
EPHEMERAL VECTOR ENGINES

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by
Khalid Musa Jaffar Al-Hawaj

December 2022

© 2022 Khalid Musa Jaffar Al-Hawaj

ALL RIGHTS RESERVED

EPHEMERAL VECTOR ENGINES

Khalid Musa Jaffar Al-Hawaj, Ph.D.

Cornell University 2022

With the recent slowdown of Moore’s Law and the end of Dennard’s Scaling, computer archi-

tects have turned to specialization to retain the regular improvements in performance and efficiency

conventionally obtained through process advancements. Although traditional fixed-function accel-

eration is able to achieve high performance and efficiency by leveraging specialization, it struggles

with low programmability and lack of flexibility. Previous work has shown the ability of next-

generation vector abstraction to balance programmability and specialization. The recent rise in

popularity of next-generation vector architectures highlights the inherent tension between its two

traditional micro-architectures: integrated vector unit and dedicated vector engine. While inte-

grated vector unit achieves modest performance with low area-overhead, dedicated vector engine

achieves higher performance at the expense of higher area-overhead. This thesis leverages recent

advancements in in-situ compute-in-memory to address this tension. The culmination of this the-

sis, ephemeral vector engines (EVE), aims at solving this tension. EVE is a novel next-generation

vector micro-architecture leveraging SRAM-based compute-in-memory (S-CIM) circuits to recon-

figure private L2 caches on-the-fly to support next-generation vector execution. While previous

work on S-CIM has explored bit-serial execution, this thesis further explores bit-parallel execu-

tion with the following conclusion: bit-serial achieves high-throughput but high-latency, while

bit-parallel lowers the latency greatly at the expense of lower throughput. This thesis considers a

bit-hybrid approach instead to balance throughput and latency. To evaluate the area and cycle-time

of EVE, this thesis presents a detailed circuit template that enables bit-hybrid S-CIM with varying

parallelization factor. To evaluate the performance of EVE, this thesis leverages high-fidelity cycle-

approximate models for an integrated vector unit, a decoupled vector engine, and EVE. By lever-

aging S-CIM, EVE increases performance by 4.59 × over an integrated vector unit, thus matching

the performance of a decoupled vector engine while incurring a tenth of its area-overhead. In sum-

mary, EVE leverages S-CIM to achieve a performance comparable to the decoupled vector engine,

while incurring an area-overhead equivalent to that of the integrated vector unit.

BIOGRAPHICAL SKETCH

Khalid Al-Hawaj was born on the 15th of Rabi’ Al-Thani 1407 AH in Al-Qatif, Saudi Arabia to

Huda Al-Sha’aban and Musa Al-Hawaj. He grew up in Al-Qalah to a loving family of two brothers

and three sisters. Ever-since he was a little boy, Khalid showed interest in science and technology.

During middle school, he taught himself BASIC and C programming. To his mother’s dismay, in

high school, he spent his time working on science, electronics, and programming projects.

Khalid was accepted to King Fahd University of Petroleum and Minerals (KFUPM) in Al-

Dhahran, Saudi Arabia. Due to his immense interest in hardware and software, he pursued a

Bachelor’s degree in computer engineering, during which he realized that computer architecture

would be his passion. After graduating from KFUPM, Khalid joined Saudi Arabia Basic Industry

Company (SABIC), where he worked as a metal production consultant. After 1three years at

SABIC, Khalid decided to quit and join Harvard University to pursue Masters degree with focus

on computer architecture and advised by Professor David Brooks.

Khalid was admitted to the Ph.D. program in the School of Electrical and Computer Engineer-

ing at Cornell University in 2015, where he was mentored by Professor Christopher Batten. He

initially worked on the loop-task accelerators project led by Dr. Ji Kim. Later, he was fortunate to

join Cornell University’s effort on the Celerity chip, which is a part of the DARPA CRAFT (Chip

Realization at Faster Timescale) project. Khalid led the effort on designing and testing AgileBNN.

After the conclusion of the CRAFT project, Khalid started and the led the EVE project within the

Batten Research Group (BRG). Throughout his Ph.D. journey and under the mentorship of Profes-

sor Christopher Batten, Khalid dived into compute-in-memory and gained invaluable knowledge

and experience about emerging applications, computer architecture, circuits, and VLSI.

Aside from computer architecture, Khalid has a fascination for old technology and philosophy.

Despite his ruptured ACL, Khalid is an avid Squash player and have recently picked up Badminton.

As he missed home during his Ph.D. journey, and with the help of his mother, Khalid learned to

cook his favorite childhood comfort food.

Khalid is very thankful for the opportunity given to him at Cornell University. During his

Ph.D. experience, due to the excellent mentorship from his advisor and the irreplaceable compan-

ionship of his friends, Khalid grew as a person and a researcher. Khalid is thankful for his Ph.D.

experience–the ups and the downs, the happy time and the gloomy time; for without failure, one

cannot recognize nor appreciate the rich taste of success.

iii

In the Name of Allah, the Most Beneficent, the Most Merciful.

Alhamdulillah

This document is dedicated to my mother “Umm Faisal”, my father “Abu Faisal”, my siblings,

my nephews, and my friends ...

iv

ACKNOWLEDGEMENTS

First and foremost, I am thankful for Allah for all His blessing all His guidance. I am also

thankful for my family–my source for motivation and inspiration. My mother, Huda Al-Sha’aban,

was my first mentor and has taught me at a tender age my science foundation. She showed me at a

younger age the value of resilience–persevering through my inevitable failures to reach my even-

tual success. My father, Musa Al-Hawaj, was my role model and has inspired me to delve into the

science behind technology and electronics. I am thankful for my eldest brother Faisal Al-Hawaj

for including me in his morning study sessions for medical school. Talking to my cousin Mo-

hammed Al-Hawaj every morning provided me with joyful company. I am thankful for my young

siblings (Mariam, Hajir, Sarah, and Ahmad) and my nephews (Abdullah, Ali, and Abdulaziz) as

they provided me with the support and motivation to continue through the hard times during my

Ph.D. journey.

This dissertation would not have been possible without the guidance and insight of my grad-

uate committee: Professor Christopher Batten, Professor José Martínez, and Professor Christoph

Studer. I would especially like to thank my mentor and advisor, Professor Christopher Batten,

who provided me with an environment that fostered my curiosity and allowed me to grow as a

researcher in computer architecture. When I came to Professor Christopher Batten with a crazy

idea to perform in-situ computations in a 6T-SRAM, he provided useful and positive criticism and

allowed the idea to flourish, thus becoming the main theme of this dissertation. I would like to

acknowledge the rest of my committee: Professor José Martínez, I am thankful for the different

perspective I gained from interacting and working along your side in our collaborative projects;

and Professor Christoph Studer, the VLSI and circuits themed chats were a well of knowledge that

benefited me throughout my journey.

Before I have started my Ph.D. journey, I was at Harvard University working towards my

Master’s degree under the mentorship of Professor David Brooks. I would like to acknowledge

Professor David Brooks for accepting me into VLSIArch and mentoring me. I owe a lot of my

foundation in computer architecture to the time I spent as a member of VLSIArch. I would like

to acknowledge the colleagues from VLSIArch: Brandon Reagen, Simone Campanoni, Svilen

Kanev, Kevin Brownell, Yakun Sophia Shao, Bob Adolf, Tao Tong, Mario Lok, Sam Xi, and Emma

Wang. I would like to especially acknowledge Glenn Holloway for all the invaluable knowledge

v

and wisdom he ever-so-generously bestowed upon me. I would like to acknowledge my companion

throughout my stay in Cambridge: Shuyi James Chen, you made my stay more enjoyable.

I would like to acknowledge my brilliant colleagues at the Batten Research Group (BRG) for

their help and support: Ji Kim whose project was my introduction to BRG; I appreciate your

help, guidance, and your words of wisdom (which stuck with me throughout my Ph.D. journey).

Shreesha Srinath, thanks for being available to discuss ideas and argue about the intellectual merits.

Berkin Ilbeyi, you taught me a lot about JIT, Python, and compilers. Christopher Torng, you were a

great mentor and has taught me everything you knew about chip-design and productivity. Moyang

Wang, maybe one day, you will retire by buying a six-wheeler and drive around the USA endlessly.

Shunning Jiang, I genuinely enjoyed our discussion about research in my first office I shared with

you at Wards hall. Tuan Ta, thank you for waking me up for the paper submission. I believe every

successful Ph.D. experience requires a bouncer, where one can bounces ideas and get positive

critique and feedback, and Tuan Ta was my bouncer. Lin Chang, one day I will find these fries on

the pier. Shady Agwa, thank you for being my circuit-buddy at the BRG. Peitian Pan, your sharp

answers and keen critical thinking amazes me. Yanghui Ou, remember: the tape-out deadline is

never-ending. Nick Cebry, thanks for all your contribution and discussions while developing the

BRG-DV model. Preslav Ivanov, I will always remember fondly sharing herbal Bulgarian drink

at the CSL. I would like to acknowledge the newest additions of BRG: Austin Rovinski, working

with you as a Ph.D. student at the University of Michigan before you have joined BRG as a post-

doctorate is quiet the twist in my Ph.D. journey.

Maybe the Ph.D. was the friends we made along the way; I would like to acknowledge the close

friends that helped me and supported me throughout my Ph.D. journey: Zainulabideen Khalifa, I

learned a lot from you and I will, insha’Allah, keep learning for years to come; Omar Al-Thuhaiby,

I do not believe there is an end to your surprises. Charles Jeon, I will never forget our late night

chats in the patio of CTB till the break of dawn. Ryan O’Hern, I am thankful for all the enlight-

ening philosophical discussions. Ritchie Zhao, sharing an office with you made the journey much

more fun. Tuan Ta, thank you for introducing me to Badminton and maybe one day I will beat

you in a singles match. Seyed Hadi Mirfarshbafan, I will always include you in my Dua’a. Philip

Bedoukian, may we have our Halo sessions for many years to come. Haron Abdel-Raziq, shouting

at each other in our football matches was the highlight of my week. Nikita Lazarev, one day I

will bike up the hill as I promised. Steven Ceron, I appreciate all the knowledge I learned from

vi

you about soft robots. The Maplewood crew (Jordan Dotzel, Jamie Ye, Shimin Huang, Thomas

Conroy), I am thankful for your generous hosts every Friday night. The Squash crew (Celine

Lee, Anshuman Mohan, Mauricio Pezo), thank you for all the challenging games; I would like

to especially acknowledge Celine Lee for generously accepting Mister dead Lobstah. The 471F

crew (Steve Dai, Gai Liu, Ryan O’Hern, Shreesha Srinath, Berkin Ilbyei, Ritchie Zhao, and Ecenur

Üstün), thanks for the laughs and the fun times. The rest of the CSL community (Sachille Atapattu,

Helena Caminal, Neeraj Kulkarni, Nitish Srivastava, Skand Hurkat, Shuang Chen, and Mark Buck-

ler) for creating an awesome environment with diverse research. I also would like to acknowledge

Collegetown Bagels (CTB) for all the late-night double-shot espressos.

My childhood friends, who could not have accompanied me physically during my Ph.D. jour-

ney in Ithaca, are a big source of support. I would like to acknowledge every friend who kept

in-contact with me sending words of motivation all the way from my home city, Al-Qatif. I would

like to apologize to them as some of their messages sometimes went unanswered due to dead-

lines, but an answer eventually is provided. I would like to acknowledge Aman Al-Askri, Ali

Al-Numer, Ali Al-Turaish, Ahmad Al-Saif, Sayed Mohammed Al-Muri’e, Sa’eed Aal-Shaikh,

Ahmad Al-Doshaishi, and many more that I cannot fit in this paragraph. I would like to especially

acknowledge my late friends, whose memory I hold dearly till the day I join them.

The work in this thesis was supported in part by: King Abdullah’s Scholarship Program (KASP),

King Salman’s Scholarship Program (KSSP), NSF E2CDA Award #1740136, NSF SHF Award

#2008471, NSF PPoSS Award #2118709, DARPA SDH Award #FA8650-18-2-7863, DARPA

CRAFT Award #HR0011-16-C-0037, the Semiconductor Research Corporation (SRC) as nCORE

task 2758.002 and 2758.004, and the Center for Applications Driving Architectures (ADA), one of

six centers of JUMP, a Semiconductor Research Corporation program co-sponsored by DARPA, as

well as equipment, tool, and/or physical IP donations from Intel, Synopsys, Cadence, and ARM.

vii

TABLE OF CONTENTS

Biographical Sketch . iii
Dedication . iv
Acknowledgements . v
Table of Contents . viii
List of Figures . xi
List of Tables . xii
List of Abbreviations . xiii

1 Introduction 1
1.1 Vector Architectures . 2

1.1.1 Long-Vector Architectures . 2
1.1.2 Packed-Single-Instruction-Multiple-Data Architectures 3
1.1.3 Next-Generation Vector Architectures . 4

1.2 Compute-In-Memory . 4
1.2.1 Traditional Processing-Near-Memory . 5
1.2.2 Boolean Compute-in-Memory . 5
1.2.3 Multiply-and-Accumulate Compute-in-Memory 7
1.2.4 Associative Compute-in-Memory . 8

1.3 Thesis Overview . 8
1.4 Collaboration, Previous Publications, and Funding 11

2 AgileBNN: Traditional Approach to Accelerator Design 15
2.1 Introduction . 15
2.2 AgileBNN Design . 18
2.3 AgileBNN Integration . 21
2.4 AgileBNN Evaluation . 23

2.4.1 Methodology . 23
2.4.2 Chip Characterization . 25
2.4.3 Comparison to Previous Work . 26

2.5 Conclusion . 27

3 Modeling Next-Generation Vector Micro-Architectures 29
3.1 Introduction . 29
3.2 RISC-V Vector Extension (RVV) . 30

3.2.1 Vector Configuration Instructions . 30
3.2.2 Vector Arithmetic Instructions . 31
3.2.3 Vector Memory Instructions . 32
3.2.4 Vector Cross-Elements Instructions . 34
3.2.5 Masking Support . 37

3.3 Background: gem5 Simulator . 37
3.3.1 Overview . 37
3.3.2 Provided Models . 38

3.4 Modeling Functional Next-Generation Vector Execution 39

viii

3.4.1 Overview . 39
3.4.2 Front-End Implementation . 40

3.5 Modeling Decoupled Next-Generation Vector Engine 40
3.5.1 Decoupled Vector Engine Model . 40
3.5.2 Decoupled Vector Engine Implementation 46

3.6 Modeling Integrated Next-Generation Vector Unit 50
3.6.1 Integrated Vector Unit Model . 50
3.6.2 Integrated Vector Unit Implementation 51

3.7 Evaluation . 52
3.7.1 Methodology . 52
3.7.2 Results . 56

3.8 Conclusion and Discussion . 56

4 EVEv1: Towards Bit-Serial/Bit-Parallel SRAM-Based Compute-in-Memory 57
4.1 Introduction . 57
4.2 EVEv1 Circuits . 58

4.2.1 Bit-Serial Compute Logic (BSCL) . 59
4.2.2 Bit-Parallel Compute Logic (BPCL) . 60

4.3 EVEv1 Micro-Programming . 60
4.3.1 Micro-Operations . 61
4.3.2 Macro-Operations . 61

4.4 Evaluation . 62
4.4.1 Methodology . 62
4.4.2 Results . 63

4.5 Comparison to Prior Work . 64
4.6 Conclusion . 65

5 EVEv2: Circuits-to-Architecture Exploration of Ephemeral Vector Engines 69
5.1 Introduction . 69
5.2 Taxonomy of Vector S-CIM . 73
5.3 EVE Circuits . 76

5.3.1 EVE-1 Bit-Serial Circuit . 80
5.3.2 EVE-32 Bit-Parallel Circuit . 81
5.3.3 EVE-n Bit-Hybrid Circuit . 81

5.4 EVE Micro-Programming . 82
5.4.1 Micro-Operations . 83
5.4.2 Macro-Operations . 85

5.5 EVE Micro-Architecture . 86
5.5.1 Vector Control Unit (VCU) . 86
5.5.2 Vector Sequencing Unit (VSU) . 87
5.5.3 Vector Memory Unit (VMU) . 87
5.5.4 Vector Reduction Unit (VRU) . 88
5.5.5 Reconfigurability . 89

5.6 Circuits Evaluation . 89
5.6.1 Methodology . 89

ix

5.6.2 Results . 91
5.7 Architecture Evaluation . 91

5.7.1 Methodology . 92
5.7.2 Results . 93

5.8 Related Work . 98
5.9 Conclusion . 100

6 Conclusion 101
6.1 Thesis Summary and Contribution . 101
6.2 Future Work . 103

Bibliography 105

x

LIST OF FIGURES

2.1 Celerity System-on-Chip Die Photo . 17
2.2 Celerity Architecture . 19
2.3 Silicon characterization of energy, throughput, area, and accurcy 24

3.1 Snippet of Instructions Defined in The Decoder 39
3.2 The VOPIVV New Vector Arithmetic Format for RVV 41
3.3 Common-Code Vector Execution Template . 42
3.4 Implementation of vadd.vv in The Decoder . 43
3.5 Overview of Decoupled Vector Engine (O3+DV) 44
3.6 The VOPIVV Format with RoCC Support . 47
3.7 VectorInitiateReq Template . 48
3.8 VectorExecuteReq Template . 49
3.9 VectorCompleteReq Template . 50
3.10 Performance Evaluation . 55

4.1 VRAM Circuits . 59
4.2 add and mul Macro-Operations . 67
4.3 BS-VRAM Layout . 68

5.1 Data Organization in S-CIM SRAM Array . 74
5.2 Latency and Throughput of Add/Logic and Multiply vs. Parallelization Factor . . 75
5.3 EVE-1 Bit-Serial Circuits . 77
5.4 EVE-32 Bit-Parallel Circuits . 78
5.5 EVE-1 Bit-Serial Circuits . 79
5.6 add and mul Macro-Operations . 85
5.7 EVE Micro-Architecture . 86
5.8 VMU Micro-Architecture . 88
5.9 EVE Performance Evaluation . 96
5.10 Execution Breakdown . 96
5.11 Cache-Induced Stalls in the VMU . 96

xi

LIST OF TABLES

1.1 A Summary of Vector Architectures . 2
1.2 Compute-in-Memory Landscape . 6

2.1 Comparison to Previous Work . 26

3.1 Benchmark Applications List . 52
3.2 Benchmark Applications Characterization . 53
3.3 Simulated Systems . 54
3.4 Benchmark Applications Results . 55

4.1 Micro-operation Energy Characterization . 60
4.2 Supported Macro-operations . 62
4.3 Sub-Array Area Comparsion . 63
4.4 Detailed Comparsion Table Between BS-VRAM and BP-VRAM 64
4.5 Comparsion to Prior Work . 66

5.1 A Summary of Vector Architectures . 70
5.2 Supported EVE Micro-Operations . 83
5.3 Simulated Systems . 90
5.4 Benchmark Applications List . 92
5.5 Benchmark Applications Characterization . 94
5.6 Benchmark Applications Results . 95

xii

LIST OF ABBREVIATIONS

CMP chip multiprocessor
SIMD single-instruction multiple-data
SIMT single-instruction multiple-thread
GPP general-purpose processor
GPGPU general-purpose graphical processing unit
AVX (Intel) Advanced Vector Extensions
SVE (Arm) Scalable Vector Extension
RVV RISC-V Vector Extension
ISA instruction set architecture
RTL register-transfer level
VLSI very-large-scale integration
ASIC application-specific integrated circuit
RF register file
VRF vector register file
ALU arithmetic and logical unit
VALU vector arithmetic and logical unit
VCU vector control unit
VSU vector sequencing unit
VXU vector execution unit
VRU vector reduction unit
DTU data transpose unit
BL bitline wire
BLB bitline-bar wire
SA sense-amplifier
MOSFET metal-oxide field-effect transistor
RS reservation station
SRAM static random access memory
DRAM dynamic random access memory
RRAM resistive random access memory
PIM processing-in-memory
CIM compute-in-memory
S-CIM SRAM-based compute-in-memory
D-CIM DRAM-based compute-in-memory
R-CIM RRAM-based compute-in-memory
I$ level-1 instruction cache
D$ level-1 data cache
L2 level-2 cache
LLC last-level cache
LDQ load queue
STQ store queue
LSQ load-store queue
REQ request
RESP response

xiii

CHAPTER 1
INTRODUCTION

Emerging data-parallel applications (e.g., image processing, computer vision, and machine

learning) continue to demand increases in both performance and efficiency; however, the slow-

down of Moore’s Law and the end of Dennard Scaling have forced computer architects to turn to

specialization to meet these demands. More recently, there has been a resurgence of interest in

vector architectures as demonstrated by the recent introduction of the RISC-V Vector extension

(RVV), ARM’s Scalable Vector Extension (SVE), and Intel’s Advanced Vector eXtension (AVX-

512). Vector architectures exploit the regularity inherent in data-parallel workloads to achieve

high performance and efficiency despite the slowdown of Moore’s Law and the end of Dennard’s

Scaling. There are two possible implementations of these vector architectures: (1) decoupled

vector engines, and (2) integrated vector units. There is a fundamental tension between these vec-

tor micro-architectures: decoupled vector engines achieve high performance at high area overhead,

while integrated vector units achieve more modest perforamnce at lower area overhead. Prior work

on SRAM-based compute-in-memory have shown promise in mitigating the area overhead asso-

ciated with vector execution, thus addressing the aforementioned tension between vector micro-

architectures; at the same time, this prior work have also shown how vector abstraction is a fitting

solution to compute-in-memory’s own programmability challenge.

