The Case for Using Guix to Enable Reproducible RISC-V Software & Hardware

Christopher Batten1, Pjotr Prins2
Efraim Flashner2, Arun Isaac2, Jan Nieuwenhuizen3
Ekaitz Zarraga4, Tuan Ta1, Austin Rovinski1, Erik Garrison2

1 School of Electrical and Computer Engineering, Cornell University
2 The University of Tennessee Health Science Center
3 Joy of Source
4 ElenQ Technology
The RISC-V Packaging Problem

- **Motivation**
- Guix Background
- Guix for RISC-V Software
- Guix for RISC-V Hardware
- Guix for RISC-V Demo

RISC-V Software Packaging Problem

- **Bootstrapping**
- C++ Source
- C++ Compiler
- C++ Compiler Source
- Static Build
- RISC-V Binary
- RISC-V System
- RISC-V QEMU

RISC-V Hardware Packaging Problem

- Verilator
 - C++ Source
 - C++ Compiler
- Ariane
 - Verilog Source
 - C++ Compiler
 - C++ Compiler
 - C++ Compiler
- Spike
 - C++ Source
 - C++ Compiler
 - C++ Compiler
- gem5
 - C++ Source
 - C++ Compiler
 - C++ Compiler
 - C++ Compiler
 - C++ Compiler
- Ariane (cva6)
 - C++ Compiler
 - C++ Compiler
 - C++ Compiler
An Ideal RISC-V Packaging Solution?

- **Transparent** – understand entire development environment including exact build configurations and version of every dependency
- **Lightweight** – integrate into standard development environment
- **Flexible** – easily switch between different development environments
- **Isolated** – isolate entire development environment to prevent accidently “leaking” user’s environment into an experiment
- **Portable** – build workloads for native execution and/or target multiple ISAs for cycle-level simulation
- **Fast** – leverage precompiled packages when available
- **Distribution Agnostic** – enable researchers to use any distribution
- **Extensible** – extensions through a general-purpose language
Why not just use Docker?

FROM ubuntu:20.04
ENV DEBIAN_FRONTEND=noninteractive
RUN apt -y update
RUN apt -y upgrade
RUN apt -y install build-essential git m4 scons zlib1g zlib1g-dev libprotobuf-dev protobuf-compiler libprotoc-dev ...
RUN pip install mypy

% git clone https://gem5.googlesource.com/public/gem5
% docker pull gcr.io/gem5-test/ubuntu-20.04_all-dependencies:v21-2
% docker images

REPOSITORY SIZE
gcr.io/gem5-test/ubuntu-20.04_all-dependencies 1.38GB

% docker run -u $UID:$GID --volume /home/cb535/gem5:/gem5
 --rm -it gcr.io/gem5-test/ubuntu-20.04_all-dependencies:v21-2
I have no name!@bbfd8a86240b:/$

▶ Transparent?
▶ Lightweight?
▶ Flexible?
▶ Isolated?
▶ Portable?
▶ Fast?
▶ Distribution Agnostic?
▶ Extensible?
Containers are Like Smoothies

A smoothie tastes great ...
but how much do we know about what is really in the smoothie?
Can someone else make the exact same smoothie?

Adapted from L Courtès, FOSDEM’20
Talk Outline

Motivation

Guix Background

Guix for RISC-V Software

Guix for RISC-V Hardware

Guix for RISC-V Demo
What is Guix?

General toolbox for software deployment

- Guix is a functional, transactional package manager
- Guix is an environment manager
- Guix is a reproducible container generator
- Guix is a complete operating system constructor and manager

Adapted from L Courtès, FOSDEM’20
Guix Hello World

% guix pull
% guix install hello
% guix package --list-installed
hello 2.12 /gnu/store/x2byq2a04pi...1mqikz07i1m-hello-2.12

% which hello
~/.guix-profile/bin/hello

% readlnk $(which hello)
/gnu/store/x2byq2a04pi...1mqikz07i1m-hello-2.12/bin/hello

% hello
Hello, world!

