. Each RV64G core includes a 16 KB four-way set-
associative instruction cache and a 16 KB four-way set-associative
data cache. There is no on-chip L2 cache. The �ve RV64G cores are
not cache-coherent, and thus only support running �ve indepen-
dent instances of non-SMP Linux. Limited communication between
the RV64G cores is possible using software-managed coherence
and special support in the northbridge.

How Did We Build It? – We used the Berkeley Rocket chip SoC
generator to create the RV64G core [2]. The Rocket chip SoC gen-
erator is written in Chisel [4], a hardware construction language
embedded in Scala. Generating an RV64G core simply required

PyMTL: A Python-Based
Hardware Modeling Framework

Cornell University Christopher Batten 27 / 29

Research Overview LTA Motivation LTA SW LTA HW LTA Evaluation

Ji Kim, Shreesha Srinath, Christopher Torng, Berkin Ilbeyi, Moyang Wang
Shunning Jiang, Khalid Al-Hawaj, Tuan Ta, Lin Cheng

and many M.S./B.S. students

Equipment, Tools, and IP
Intel, NVIDIA, Synopsys, Cadence, Xilinx, ARM

Cornell University Christopher Batten 28 / 29

Research Overview LTA Motivation LTA SW LTA HW LTA Evaluation

Batten Research Group

Exploring cross-layer hardware specialization
using a vertically integrated research methodology

Performance (Tasks per Second)

En
er

gy
 E

ffi
ci

en
cy

 (T
as

ks
 p

er
 J

ou
le

)

Simple
Processor

Design Power
Constraint

High-Performance
Architectures

Embedded
Architectures

Design
Performance
Constraint

Flex
ibil

ity
vs.

 Spe
cia

liza
tio

n
Custom
ASIC

Less Flexible
Accelerator

More Flexible
Accelerator

LT
AGPP GPP

Task-Based Parallel
Programming Framework

LTA ISA Hint

Loop-TaskLoop-Task

SIMD SIMD LT
A

LTA HW

LTA SW

Cornell University Christopher Batten 29 / 29

