
The Case for Using Guix to Solve the gem5 Packaging Problem

Christopher Batten1, Pjotr Prins2, Efraim Flashner2, Arun Isaac2, Ekaiz Zarraga3, Erik Garrison2, Tuan Ta1

1 School of Electrical and Computer Engineering, Cornell University, Ithaca, NY
2 The University of Tennessee Health Science Center, Memphis, TN 3 ElenQ Technology

This talk will first describe the gem5 packaging problem be-
fore making the case for using Guix, a mature functional cross-
platform package manager, for building, distributing, installing,
and managing the gem5 ecosystem.

1. The gem5 Packaging Problem

The gem5 simulator has become the defacto standard for
cycle-level simulation, and gem5 now supports evaluating a di-
verse set of workloads [1]. Unfortunately, both the gem5 simu-
lator and gem5 workloads still lack a compelling software pack-
aging solution to simplify building, distributing, installing, and
managing the gem5 ecosystem. In this section, we describe
the gem5 simulator and workload packaging problems before
sketching an ideal software packaging solution.

The gem5 Simulator Packaging Problem – The gem5 sim-
ulator is a complex piece of software with numerous build-
and run-time dependencies including a modern C++ compiler,
SCons, Boost, and Python. To mitigate dependency issues, the
gem5 installation instructions strongly recommend using spe-
cific versions of Ubuntu. The gem5 simulator has numerous
compile-time options to experiment with different ISAs, coher-
ence protocols, and/or accelerators, and this in turn makes pro-
viding a single precompiled binary difficult. Even so, the gem5
community does point new researchers to a small number of
precompiled Docker images. Given these challenges, the gem5
community has chosen not to support any kind of packaging for
the gem5 simulator. Almost all researchers individually manage
dependencies and recompile the gem5 simulator from source.

The gem5 Workload Packaging Problem – Building work-
loads to run on the gem5 simulator using syscall emulation can
be just as challenging as building the gem5 simulator itself.
These workloads must be cross-compiled meaning researchers
must build a complete cross-compilation toolchain for each tar-
get architecture. Researchers might also need to build an em-
ulator (e.g., QEMU) to test these workloads before moving to
cycle-level simulation. Researchers must ensure the workloads
only use static libraries and do not call any unsupported syscalls.
Given these challenges, the gem5 community directly included
precompiled binaries as part of the gem5 source distribution for
many years. More recently, the community has migrated to pre-
compiled binaries as part of the gem5 resources project [2].

An ideal software packaging solution would be: repro-
ducible – easily duplicate precisely specified development en-
vironments; transparent – understand entire development envi-
ronment including exact build configuration and version of ev-
ery dependency; composable – easily integrate the gem5 simula-
tor and workload into standard development environments with-
out needing cumbersome, heavyweight containers; fast – lever-
age precompiled packages; distribution agnostic – enable re-
searchers to use the Linux distribution of their choice; unified –
same packaging solution can be used for both the gem5 simula-
tor and workloads; portable – easily build gem5 workloads for
native execution and/or target multiple ISAs for cycle-level sim-
ulation without manually managing multiple cross-compilation
toolchains; and flexible – easily switch between development en-
vironments, modify existing packages, add new packages, pro-
duce reproducible workflows, and/or generate containers.

2. Using Guix for gem5

Guix is a mature functional cross-platform package manager
with hundreds of committers and over 20K packages. In this
section, we briefly describe our on-going efforts to use Guix for
packaging both the gem5 simulator and gem5 workloads.

Using Guix to Package gem5 Simulators – We have devel-
oped a proof-of-concept Guix package for the gem5 simulator
that handles all build- and run-time dependencies and installa-
tion1. The package builds gem5 for six ISAs, ensures builds are
reproducible by eliminating non-deterministic use of __DATE__
and __TIME__, patches the build environment to work with
SCons, and performs a well-structured install of the gem5 sim-
ulator binaries and example configurations. The package is: re-
producible through the use of isolated and deterministic envi-
ronments for experimenting with the gem5 simulator; transpar-
ent, since the complete recursive dependency graph is precisely
specified; composable, since the gem5 simulator is installed just
like any other tool without the need for a container; and distri-
bution agnostic, since the package can be installed on Ubuntu,
RHEL, SUSE, or even Guix System which is an entire distribu-
tion based exclusively on Guix. Derived packages could enable
easily providing packages for different compile-time configu-
rations. When merged upstream into the main Guix package
repository, this package will be part of the Guix build farm en-
abling binary package substitution for fast installation.

Using Guix to Package gem5 Workloads – Guix already
includes packages for QEMU and cross-compilation toolchains
for commercial ISAs. We are contributing to the RISC-V
port of Guix including packaging the RISC-V cross-compilation
toolchain. We identified a simple Smith-Waterman sequence
alignment Guix package as an interesting gem5 workload and
developed a derived Guix package that patches the standard
build process to produce a statically linked binary2. In addition
to being reproducible, transparent, composable, and distribu-
tion agnostic, using Guix is also portable, since we can easily
cross-compile the package for ARM or RISC-V, and flexible,
since it requires only eight lines of Guile code to create a new
derived package supporting static compilation.

The attached appendix describes step-by-step commands for
a case study that: installs QEMU, gem5, and cross-compilers
for x86, ARM, and RISC-V in an isolated environment; cross-
compiles and runs Smith-Waterman for all three ISAs; and runs
this benchmark on the in-order and out-of-order timing models.

Acknowledgments

This work was supported by NSF PPoSS Award #2118709
and NLNet awards for GNUMes-RISCV and Guix-Riscv64.