% guix remove hello

Guix is more than a package manager!
The Guix hello Package

(define-public hello
(package
 (name "hello")
 (version "2.12.1")
 (source (origin
 (method url-fetch)
 (uri (string-append "mirror://gnu/hello/hello-" version ".tar.gz"))
 (sha256
 (base32
 "086vqwkw2w18zfs47sq2xpjc9k066ilmb8z6dn0q6ymwjlzlm196cd")))))
(build-system gnu-build-system)
(synopsis "Hello, GNU world: An example GNU package")
(description
 "GNU Hello prints the message \"Hello, world!\" and then exits. It
serves as an example of standard GNU coding practices. As such, it
supports command-line arguments, multiple languages, and so on."
 (home-page "https://www.gnu.org/software/hello/")
 (license gpl3+))
Talk Outline

Motivation
Guix Background
Guix for RISC-V Software
Guix for RISC-V Hardware
Guix for RISC-V Demo
Bootstrapping RISC-V for Guix

➤ Stage0-POSIX
➤ Hex0: Raw ELF file in hex
➤ Hex1: Hex0, one char labels
➤ Hex2: Hex1, proper labels, etc
➤ M0/M1: simple macro system
➤ M2-Planet: Simple C subset that uses M0 as output

➤ GNU Mes
➤ Mutually hosted Scheme interpreter in simple C subset and C compiler in Scheme

➤ TinyCC
➤ Simple C compiler, assembler, linker that can be compiled with MesCC
➤ Able to compile older versions of gcc
Hex0 for RISC-V

https://github.com/oriansj/bootstrap-seeds/blob/master/POSIX/riscv64/hex0_riscv64.hex0

392B binary seed from fully transparent assembly source

```assembly
# :_start ; (0x0600078)
13 0A 00 00  # RD_S4 MV ; Initialize register
83 35 01 01  # RD_A1 RS1_SP !16 LD ; Input file name

; Open input file and store FD in s2
93 08 80 03  # RD_A7 !56 ADDI ; sys_openat
13 05 C0 F9  # RD_A0 !-100 ADDI ; AT_FDCWD
13 06 00 00  # RD_A2 MV ; read only
73 00 00 00  # ECALL
13 09 05 00  # RD_S2 RS1_A0 MV ; Save fd in for later

; Open output file and store the FD in s3
13 05 C0 F9  # RD_A0 !-100 ADDI ; AT_FDCWD
83 35 81 01  # RD_A1 RS1_SP !24 LD ; Output file (argument 3)
13 06 10 24  # RD_A2 !577 ADDI ; octal 00001101
93 06 00 1C  # RD_A3 !448 ADDI ; Set read, write, execute permission on user
73 00 00 00  # ECALL
93 09 05 00  # RD_S3 RS1_A0 MV ; Save fd in for later
```
The Guix smithwaterman Package

(define-public smithwaterman-static
 (package
 (inherit smithwaterman)
 (name "smithwaterman-static")
 (arguments
 (substitute-keyword-arguments
 (package-arguments smithwaterman)
 ((#:make-flags flags ''())
 ~(cons "CFLAGS=-static" #$flags)))))))

% guix build --target=riscv64-linux-gnu \
 smithwaterman-static
/gnu/store/fmdn4a1aa0z61dycd2956c9nbzahs2ac
 -smithwaterman-static-0.0.0-2.2610e25
Status Update on Porting Guix Packages to RISC-V

- Many application-level packages work out of the box
 - gcc-7 and up, llvm-11 and up, clang
 - perl
 - python2, python3
 - ruby2.7
 WIP: ruby 2.5/2.6/3.0/3.1
 - gccgo
 WIP: bootstrapping
go-1.16/1.17
 - WIP: rust, java, julia, ghc

- gcc-7 and up, llvm-11 and up, clang
- perl
- python2, python3
- ruby2.7
 WIP: ruby 2.5/2.6/3.0/3.1
- gccgo
 WIP: bootstrapping
go-1.16/1.17
- WIP: rust, java, julia, ghc

% guix install qemu
% DIR=$(guix build --target=riscv64-linux-gnu nano)
% echo $DIR
/gnu/store/1bzp...9j4f-nano-6.2
% ln -sf $DIR/bin/nano nano
% qemu-riscv64 ./nano