In this thesis, I propose ephemeral vector engines (EVE)—a novel next-generation vector ar-

chitecture that mitigates the area-overhead traditionally associated with vector execution through

silicon reconfigurability. EVE leverages novel SRAM-based compute-in-memory techniques to

reconfigure on-the-fly private L2 caches of a core to act as execution units. The main insight in my

thesis revolves around exploring and proposing different execution paradigms between bit-serial

and bit-parallel in the quest to balance throughput and latency. In my thesis, I make the observa-

tion that the design point with the optimal parallelization factor for an SRAM-based compute-in-

memory vector engine lies in-between bit-serial and bit-parallel. Through a circuits-to-architecture

evaluation methodology, I argue that a bit-hybrid execution paradigm is able to balance throughput

and latency allowing EVE to achieve performance equivalent to an aggressive decoupled vector

engine while incurring an area overhead comparable to an integrated vector unit.

1

Attribute Packed SIMD Long Vector Next Generation

Length fixed, short scalable, long scalable
Element Width variable fixed variable
Predication limited full full
Cross-Element Ops full limited full
Memory Gather/Scatter limited full full

Integration integrated decoupled either
Speculative Execution yes no either
Compute Pipeline integrated decoupled either
Memory Bandwidth modest large either
Memory Latency low high either

Table 1.1: A Summary of Vector Architectures.

1.1 Vector Architectures

Table 1.1 shows an overview of the various vector architectures and their properties. Tradi-

tionally, vector architectures has been implemented as aggressive long-vector machines to acceler-

ate scientific computations conducted in super-computers [Rus78,DVWW05,KTHK03,TNH+06].

Since vector machines lose their performance and efficiency advantage when executing non-regular

code, mainstream compute systems conventionally utilize packed-SIMD units to perform simpli-

fied vector execution. Recently, there has been an emerging trend towards next-generation vector

architectures that provide unified abstraction across the wide compute systems spectrum. This

section serves as an introduction for the different vector architectures.

1.1.1 Long-Vector Architectures

Early implementations of vector machines (e.g., Texas Instruments ASC [Wat72], CDC STAR

100 [Sch87], Illiac IV [BDM+72], CRAY-1 [Rus78]) were predominantly long vector architec-

tures. As their name implies, long-vector architectures adopt a scalable hardware vector length

abstraction. The long hardware vector length often implements chiming, where the long active

vector is broken down into element groups; these element groups are executed in a tight-coupled

fashion. To avoid redundant computations, long vector architectures employ masking to specify

which elements in the active vector to be executed and which to be skipped. To bring data into

2

vector registers, the vector memory operations often support expressive and complex addressing

(e.g., constant stride addressing, and indexed addressing).

More recent implementations of long-vector architectures span two micro-architectures: vec-

tor processors [ABS+07, DVWW05, Sat20, KTHK03, TNH+06], and vector engines [EAE+02,

CXL+20, CSZ+19]. Vector processors are specialized processors that are designed to optimally

execute vector code with less emphasis on their scalar performance. Whereas vector engines are

decoupled units attached to a scalar control processor responsible for dispatching vector instruc-

tions to these engines. Vector processors approach sacrifice scalar performance to achieve lower

area overhead, whereas vector engines approach incur higher area overhead to retain higher scalar

performance. Nevertheless, both micro-architectures achieve high performance in vector execution

at the expense of high area requirement.

1.1.2 Packed-Single-Instruction-Multiple-Data Architectures

With higher demands for accelerating regular data-parallel execution, several packed-single-

instruction-multiple-data (Packed-SIMD) architectures [PW96, int07, int12, arm09, JKK11] were

introduced as a compromise between area and performance for vector execution. Packed-SIMD

architectures are executed through packed-SIMD units, which are tightly integrated into general-

purpose cores. By re-using silicon from the general-purpose core, these packed-SIMD architec-

tures are able to achieve modest vector performance while retaining minimum area overhead. Un-

like long-vector architectures, packed-SIMD architectures restrict their vector support to minimize

their area overhead. The hardware vector length for packed-SIMD is often short to be able to

re-use the register file from the general-purpose core; as a result, chiming is often unsupported by

these architectures. Packed-SIMD architectures supports unit-stride vector memory operations that

can be easily supported by the general-purpose core’s load-store unit without any modifications.

Masking support is often restricted in packed-SIMD architectures to avoid changes to the datap-

ath of the general-purpose core. Packed-SIMD architectures support wide variety of cross-element

vector operations; these operations are often easier to implement for these architectures due to their

restricted hardware vector lengths.

3

1.1.3 Next-Generation Vector Architectures

Between long-vector and packed-SIMD architectures, there lies a spectrum of compute sys-

tems for vector support. Recently, there has been an emerging trend towards next-generation

vector architectures that provide unified abstraction across the wide compute systems spectrum.

There are two possible design points for these next-generation vector micro-architectures: either

an aggressive decoupled vector engine (similar to conventional long-vector machines), or a light-

weight integrated vector unit (similar to conventional packed-SIMD units). There is a fundamental

tension between performance and area among these next-generation vector micro-architectures:

(1) integrated vector units achieve modest performance in accelerating regular data-parallel work-

loads while costing modest area overhead; (2) decoupled vector engines have significantly better

performance at significantly higher area overhead. Here lies an interesting research question: Is it

possible to achieve performance comparable to decoupled vector engines while requiring equiva-

lent area overhead to integrated vector units?

1.2 Compute-In-Memory

Compute-in-memory (CIM) is a novel approach to reducing the area overhead associated with

accelerating data-parallel kernels, offering a promising path to solving the tension between next-

generation vector micro-architectures and addressing the research question that concluded Sec-

tion 1.1: Is it possible to achieve performance comparable to decoupled vector engines while

requiring equivalent area overhead to integrated vector units? Compute-in-memory has the po-

tential to lower the area overhead in two ways: (1) fusing the compute elements with the storage

elements and thus alleviating the need for highly multi-ported vector register files; and (2) the re-

configurability of the different components used in these proposals so their silicon can be utilized

for different operations if vector is not needed.

CIM landscape, shown in Table 1.2, can be outlined in a taxonomy based on two dimensions:

(1) the mechanism of in-situ computations between the operands, and (2) the technology of the

underlying memory bit-cell. Previous work on CIM mainly explored three mechanisms of in-

situ computations (i.e., boolean, multiply-and-accumulate, and associative) implemented on three

memory technologies (i.e., SRAM, DRAM, and emerging non-volatile RAM). In boolean CIM, the

4

computation between the operands is some form of bit-wise logical boolean operation. Whereas

in multiply-and-accumulate CIM, the inputs are multiplied with some weight and accumulated to

compute the output. In associative CIM, on the other hand, the computations are achieved through

a series of searches and multi-writes. For example, in addition, a series of searches and multi-writes

emulate carry propagation and sum computation for each bit of the input.

1.2.1 Traditional Processing-Near-Memory

The ever-growing speed-mismatch between compute and memory in von Neumann machines

causes the infamous memory wall [WM95, Wil95, McK04]. To overcome this memory wall, mod-

ern compute systems leverage a complex sub-system of on-chip hierarchical caches to lower the

memory latency and increase the bandwidth. First wave of processing-near-memory (PNM) pro-

posed placing compute closer to the data, thus overcoming the memory wall. By placing compute

near the data, these proposals were able to achieve two important goals: (1) saving the energy

required to move the data back-and-forth across the main memory bus to the compute units; (2)

exploiting the abundant bandwidth available before the narrow main memory bus to increase par-

allelism. Intelligent RAM (IRAM) [PAC+97a,PAC+97c,PAB+97] was one of the early proposals

to propose adding logic to DRAM in an effort to achieve the goals aforementioned. Further-

more, IRAM shows that vector abstraction constitutes a natural fit for PNM architectures. VI-

RAM1 [GWPK04] has further explored vector abstraction on a PNM architecture with embedded

DRAM instead. DIVA [HKK+99] explored leveraging single-program multiple-data (SPMD) ab-

straction for PNM. While FlexRAM [KHY+99, FRF+03] explored SPMD abstraction for a PNM

architecture with embedded DRAM.

1.2.2 Boolean Compute-in-Memory

Jeloka et. al. [JASB16, JASB15] introduced the bit-line compute technique in SRAMs, which

performs digital bit-wise logical operation between rows. Bit-line compute constitutes an impor-

tant precursor to subsequent SRAM-based compute-in-memory work. Compute caches [AJS+17]

uses bit-line compute to transform the caches in a chip multi-processor (CMP) into bit-wise logi-

cal compute engines. Further work based on bit-line compute explored extending its functionality

by utilizing a bit-serial approach to complex integer and floating-point operations. This work has

5

Computational Memory Technology

Method SRAM DRAM eNVM

Boolean Carefully tuned
sense-amplifiers used to
binarize a boolean
operation performed on
the bit-lines by accessing
multiple rows.
Bit-periphery compute is
often used to expand the
supported functionality
beyond simple boolean
functions.

Using a controlled hidden
row, charge-sharing is
altered to implement
different majority boolean
operations. Much like
reads in DRAM, these
operations are destructive
to all accessed rows. Due
to leakage, this approach is
often very susceptible to
noise and errors.

NVME can be used to
implement this approach.
The only difference with
traditional SRAM and
DRAM would be the
design of the
sense-amplifiers that
binarize the boolean
operations.

MAC Multiply-and-accumulate
can be implemented by
accessing multiple rows
and then tuning the
sense-amplifiers to sense
accumulation of accessed
weighted values. Due to
extremely high
off-resistance of SRAM,
often MACs are achieved
through charge-based
sensing.

Charge-sharing in DRAM
reads is a natural fit for
implementing
charge-based
multiply-and-accumulate.

Due to the ability of most
NVME bit-cells to have
variable resistivity, MACs
can be implemented nicely
as the value of the weight
is encoded in the bit-cell
resistivity and then the
current induced by each
accessed bit-cell can be
summed for the final
value.

Associative Associative compute is
achieved through searches
and multi-writes.
SRAM-based CAMs and
TCAMs are used to
provide the primitives
necessary for associative
compute. Multi-writes are
often hard to implement
and require some circuit
work.

Performing searches in
DRAM is challenging due
to the destructive nature of
the DRAM reads.
However, theoretically, it
is possible to implement
associative compute on
DRAMs.

Most NVME bit-cells
constitute perfect match to
implement CAMs due the
lack of leakage and
CAM-density. However,
multi-write is more
challenging in NVME
because of its dependency
and sensitivity to heat,
current, spin-orbit
direction, or charges.

Table 1.2: Compute-in-Memory Landscape – SRAM = synchronus random access memory, DRAM
= dyanmic random access memory, eNVM = emerging non-volatile memory.

6

demonstrated the ability to use bit-line compute to transform caches in a CMP into fixed-function

accelerators for neural networks [EWW+18] and single-instruction-multiple-threads (SIMT) en-

gine [FMD19]. To mitigate transposing data, Wang et. al. [WWE+19] explored adding bit-line

compute to an 8T-SRAM allowing the computation to be performed horizontally in the compute-

bitline (CBL), while conventional data read and writes are performed on the vertical bitlines. The

8T bitcell hinders its use in traditional caches due to low density. VRAM [AHAA+20] explored

utilizing bit-serial and bit-parallel execution paradigms to extend the functionality of bit-line com-

pute.

Rowclone [SKF+13] is among the earliest work to explore transforming a DRAM into a

DRAM-based compute-in-memory engine capable of in-DRAM row cloning. Ambit [SLM+17]

proposed transforming the DRAM into an accelerator capable of massive bit-wise logical opera-

tions between multiple rows. DRISA [LNM+17] also explores transforming bit-lines in a DRAM

memory into bit-wise logical units. ComputeDRAM [GTW19] explores implementing these tech-

niques with entirely stock DRAM chips.

1.2.3 Multiply-and-Accumulate Compute-in-Memory

There are two methods to performing in-situ multiply-and-accumulate (MAC) computation:

current-based, or charge-based. The design of the sense-amplifiers and the analog-digital convert-

ers (ADCs) mainly depend on which method is chosen. For charge-based in-situ MACs, a shared

capacitor is pumped with charges controlled by gated switches. Then, the ADCs are configured to

measure the voltage on the shared capacitor to calculate the output of the in-situ compute operation.

Most work on charge-based in-situ MACs [BC18, LHS+21, SEN+21, ZWV17, LXK21, ZLW+22]

use SRAM-based technology due to their bit-cell on/off impedance high ratio. For current-based

in-situ MACs, multiple cells are accessed at the same time with each cell inducing a current on the

common bit-line. The ADCs compute the output of the in-situ compute operation by measuring

the current passing through the bit-lines. To implement current-based in-situ MACs, the on/off

resistance of the bit-cell has to yield current values that can be sensed. Therefore, most work on

current-based in-situ MACs [CLL+18, KCL+18] uses emerging non-volatile memory to imple-

ment bit-cells. This approach to compute-in-memory suffers from sensitivity to temperature and

process variations. Some work proposed temperature compensation by adding a bias to offset the

7

temperature effect. Other work embrace the variability in the compute and implement approximate

algorithms that can tolerate such variability.

1.2.4 Associative Compute-in-Memory

Associative compute was first proposed as a way to achieve compute-in-memory back in the

mid-seventies [Fos76, Say76]. By using associative primitives (i.e., search, and multi-write), any

boolean operation can be executed using a set of multi-writes to matched entries. The matches are

set through bit-masked searches. Recent work [YMG15, CYS+21, ZL20, YEK18] has re-explored

the premise with fresh perspective and using newer technology. This recent work propose us-

ing a content addressable memory (CAM) to perform a series of searches/multi-writes to exe-

cute boolean operations (e.g., addition, and multiplication). Conventionally, SRAM-based tech-

nology is used to implement CAMs. Whereas [YMG15] uses a traditional 12T-SRAM CAM,

CAPE [CYS+21] leverages the techniques proposed by Jeloka et. al. [JASB16, JASB15] to enable

CAM functionalities (i.e., search) thus mitigating the area overhead associated with traditional

CAMs. Non-volatile emerging memory technology was shown to reduce the area overhead and

energy of memory bit-cells thus yielding efficient CAMs (e.g., Hyper-AP [ZL20] shows a de-

sign using RRAM technology, and Yantır et. al. [YEK18] proposes using the memristor). In-situ

associative CIM operations are executed by implementing their truth table through searches and

multi-writes for each bit of inputs and outputs. As a result, associative CIM suffers from extremely

long latencies.

1.3 Thesis Overview

This thesis explores the aforementioned tension between integrated vector units and decoupled

vector engines for next-generation vector architectures, thus addressing the research question at the

end of Section 1.1. The thesis leverages compute-in-memory to mitigate the inherent area overhead

associated with vector machines in two ways: (1) the need for heavily multi-ported vector register

file can be alleviated by fusing compute with storage; and (2) the re-configurability of the various

components lowers the area overhead further. I focus on SRAM-based CIM due to its readily

feasibility, as well as the prevalence and abundance of SRAM arrays in today’s chips.

8

Chapter 2 explores extracting performance and efficiency in a post Dennard’s Scaling era: by

designing a fixed function accelerator. This chapter details the design and implementation of Ag-

ileBNN as part of the Celerity chip. AgileBNN is a fixed-function machine-learning accelerator

for binarized neural networks designed using high-level synthesis (HLS) rather than the traditional

register-level transfer (RTL) abstraction. Celerity is a 16nm FinFET chip that implements a tiered

accelerator fabric (TAF) architecture, which has three tiers: general-purpose tier, specialization

tier, and the massively parallel tier; AgileBNN represents the specialization tier in the TAF ar-

chitecture. In this chapter, I detail my proposed high-level synthesis (HLS) flow for designing

and implementing AgileBNN. Also, I propose the design of a memory unit completely in HLS to

handle fetching and unpacking weights and outputs. AgileBNN has a sneakpath mode where the

scratchpads in the manycore are reconfigured to store the weights for the machine-learning model

and streamed to the AgileBNN through the sneakpath unit. I argue that AgileBNN demonstrates

a conventional approach to extracting performance and efficiency in a post Dennard’s Scaling era.

Although AgileBNN was able to achieve respectful speedups and decent efficiency, my work finds

that, by the time the chip was finished, the implemented algorithm was already outdated and the

fixed-function aspect of AgileBNN was limiting its performance and efficiency. Nevertheless, the

reconfigurability aspect of the manycore’s scratchpads was very promising in lowering the area-

overhead while increasing performance and efficiency and further motivates the work explored

later in the thesis.

In order to study alternative designs for next-generation vector architectures, there is a need for

baselines representing the conventional approach detailed in Section 1.1. As there were no pub-

licly available cycle-approximate models for next-generation vector architectures when I started

working on my thesis, I designed, implemented, and evaluated cycle-approximate models for an

integrated vector unit and a decoupled vector engine. Chapter 3 discusses the design of these

cycle-approximate integrated vector unit and decoupled vector engine models for next-generation

vector architecture implemented in gem5 [BBB+11, LPAA+20, TCB18a]. The integrated vector

unit design is loosely based on Arm’s SVE units [SBB+17a, RBGZ19]. The decoupled vector en-

gine, on the other hand, is loosely based on DEC’s Tarantula [EAE+02]. In this chapter, I further

study the different design points through the models, and I motivate the design-decisions through

multiple studies. The studies were conducted by running multiple hand-vectorized applications

and sweeping the various parameters for these models.

9

Chapter 4 explores the design and implementation of EVEv1, which is a vector execution unit

that leverages SRAM-based boolean CIM techniques. In the chapter, I detail two design points for

EVEv1: bit-serial EVEv1 (BS-EVEv1), and bit-parallel EVEv1 (BP-EVEv1). BS-EVEv1, as the

name implies, adopts a bit-serial execution paradigm. Whereas BP-EVEv1, adopts a bit-parallel

execution paradigm. There were multiple previous work that explored SRAM-based boolean CIM

with bit-serial execution paradigm; however, BP-EVEv1 is, to my knowledge, the first work of

its kind to explore bit-parallel execution paradigm for SRAM-based boolean CIM. In this chapter,

I argue that bit-serial execution paradigm for SRAM-based boolean CIM yields high throughput,

while bit-parallel execution paradigm achieves lower-latency for operations despite the cycle-time

impact it incurs.