References

[1] N. Binkert et al. The gem5 Simulator. SIGARCH Computer Architecture
News (CAN), 39(2):1–7, Aug 2011.

[2] B. R. Bruce et al. Enabling Reproducible and Agile Full-System
Simulation. ISPASS, Mar 2021.

1https://git.genenetwork.org/guix-bioinformatics/guix-
bioinformatics/src/branch/master/gn/packages/virtualization.scm

2https://git.genenetwork.org/guix-bioinformatics/guix-
bioinformatics/src/branch/master/gn/packages/static.scm

A. Case Study

To reproduce this case study, a researcher first must download
and install Guix3.

A.1. Add new channel

By default, Guix includes its own main package repository,
but users can also create their own “channels” that include third-
party packages. We need to add such a channel to get access to
the gem5 simulator package and the derived Smith-Waterman
package.

% cd $HOME/.config/guix
% cat > channels.scm \

<<'END'
(use-modules (guix ci))
(list
(channel
(name 'gn-bioinformatics)
(url (string-append "https://git.genenetwork.org/"

"guix-bioinformatics/guix-bioinformatics.git"))
(branch "master"))

(channel-with-substitutes-available
%default-guix-channel "https://ci.guix.gnu.org"))

END

A.2. Update Guix and install Smith-Waterman

We use guix pull to download all of the package descrip-
tions from the main package repository along with any third-
party packages. We then install the default Smith-Waterman
package and run it natively. Here we use the default “profile”,
but we could also install this package in a dedicated Guix “pro-
file”, similar to Python’s virtual environment.

% mkdir -p $HOME/tmp/misc/test-guix
% cd $HOME/tmp/misc/test-guix
% guix pull
% guix install smithwaterman
% smithwaterman -p TGATTGTACCAAA TGATCATGTACCA

A.3. Install QEMU and gem5

We now install both the QEMU and gem5 packages for all
architectures in the same profile.

% guix install qemu
% guix install gem5

A.4. Build and run Smith-Waterman for x86_64 ISA

We use guix build –target=x86_64-linux-gnu to
cross-compile most Guix packages for x86_64. Here we cross-
compile the derived package for Smith-Waterman which pro-
duces a statically linked executable that we then run on both
QEMU and gem5.

% cd $HOME/tmp/misc/test-guix
% DIR=$(guix build \

--target=x86_64-linux-gnu smithwaterman-static)
% ln -sf $DIR/bin/smithwaterman sw-x86_64
% qemu-x86_64 ./sw-x86_64 -p TGATTGTACCAAA TGATCATGTACCA
% gem5-x86.opt \

$GUIX_PROFILE/share/gem5/configs/example/se.py \
--cmd=./sw-x86_64 \
--options="-p TGATTGTACCAAA TGATCATGTACCA"

3https://guix.gnu.org/en/download

A.5. Build and run Smith-Waterman for ARM ISA

We use guix build –target=aarch64-linux-gnu to
cross-compile most Guix packages for ARM. Here we cross-
compile the derived package for Smith-Waterman which pro-
duces a statically linked executable that we then run on both
QEMU and gem5.

% cd $HOME/tmp/misc/test-guix
% DIR=$(guix build \

--target=aarch64-linux-gnu smithwaterman-static)
% ln -sf $DIR/bin/smithwaterman sw-aarch64
% qemu-aarch64 ./sw-aarch64 -p TGATTGTACCAAA TGATCATGTACCA
% gem5-arm.opt \

$GUIX_PROFILE/share/gem5/configs/example/se.py \
--cmd=./sw-aarch64 \
--options="-p TGATTGTACCAAA TGATCATGTACCA"

A.6. Build and run Smith-Waterman for RISC-V ISA

We use guix build –target=riscv64-linux-gnu to
cross-compile most Guix packages for RISC-V. Here we cross-
compile the derived package for Smith-Waterman which pro-
duces a statically linked executable that we then run on both
QEMU and gem5.

% cd $HOME/tmp/misc/test-guix
% DIR=$(guix build \

--target=riscv64-linux-gnu smithwaterman-static)
% ln -sf $DIR/bin/smithwaterman sw-riscv64
% qemu-riscv64 ./sw-riscv64 -p TGATTGTACCAAA TGATCATGTACCA
% gem5-riscv.opt \

$GUIX_PROFILE/share/gem5/configs/example/se.py \
--cmd=./sw-riscv64 \
--options="-p TGATTGTACCAAA TGATCATGTACCA"

A.7. Run experiment on RISC-V ISA

Once we have used Guix to install the gem5 simulator and
the gem5 workload packages, we can easily perform a computer
architecture research experiment. Here we compare the perfor-
mance of running Smith-Waterman on an in-order vs. out-of-
order RISC-V processor model.

% cd $HOME/tmp/misc/test-guix

% gem5-riscv.opt \
--outdir=m5out-minor-sw \
$GUIX_PROFILE/share/gem5/configs/example/se.py \
--cmd=./sw-riscv64 \
--options="-p TGATTGTACCAAA TGATCATGTACCA" \
--cpu-type=MinorCPU --ruby

% gem5-riscv.opt \
--outdir=m5out-o3-sw \
$GUIX_PROFILE/share/gem5/configs/example/se.py \
--cmd=./sw-riscv64 \
--options="-p TGATTGTACCAAA TGATCATGTACCA" \
--cpu-type=O3CPU --ruby

% grep system.cpu.numCycles m5out-minor-sw/stats.txt
% grep system.cpu.numCycles m5out-o3-sw/stats.txt