% DIR=$(guix build --target=riscv64-linux-gnu gzip)
% echo $DIR
/gnu/store/d8pm...675r-gzip-1.10
% ln -sf $DIR/bin/gipz gzip
% echo "CARRV 2022" > carrv.txt
% qemu-riscv64 ./gzip -kf carrv.txt
% gunzip -c carrv.txt.gz
Talk Outline

Motivation
Guix Background
Guix for RISC-V Software
Guix for RISC-V Hardware
Guix for RISC-V Demo
The Guix spike Package

https://git.savannah.gnu.org/cgit/guix.git/tree/gnu/packages/virtualization.scm#n1012

- Fetch specific version using git tag
- Patch riscv/dts.cc to use Guix package for dtc
- Leverage Guix built-in support for GNU build systems
- Captures all dependencies (dtc, python-wraper for testing)
- Package is upstreamed enabling fast binary substitutions
The Guix gem5 Package

https://git.genenetwork.org/guix-bioinformatics/guix-bioinformatics/src/branch/master/gn/packages/virtualization.scm#L21

- Fetch specific version using git tag
- Eliminate non-deterministic use of __DATE__ and __TIME__
- Patch Makefile/SConstruct to use Guix packages such as pybind11, zlib, libpng
- Leverage Guix built-in support for SCons build systems
- Builds for multiple architectures (e.g., x86, ARM, RISC-V)
- Installs binaries for each simulator suffixed with architecture
- Installs default configurations
- Captures all dependencies
- Provides a derived package to install a single architecture
The Guix cva6 (Ariane) Package

https://git.genenetwork.org/guix-bioinformatics/guix-bioinformatics/src/branch/master/gn/packages/riscv.scm#L41

- Fetch specific version using git commit
- Patch Makefile to eliminate ad-hoc environment variable used to specify the location of libfesvr.a
- Leverage Guix built-in support for GNU build systems
- Patch Ariane Verilog to print to stdout correctly
- Eliminates dependency on pre-compiled RISC-V toolchain binary blob
- Captures dependency on Guix spike package for libfesvr.a
- Captures dependency on Guix verilator-4.110 package since Ariane cannot use most recent version of Verilator
- Install binary named ariane
The Guix **cva6** Package Dependency Graph

Does not even show some dependencies on C++ compiler!
% guix install cva6
% readlink $(which ariane)
/gnu/store/j9awlgnksin6shkjh691bpmb3miq9sm0-cva6-4.2.0-1.b40bb32
/bin/ariane

This hash in the /gnu/store captures:

▸ all direct dependencies (e.g., spike, verilator)
▸ all implicit dependencies (e.g., C++, Autotools, etc)
▸ all recursive dependencies (e.g., Python, dtc, valgrind, flex, bison, etc)
▸ even the compiler used to build the compiler!
▸ every command line option and environment variable
Talk Outline

Motivation

Guix Background

Guix for RISC-V Software

Guix for RISC-V Hardware

Guix for RISC-V Demo
Guix for RISC-V Demo

% guix install smithwaterman
% smithwaterman -p TGATTGTACCAAA TGATCATGTACCA

% guix install qemu
% guix install spike
% guix install gem5-riscv
% guix install cva6

% DIR=$(guix build \
 --target=riscv64-linux-gnu smithwaterman-static)
% ln -sf $DIR/bin/smithwaterman sw

% DIR=$(guix build \
 --target=riscv64-linux-gnu riscv-pk
% ln -sf $DIR/bin:pk pk
Guix for RISC-V Demo

% qemu-riscv64 ./sw -p TGATTGTACCAAA TGATCATGTACCA

% spike ./pk ./sw -p TGATTGTACCAAA TGATCATGTACCA

% gem5.opt \
 $GUIX_PROFILE/share/gem5/configs/example/se.py \
 --cmd=./sw \
 --options="-p TGATTGTACCAAA TGATCATGTACCA"

% ariane +max-cycles=100000000 +time_out=100000000 \
 ./pk ./sw -p TGATTGTACCAAA TGATCATGTACCA
Take-Away Points

- Packaging RISC-V software and hardware can be challenging
- Guix is a mature toolbox for software deployment including support for packages, environments, containers, and systems
- Guix can potentially offer a compelling option for packaging in the RISC-V ecosystem