Chapter 5 details the design of ephemeral vector engines (EVE), which is the title of the thesis.

EVE leverages the work detailed in Chapter 4 and other SRAM-based boolean CIM techniques

to transform a private level-2 cache of a core into a decoupled engine for next-generation vector

architecture. EVE implements the vector extension of RISC-V (RVV) [RISC-V Foundation19].

Due to the conclusion of EVEv1, to strike a balance throughput (bit-serial execution) and latency

(bit-parallel execution), I propose a novel bit-hybrid execution that targets any parallelization fac-

tor (i.e., the number of bits processed in-parallel by the execution hardware) between bit-serial

and bit-parallel. For this novel approach, I detail the new circuits proposal for EVE. Using a

cycle-approximate model in gem5 [BBB+11, LPAA+20, TCB18a], I evaluate EVE with various

parallelization factors on multiple hand-vectorized applications. In this chapter, I argue that the

ideal parallelization factor for SRAM-based boolean CIM is somewhere in-between bit-serial and

bit-parallel and strikes a balance between throughput and latency.

The primary contributions of this thesis are:

• I present highly configurable cycle-approximate models for a decoupled vector engine and

an integrated vector unit, which serve as a tool to enable future research on next-generation

vector architectures.

• I propose a novel template for ephemeral vector engines (EVE) circuits that can, at design

time, be configured to target: bit-serial execution, bit-parallel execution, and any paralleliza-

tion factor in-between.

10

• I propose ephemeral vector engines (EVE), a novel next-generation vector architecture that

leverages SRAM-based compute-in-memory circuits to transform L2 caches on-the-fly into

vector execution engines. I also present a holistic exploration from circuits to architecture of

the EVE designs with different parallelization factors.

• To my knowledge, I am the first to make the case for bit-hybrid execution paradigm in

SRAM-based compute-in-memory to balance throughput and latency.

1.4 Collaboration, Previous Publications, and Funding

I led the implementation of AgileBNN, presented in Chapter 2. To this end, I also developed an

in-house HLS flow using Cadence’s Stratus HLS and PyMTLv2. The System-C implementation of

AgileBNN required for Cadence Stratus HLS was initially developed by Steve Dai, which in-turn

was based on the C implementation contributed by Ritchie Zhao from his earlier work [ZSZ+17]

that targets Xilinx Vivado HLS. The initial implementation of AgileBNN lacked any System-C

structure, thus causing two major issues: (1) exorbitantly long synthesis time; (2) triggering mul-

tiple bugs in Stratus HLS causing it to generate incorrect RTL. I re-structured the System-C im-

plementation to speed-up the synthesis. With guidance from Ritchie Zhao and insights about the

BNN algorithm, I also re-wrote the System-C implementation to avoid Stratus HLS bugs, thus

generating correct RTL. I performed co-simulation testing in Stratus HLS of AgileBNN verifying

the RTL accuracy.

AgileBNN is part of the Celerity chip and constitutes its specialization tier. The Celerity chip

was the fruit of the circuit realization at a faster time-scale (CRAFT) project. The CRAFT project

was realized through the combined efforts of five different universities, and over twenty Ph.D.

students spanning multiple geographical locations. The integration of AgileBNN into the Celerity

chip was led by my colleague Christopher Torng. I helped significantly in the integration process

by writing the software drivers for AgileBNN as well as testing the integration and verifying the

RTL accuracy. With help from Christopher Torng, Austin Rovinski, and Professor Michael B.

Taylor, I debugged the synthesized and the placed-and-routed top-level netlist of Celerity. The

sneakpath switch unit was implemented by Christopher Torng in PyMTLv2 and I integrated it in

my proposed flow effortlessly and was able to perform functional RTL testing, synthesized netlist

testing, and placed-and-routed netlist testing. The software instrumenting the manycore to stream

11

the weights of the model to the AgileBNN through the sneakpath switch unit was developed by

Scott Davidson, Shaolin Xie, and Chun Zhao from the Bespoke Silicon Group (BSG). Dustin

Richmond, and Paul Gao led the silicon bring-up for the Celerity chip. I helped with the silicon

bring up for AgileBNN by providing software to instrument the hardware to execute different

models to explore the performance and accuracy trade-offs for AgileBNN. The work on AgileBNN

has been published at the 38th volume of the IEEE Micro magazine [DXT+18]. I co-presented

the work with my colleagues Scott Davidson and Austin Rovinski at the 29th IEEE Hot Chips

Symposium, 2017 (HotChips-29) [AAHA+17]. The energy and performance characterization has

been published at 2nd volume IEEE Solid-State Circuits Letters (SCCL) [ea19c].

I collaborated with Helena Caminal, Professor Christopher Batten, and Professor José Martínez

on the content addressable processing engine (CAPE) project. I helped in the front-end implemen-

tation of the vector instructions in gem5 [BBB+11, LPAA+20, TCB18b]. I led the initial effort in

implementing the cycle-approximate model of CAPE in gem5 connected to the MinorCPU, which

is an in-order core model. For the connection between the core and the model, I developed my

first implementation of the Rocket chip co-processor (RoCC) interface in gem5. I also led the

implementation effort on a Python-based emulation infrastructure for CAPE’s compute primitives.

When the team began working on the CAPE project, there was no compiler support for RISC-V

Vector extension (RVV); to that end, I worked on modifying the GNU compiler collection (GCC)

and the GNU binary utilities (binutils) to support RISC-V vector inlined instructions. The work has

been published and presented by the lead of the project, Helena Caminal, at the 27th IEEE Inter-

national Symposium on High-Performance Computer Architecture, 2021 (HPCA-27) [CYS+21].

I led the effort in the Batten Research Group (BRG) to implement cycle-approximate models

for a decouple vector engine and integrated vector unit. This effort would not have been possible

with the hard work of: Tuan Ta, Nick Cebry, and Yanghui Ou. Tuan Ta helped with guidance and

tips for implementing a specialized port in L2 caches to connect the decoupled vector engine in

the traditional memory model of gem5 as well as conventional Ruby memory model. When the

project switched to Arm’s CHI for the Ruby protocol, Tuan contributed the code to implement the

specialized port in L2. Nick Cebry implemented stats in the gem5’s front-end to collect statistics

about vectorized applications execution. He also worked on implementing the assembly testing

suite for vector instructions used to verify the functionality and execution of the models for the

12

decoupled vector engine and the integrated vector unit. Both Nick Cebry and Yanghui Ou worked

on implementing enhanced modeling of functional unit in the decoupled vector engine model.

I was fortunate enough to lead BRG’s effort on the EVE project. The EVE project contains two

parts: (1) EVEv1, which is a predominantly circuit effort; and (2) EVEv2, which is a circuit-to-

architecture exploration of the project incorporating the findings from EVEv1. This project with

both its parts would not have been possible without the hard work of my collaborators: Tuan Ta,

Nick Cebry, Olalekan Afuye, Dr. Shady Agwa, Eric Hall, Courtney Golden, Professor Al Molnar,

Professor Alyssa Apsel, and Professor Christopher Batten.

Olalekan Afuye, Dr. Shady Agwa, Professor Al Molnar, and Professor Alyssa Apsel primiarly

contributed to the first part of the EVE project (i.e., EVEv1). Olalekan Afuye ported OpenRAM

to TSMC’s 28nm. He also helped with power and energy analysis. Shady Agwa laid out the

netlists of multiple stages. Shady also helped in the discussion about circuit design and gave

important feedback. Professor Al Molnar provided helpful guidance and feedback for designing

and implementing the reconfigurable sense-amplifiers. Finally, both Olalekan Afuye and Shady

Agwa helped in creating an OpenRAM module for EVEv1. I presented this work at the 2020

IEEE International Symposium on Circuits and Systems (ISCAS) [AHAA+20].

Tuan Ta, Nick Cebry, Eric Hall, Courtney Golden, Olalekan Afuye, and Professor Alyssa Apsel

contributed to the second part of the EVE project (i.e., EVEv2). Tuan Ta had the aforementioned

contribution in the decoupled vector engine model and the integrated vector unit baselines for EVE.

His work on Arm’s CHI modification for the decoupled vector engine model also contributed to

EVE’s memory model. Nick Cebry work on vector assembly testing for the decoupled vector

engine and the integrated vector unit models was used to further test EVE’s cycle-approximate

model. Tuan Ta, Nick Cebry, Eric Hall, and Courtney Golden hand-vectorized applications from

RiVEC and Rodinia application suite that helped benchmark EVE and further understands its per-

formance. Olalekan Afuye helped in running the experiments to estimate the cycle-time for the

different bit-hybrid circuits.

I collaborated with Tuan Ta who was the lead of the big.VLITTLE effort in BRG. I contributed

the decouple vector engine and integrated vector unit baselines. I also helped in debugging and

fixing the big.VLITTLE model. Moreover, I contributed in the discussion of several intellectual

aspects of big.VILITTLE. The work will be published and presented at the 55th IEEE/ACM Inter-

national Symposium on Microarchitecture, 2022 (MICRO-55) [TAHC+22].

13

The work in this thesis was supported in part by: King Abdullah’s Scholarship Program (KASP),

King Salman’s Scholarship Program (KSSP), NSF E2CDA Award #1740136, NSF SHF Award

#2008471, NSF PPoSS Award #2118709, DARPA SDH Award #FA8650-18-2-7863, DARPA

CRAFT Award #HR0011-16-C-0037, the Semiconductor Research Corporation (SRC) as nCORE

task 2758.002 and 2758.004, and the Center for Applications Driving Architectures (ADA), one of

six centers of JUMP, a Semiconductor Research Corporation program co-sponsored by DARPA,

as well as equipment, tool, and/or physical IP donations from Intel, Synopsys, Cadence, and ARM.

The U.S. Government is authorized to reproduce and distribute reprints for Government purposes

notwithstanding any copyright notation thereon. Any opinions, findings, and conclusions or rec-

ommendations expressed in this publication are those of the author(s) and do not necessarily reflect

the views of any funding agency.

14

CHAPTER 2
AGILEBNN: TRADITIONAL APPROACH TO

ACCELERATOR DESIGN

This chapter describes my early work at achieving performance and efficiency by designing

AgileBNN, which is a fixed function accelerator for binarized neural networks. AgileBNN was in-

tegrated into the Celerity tiered accelerator fabric (TAF). Tiered accelerator fabrics seek to address

the tension between less-efficient general-purpose architectures and more-efficient specialized ar-

chitectures by tightly integrating a heterogeneous mix of: (1) general-purpose tier (GPT)–a set

large general-purpose cores, (2) massively parallel tier (MPT)–an array of small lightweight cores,

and (3) specialization tier (SpT)–a set of specialized fixed-function accelerator. A workload can be

efficiently accelerated using a tiered accelerator fabric by mapping it to the three tiers appropriately.

AgileBNN was taped-out as the specialization tier in the Celerity TAF on a Taiwan Semiconductor

Manufacturing Company (TSMC) 16 -nm technology node. Celerity TAF also includes five RISC-

V cores capable of booting an operating system for the general-purpose tier, and 496 lightweight

RISC-V cores for the massively parallel tier.

In this chapter, I detail the novel high-level synthesis (HLS) flow used to design, synthesize,

and test the AgileBNN. I also include seven lessons-learned that can provide useful guidance for

future work on tiered accelerator fabrics as well as using HLS. Moreover, I present post-silicon

measurement results of AgileBNN’s accuracy, area, throughput, and energy. AgileBNN reduces

area by over 2× and improves area normalized throughput by almost 2× compared to three other

state-of-the-art BNN accelerators. While AgileBNN is able to improve area normalized through-

put, the rigidity of its fixed-function aspect meant that further modifications to the executed BNN

model were heavily restricted. AgileBNN inspired and motivated several aspects of my later work

on EVE. AgileBNN rigidity motivated the pursuit of a more programmable specialization, while

the ability to re-use silicon blocks for several functionalities to reduce effective area overhead

inspired the pursuit of ephemerality.

2.1 Introduction

Machine-learning (ML) algorithms are rapidly evolving, which complicates efforts at imple-

menting specialized accelerators for such workloads. Developing an accelerator ASIC for a spe-

15

cific ML algorithm can take years, by which time the ML algorithm has likely evolved to such an

extent that it can no longer take advantage of the accelerator. Developing a highly programmable

accelerator means the long design-time can be amortized over a larger domain of ML algorithms,

but such accelerators sacrifice energy efficiency and/or throughput. In our previous work, we

argued for a new architectural design paradigm to address these challenges based on tiered ac-

celerator fabrics [DXT+18]. A tiered accelerator fabric includes three heterogeneous tiers: the

general-purpose tier with a set of cores capable of running an operating system to manage the

system-on-chip (SoC); the massively parallel tier with an array of small, lightweight, tightly cou-

pled programmable cores tuned for efficient throughput computing; and the specialization tier with

high-performance, ultra-energy-efficient fixed-function accelerators.

Figure 2.2 shows the Celerity architecture, an instantiation of the tiered accelerator fabric

paradigm [DXT+18]. Celerity’s general-purpose tier includes five Linux-capable RISC-V RV64GC

rocket cores [ea19d]. Celerity’s massively parallel tier includes 496 Vanilla cores arranged in a

16× 31 two-dimensional array. Vanilla cores are lightweight RISC-V RV32IM cores designed

in-house and connected together using a high-throughput network-on-chip. Each core contains

scratchpad memories for data and instruction storage. For the specialization tier, we chose to

focus on accelerating image classification using emerging ML algorithmic research on binarized

neural networks. Figure 2.1 shows the Celerity SoC which implements the Celerity architecture

in a 5× 5 mm 385M-transistor chip fabricated on an aggressive 16 nm FinFET technology node.

Our prior work included preliminary simulation results for Celerity [DXT+18] and post-silicon

measurement results for Celerity’s massively parallel tier [ea19c, ea19b].

This chapter is the first to focus exclusively on Celerity’s specialization tier, which we call

AgileBNN. AgileBNN is a configurable accelerator for binarized neural networks implemented

using an agile SystemC-based high-level-synthesis (HLS) methodology. In this chapter, we de-

scribe the AgileBNN design and integration in detail, and we include seven lessons learned that

can provide useful guidance for future work on tiered accelerator fabrics: (1) SystemC-based HLS

enabled a modular design methodology; (2) HLS enabled early and rapid algorithmic design-space

exploration; (3) medium-grain integration enabled balancing integration complexity and overhead;

(4) hardware/software co-design enabled a more configurable and complexity-effective accelera-

tor; (5) latency-insensitive accelerator interfaces simplified integration with variable-latency cache-

16

Manycore Array
with

16x31 RV32IM Cores

RV64GC
RV64GC

RV64GC RV64GC

RV64GC

Agile
BNN

5mm

5
m

m

0.76 mm

0
.4

4
m

m

Figure 2.1: Celerity System-on-Chip Die Photo.

17

based memory systems; (6) cross-tier optimization enabled multiplicative benefits; and (7) HLS

enabled rapid timing closure late in the design cycle.

This chapter presents new post-silicon measurement results of AgileBNN’s accuracy, area,

throughput, and energy. AgileBNN achieves a classification throughput of 375 inf/s yet requires

only 0.33 mm2 of additional area while maintaining an accuracy of 88.4% on CIFAR-10. At its

most efficient operating point, AgileBNN consumes 141 µJ/inf with a throughput of 17 inf/s. Our

design and integration strategy enables AgileBNN to reduce area by over 2× and improve area

normalized throughput by almost 2× compared to three state-of-the-art BNN accelerators that re-

quired either manual RTL design or full-custom mixed-signal design. While there has been signif-

icant academic work on evaluating HLS-based accelerators implemented in an FPGA, AgileBNN

is one of just a few examples of an academic HLS-based accelerator implemented in an ASIC on

an aggressive technology node.

2.2 AgileBNN Design

There is a growing interest in reduced precision neural network models with recent work

demonstrating neural networks with binarized weights and activations achieving reasonable ac-

curacies [CHS+16, ea19a]. This motivated our own interest in exploring an accelerator for image

classification using binarized neural networks (BNN). Specifically, we trained a BNN model based

on Courbariaux et al. [CHS+16]. By binarizing the weights and activations, convolution becomes

a simple exclusive-negated-OR (XNOR) followed by a pop-count rather than multiplications fol-

lowed by a reduction summation. Not only is a BNN model hardware friendly in-terms of oper-

ations, it has the potential to reduce the size of the weights thus reducing storage overhead. The

BNN model constitutes of: a 20-bit fixed-point convolution layer, six binarized convolution layers,

and three binarized fully-connected (dense) layers. Our trained model is able to achieve 89.8%

accuracy on the CIFAR-10 dataset [DXT+18, ZSZ+17].

AgileBNN includes the control unit, the compute unit, and the memory unit (see Figure 2.2).

The control unit is responsible for maintaining the configuration registers that hold values required

to execute a given model. Once the configuration values are set, the control unit orchestrates the

execution inside the accelerator. The compute unit includes the functional units for: the fixed-

point convolution layers, the binary convolution layers, and the binary fully-connected layers. The

18

Global Memory Bus

L1 I$
16KB

L1 D$
16KB

RISCV Core
RV64GC

Arbiter

L1 I$
16KB

L1 D$
16KB

RISCV Core
RV64GC

Arbiter

L1 I$
16KB

L1 D$
16KB

RISCV Core
RV64GC

Arbiter

L1 I$
16KB

L1 D$
16KB

RISCV Core
RV64GC

Arbiter

L1 I$
16KB

L1 D$
16KB

RISCV Core
RV64GC

Arbiter

Arb

AgileBNN

Arbiter

AFIFO

Manycore Array with 16x31 RV32IM Cores

AFIFO AFIFO AFIFOAFIFOAFIFOAFIFO AFIFO

Merger Merger

R
C

m
d

64b

64b64b

32b 32b

Off-Chip I/O Interface

32b 32b

IMem
4KB

DMem
4KB

RISCV Core
RV32IM

Arbiter
NoC

Router2x 89b
Channels

ArbArb

R
M

em

R
M

em

Arb Arb

R
C

m
d

R
M

em

R
C

m
d

R
M

em

R
C

m
d

RCmd RMem

M
a
n

y
co

re
 T

il
e

AgileBNN

M
o

d
e

S
el

ec
to

r

R
C

m
d

Memory UnitCompute
Unit

D
M

A

B
it

 U
n

p
ac

k
in

g

Activations

Weights

FP-Conv

Bin-Conv

Bin-FC

Control
Unit

Conf.
Regs

From MPT

Figure 2.2: Celerity Architecture – AFIFO = asynchronous FIFO; RCmd = RoCC command
interface; RMem = RoCC memory interface; NoC = network-on-chip; L1 I$/D$ = instruction/data
cache; IMem/DMem = instruction/data memory; MPT = massively parallel tier.

19

compute unit can execute any of these layer types with configurable input sizes and output sizes.

The memory unit fetches weights and input activations from main memory and streams them to

the compute unit in the correct order. A direct memory access (DMA) subunit was built into the

memory unit to handle fetching blocks of data. Each 64-bit incoming chunk of data is unpacked

into individual elements (i.e., bits for binarized layers, 20-bit for the fixed-point layers) and placed

into an SRAM bank for later use. To supply data to two convolvers, the memory unit divides its

weight and data storage across two banks. The two banks are either decoupled to supply two binary

convolvers or are coupled as one wide bank to supply one fixed-point convolver. There are two

sets of banks for activations (for double buffering) and one set of banks for weights.

To implement AgileBNN, we started from unstructured C++ code that implemented the BNN

algorithm. We experimented with using HLS to directly synthesize this unstructured code, yet the

corresponding register-transfer-level (RTL) implementation produced disappointing area and tim-

ing results which were difficult to reason about and optimize. We then transformed our original

C++ implementation into a more structured SystemC-based implementation with key hardware

modules implemented using SystemC modules (e.g., memory unit, compute unit). The commu-

nication and synchronization between these different modules are implemented with the help of

SystemC’s hierarchical channels. The generated RTL implementation of AgileBNN is further

wrapped using an in-house PyMTL [LZB14] wrapper to interface with the rest of the SoC. This

SystemC-based implementation and testing required a two-person team working for 12 weeks.

About six weeks were spent debugging and working around a subtle bug related to applying HLS

to complex multi-dimensional variable array indexing. As the HLS tools continue to improve, we

expect designers to spend more time on design-space exploration and less time working around

various HLS tool issues.

Lessons learned from using an HLS flow to design AgileBNN:

• Using a SystemC-based HLS flow to implement AgileBNN introduced structure into the

implementation, which drastically increased the ability to reason about design decisions.

Compared to our original unstructured C++ code, SystemC quickly proved to be a natural

candidate for synthesizing accelerators.

• HLS enabled us to quickly iterate over the possible design space comparing different ideas

and quantitatively evaluating design decisions. HLS enables designers to focus on the algo-

20

rithm and high-level architecture of the design rather than being distracted with the imple-

mentation details.

2.3 AgileBNN Integration

There are multiple approaches to integrating a specialized accelerator into an SoC spanning

fine-, medium-, and coarse-grain integration. In fine-grain integration, the accelerator is brought

closer to the control processor, potentially even coupling it tightly as a functional unit. In medium-

grain integration, the accelerator is placed further from the processor yet still shares a private data

cache and likely uses a decoupled request/response command interface. In coarse-grain integra-

tion, the accelerator is completely separate from the processor and has its own interface to main

memory for communication and task offloading. On one end of the spectrum, fine-grain integration

yields minimum overhead in task offloading at the expense of being highly intrusive to the proces-

sor pipeline. On the other end of the spectrum, coarse-grain integration incurs high overhead in task

offloading with the benefit of being largely isolated from the processor. For AgileBNN, we chose

medium-grain integration to strike a balance between the overhead of task offloading and intrusive-

ness to the processor pipeline. By leveraging the Rocket custom co-processor (RoCC) interface,

AgileBNN can be integrated in a medium-grain fashion without spending any effort modifying the

Rocket processor pipeline. AgileBNN can also benefit from low overhead task offloading to utilize

the Rocket core as a configuration control processor.

AgileBNN is integrated into the Celerity SoC through one of the five Rocket cores available

in the general-purpose tier. For a given neural network model, software is developed to calculate

the appropriate values for the various configuration registers in AgileBNN. A RISC-V custom

instruction provides read/write access to these configuration registers through the RoCC command

interface.

The configuration software running on the Rocket core prepares the input weights and activa-

tions for each layer. Then, the memory addresses for all input data are placed in their designated

configuration registers. As AgileBNN starts execution of the specified layer, the DMA in the mem-

ory unit starts sending read requests through the latency-insensitive RoCC memory interface. The

read requests are serviced through the L1 cache of the Rocket core and once ready the responses

are sent back out-of-order. After re-ordering the responses, the memory unit unpacks the incoming

21

data into their corresponding internal storage. Sharing the L1 data cache significantly simplifies

task offloading.

Loading weights from main memory is expensive due to off-chip accesses. AgileBNN ad-

dresses this challenge by providing a collaborative mode that leverages the scratchpads in the

idling massively parallel tier to store BNN weights. A light-weight manycore program is written

to run on the massively parallel tier to send the weights in-order to AgileBNN through a hardware

FIFO. The wrappers for AgileBNN are designed to start dequeuing from this FIFO whenever the

requested address is within a pre-mapped address space. This execution mode allows the Celerity

SoC to load the weights once from the main memory and reuse them multiple times for every

image classification.

After integrating AgileBNN into the Celerity SoC and testing its functionality in simulation,

the last step is to analyze timing in order to meet the SoC timing requirements. The HLS-generated

AgileBNN along with its wrappers were pushed through synthesis without the rest of the SoC to

better understand and resolve the critical path. Meeting a specific timing constraint was easier than

conventional RTL flows; the HLS tool handled automatic pipelining to meet the desired timing

constraint. Note that SRAM floorplanning was also an important step in meeting more aggressive

timing constraints. The use of latency-insensitive interfaces helped in dealing with meeting timing

constraints at the input and output ports. Input and output paths from the accelerator that violate

timing were pipelined late in the design cycle without impacting functional correctness. A two-

person team spent roughly four weeks integrating AgileBNN into the SoC performing debugging,

software development, and meeting design constraints.

Lessons learned from integrating HLS-generated AgileBNN into the Celerity SoC:

• Medium-grain integration allowed us to strike a balance between the task offloading overhead

and the effort required for the integration. By leveraging the RoCC interface, medium-grain

integration required relatively modest effort.

• Hardware/software co-design in implementing the execution of BNN models helped reduce

AgileBNN complexity. The configuring software can utilize the general-purpose processor

to prepare input data, calculate complicated model parameters, and synchronize various op-

erations between layer execution.

22

• Latency-insensitive interfaces in AgileBNN helped simplify interacting with variable laten-

cies in the Rocket cache-based memory system. They also helped in meeting timing con-

straints by enabling additional pipelining late in the design cycle.

• Cross-tier optimization in the Celerity SoC enabled us to extract throughput beyond the allo-

cated area for AgileBNN by leveraging idle storage in the massively parallel tier. Collabora-

tive execution between tiers often yields multiplicative improvements.

• HLS enabled us to meet timing constraints effectively late in the design cycle. HLS is able

to leverage the high-level information represented in the SystemC code to generate higher

quality-of-result RTL.

2.4 AgileBNN Evaluation

This section discusses the methodology we used in evaluating AgileBNN, characterizes the

AgileBNN chip’s different performance and efficiency operating points, and compares AgileBNN

with previous work in key metrics.

2.4.1 Methodology

The methodology used to evaluate AgileBNN spans multiple important aspects for any machine-

learning hardware including accuracy, area, throughput, and energy.

Accuracy: We trained a BNN model based on previous work achieving a training accuracy of

89.8% on CIFAR-10 dataset. A standard testing dataset was used to measure the classification

accuracy of AgileBNN running on the chip.

Area: The area of AgileBNN, including the wrappers, was measured from the sign-off layout.

Throughput: To measure the throughput of AgileBNN, we utilize cycle count performance

counters on the Rocket core. The throughput is simply the number of classifications performed per

second and can be calculated given the size of the dataset and the total time.

Energy: To measure energy, we constructed a power model that excludes leakage induced by

other components on the Celerity SoC. We estimated the leakage for the SoC by halting the clock

tree globally and measuring the power consumed by the chip using a Keithley source measurement

23

101 102
Throughput (inf/s)

102

103

104

E
n

er
g

y
 (

u
J/

in
f)

AgileBNN

AgileBNN+SP1

AgileBNN+SP2

AgileBNN+SP3

(a) Chip Voltage/Freq Characterization.

0 1 2 3

Area (mm^2)

100

200

300

400

500

T
h

ro
u

g
h

p
u

t
(i

n
f/

s)

YodaNN

BinarEye

AgileBNN

(b) Throughput vs. Area.

0 1 2 3

Area (mm^2)

80

85

90

95

100

A
cc

u
ra

cy
 (

%
)

YodaNN

BinarEye

AgileBNN

(c) Accuracy vs. Area.

Figure 2.3: Silicon characterization of energy, throughput, area, and accurcy.

24

unit. We estimated the leakage for AgileBNN by considering its relative area compared to the entire

SoC. To calculate total energy, we crafted a software test program that executes classifications for

a guaranteed 10 seconds to obtain average power. Energy per classification is calculated from the

throughput and the average power consumed.

2.4.2 Chip Characterization

As a classification utilizes multiple components in its execution, there is a space defined by the

different operating points for the SoC, where every point exhibits a different efficiency/throughput

trade-off. Figure 2.3a shows a sweep to capture these trade-offs. The AgileBNN curve shows the

throughput vs. energy of classification as the voltage is varied from 0.55–0.82 V and frequency

from 31.25–845 MHz. AgileBNN+SP curves show the throughput vs. energy sweep for collabora-

tive execution (i.e., storing BNN weights in the massively parallel tier). By fixing the AgileBNN

operating point, each curve is calculated by sweeping the massively parallel tier frequency from

15.625–1000 MHz. The three AgileBNN+SP curves correspond to the following AgileBNN fre-

quencies: 250 MHz, 500 MHz, and 845 MHz.

By excluding off chip energy, Figure 2.3a shows that AgileBNN alone is more efficient and

achieves lower throughput when compared to the collaborative execution (AgileBNN+SP) mode.

However, it is worth noting that as energies for off chip accesses are accounted for, collaborative

execution would be more efficient as it requires accessing weights off chip once. We can also notice

that the benefits of increasing the frequency of AgileBNN stops at 125 MHz, after which memory

latencies become the bottleneck. As for the collaborative execution (AgileBNN+SP) mode, the plot

shows that clocking the massively parallel tier higher benefits AgileBNN by reducing latencies for

loading weights. Once the frequency of the massively parallel tier reaches half the frequency of

AgileBNN, the computations start becoming the bottleneck and throughput saturates. Since the

massively parallel tier has two 64-bit asynchronous FIFOs providing the weights (meaning two

streams of weights), half the frequency is sufficient for the massively parallel tier to saturate the

compute throughput of AgileBNN.

25

Paper
AgileBNN YodaNN BinarEye-D BinarEye-MS
This Work TCAD’17 CICC’18 JSSC’19

[ea18] [MBY+18] [BYM+19]

Design Methodology HLS/stdcell RTL/stdcell RTL/stdcell Mixed-Signal
Technology 16nm FinFET 65nm CMOS 28nm CMOS 28nm CMOS
Supply Voltage (V) 0.54 - 0.83 0.6 - 1.2 0.66 - 0.9 0.6, 0.8
Area (mm2) 0.33 2.2 1.40 4.6
Norm. Area (mm2) 0.33 0.7 0.83 2.73
Frequency (MHz) 13−845 27−480 1.5−48 10

Weight Precision (bits) 1b 1b× 12b 1b 1b
On-Chip Memory 71kB SRAM 9.2kB SCM 328kB SRAM 328kB SRAM
Supported Networks

Layer Count Any Any 1−16 1−16
Filter Count Any Any 64, 128, 256 256
Filter Sizes 3× 3 < 7× 7 2× 2 2× 2

Accuracy 88.40% 91.70% 86.00% 86.05%
Max. Throughput (inf/s) 375 435 150 237
Energy Efficiency (uJ/inf) 141.21 21 13.82 3.79
Area Norm. Throughput

1,136.36 621.43 180.72 86.81
(inf/s/mm2)

Table 2.1: Comparison to Previous Work – Normalized area scaling factor calculated by squar-
ing the contacted gate pitch (CPP) of equivalent node. All BinarEye designs can keep the weights
and activations on-chip with no need for off-chip accesses; SCM: latch-based standard cell mem-
ory.

2.4.3 Comparison to Previous Work

We evaluated AgileBNN against three other state-of-the-art works that accelerate binarized

neural networks (see Table 2.1). AgileBNN has the highest area efficiency, 1,136 inf/s/mm2, as

demonstrated in Figure 2.3b. By leveraging the massively parallel tier for weight storage, Ag-

ileBNN is able to increase its throughput while still maintaining a small footprint. AgileBNN

achieves pareto-optimal accuracy and area, as well, (shown in Figure 2.3c).

YodaNN [ea18] is an accelerator for neural networks that uses binarized weights and 12-bit

fixed-point activations. Due to higher precision activations, YodaNN achieves 3.3% higher accu-

racy on CIFAR-10 classification compared to AgileBNN. YodaNN exploits aggressive parallelism

(employing 32 compute units) yet only achieves 16% higher throughput compared to AgileBNN

at the expense of increasing area by 2×.

26

Digital BinarEye [MBY+18] (BinarEye-D) is an accelerator that implements a binarized neural

network model inspired by Courbariaux et al [CHS+16]. Although the BNN model used is similar

to AgileBNN, BinarEye-D has lower accuracy as it substitutes two of the fully-connected layers

with binary convolution layers. Such change allows the design to achieve lower energy consump-

tion and lower storage overhead, but at the expense of lower accuracy. AgileBNN achieves 2.5×

higher throughput. BinarEye-D is the closest accelerator to AgileBNN, as it uses an RTL/standard-

cell design methodology and a similar BNN model.

Mixed-signal BinarEye [BYM+19] (BinarEye-MS) is a mixed-signal implementation of BinarEye-

D. Instead of performing convolution digitally, the result of binary multiplication is stored as a

charge on a set of capacitors. Then, the wide 1-bit vector summation with added bias is esti-

mated using a capacitive digital-to-analog converter (CDAC). While BinarEye-MS is able to in-

crease throughput by almost 60% compared to BinarEye-D, AgileBNN is still able to achieve 1.6×

higher throughput. BinarEye-MS retains the same accuracy as BinarEye-D, with the caveat that

temperature and process variation can now affect the classification accuracy. The use of CDACs

and capacitors adds an extra area overhead compared to BinarEye-D. Also, implementation effort

for mixed-signal designs can be significantly higher that manual RTL design.

As for energy, AgileBNN suffers from overheads due to memory accesses going through the

SoC memory subsystem. There is some energy overhead due to the use of HLS design method-

ology instead of traditional RTL, which we believe is overshadowed by the overhead of the SoC

memory subsystem. Moreover, the energy consumed by AgileBNN is dwarfed by the energies

consumed by the full SoC. Both flavors of BinaryEye are the most efficient with the mixed-signal

design consuming 5× lower energy per inference compared to other work.

2.5 Conclusion

In this chapter, we have presented silicon results and characterization for AgileBNN, which is

an HLS-generated binarized neural network accelerator integrated into the Celerity SoC and fab-

ricated on a 16 nm FinFET technology node. AgileBNN reduces area by over 2× and increases

area normalized throughput by almost 2× when compared to the state-of-the-art BNN accelera-

tors. As transistor scaling slows down, accelerators are becoming a crucial part of SoC design

to achieve throughput and energy efficiency targets. HLS-generated accelerators can help SoC

27

designers achieve better composition by enabling rapid design space exploration through reduced

implementation effort. Despite the demonstrated improvements in area-normalized throughput for

AgileBNN, its rigid specialization restricted any modifications to the BNN model that would im-

prove throughput and efficiency. This limitation motivated the choice for a more programmable

vector abstraction for EVE. Nevertheless, the ability for the sneakpath mode in AgileBNN to re-

configure several components to increase throughput and performance thus retaining lower area

overhead motivated the ephemerality aspect of EVE.

28

CHAPTER 3
MODELING NEXT-GENERATION VECTOR

MICRO-ARCHITECTURES

With their rise in popularity, emerging next-generation vector architectures form a fertile ground

for research. The vector abstraction supported by these architectures balances programmability and

specialization, which alleviates the rigidity observed in AgileBNN detailed in Chapter 2. Vector

engines exploit the regularity inherent in vector abstraction to increase their performance and ef-

ficiency while executing data-parallel workloads. Identifying and modeling baselines constitute a

fundamental aspect of architectural research. This chapter details my work on designing, imple-

menting, and evaluating two baselines for next-generation vector micro-architectures: a decoupled

next-generation vector engine, and an integrated next-generation vector unit. These models have

been essential in guiding and evaluating my later work on EVE.

3.1 Introduction

Early implementations of vector machines [Wat72,Sch87,BDM+72,Rus78] demonstrated their

ability to increase performance and efficiency while executing data-parallel workloads by exploit-

ing the regularity in the vector abstraction. There has been a resurgence of interest in vector ab-

straction demonstrated by recent vector extensions to mainstream ISA’s (e.g., ARM SVE [Ste16,

SBB+17b], RISC-V RVV [RISC-V Foundation19], Intel AVX-512 [int12]). Traditionally, there

has been two micro-architectures to support vector execution: aggressive long-vector engines [DVWW05,

KTHK03,TNH+06,EAE+02], and light-weight sub-word packed single-instruction-multiple-data

(SIMD) units [SBB+17a, RBGZ19, PW96, int07, JKK11]. Long-vector engines achieve high per-

formance at the expense of area overhead. Since these vector engines lose their performance and

efficiency edge while executing irregular code, packed-SIMD units has been proposed to retain

moderate vector performance and efficiency while incurring minimum area overhead. Packed-

SIMD units are able to lower their area requirements through: (1) repurposing hardware from

the datapath of a general-purpose core to support vector execution, (2) supporting short hardware

vector lengths, and (3) supporting limited vector execution. While both long-vector engines and

packed-SIMD units are micro-architectures to support vector execution, they represent two ex-

treme ends.

29

There has been a recent effort towards next-generation vector architectures [Ste16, SBB+17b,

RISC-V Foundation19] to unify both extremes (i.e., long-vector, and packed-SIMD). There are

two possible next-generation vector micro-architectures: an integrated vector unit, or a decoupled

vector engine. Integrated vector units follow the same design philosophy as sub-word packed-

SIMD units, while decoupled vector engines follow the same design principles as long-vector

engines. By repurposing hardware from the general-purpose core’s datapath, integrated vector

units achieve modest performance while incurring minimum area overhead. On the other hand,

decoupled vector engine achieve significantly better performance at the cost of significantly high

area overhead. Both integrated vector units and decoupled vector engines form a natural baselines

for any research in next-generation vector architectures.

When I started working on my thesis, there was no publicly available models for next-generation

vector micro-architectures. Recently, there has been a multiple works that target implement-

ing next-generation vector micro-architectures with publicly available models. There models are

register-transfer-level and often the work

3.2 RISC-V Vector Extension (RVV)

The RISC-V Vector extension (RVV) went through multiple revisions. This section provides

an overview of the first public release of RVV (i.e., revision 1.0). The instructions of the RVV

extension can be divided into four categories: vector configuration, vector arithmetic, vector mem-

ory, and vector cross-element. RVV allows for these instructions to be predicated through masking

support.

3.2.1 Vector Configuration Instructions

RVV provides multiple instructions that can be used to configure the hardware used for vector

execution. One aspect is setting the active vector length through the vsetvl instruction. The

semantic of the vsetvl instruction is as follows: given the requested vector length as an input, the

new active vector length is the maximum between the hardware vector length and the requested

vector length. Another aspect that can be configured is the active element width for the vector

hardware. The number of available vector registers can also be configured dynamically through

30

the length multiplier (LMUL). By increasing the length multiplier by one, the number of vector

registers is halved, but the hardware vector length supported by the remaining vector registers is

doubled.

3.2.2 Vector Arithmetic Instructions

The instructions in this category perform a simple dot-operation between two source operand.

The resulting values of the dot-operation is stored into a destination operand. Source operands can

be of three possible types: vector, scalar, and immediate. Vector operands represent a vector regis-

ter; scalar operands represent a scalar register; immediate operands are encoded as constants in the

instruction. For instructions with two source operands, there are three possible source operand con-

figuration: vector-vector, vector-scalar, and vector-immediate. To distinguish each configuration,

a suffix is added to the instruction name. Vector-vector (suffix .vv) arithmetic instructions operate

on two operands of type vector. Here is the pseudo-code semantics of a vector-vector arithmetic

operation (vop.vv):

1 def vop.vv(vd, vs2, vs1):

2

3 vlen = active_vector_length

4

5 for (i = 0; i < vlen; i++) {

6 vd[i] = op(vs2[i], vs1[i])

7 }

Vector-scalar (suffix (.vx) arithmetic instructions operate on two operands: a vector operand

and a scalar operand. Here is the pseudo-code semantics of a vector-scalar arithmetic operation

(vop.vx):

1 def vop.vx(vd, vs2, rs1):

2

3 vlen = active_vector_length

4

5 for (i = 0; i < vlen; i++) {

6 vd[i] = op(vs2[i], rs1)

7 }

31

Vector-immediate (suffix .vi)arithmetic instructions operate on two operands: a vector operand

and an immediate operand. Here is the pseudo-code semantics of a vector-immediate arithmetic

operation (vop.vi):

1 def vop.vi(vd, vs2, imm):

2

3 vlen = active_vector_length

4

5 for (i = 0; i < vlen; i++) {

6 vd[i] = op(vs2[i], imm)

7 }

3.2.3 Vector Memory Instructions

The instructions in this category perform either a load from memory into a vector register, or

a store to memory from a vector register. Memory vector load instructions read elements from

the memory and write to the elements of the destination vector register. Memory vector store

instruction store elements from the source vector register into elements in the memory. The size of

the elements being loaded and stored is specified and encoded into the instruction. RVV supports

element sizes of 8, 16, 32, and 64 bits. There are three possible memory addressing modes for

these instructions: unit-stride, constant-stride, and indexed-stride.

Unit-stride is the simplest of all modes and assumes a contiguous block of data in the memory.

Here is the pseudo-code of the 32-bit unit-stride vector memory load instruction (vle32.v):

1 def vle32.v(vd, base_address):

2

3 vlen = active_vector_length

4 addr = base_address

5 elem_size = 4

6

7 for (i = 0; i < vlen; i++) {

8 vd[i] = mem[addr + (i * elem_size)]

9 }

Here is the pseudo-code of the 32-bit unit-stride vector memory store instruction (vse32.v):

1 def vse32.v(base_address, vs3):

32

2

3 vlen = active_vector_length

4 addr = base_address

5 elem_size = 4

6

7 for (i = 0; i < vlen; i++) {

8 mem[addr + (i * elem_size)] = vs3[i]

9 }

Constant-stride assumes a stride that is provided through a scalar register. Here is the pseudo-

code of the 32-bit constant-stride vector memory load instruction (vlse32.v):

1 def vlse32.v(vd, stride_value, base_address):

2

3 vlen = active_vector_length

4 stride = stride_value

5 addr = base_address

6

7 for (i = 0; i < vlen; i++) {

8 vd[i] = mem[addr + (i * stride)]

9 }

Here is the pseudo-code of the 32-bit constant-stride vector memory store instruction (vsse32.v):

1 def vsse32.v(stride_value, base_address, vs3):

2

3 vlen = active_vector_length

4 stride = stride_value

5 addr = base_address

6

7 for (i = 0; i < vlen; i++) {

8 mem[addr + (i * stride)] = vs3[i]

9 }

Indexed-stride is the most complex of all modes and uses a vector register to specify the

stride for each element. There two types of indexed-stride vector memory instructions: Ordered

and unordered. Ordered indexed-stride vector memory instructions guarantee a strict order of

execution between the elements within a vector by the hardware, whereas unordered relaxes the

33

ordering to potentially enable faster execution. Here is the pseudo-code of the 32-bit indexed-stride

vector memory load instruction (vlxei32.v):

1 def vluxei32.v(vd, base_address, vs2):

2

3 vlen = active_vector_length

4 addr = base_address

5

6 for (i = 0; i < vlen; i++) {

7 vd[i] = mem[addr + vs2[i]]

8 }

Here is the pseudo-code of the 32-bit indexed-stride vector memory store instruction (vsxe32.v):

1 def vsuxe32.v(base_address, vs2, vs3):

2

3 vlen = active_vector_length

4 addr = base_address

5

6 for (i = 0; i < vlen; i++) {

7 mem[addr + vs2[i]] = vs3[i]

8 }

Since the different between ordered and unordered is hardware support, the pseudo-code shown

above applies to both ordered (i.e., vluxei32.v, vsuxei32.v) and unordered (i.e., vloxei32.v,

vsoxei32.v).

3.2.4 Vector Cross-Elements Instructions

Vector cross-element instructions perform an operation that requires cross-element communi-

cation. With the exception of vpopc.m, the outcome of the operation is stored into a destination

vector register. There are three categories of vector cross-elements instruction: reduction, cross-

element move, and register gather instructions.

Vector Reduction Instructions – these instructions perform an operation between all elements

of a vector register, thus reducing it into a single value. The value is stored into the first element of

the destination vector register. The pseudo-code for a vector op reduction instruction is as follows:

1 def vredop(vd, vs2):

34

2

3 vlen = active_vector_length

4

5 for (i = 0; i < vlen; i++) {

6 vd[0] = op(vd[0], vs2[i])

7 }

Vector Cross-Element Move Instructions – these instructions perform a move of elements

within a vector register, thus changing the order of these elements. RVV supports slide instruc-

tions, which move the elements up/down the vector register. The slide can be performed in either

direction with a constant slide amount provided through either a scalar register or as an immediate

encoded into the instruction. The pseudo-code for a slide right (vlsideup.v) instruction is as

follows:

1 def vslideup.v(vd, vs2, slide_amount):

2

3 vlen = active_vector_length

4 s_amnt = slide_amount

5

6 for (i = 0; i < vlen; i++) {

7 if (i < s_amnt) {

8 vd[i] = 0

9 } else {

10 vd[i] = vs2[i - s_amnt]

11 }

12 }

The pseudo-code for a slide left (vlsidedown.v) instruction is as follows:

1 def vslidedown.v(vd, vs2, slide_amount):

2

3 vlen = active_vector_length

4 s_amnt = slide_amount

5

6 for (i = 0; i < vlen; i++) {

7 if (i + s_amnt < vlen) {

8 vd[i] = vs2[i + s_amnt]

9 } else {

10 vd[i] = 0

35

11 }

12 }

Vector Gather Instructions – these instructions shuffle the elements of a source vector reg-

ister based on the indices specified by either a second source vector register, a scalar value, or an

immediate value. The pseudo-code for the vector-vector gather (vrgather.vv) instruction is as

follows:

1 def vrgather.vv(vd, vs2, vs1):

2

3 vlen = active_vector_length

4

5 for (i = 0; i < vlen; i++) {

6 if (vs1[i] < vlen) {

7 vd[i] = vs2[vs1[i]]

8 } else {

9 vd[i] = 0

10 }

11 }

Whereas the pseudo-code for the vector-scalar (vrgather.vx) and vector-immediate (vrgather.vi)

gather instruction is as follows:

1 def vrgather.vx(vd, vs2, idx):

2

3 vlen = active_vector_length

4

5 for (i = 0; i < vlen; i++) {

6 if (idx < vlen) {

7 vd[i] = vs2[idx]

8 } else {

9 vd[i] = 0

10 }

11 }

Since vector-immediate (vrgather.vi) gather instruction achieves the same functionality but

takes an immediate instead of scalar, the pseudo-code for both vector-immediate (vrgather.vi)

and vector-immediate (vrgather.vi) is the same.

36

3.2.5 Masking Support

RVV masking allows for various vector instructions to be predicated. By setting a masking bit

encoded in an instruction, each element can be predicated conditionally based on a vector mask. If

the vector mask is set, then the element is predicated, otherwise the element is not predicated. RVV

allows for two possible configurations regarding the behavior for elements that are not predicated:

either the element is preserved, or the element is not preserved. RVV provides a single vector mask

register, which is the first vector register (i.e., v0). Each mask for an element is a single-bit. These

bits are stored consecutively in the vector mask register.

3.3 Background: gem5 Simulator

This section provides some background information on the gem5 simulator, which has been

chosen due to: its prevalence in computer architecture research, its pre-existing high-fidelity mod-

els of cores and caches, its extensibility, and being community-driven and open-source. Sec-

tion 3.3.1 begins with a quick overview explaining gem5 execution. Section refchap-ngva-sec-

gem5-models given a brief description of provided models in gem5 that would be leveraged later

by this work.

3.3.1 Overview

The gem5 simulator is an open-source cycle-level event-driven simulator. A simulation in

gem5 can be configured dynamically through Python with no need for re-compilation. The config-

ured environment includes multiple SimObjects. Each SimObject is simulated at different ticks

(i.e., specific simulated wall-clock time) through events managed by the SimObject itself. These

events, when created, specify a function to call in the SimObject and a specific tick to trigger the

event. The tick is specified with respect to a clock-domain assigned to the created SimObject.

To compose multiple SimObject together, one can instantiate these SimObject in the Python-

based configuration dynamically with no need to re-compile. The configuration also specifies the

clock-domain for each SimObject. The different SimObjects can communicate together through

ports–a standardized channels for communication specifying functions to be implemented and

37

handled by the SimObjects. These communication channels are connected together through the

dynamic configuration.

3.3.2 Provided Models

One of the main reasons for choosing the gem5 simulator is the plethora of provided open-

source high-fidelity models. Here is a list of models that are provided by gem5 that are used in

work:

The O3 Model – a pipelined out-of-order super-scalar core SimObject capable of modeling

different ISAs. The core model has 7 main stages: fetch, decode, dispatch, issue, execute, write-

back, and commit. Each stage might be further broken into a deeper pipeline. The model is very

extensible and allows to be configured with different branch prediction schemes, and different

functional units arrangements. The model is also very configurable and allows for the following to

be configured dynamically: fetch block size, decode width, dispatch width, issue width, writeback

width, commit width, latencies for different functional unit, execution style of the different func-

tional units, and functionality supported by each functional unit. The model is very elaborate and

is composed of more than 25,000 lines of code.

The Ruby Cache Model – a high-fidelity model for a sub-system of caches provided with sup-

port for more than 12 different cache coherency protocols implemented using the SLICC domain-

specific language. Ruby cache model can also be dynamically configured to compose a sub-system

of caches with different hierarchies and connections. These cache sub-systems also use the pro-

vided Garnet network model to connect the caches with different network-on-chip (NoC) micro-

architectures. The transactions and actions defining cache coherency protocol in these caches are

specified in SLICC and synthesized to C++ at compile time. For a SimObject to connect to any

of the caches specified, a Sequencer is instantiated to interface between the SimObject and the

ruby model. These Sequencers help in implementing coalescing support and re-ordering.

38

1 decode QUADRANT default Unknown::unknown() {
2 0x0: decode COPCODE {
3 0x0c: decode FUNCT3 {
4 format ROp {
5 0x0: decode FUNCT7 {
6 0x0: add({{
7 Rd = Rs1_sd + Rs2_sd;
8 }});
9 0x1: mul({{

10 Rd = Rs1_sd * Rs2_sd;
11 }}, IntMultOp);
12 0x20: sub({{
13 Rd = Rs1_sd - Rs2_sd;
14 }});
15 }
16 }
17 }
18 }
19 }

Figure 3.1: Snippet of Instructions Defined in The Decoder – This snippet is showing add,
mul, and sub instructions. These instructions are assigned to the format ROp and pass arguments
to functionally define the instruction.

3.4 Modeling Functional Next-Generation Vector Execution

This section details a functional model built in the gem5 simulator to execute RISC-V Vector

(RVV) code and verify its correctness. Section 3.4.1 begins with general overview of the model.

Section 3.4.2 details the front-end implementation to enable the model

3.4.1 Overview

The gem5 simulator implements a domain-specific parser for defining ISAs. To define a new

instruction, the decoder in gem5 is modified with the correct bit fields to correctly insert the new

instruction (example implementation is show in Figure 3.1. These instructions are assigned to de-

fined formats. These formats help the parser by defining the general structure of the new instruc-

tions as well as defining common code-base. The domain-specific parser in gem5, then, proceeds

to generate all required code to be compiled along gem5. To separate core model development

from ISA development, gem5 implements a timing/execution separation, thus execution semantics

is defined by the implementation of the instruction while timing is defined by implementation of

the core. gem5 has an agnostic StaticInst class that constitute the parent class for all generated

39

instructions. This class has a well-defined programming interface that enables ISA developers to

convey information to help core model developers in instrumenting the timing of execution cor-

rectly. Some examples of these information includes number of source registers, source registers

architectural names, required functionality, functions to interact with other units in the core.

3.4.2 Front-End Implementation

To facilitate vector implementation in the gem5 simulator, we introduce several new formats.

Figure 3.2 shows the implementation of VOPIVV, which is one of the newly added formats and

used for instructions such as vadd.vv. The format generates four code blocks to define and imple-

ment the StaticInst class that represents the instruction: header_output, decoder_output,

decode_block, and exec_output. The header_output defines the declaration of the class. The

decoder_output defines the constructor of the class. The decode_block defines the proper in-

stantiation of a static instruction by the decoder. The exec_output defines all functions specified

in the header_output and implements them correctly (Figure 3.3 shows one of the execution tem-

plates). To support all of RVV specifications, we added 21 different formats. The implementation

of the vadd.vv instruction in the decoder is shown in Figurechap-ngva-fig-decoder-vvadd.

3.5 Modeling Decoupled Next-Generation Vector Engine

This section describes the decoupled next-generation vector engine model and implementation.

3.5.1 Decoupled Vector Engine Model

The model of the decoupled vector engine is heavily inspired by Tarantula [EAE+02]. Fig-

ure 3.5 shows the details of the decoupled vector engines model and its integration aspect with

the core. The model includes multiple stages and units. The main execution datapath includes

five stages: decode, issue, execution, writeback, and commit. The model also includes a vector

memory unit (VMU) to handle vector memory operations execution. The engine is connected to

an out-of-order core (O3) in a decoupled fashion, since the engine is non-speculative. The O3 core

is responsible for fetching instructions and resolving control hazards. Once the O3 core encounters

a vector instruction, the core forwards the instruction to the vector engine when it reaches the top

40

1 def format VOPIVV(pred_tcode,
2 pred_fcode={{ }},
3 tail_code ={{ }},
4 pred_if ={{true}},
5 loop_limit={{VLEN}},
6 rs1_x ={{ 0 }},
7 rs1_data ={{ 0 }},
8 rs2_x ={{ 0 }},
9 rs2_data ={{ 0 }},

10 rs3_data ={{ 0 }},
11 rd_x ={{ 0 }}, funct=0, flags=[]) {{
12 flags+=['IsVector']
13 regs = ['_destRegIdx[0]','_srcRegIdx[0]', '_srcRegIdx[1]']
14 iop = InstObjParams(name, Name, 'VOp',
15 {'pred_tcode':pred_tcode,
16 'pred_fcode':pred_fcode,
17 'tail_code':tail_code,
18 'pred_if':pred_if,
19 'loop_limit':loop_limit,
20 'rs1_x':rs1_x,
21 'rs1_data':rs1_data,
22 'rs2_x':rs2_x,
23 'rs2_data':rs2_data,
24 'rs3_data':rs3_data,
25 'rd_x':rd_x,
26 'funct':funct,
27 'regs':','.join(regs)},
28 flags)
29 header_output = VectorDeclare.subst(iop)
30 decoder_output = VectorConstructor.subst(iop)
31 decode_block = VectorDecode.subst(iop)
32 exec_output = (BasicVectorExecute.subst(iop) +
33 VDisassemblyIVV.subst(iop))
34 }};

Figure 3.2: The VOPIVV New Vector Arithmetic Format for RVV – The format generates the
following code blocks: header_output, decoder_output, decode_block, and exec_output. These
code blocks are produced using common-code templates with placeholders that are defined in the
iop dictionary.

41

1 def template BasicVectorExecute {{
2 Fault %(class_name)s::execute(ExecContext *xc, Trace::InstRecord *traceData) const
3 {
4 Fault fault = NoFault;
5

6 %(op_decl)s;
7 %(op_rd)s;
8

9 // Get maximum hardware vector length
10 auto hardware_vlen = xc->maxVectorLength();
11

12 if (fault == NoFault) {
13 for (int i = 0; i < %(loop_limit)s; i++) {
14 if (%(pred_if)s) {
15 %(pred_tcode)s;
16 } else {
17 %(pred_fcode)s;
18 }
19 }
20 for (int i = %(loop_limit)s; i < hardware_vlen; i++) {
21 %(tail_code)s;
22 }
23 if (fault == NoFault) {
24 %(op_wb)s;
25 }
26 }
27

28 return fault;
29 }
30 }};

Figure 3.3: Common-Code Vector Execution Template – This template BasicVectorExecute
is used by multiple formats and multiple instructions. To use this template, the placeholders in the
template looks as follows: “%(...)s”. The values to replace these placeholders are defined by the
format.

of the re-order buffer (ROB) and about to commit, thus the instruction is no longer speculative. If

the vector instruction writes its results to a scalar register, then the core stalls the committing of

vector instruction until a reply is received from the vector engine.

In the vector engine, received vector instructions are enqueued to be decoded as a vector execu-

tion command. These vector command are sent to the issue stage. The issue stage handles hazards

by waiting for all dependencies to be satisfied before the vector command is sent to the execution

stage. The execution stage is composed of multiple execution pipes, which include a set of func-

tional units and is allocated their own read and write vector register file ports. Each execution pipe

also includes a reservation station that handles generating chimes for each vector command to be

42

1 decode QUADRANT default Unknown::unknown() {
2 0x0: decode COPCODE {
3 // +--> VINT
4 0x15: decode FUNCT3 {
5 // VOPIVV
6 0x0: decode FUNCT6 {
7 // vadd
8 0x0: decode VM {
9 // vadd_vv

10 0x1: VOPIVV::vadd_vv({{
11 Vd_ud[i] = Vs2_ud[i] + Vs1_ud[i];
12 }}, funct=0, flags=['IsVectorAluInst', 'SimdAddOp']);
13

14 // vadd_vvm
15 0x0: VOPIVV::vadd_vvm({{
16 Vd_ud[i] = Vs2_ud[i] + Vs1_ud[i];
17 }}, pred_fcode={{
18 Vd_ud[i] = Vs3_ud[i];
19 }}, pred_if={{Vm_ud[i] & 0x1llu}}, funct=0,
20 flags=['IsVectorAluInst', 'IsVectorMaskedInst',
21 'SimdAddOp']);
22 }
23 }
24 }
25 }
26 }

Figure 3.4: Implementation of vadd.vv in The Decoder – This snippet is showing the im-
plementation of vadd.vv instruction. The instruction is assigned to format VOPIVV. Different
instruction-specific code is passed as arguments to the format.

executed by the functional units. Executed chimed vector commands from the different execution

pipes are sent to the writeback stage where the result is written to the vector register file using the

each execution pipe’s write port. If the chimed vector command is flagged as being the last chime,

the vector instruction is sent to the commit stage. Committed instructions always send a response

back to the O3 core to confirm execution.

For memory, the model employs memory request-writeback decoupling. Decoded vector mem-

ory instructions generate two vector commands: execution vector command (handled as aforemen-

tioned above), and a memory vector command. Vector memory commands are sent to the VMU

and the VMU handles its execution. The generated execution vector command depends on the

type of the vector memory instruction; for unit- and constant-stride vector load instructions, the

execution vector command is simply a write from the VMU into the vector register file; for unit-

and constant-stride vector store instructions, the execution vector command is a read from the vec-

43

O3 DV
I$ D$

L2

D
ecode

Issue

C
om

m
it

IQ

ImmQ

VMU IDX Data

Processing

Logic

RS

RS

RS

RS

LineBuffer

ReqLogic LineBuffer

STQ LDQ

LineBuffer

Shuffle &

Align Logic

W
riteb

ack

V
ector R

esponse
V

ec
to

r
C

om
m

an
d

VMUReq

DV

To L2 Cache From L2 Cache

Shuffle/Align

Metadata

D
ispatch

ImmQ=scalar values queue; RS=reservation
station; VMU=vector memory unit;

IDX=memory operations indices; STQ=store
requests queue; LDQ=load requests queue;

ReqLogic=cache request creation logic

Figure 3.5: Overview of Decoupled Vector Engine (O3+DV).

44

tor register file into the VMU. As for indexed vector memory instructions, the generated execution

vector command will additionally read the indices into the VMU.

The detailed of the vector memory unit (VMU) is shown in Figure 3.5. Incoming memory vec-

tor commands into the VMU is queued awaiting processing. The processing logic will handle one

memory vector command at a time. While the processing logic is generating cache-line requests,

it will not accept any other memory vector commands. The processing logic takes a cycle for each

required cache-line; it also includes a lightweight coalescing logic where consecutive elements are

considered for coalescing. The coalescing is canceled with the first element that cannot be coa-

lesced. This enables the processing logic to efficiently identify situations where a constant-stride

vector memory operation has a constant set to one. The single-cycle also accounts for address

translation of the generated cache-line request. If a data is to be expected with a cache-line request,

the processing logic reserves a place for the data in the cache-line queue. The processing logic also

adds shuffle and alignment information to an internal storage that can be used to ready data before

it is sent back to the datapath. If indices are expected for the cache-line requests, the processing

logic relies on the indices queue (i.e., IDX queue) to provide them. Generated cache-line requests

are enqueued into the load queue (LDQ) and store queue (STQ). While inserting these cache-line

requests, the VMU depends on a content-addressable memory (CAM) to identify cache-line-level

memory dependencies between older vector stores and younger vector loads. If a dependency is

identified, the younger vector load is marked as not ready. Once the older vector store is sent to

the cache, the younger dependent vector loads are marked as ready.

To synchronize the execution between the O3 core and the decoupled vector engine, we have in-

troduced multiple vector fences (vfence) to specify type of synchronization. Naturally, a vmv.x.s

can be used to wait for the datapath of the vector engine to finish executing; the vmv will stall at

the top of the ROB waiting for the vector response, which will be sent in-order. Since no other

vector commands can be sent due to the commit stage stalling, a synchronization can be achieved.

However, this way of synchronization will not guarantee waiting for all vector memory operations

to finish execution. A new vfence.m is introduced that form a vector memory fence. For inter-

scalar-vector memory dependency, the newly introduced vfence.m is needed since the hardware

cannot check for memory dependency. This decision has been made to increase the performance of

the VMU. Mandating all requests between scalar and vector to be checked for dependency would

have introduced hardware bottlenecks for the VMU and severely complicate and restrict imple-

45

mentations for the hardware. To executed these fences, the datapath waits for the VMU to signal

that all in-flight stores have been executed (i.e., a response has been received by the VMU).

3.5.2 Decoupled Vector Engine Implementation

The decoupled vector engine requires three key modifications to the gem5 simulator:

Decoupled Vector Engine SimObject – The decoupled vector engine SimObject was im-

plemented in the gem5 simulator following the model shown by Figure 3.5. The SimObject has

parameters to control through configuration the sizes of queues between the different stages. The

SimObject is ticked every cycle and subsequently, the SimObject will tick all stages start from

the commit stage to the decode stage. After all stages are ticked, the VMU is ticked as well.

Rocket Chip Coprocessor (RoCC) Interface – To integrate the decoupled vector engine

SimObject with the O3 core model, we have implemented the Rocket coprocessor chip (RoCC)

interface in the gem5 simulator. Starting from the gem5 O3 core model, we have added a RoCC

interface unit. Then, we modified the vector formats introduced in Section 3.4.2 to include func-

tions to communicate correctly with the RoCC interface. After that, the O3 core model is modified

to invoke these functions to instrument the execution of a RoCC-capable dynamic instruction.

The changes to the O3 core model are as follows: when a vector instruction is decoded and

the O3 core model is connected to a decoupled vector engine SimObject, then the dynamic vector

instruction is flagged as RoCC-capable. Upon receiving a RoCC-capable instruction, the dispatch

ensures the RoCC interface has a space for the incoming request. Then, the function initiateReq

of the dynamic instruction is called to create and enqueue a RoCC request in the interface unit.

Then, the dynamic instruction waits for all dependencies to be ready before it can be issued (e.g.,

dependency on scalar registers). When all dependency are ready, the dynamic instruction can

issue and is sent to commit stage awaiting completion. When the dynamic instruction is ready

to commit, the member function executeReq of the dynamic instruction is called to update the

RoCC request in the interface with renamed registers identifiers and the values needed from scalar

registers. The function executeReq will also flag the RoCC request as ready to be sent to the

vector engine. Finally, if the dynamic instruction does not write values back to the scalar registers,

then it is committed and removed from the ROB. However, if the dynamic instruction writes values,

then the commit stage stalls waiting for a response from the vector engine. When the response is

received, the RoCC interface invokes the member function completeReq with the response to be

46

1 def format VOPIVV(pred_tcode,
2 pred_fcode={{ }},
3 tail_code ={{ }},
4 pred_if ={{true}},
5 loop_limit={{VLEN}},
6 rs1_x ={{ 0 }},
7 rs1_data ={{ 0 }},
8 rs2_x ={{ 0 }},
9 rs2_data ={{ 0 }},

10 rs3_data ={{ 0 }},
11 rd_x ={{ 0 }}, funct=0, flags=[]) {{
12 flags+=['IsVector']
13 regs = ['_destRegIdx[0]','_srcRegIdx[0]', '_srcRegIdx[1]']
14 iop = InstObjParams(name, Name, 'VOp',
15 {'pred_tcode':pred_tcode,
16 'pred_fcode':pred_fcode,
17 'tail_code':tail_code,
18 'pred_if':pred_if,
19 'loop_limit':loop_limit,
20 'rs1_x':rs1_x,
21 'rs1_data':rs1_data,
22 'rs2_x':rs2_x,
23 'rs2_data':rs2_data,
24 'rs3_data':rs3_data,
25 'rd_x':rd_x,
26 'funct':funct,
27 'regs':','.join(regs)},
28 flags)
29 header_output = VectorDeclare.subst(iop)
30 decoder_output = VectorConstructor.subst(iop)
31 decode_block = VectorDecode.subst(iop)
32 exec_output = (BasicVectorExecute.subst(iop) +
33 VectorInitiateReq.subst(iop) +
34 VectorExecuteReq.subst(iop) +
35 VectorCompleteReq.subst(iop) +
36 VDisassemblyIVV.subst(iop))
37 }};

Figure 3.6: The VOPIVV Format with RoCC Support – The format now includes
three new templates in the exec_output: VectorInitiateReq, VectorExecuteReq, and
VectorCompleteReq.

47

1 def template VectorInitiateReq {{
2 Fault
3 %(class_name)s::initiateReq(ExecContext *xc,
4 Trace::InstRecord *traceData) const
5 {
6 Fault fault = NoFault;
7

8 %(op_src_decl)s;
9 %(op_rd)s;

10

11 if (fault == NoFault) {
12 fault = initiateRoccReq(xc, traceData);
13 }
14

15 return fault;
16 }
17 }};

Figure 3.7: VectorInitiateReq Template – This template implements the member function
initiateReq of the vector instruction class.

parsed by the dynamic instruction. Then, the commit stage can finally complete the instruction and

remove it from the ROB.

If this dynamic instruction is squashed, then the interface unit will handle the squashing cor-

rectly. There are three possible places where squashing is possible: before the dynamic instruction

creates a RoCC request in the interface, after the dynamic instruction creates a RoCC request but

it is not sent to the vector engine, and after the dynamic instruction creates a RoCC request and it

is already sent to the vector engine. For the first scenario, the dynamic instruction is squashed and

turned into a NOP and thus it would not create a request and become a bubble in the pipeline. The

second scenario, the RoCC interface unit is notified with the squash signal and the correspond-

ing RoCC request will be removed without any side-effects. As for the third scenario, the RoCC

interface unit is not designed to handle speculative RoCC request and, thus, this scenario should

not occur. The implementation includes checks and will throw and exception in case of an invalid

scenario.

Cache Sub-System Model – A new protocol has been introduced to the Ruby cache model to

handle an extra port in the level-2 cache to connect the vector engine, as shown in Figure 3.5. The

protocol is configured to give priority to connection between level-1 and level-2 caches, while the

connection with the vector engine is given a second priority. We also modified the Arm CHI proto-

48

1 // RoCC execute request template
2 def template VectorExecuteReq {{
3 Fault
4 %(class_name)s::executeReq(bool _xd, uint8_t _rd,
5 bool _xs1, uint8_t _rs1,
6 bool _xs2, uint8_t _rs2,
7 bool _xm, uint8_t _rm,
8 ExecContext *xc,
9 Trace::InstRecord *traceData) const

10 {
11 Fault fault = NoFault;
12

13 %(op_src_decl)s;
14 %(op_rd)s;
15

16 .
17 .
18 .
19 // Determine all required values:
20 // opcode
21 // n_funct
22 // rd_x, rd_id, rd_data,
23 // rs1_x, rs1_id, rs1_data
24 // rs2_x, rs2_id, rs2_data
25 .
26 .
27 .
28

29 if (fault == NoFault) {
30 fault = executeRoccReq(xc, traceData,
31 opcode, n_funct,
32 rd_x, rd_id, rd_data,
33 rs1_x, rs1_id, rs1_data,
34 rs2_x, rs2_id, rs2_data);
35 }
36

37 return fault;
38 }
39 }};

Figure 3.8: VectorExecuteReq Template – This template implements the member function
executeReq of the vector instruction class.

col to support a second connection to the vector engine in all of its levels. These implementations

has been tested using Ruby’s pre-existing testing infrastructure.

49

1 def template VectorCompleteReq {{
2 Fault
3 %(class_name)s::completeReq(RoccPacketPtr pkt, ExecContext *xc,
4 Trace::InstRecord *traceData) const
5 {
6 Fault fault = NoFault;
7

8 %(op_decl)s;
9 %(op_rd)s;

10

11 // Output
12 bool rd_x;
13 uint64_t rd_id;
14 uint64_t rd_data;
15

16 // Parse incoming data
17 parseRoccResponse(xc, traceData, pkt,
18 rd_x, rd_id, rd_data);
19

20 if (fault == NoFault) {
21 %(op_wb)s;
22 }
23

24 return fault;
25 }
26 }};

Figure 3.9: VectorCompleteReq Template – This template implements the member function
completeReq of the vector instruction class.

3.6 Modeling Integrated Next-Generation Vector Unit

This section describes the integrated next-generation vector unit model and implementation.

3.6.1 Integrated Vector Unit Model

The integrated vector unit model is loosely based on recent work and publications on the Arm

Scalable Vector Extension (SVE) [SBB+17a, RBGZ19]. To reduce the area overhead of the unit,

most of the components needed for execution is re-purposed from pre-existing components in the

O3 datapath. The vector registers share the register file with the floating point registers. The

renaming stage is modified to support renaming both vector registers and floating-point registers

to map to the same physical registers space. The floating-point ALUs are modified and enhanced

to support vector operations along side the scalar floating-point operations. For vector memory

operations, the scalar load-store queue (LSQ) is modified to support unit-stride vector memory

50

operations. For constant-stride and indexed vector memory operations, the decoder in the O3 core

will breakdown vector memory operations into several micro-operations; each micro-operation

will handle one element of the vector. As a result, these vector memory operations do not need any

special support from the scalar LSQ, as they are treated the same as scalar memory operations.

The integrated vector unit is tightly integrated into the O3 core datapath. As a result, the ex-

ecution of the integrated vector unit follows the O3 core execution; thus, the integrated vector

unit execution is speculative. Vector registers are renamed to eliminate false hazards. Vector in-

structions are issued out-of-order to the vector ALUs whenever they are ready. Moreover, vector

instructions can be squashed due to control hazard or an earlier exception. Vector memory opera-

tions need to perform memory address disambiguation. In case the scalar LSQ perform speculative

memory address dependency, the vector memory instructions need to support the same. Finally,

vector store instructions are executed out-of-order, but they are placed in a queue along with scalar

store instructions waiting for their corresponding instructions to commit before they are sent to the

cache.

3.6.2 Integrated Vector Unit Implementation

To implement the integrated vector unit model, there are four required changes and contribu-

tions to vanilla gem5: front-end modifications, macro-/micro-operation decomposition and sup-

port, and LSQ changes to support vector memory operation. Recently, Arm has mainstreamed

multiple changes to enable support for Arm SVE in gem5. We leveraged some of these changes

in our implementation of an integrated vector unit. The LSQ changes to support vector memory

operation has already been contributed by Arm and only needed to be adapted to RVV.

The front-end modifications were detailed in Section 3.4. Since there is a separation between

execution and timing in gem5, the execution specified by these front-end implementation applies

to the integrated vector unit. As for macro-/micro-operation decomposition and support, this re-

quired some changes to renaming logic in the O3 core model. In situations where some elements

are masked-off, the masked-off elements are expected to be unchanged. As a result, vector in-

structions read the previously mapped destination register in masked instructions to copy masked-

off elements to the newly allocated vector physical register. As a result, when renaming micro-

operations that belong to the same macro-operation, the renaming for the old physical register

assigned to the destination is preserved and unchanged until the last micro-operation is renamed.

51

Name Suite Input Type
Scalar

DIns IOc

vvadd k 8.388M int 75.5M 205M
mmult k 1024 int 8.60B 48.5B
saxpy k 512×512 fp 1.08B 3.18B

k-means ro 10Kx34 fp 4.65B 13.6B
jacobi-2d rv 2Kx10 fp 1.59B 9.64B
lavamd rv 4x4x4 fp 1.05B 3.58B
backprop ro 524K fp 1.17B 16.4B
particlefilter rv 6K fp 1.24B 3.52B
blackscholes rv 2.5M fp 726M 2.75B

k-means-int ro 10Kx34 int 2.11B 3.59B
jacobi-2d-int rv 2Kx10 int 1.59B 8.50B
lavamd-int rv 4x4x4 int 617M 1.04B
backprop-int ro 524K int 1.17B 15.7B
pathfinder ro 5Mx10 int 1.08B 2.43B
sw g 2048 int 1.38B 1.69B

Table 3.1: Benchmark Applications List – k = kernel, ro = rodinia, rv = RiVEC, g = genomics,
int = integer type benchmark, fp = floating-point type benchmark, DIns = number of dynamic
instructions in ROI, IOc = number of cycles to run on an in-order core.

A micro-operation asking for the mapping of vd as a destination will be given the new physical

mapping; however, the micro-operation asking for the mapping of vd as a source will be given the

old physical mapping.

3.7 Evaluation

This section details the evaluation methodology (Section 3.7.1) and results (Section 3.7.2).

3.7.1 Methodology

To quantify our models and their performance, we leveraged the gem5 [BBB+11, LPAA+20,

TCB18a] simulator detailed in Section 3.3. For the baselines, we built BRGIO, which is an in-

house developed-from-scratch in-order core model. The other baseline is an altered version of the

O3 core model (BRGO3), which is an out-of-order core model. The differences between gem5’s

O3 core model and BRGO3 includes the implementation of the RoCC interface (detailed in Sec-

52

Vector (VL=64)

Name DIns VI% ctrl ialu imul fpu xe us st idx prd DOp VO% VPar WInf ArInt

vvadd 1.6M 42% 20 20 0 0 0 7 0 0 0 35.5M 96% 22.6 0.47 0.33
mmult 151M 44% 25 25 25 0 0 25 0 0 0 3.35B 97% 22.2 0.39 2.00
saxpy 18.9M 44% 25 25 25 0 0 25 0 0 0 416M 97% 22.0 0.39 2.00

k-means 67.9M 46% 1 13 ∼0 57 ∼0 ∼0 21 7 1 2.01B 98% 29.6 0.43 2.41
jacobi-2d 35.4M 44% 8 17 0 42 17 17 ∼0 0 0 942M 98% 26.6 0.59 4.50
lavamd 25.0M 79% 7 11 0 57 0 5 20 0 5 966M 99% 38.7 0.92 2.72
backprop 21.5M 39% 13 ∼0 0 44 0 12 31 0 0 484M 97% 22.5 0.41 1.00
particlefilter 43.1M 51% 1 72 1 26 0 ∼0 ∼0 ∼0 ∼0 1.41B 99% 32.8 1.14 200.9
blackscholes 10.6M 90% 4 13 0 72 0 3 8 0 5 567M 100% 53.5 0.78 7.48

k-means-int 51.5M 46% 1 52 18 0 ∼0 ∼0 10 7 1 1.53B 98% 29.8 0.72 2.44
jacobi-2d-int 35.4M 44% 8 50 8 0 17 7 0 0 0 940M 98% 26.6 0.59 4.50
lavamd-int 26.6M 61% 23 24 14 0 20 2 9 1 7 726M 97% 27.3 1.18 2.98
backprop-int 21.5M 39% 13 19 25 0 ∼0 5 12 0 0 488M 96% 22.7 0.42 1.00
pathfinder 22.5M 50% 31 37 0 0 0 16 0 0 25 513M 97% 22.8 0.48 1.20
sw 20.4M 39% 10 55 0 0 11 10 14 0 10 433M 97% 21.2 0.31 2.75

Table 3.2: Benchmark Applications Characterization – DIns = number of dynamic instruc-
tions in ROI, IOc = number of cycles to run on an in-order core, VI% = percent of dynamic
instructions that are of vector type, ctrl = vector control instructions, ialu = vector integer alu
instructions, imul = vector integer multiplication and division instructions, fpu = vector floating-
point instructions, xe = vector cross-element instructions, us = vector unit stride memory instruc-
tions, st = vector constant stride memory instructions, idx = vector indexed memory instructions,
prd = predicated vector instructions, DOps = total number of operations (scalar instructions + vec-
tor instructions × active vector length), VO% = percent of operations performed by vector unit,
VPar = logical parallelism (total ops / dynamic instructions in vectorized program), WInf = work
inflation (total ops in vectorized program / dynamic instructions in scalar program), ArInt = arith-
metic intensity (mathematical operations / memory operations) for vector unit.

tion 3.5.2), and the modification to the renaming logic accommodating RVV special needs (detailed

in Section 3.6.2). As for the memory model, a new protocol was modified to support an extra

connection to the level-2 cache specifically for the decoupled vector engine. Arm CHI [gem21]

Ruby cache model was modified to support an extra port in the level-2 cache specifically for the

decoupled vector engine. These changes has been tested and verified for functional and timing

correctness.

We have built two new next-generation vector models: the integrated vector unit (detailed in

Section 3.6) and the decoupled vector engine (detailed in Section 3.5) in the gem5 simulator. We

then verified the correctness of these models using an infrastructure of tests and micro-benchmarks.

53

IO Single-issue in-order RV64GC core:
• L1I: 1-cycle-hit 4-way 32KB
• L1D: 2-cycle-hit 4-way 32KB
• L2: 8-way 8-bank 8-cycle-hit 512KB

O3 Out-of-order 8-way RV64GC core:
• Same L1I, L1D, and L2 as IO

O3+IV Small vector unit integrated into O3:
• Same L1I, L1D, and L2 as O3
• IV: 4-element VL, out-of-order issue, 3 exec pipes

O3+DV Decoupled vector engine connected to O3:
• Same L1I, L1D, and L2 as O3
• DV: 64-element VL (chime of 4, element group of 16),
in-order issue, 4 exec pipes

LLC Same for all systems: 16-way, 12-cycle-hit & 2MB

Memory Same for all systems: single-channel DDR4-2400

Compiler LLVM-13
• Flags: -O3 -menable-experimental-extensions
--target=riscv64-unknown-linux -march=rv64gcv0p10

Table 3.3: Simulated Systems.

The tests were developed to verify the functional correctness; while, the micro-benchmarks verify

the performance and timing correctness. The configuration used for evaluation is detailed in Ta-

ble 3.3. The sizes of the queues used and different model parameters (e.g., chime size, and number

of chimes) were motivated either form sweep experiments or from the models on which they are

based.

To understand the performance of the models, we leveraged multiple applications with varying

properties and computational patterns. We have chosen applications from the Rodinia [CBM+09]

and RiVEC [RHP+20] benchmark suites. In addition, we have developed our own implementation

of the Smith-Waterman (sw) benchmark from computational biology field. On top of these appli-

cations, we have added multiple kernels as micro-benchmarks to emphasize different aspects of

the vector models (e.g., bandwidth, and latency of memory and computation). The list of bench-

marks and micro-benchmarks are detailed in Table 3.1. We also developed a functional model in

the gem5 simulator to characterize the scalar implementation (data shown in Table 3.1) and the

vectorized implementation (data shown in Table 3.2)

54

Name Type
Speedup vs. IO Speedup vs. O3

O3 O3+IV O3+DV O3+IV O3+DV

vvadd int 2.21 4.62 16.82 2.09 7.63
mmult int 6.89 20.01 88.50 2.91 12.85
saxpy fp 2.47 6.51 15.06 2.64 6.10

k-means fp 3.32 8.02 17.69 2.42 5.33
jacobi-2d fp 5.23 6.24 36.50 1.19 6.99
lavamd fp 2.25 4.74 12.38 2.10 5.49
backprop fp 4.03 7.78 16.51 1.93 4.10
particlefilter fp 5.53 2.97 25.30 0.54 4.58
blackscholes fp 2.49 5.12 31.76 2.06 12.77

k-means-int int 3.55 5.19 11.81 1.46 3.33
jacobi-2d-int int 6.19 5.17 32.92 0.84 5.32
lavamd-int int 2.51 2.33 4.37 0.93 1.74
backprop-int int 4.04 7.65 16.36 1.89 4.05
pathfinder int 2.05 4.99 40.45 2.43 19.73
sw int 2.06 8.98 17.22 4.35 8.35

geomean 3.35 5.39 18.88 1.61 5.63

Table 3.4: Benchmark Applications Results – geomean = calculated for: {pathfinder, sw, k-
means, jacobi-2d, lavamd, backprop, k-means-int, jacobi-2d-int, lavamd-int, backprop-int}.

Figure 3.10: Performance Evaluation – performance of the out-of-order model and the two
vector models: integrated vector unit (O3+IV) and decoupled vector engine (O3+DV). The per-
formance results are normalized to the performance of an in-order core model executing the scalar
version of the application.

55

3.7.2 Results

The characterization of every application is shown in Table 3.2. The results of the vector mod-

els evaluation is shown in Figure 3.3 and detailed in Table 3.4. As the results show, all applications

are properly vectorized with the percentage of vector operations are 97 % and above. The inte-

grated vector unit is able to increase performance when compared to an O3 core by a 1.61×.

When compared to IO core, the integrated vector unit improve performance by 5.39×; this figures

aligns with expected value of 4.0× since the integrated vector unit has 4.0× advantage in-terms

of functional units. The integrated vector unit is able to achieve performance higher than expected

due to efficiency in executing vector memory operations. The decoupled vector engine is able to

increase performance by up to 5.63× compared to the O3 core executing scalar version of the

benchmarks. When compared to IO scalar core, the decoupled vector engine is able to increase

performance by up to 18.88×. The decoupled vector engine has 16× more functional units than

the IO core. Much like the integrated vector unit, the decouple vector engine is able to achieve

higher performance due to its efficiency in handling vector memory instructions and operations.

3.8 Conclusion and Discussion

A fundamental aspect of every architectural research is baseline modeling. This chapter has

introduced the functional vector model, the integrated vector unit model, and the decoupled vector

engine model for the RISC-V Vector extension (RVV). These models have contributed to eval-

uating and quantifying the performance of EVE. While these models have the sufficient fidelity

required, further future work on these models can explore modifying the RoCC interface imple-

mentation to support out-of-order issue and execution. Such future work would enable a line of

research into out-of-order decoupled vector engines. To enable out-of-order issue and execution

in RoCC interface requires conveying squashing and committing through the interface to any con-

nected model.

56

CHAPTER 4
EVEV1: TOWARDS BIT-SERIAL/BIT-PARALLEL

SRAM-BASED COMPUTE-IN-MEMORY

Recent work has demonstrated how SRAM-based compute-in-memory (S-CIM) can reduce

the area overhead of vector arithmetic-logical units (ALUs). Most work has predominantly ex-

plored utilizing bit-serial execution paradigm. In this chapter, I present EVEv1–my early work to

explore bit-serial (BS-EVEv1) and bit-parallel (BP-EVEv1) ephemeral vector ALUs by leverag-

ing SRAM-based compute-in-memory (S-CIM). To the best of my knowledge, BP-EVEv1 is the

first to propose bit-parallel execution paradigm for S-CIM vector ALUs. I also present a rigorous

evaluation of bit-serial vs. bit-parallel approaches. The results show that both approaches have

comparable area overhead. The two approaches have very different latency vs. throughput trade-

offs. BS-EVEv1 requires more cycles per operation, but is able to execute thousands of operations

in parallel, while BP-EVEv1 requires fewer cycles per operation, but can only execute hundreds

of operations in parallel. For 32-bit arithmetic operations, BS-EVEv1 improves throughput by

1.3–5.0× compared to BP-EVEv1, while BP-EVEv1 improves latency by 3.0–23.0× compared to

BS-EVEv1. The findings of EVEv1 further motivates my subsequent work on bit-hybrid approach

rather than bit-serial or bit-parallel. As bit-serial approach favors throughput and bit-parallel ap-

proach favors latency, the goal of bit-hybrid approach is strike a balance between throughput and

latency.

4.1 Introduction

Vector accelerators are seeing a resurgence in both general purpose and domain-specific pro-

cessing [Ste16, SBB+17b, RISC-V Foundation19]. These accelerators can achieve high perfor-

mance on well-structured workloads by using a complex vector ALU and register file. To keep

the vector ALU busy, vector register files are usually highly multi-ported which incurs signifi-

cant area and energy overheads. Recent work on in-situ processing-in-SRAM attempts to reduce

these overheads by fusing the vector ALU and register file. In-situ processing-in-SRAM uses

bit-line computation to perform basic bit-wise logical operations in a single read of a traditional

SRAM [JASB16, JASB15]. Each SRAM column can be transformed into a bit-serial ALU by

adding extra logic, multiplexing, and state elements in the peripheral circuitry. Alternatively, a

57

set of SRAM columns can be grouped into a bit-parallel ALU by adding bit-parallel logic in the

peripheral circuitry instead.

In this chapter, we provide a detailed implementation for bit-serial EVEv1 (BS-EVEv1) and bit-

parallel EVEv1 (BP-EVEv1) as two representative design points for processing-in-SRAM. These

two flavors of EVEv1 support a variety of micro-operations for implementing macro-operations.

Starting with an implementation of a traditional 28 nm 6T-SRAM in OpenRAM [GSA+16], we

designed and laid out the additional peripheral circuitry required to implement BS-EVEv1 and

BP-EVEv1. Although surprisingly both designs have comparable area overhead, they have very

different performance characteristics. For a 32-bit MAC operation, BS-EVEv1 has 5× higher

throughput (6.4 GOPS) than BP-EVEv1 (1.3 GOPS), while BP-EVEv1 can achieve 6.5× lower

latency (197.9 ns) when compared to BS-EVEv1 (1281 ns). BS-EVEv1 consumes lower energy

per operation, but we discuss possible techniques to help close this gap. As the two designs require

similar peripheral circuitry, this work can be seen as a step towards building a reconfigurable bit-

serial/bit-parallel vector accelerator that is able to achieve either high-throughput or low-latency

depending on the application requirements.

The main contributions of this chapter are: (1) a detailed circuit-level design of BS-/BP-EVEv1

in 28nm technology; (2) implementation of 17 macro-operations in BS-/BP-EVEv1 using micro-

operations; (3) a detailed study of the trade-offs in area, cycle time, latency, throughput, and energy

for BS-EVEv1 vs. BP-EVEv1. To our knowledge, this is the first work to rigorously explore the

trade-offs between a bit-serial vs. bit-parallel approach to in-situ processing-in-SRAM.

4.2 EVEv1 Circuits

BS-EVEv1 and BP-EVEv1 start with a basic 6T SRAM with support for bit-line computation

(i.e., extra decoder and reconfigurable single-ended/differential sense amplifiers as in [JASB16,

JASB15]). Bit-line computation simplifies the required peripheral logic to implement BS-EVEv1

and BP-EVEv1. Figure 4.1 shows the additional peripheral circuitry required to enable BS-EVEv1

and BP-EVEv1 beyond what is necessary for bit-line computation.

58

D
ec

od
er

 B

Bitline Logic

Compute Logic

BL BLB

sel_and

sel_nand

sel_nor

sel_or

sel_xnor

sel_xor

sel_add

ff_en

lat_en

init_cin
cin

s_mask_in
s_bus

data_out mask_out

sel_data_in

data_in

sel_add

ff_en

cincoutb
wr_mask_bus
wr_mask_in
wr_mask_sr

sel_mask_in
sel_mask_lsb
sel_mask_msb

lsbmsb

(a) VRAM Block Diagram

(c) One Column of Bit-Serial Compute Logicmask_in(d) Bit-Parallel Add, XRegister, Mask Logic

Bus Logic

XOR/XNOR Logic

ADD Logic

XRegister

Mask Logic

srnsrn+1

D
ec

od
er

 A

Bitcell Array

mask_in

(b) Compute Logic Block Diagram

Figure 4.1: VRAM Circuits – High-level block diagram of VRAM microarchitecture showing a
column slice of circuit-level details of all the different logic blocks of both VRAM flavors.
BP-VRAM shares many logic blocks implementation with BS-VRAM, shown in (c), and only
differ in three blocks that are shown in (d). The boxed logic blocks are explained in section 4.2
from top to bottom. The blocks are: bus logic, XOR/XNOR logic, ADD logic, XRegister, and
mask logic.

4.2.1 Bit-Serial Compute Logic (BSCL)

The inputs to the BSCL are the output of each sense-amplifier and its complement. Bit-line

computation provides bit-wise logical AND, NAND, OR, and NOR on these inputs.

The BSCL is composed of the following blocks. Bus Logic: BSCL uses a distributed bus with

NMOS pass-transistors to choose between basic bit-wise logical operations (i.e., AND, NAND,

OR, NOR). XOR/XNOR Logic: Computing XOR and NOR in BSCL requires an additional NAND

gate and inverter. ADD Logic: BSCL uses a modified serial Manchester carry chain (MCC). As

addition is computed bit serially, the carry out is stored for the subsequent cycle while previous

carry is used as carry in. The carry in is XOR’ed with the bitwise logical XOR to compute the sum.

XRegister: XRegister’s input is multiplexed to choose either the carry out from the ADD logic or

an input carry, which enables initializing the carry to zero for an addition or one for a subtraction.

The output of the XRegister is the input to the ADD logic. Mask Logic: The mask logic in BSCL

59

Energy (pJ) rd wr blc cond.wb.src wr_mask.src srl

BS-VRAM 34.7 11.7 33.4 17.3 13.6 -
BP-VRAM 45.3 13.6 43.0 16.8 16.5 6.4

Table 4.1: Micro-operation Energy Characterization – Energy for the supported micro-
operations characterized by simulating the extracted layout of a complete sub-array for both BS-
VRAM and BP-VRAM; cond = {msb, lsb, always}. src = {and, nand, nor, or, xor, xnor, add,
data_in}.

is a latch with a multiplexer to choose either the unbuffered bus or an input mask. The output of

the latch is the mask used by the SRAM for writes. In a conventional write, the input mask will be

chosen to be stored in the latch.

4.2.2 Bit-Parallel Compute Logic (BPCL)

Bit-parallel compute logic reuses all but the last three blocks from BSCL. ADD Logic: Bit-

parallel addition requires a carry propagation for which BPCL uses an MCC. The addition result is

computed by XOR’ing the carry-in of every column with the bitwise logical XOR value. For better

performance, lightweight buffering along the carry chain is inserted by using the inversion property

of the adder. XRegister: The XRegister can act as shift register for the multiplier, controlling

whether a µop is conditionally executed. The input of every flip-flop is multiplexed choosing

either the input mask, the output of the compute logic on the bus, or the output of the XRegister

of the column to the left (thus shifting right). Mask Logic: To generate the appropriate mask

of every column, a multiplexer is added to select between the XRegister output of the current

column, the XRegister output of the first column of the element (i.e., least-significant bit "LSB"),

or the XRegister output of the last column of the element (i.e., most-significant bit "MSB"). For

masking, multiplication uses the LSB while comparators use the MSB.

4.3 EVEv1 Micro-Programming

BS-EVEv1 and BP-EVEv1 implement single-cycle primitives µoperations (µops). This section

describes the supported µops and illustrates how a sequence of µops can be used to implement a

complex macro-operation.

60

4.3.1 Micro-Operations

Normal SRAM read and write in a EVEv1 use the rd and wr µops. The remaining µops are as

follows:

Bit-line Compute (blc): This µop performs a read and uses the compute logic to generate AND,

NAND, OR, NOR, and ADD. The sense-amps latch their outputs, meaning these logic value can

be reused until the next blc or rd.

Writeback (cond.wb.src): After executing a blc, a writeback µop writes the selected source

back to the SRAM. The writeback µop includes two parameters: a condition and a source selection.

The condition (supported only by BP-EVEv1) specifies whether the mask bit of a column would be

set to: the corresponding mask_in bit, the element’s LSB, or its MSB. BS-EVEv1 and BP-EVEv1

utilize the already existing write mask (native to SRAMs) to conditionally writeback.

Write to Mask (wr_mask.src): Instead of writing to the SRAM, BS-EVEv1 and BP-EVEv1

allow writing to the mask state element (which is the latch in BS-EVEv1 and the XRegister for

BP-EVEv1). An algorithm can generate the mask dynamically for subsequent conditional writes.

Shift Right Logical (srl): This µop (supported only by BP-EVEv1) shifts the content of the

XRegister to the right by one bit. Multiplication uses the LSB of the XRegister as a mask for

conditional addition. By shifting, the algorithm can step through the bits of the multiplier from the

LSB to the MSB.

Jump if not done (j_n_done_{0,1}): There are two counters for control flow, and each counter

can be initialized to the desired bitwidth (e.g., 8, 32). This control µop decrements one of these

counters (indicated with the suffix). If the counter is zero, the counter is reset and execution falls

through to the next µop. If the counter is not zero, execution jumps to the label.

4.3.2 Macro-Operations

Both flavors of EVEv1 utilize arithmetic and control µops to implement multi-cycle macro-

operations (see Table 4.2). In BS-EVEv1, single-loop control is used to implement simple macro-

operations (e.g., bit-wise logic and addition) while nested-loop control is required for complex

macro-operations (e.g., multiplication and division). In BP-EVEv1, bit-parallel hardware is used

for simple macro-operations while single-loop control is only required to implement complex

macro-operations using a mixed bit-serial/bit-parallel approach. Figure 4.2 shows the implementa-

61

Macro-Operation
Cycle Count # Temporary Rows

BS-VRAM BP-VRAM BS-VRAM BP-VRAM

add 64 2 0 0
sub 128 4 0 0

and,nand,or
64 2 0 0

nor,xor,xnor

mul 1185 133 0 1
mac 1153 132 0 1
udiv 1712 519 5 1
rem 1680 390 4 2

slt,sle,sgt,sge 162 6 1 0
seq 96 11 1 1

Table 4.2: Supported Macro-operations.

tion of addition and multiplication in both BS-/BP-EVEv1. Addition in BS-EVEv1 is a loop where

each iteration uses a bit-line compute µop (blc) followed by writing back the result of the ADD

logic (wb.add). Whereas, addition in BP-EVEv1 only requires one bit-line compute µop (blc) and

one write back (wb.add).

4.4 Evaluation

This section discusses the evaluation methodology as well as the area, performance, and energy

results of BS-/BP-EVEv1.

4.4.1 Methodology

OpenRAM [GSA+16] was adapted to produce a layout for a traditional 6T-SRAM targeting a

28nm technology node. OpenRAM was also extended to produce a layout for bit-line compute-

capable SRAM (BC-SRAM) by adding an extra decoder and reconfigurable single-ended/differential

sense-amplifiers. Finally, OpenRAM was used to produce the layout for BS-EVEv1 and BP-

EVEv1 based on BC-SRAM by adding the layout for the compute logic.

Figure 4.3 shows the layout of BS-EVEv1. This layout is used to create a detailed extracted

netlist for cycle time and energy analysis. The energy of each µop is estimated by averaging the

energy consumed for 10 random inputs. Macro-operation energies are estimated by accumulating

62

Design Area (µm2)

SRAM 22,868 (1.00×)
BL-SRAM 23,722 (1.04×)
BS-VRAM 24,940 (1.09×)
BP-VRAM 24,786 (1.08×)

Table 4.3: Sub-Array Area Comparsion – SRAM = Traditional 6T SRAM, BL-SRAM = bit-
line compute capable SRAM, BS-VRAM = bit-serial vector RAM, BP-VRAM = bit-parallel vector
RAM.

the energy of all executed µops. The cycle time is estimated by simulating the worst-case inputs

on the extracted netlist.

4.4.2 Results

Since OpenRAM’s SRAM implementation does not use pushed design rules [IKT+98,JSPR08],

bitcells are roughly 80% larger compared to an equivalent SRAM generated by a commercial mem-

ory compiler. Due to larger bitcells, OpenRAM’s SRAM consumes around 1.5× write energy and

3× read energy. The read energy difference is attributed to less optimized sense-amplifiers that

require a larger voltage drop on the bitlines. OpenRAM’s SRAM achieves an operating frequency

of 1.1 GHz compared to commercial SRAM compiler, which can achieve up to 2 GHz. While us-

ing OpenRAM without pushed design rules obviously incurs significant overhead compared to a

commercial memory compiler, OpenRAM also enables detailed layout design of BS-/BP-EVEv1

and rigorous comparative analysis. Our techniques will also apply to pushed design rule SRAMs.

Table 4.3 shows that BS-/BP-EVEv1 incur marginal area overhead compared to a traditional

6T-SRAM (≤10%). BS-EVEv1 operates at slightly lower clock frequency (900 MHz) compared

to the SRAM (1.1 GHz) mainly due to the switch from a differential sense-amp to a reconfigurable

sense-amp. The MCC is on the critical path in BP-EVEv1 resulting in an operating frequency of

645 MHz. Table 4.4 shows BP-EVEv1, despite its lower frequency, can achieve 23× lower latency

compared to BS-EVEv1. However, BS-EVEv1 is able to achieve 5× higher throughput. Even with

lower latency, BP-EVEv1 struggles to compensate for fewer ALUs compared to BS-EVEv1. Per

sub-array, BS-EVEv1 has 32× more ALUs, while BP-EVEv1 reduces latency by only 23×.

Table 4.4 shows the energy comparison between BS-EVEv1 and BP-EVEv1 for add and mul

operating on 8-bit and 32-bit data. BS-EVEv1 can reduce the number of executed µops for 8-bit

63

32-bit 8-bit

BS BP BS BP

Latency add 71.1 3.1 (23.0×) 17.8 3.1 (5.8×)
(ns) mul 1316.7 206.2 (6.4×) 116.7 57.4 (2.0×)

Throughput add 3.6 (1.4×) 2.6 14.4 (5.5×) 2.6
(GOPS) mul 0.2 (5.0×) 0.04 2.2 (15.7×) 0.14

Energy add 4.7 4.8 1.2 4.8
(pJ/Op) mul 112.5 221.3 9.0 58.1

Table 4.4: Detailed Comparsion Table Between BS-VRAM and BP-VRAM.

data (and thus the energy), while BP-EVEv1 essentially always operates on 32-bit data. For exam-

ple, BS-EVEv1 requires only 1.2 pJ for an 8-bit addition, while BP-EVEv1 requires 4.8 pJ. BP-

EVEv1’s energy efficiency could be improved by using transmission gates to segment the MCC.

For 32-bit data, BP-EVEv1’s add energy is similar to BS-EVEv1, but bit-parallel mul consumes

more energy due the multiplicand shifts required to generate partial-products (i.e., more reads and

writes).

4.5 Comparison to Prior Work

Processing-in-memory has shown promise in increasing performance and energy efficiency by

moving the computation closer to the memory [AYMC15, BTKK04, KKC+16, OCS98, PAC+97b,

PJZ+14, SKF+13, ZJL+14, ZAS+14]. Specifically, recent work on processing-in-SRAM uses bit-

line compute to push logic into the SRAM with minimal area-overhead. Prior work demonstrates

the potential for bit-line compute by transforming the cache subsystem of a chip multi-processor

into different engines: a bit-parallel bit-wise logic engine [AJS+17]; a fixed-function accelerator

for neural networks [EWW+18]; and a SIMT accelerator [FMD19].

Jeloka et al. were the earliest to introduce the concept of bit-line compute, where computations

are performed digitally inside the SRAM [JASB16, JASB15]. Wang et al. propose CRAM which

extends bit-line compute to an 8T SRAM and include support for integer arithmetic [WWE+19].

Instead of performing the computation vertically, the 8T bitcell allows the computations to be

performed horizontally in the compute bitlines. Additional functionality is implemented using bit-

64

serial logic in the periphery with appropriate multiplexing. Sub-array banking helps mitigate area

overhead by sharing column decoders and compute logic with neighboring sub-arrays.

Table 4.5 shows a comparison of BS-VRAM and BP-VRAM against prior work. Despite

CRAM’s single-cycle read-write, BS-VRAM is has higher throughput because: all sub-arrays in

BS-VRAM can be active at the same time while CRAM can only use half of the subarrays due

to banking; per sub-array, BS-VRAM has twice computing bit-lines resulting in twice the ALUs

compared to CRAM; and BS-VRAM operates at a higher frequency. The use of a 6T bitcells

help BS-VRAM and BP-VRAM in occupying only half the area of CRAM. Energy efficiency of

CRAM is roughly 3× higher than BS-VRAM because CRAM uses lower wordline voltage while

performing a bit-line computation as well as utilizing a more optimized sense-amp that reduces

read and bit-line computation energy.

Although CRAM achieves 2–3× higher energy efficiency in 8-bit and 32-bit mac, the gap be-

tween BS-VRAM and CRAM can easily be closed by scaling the BS-VRAM supply voltage. Con-

sidering BS-VRAM achieves around 16–18× higher throughput, by scaling the voltage to 0.6 V,

BS-VRAM can achieve similar energy efficiency to CRAM while maintaining higher throughput.

4.6 Conclusion

Leveraging in-situ processing-in-SRAM opens a rich design space for vector accelerators by

reducing area and energy costs. Considering BS-EVEv1 and BP-EVEv1 as representative de-

sign points for bit-serial and bit-parallel approaches, our exploration shows that bit-serial achieves

higher throughput compared to bit-parallel, while bit-parallel has lower latency. Both approaches

incur comparable area overhead. Although the bit-serial has lower energy, we believe adding better

µop support for some macro-operation can bridge the gap. Finally, both designs share a signifi-

cant amount of circuitry. A reconfigurable design is possible by adding multiplexing to break the

addition chain into individual adders, thus transforming bit-parallel into bit-serial and vice-versa.

65

Paper
VRAM ISSCC’19 JSSC’16 VLSI’17

BS BP [WWE+19] [JASB16] [ZXY+17]

Technology 28nm 28nm 28nm 28nm 40nm
Voltage 0.9V 0.9V 0.9V 0.9V 0.9V
SRAM Capacity 128kB 128kB 128kB 128kB 128kB
SRAM Macro 4kB 4kB 16kB 0.5kB 8kB
SRAM Bitcell 6T 6T 8T 6T 10T
Precision Arb. 32b Arb. Arb. Arb.
Freq (MHz) 900 645 225 594 90
Area (mm2)* 1.1 1.1 2.7 0.7 1.28

Logic Ops � � � �(a) �(b)
Basic Int Ops � � �
Cmplx Int Ops � � �(c)
Cmp Ops � � �(d)
Search � �
FX Ops � �
FP Ops �

8b MAC GOPS 76.0 4.5 4.2 n/a n/a
8b MAC GOPS/W 115.5 17.2 245.5 n/a n/a

32b MAC GOPS 6.4 1.2 0.4 n/a n/a
32b MAC GOPS/W 9.0 4.5 22.5 n/a n/a

Table 4.5: Comparsion to Prior Work – Area is extrapolated to a full chip with 128kB total
capacity considering 80% density; BS-VRAM and BP-VRAM consider 10% overhead for a con-
troller; Cmplx = Complex, Cmps = comparators, FX = fixed-point, FP = floating-point. Logic ops:
and, nand, or, nor, xor, xnor. Basic int ops: add, sub. Cmplex int ops: mul, udiv, rem. Cmps
ops: slt, sle, sgt, sge, seq. FX Ops: addfx, subfx, mulfx, udivfx. FP Ops: addfp, subfp,
mulfp, udivfp. (a) limited to and, nor. (b) limited to and, nor, xor. (c) limited to mul, udiv (d)
limited to slt, sgt, seq. n/a = the corresponding work does not support this functionality.

66

loop:
1 blc addr_a, addr_b
2 wb.add addr_c

; j_n_done_0 loop

(a) add in BS-VRAM

1 blc addr_a, addr_b
2 wb.add addr_c

(b) add in BP-VRAM

1 set_cin 1
2 wb_mask <(1)

init:
3 wr addr_C <(0)

; j_n_done_0 init
iter:

4 rd addr_B
5 wr_mask.and

iter_add:
6 blc addr_C, addr_A
7 wb.add addr_C

; j_n_done_1 iter_add
8 j_n_done_0 iter

(c) mul in BS-VRAM

1 wr addr_c <(0)
2 rd addr_a
3 wb.and t0
4 rd addr_b
5 wr_mask.and

iter:
6 blc addr_c, t0
7 msb.wr.add addr_c

; srl
8 rd t0
9 wb.add t0

; j_n_done_0 iter

(d) mul in BP-VRAM

Figure 4.2: add and mul Macro-Operations – Each macro-op is used as op c, a, b, where a
and b are inputs and the resulting value would be stored in c. addr_X is the row address of variable
X. Labels are at beginning of line with colon. Control µops use labels as destination to redirect
execution flow. <(X): indicates setting the data_in port of the VRAM to the specified value X.
Semicolon (;) indicates a mini-op composed of two µops.

67

Bitcell Array

`

Bitline Logic

Compute Logic

D
ec

od
er

s

Figure 4.3: BS-VRAM Layout – BP-VRAM have identical floorplan and similar sizing.

68

CHAPTER 5
EVEV2: CIRCUITS-TO-ARCHITECTURE EXPLORATION

OF EPHEMERAL VECTOR ENGINES

Chapter 4 showed that bit-serial approach for S-CIM vector ALUs achieves high throughput

while bit-parallel approach achieves low latency. These findings motivates further research into a

new approach in-between bit-serial and bit-parallel. In this chapter, I present bit-hybrid–a novel

approach to S-CIM execution balancing throughput and latency. In bit-hybrid execution, elements

are broken into n-bits segments. The hardware of bit-hybrid execution, then, processes each seg-

ment in-parallel while it processes segments serially. By choosing the size of a segment, bit-hybrid

is able to optimize for the amount of cycles needed per operation (latency) and for the number

of elements being processed in-parallel (throughput). Moreover, the cycle-time penalty incurred

by bit-parallel approach is mitigated in bit-hybrid approach by choosing segments with smaller

size. To evaluate the architectural aspect of EVE, I build a cycle-level model and collect run-time

statics of hand-vectorized applications being executed on EVE. To quantify the performance of

EVE, I use the baseline models detailed in Chapter 3. The findings in this chapter shows that EVE

is able to balance throughput with latency achieving performance comparable to the performance

of an aggressive decoupled vector engine while incurring area overhead equivalent to that of an

integrated vector unit.

5.1 Introduction

As technology scaling fails to provide regular improvements in transistor performance and ef-

ficiency [EBA+11,CDGT17], there is a resurgence of interest in vector architectures demonstrated

by ARM SVE [Ste16,SBB+17b] and RISC-V RVV [RISC-V Foundation19]. Traditionally, vector

execution has been achieved either through simplified subword packed SIMD units or through ag-

gressive long-vector engines [Rus78, DVWW05, KTHK03, TNH+06]. There is an emerging trend

towards next-generation vector architectures, which provide unified abstractions suitable for a va-

riety of different micro-architectures and implementations (see Table 5.1). To implement these

next-generation vector architectures, one can either use an integrated vector unit (IV) or a decou-

pled vector engine (DV). Integrated vector units are typically tightly coupled into the pipeline of

the control processor. These units incur lower area overhead as they reuse the control processor

69

Attribute
Packed
SIMD

Long
Vector

Next
Generation

Length fixed, short scalable, long scalable
Element Width variable fixed variable
Predication limited full full
Cross-Element Ops full limited full
Memory Gather/Scatter limited full full

Integration integrated decoupled either
Speculative Execution yes no either
Compute Pipeline integrated decoupled either
Memory Bandwidth modest large either
Memory Latency low high either

Table 5.1: A Summary of Vector Architectures.

execution hardware and often support short hardware vector lengths. Decoupled vector engines,

on the other hand, are often loosely coupled with the control processor and incur higher area

overhead as they use aggressive execution hardware and support long hardware vector lengths.

There is a fundamental tension between performance and area among these next-generation vector

micro-architectures: (1) integrated vector units achieve modest performance in accelerating regu-

lar data-parallel workloads while costing modest area overhead; (2) decoupled vector engines have

significantly better performance at significantly higher area overhead. This chapter seeks to ad-

dress this tension: Is it possible to achieve the performance of decoupled vector engines with

the area overhead of integrated vector units?

Compute-in-memory (CIM) is a novel approach to reduce the area overhead associated with

accelerating data-parallel kernels, offering a promising path to solving this tension. There are

multiple flavors of CIM targeting different technologies: DRAM-based compute-in-memory (D-

CIM) [LDL+18,LNM+17,SLM+17,IGKR19], RRAM-based compute-in-memory (R-CIM) [CLX+16,

SQLC17,SZQ+18,QJZ+20,CRS+20,LXZ+20,CXZ+17], and SRAM-based compute-in-memory

(S-CIM) [STH+21,SQR+20,AJR+19,AJLR18,JASB15,WWE+19,AJS+17,EWW+18,FMD19].

This work focuses on S-CIM since it can be readily implemented in current state-of-the-art pro-

cesses and enables closer integration with general-purpose processors. Prior work on S-CIM lever-

ages bit-line computation [JASB15] to perform simple bit-wise logical operations through a single

read of a traditional SRAM. Complex integer, fixed-point, and floating-point operations can be

executed in-situ by additional peripheral hardware. There are two key challenges when leveraging

70

S-CIM to accelerate data-parallel workloads: (1) S-CIM Programming: offering a compelling

abstraction enabling wider applicability and flexible programmability, and (2) S-CIM Serializa-

tion Latency: mitigating the latency overhead incurred by the serialized nature of S-CIM in both

compute and memory operations.

Duality cache [FMD19] is a recent work that leverages S-CIM techniques to accelerate data-

parallel workloads in a coarse-grain fashion. Duality cache addresses the S-CIM programming

challenge by adopting a SIMT abstraction. The shared last-level cache (LLC) in a chip multi-

processor (CMP) can be reconfigured to create a large SIMT-style execution engine on demand.

Leveraging S-CIM techniques, memory arrays in the LLC are used to create a large number of

bit-serial arithmetic and logical units (ALUs). Due to the use of bit-serial execution, duality cache

suffers from high latencies (i.e., thousands of cycles) in arithmetic operations. Incoming data

need to be transposed to fit the required layout for bit-serial execution, incurring area overhead,

additional latency, and reduced memory bandwidth. The fully-transposed data along with the

requirement for all registers of a given thread to exist in the same column forces duality cache to

allocate architectural registers to neighboring SRAM arrays. As a result, extra move operations

are required to execute instructions between registers in different SRAM arrays. Duality cache

requires extreme levels of parallelism to achieve compelling speed-ups; thus requiring most of the

last-level cache for execution. As a result, these limitations constrain the use of duality cache to a

coarse grain offloading model.

Though most of the prior work on S-CIM uses bit-serial execution, VRAM [AHAA+20] pro-

poses bit-parallel as well as bit-serial execution. VRAM shows that bit-parallel execution incurs

similar area overhead to that of bit-serial. VRAM attempts to address the S-CIM serialization

latency challenge by using bit-parallel execution. Whereas a bit-serial approach targets higher

throughput, a bit-parallel approach can achieve lower latencies in compute and memory opera-

tions. CRAM [WWE+19] is another work on S-CIM that addresses the S-CIM serialization latency

challenge in bit-serial execution by utilizing 8T-SRAM bit cells; thus, lowering the serialization

overhead. The compute operations in CRAM still require high latencies due to their bit-serial

nature. Due to the use of 8T-SRAM bit cells, CRAM also incurs a high area overhead.

In this chapter, we propose ephemeral vector engines (EVE). EVE leverages prior work on

S-CIM to build efficient next-generation vector accelerators with support for all 32-bit integer

instructions in the RISC-V vector extension [RISC-V Foundation19]. By way-partitioning a pri-

71

vate L2 cache, each core in a CMP can dynamically create an ephemeral private vector engine

to execute data-parallel workloads efficiently. While state-of-the-art S-CIM leverages bit-serial

execution, EVE opts for a novel bit-hybrid approach that balances the throughput and latency of

different vector instructions. Elements are broken down into n-bit segments that are computed in

bit-parallel fashion, while the segments themselves are computed serially. SRAM arrays in the

partitioned cache ways are replaced with EVE SRAM, which is a 6T-SRAM capable of bit-line

computation with novel bit-peripheral circuits added to enable complex bit-hybrid operations. Ad-

ditional units are added to: control instruction execution, handle memory instructions, and perform

reduction/cross-element instructions.

We use a vertically integrated research methodology to evaluate EVE on two important metrics:

area and performance. We generated a layout of a simplified EVE SRAM through a modified ver-

sion of OpenRAM [GSA+16], which is a Python-based open-source SRAM generator. The layout

is composed of a simplified version of the EVE circuits added to a bit-line compute capable 6T-

SRAM. We used this layout to estimate the area overhead of EVE circuits as well as the cycle-time

penalty over a traditional SRAM array. For performance evaluation, we built a cycle-approximate

model of EVE in gem5 [BBB+11] and simulated its performance on vectorized implementations

of applications from the Rodinia [CBM+09] and RiVEC [RHP+20] benchmark suites. To quan-

tify EVE’s performance, we built a cycle-approximate model of: (1) a high-performance decou-

pled vector engine loosely based on Tarantula [EAE+02], and (2) an integrated vector unit with

hardware vector length matching conventional SIMD width [SBB+17a, RBGZ19]. EVE is able to

achieve comparable speedups to a decoupled vector engine, and a 3.5× speedup over an integrated

vector unit with as little as 5% area overhead.

Our main contributions are: (1) a novel bit-hybrid execution approach for SRAM-based compute-

in-memory (S-CIM); to our knowledge, this is the first work that proposes using bit-hybrid ap-

proach for S-CIM to balance throughput and latency; (2) a template for EVE circuits that enables

building EVE-n SRAM capable of executing vector operations targeting n-bit-hybrid execution;

(3) an exploration of the cycle-level impact and trade-offs of targeting different n-bit-hybrid exe-

cution configurations (i.e., n = 1, 2, 4, 8, 16, 32); (4) the novel EVE micro-architecture that enables

transforming private L2 cache ways into ephemeral vector engines; (5) a detailed evaluation of

different EVE design points exploring the trade-offs and impact of various design parameters.

72

5.2 Taxonomy of Vector S-CIM

Previous work has examined two different design points for a S-CIM vector engine: bit-serial

[AHAA+20, WWE+19, EWW+18] and bit-parallel [AHAA+20]. In bit-serial execution, the S-

CIM vector engine breaks down each 32-bit element into one-bit segments (i.e., each element

consists of 32 segments). The engine processes one segment of a given element in a cycle, and

processes the rest of the segments serially. In bit-parallel execution, the S-CIM vector engine

processes each 32-bit element as one segment, where the segment size is 32 bits. We define the

parallelization factor of a S-CIM vector engine as the width (in bits) of a segment from an element

that the engine can process in parallel. Using this generalization, bit-serial designs are expressed

as S-CIM vector engines with a parallelization factor of one. Bit-parallel designs are considered to

be S-CIM vector engines with a parallelization factor of n, where n is the element size supported.

By varying the parallelization factor, there is a spectrum that describes different S-CIM vector

engines. On one end of the spectrum, S-CIM vector engines with a parallelization factor of one

(i.e., bit-serial) achieve higher throughput at the cost of higher latency. On the other end of the

spectrum, S-CIM vector engines with a parallelization factor of 32 (i.e., bit-parallel, assuming 32-

bit elements) achieve lower latency but lower throughput as well. To explore this spectrum, we

construct an analytical model that calculates the throughput and latency for a vector addition and

multiplication. As one of the principles of S-CIM is to have all input elements for an operation in

the same column, the model requires all vector registers, with all their elements, to be stored in the

same SRAM array.

Element Layout & Available In-Situ ALUs – Figure 5.1 shows the layout of vector registers

holding 8-bit elements in a 16× 16 SRAM while varying the parallelization factor. Considering

an ISA that supports one vector register, with parallelization factor of one, each element occupies

a single column in the SRAM. As a result, half the SRAM is occupied providing storage for 16

elements. By increasing the parallelization factor, the segment size increases while the number

of segments decreases. As each segment occupies a row, the number of elements for the vector

register decreases; thus, lowering the number of available in-situ ALUs.

Starting with a parallelization factor of one, as the number of supported vector registers in-

creases, the utilization of the SRAM grows as well. Each column in the SRAM can be used as

an ALU performing in-situ computation of corresponding elements from different vector registers.

73

Parallelization Factor

1

2

4

8

N
u

m
b

er
 o

f
V

ec
to

r
R

eg
is

te
rs

1 2 4 8

Column

Under-Utilization

Balanced

Utilization

Row

Under-Utilization

Figure 5.1: Data Organization in S-CIM SRAM Array – varying number of supported vector
registers and the parallelization factor. Grey boxes represent bit-cells. Each vector register is
assigned a unique color. Elements belonging to the same vector register are shown as boxes with
the same color. Triangles at the periphery represent in-situ ALUs.

74

0.0

2.0

4.0

N
or

m
. T

hr
ou

gh
pu

t

1 (64) 2 (64) 4 (64) 8 (32) 16 (16) 32 (8)
Parallelization Factor (# in-situ ALUs)

0.0

0.5

1.0

N
or

m
. L

at
en

cy Add
Mul

Figure 5.2: Latency and Throughput of Add/Logic and Multiply vs. Parallelization Factor –
achieved by a 256× 256 S-CIM SRAM assuming 32 vector register support normalized to latency
and throughput of parallelization factor of 1. The number of in-situ ALUs for each parallelization
factor is shown between parentheses in the X-axis.

As Figure 5.1 shows, the SRAM reaches balanced utilization with two vector registers. However,

to support more vector registers, some of the columns are repurposed to hold the additional reg-

isters, reducing the number of in-situ ALUs. With higher parallelization factor, the SRAM can

support more vector registers without reaching column under-utilization, as each vector register

is composed of fewer segments. But, high parallelization factors struggle to increase the row uti-

lization of the SRAM unless provided with more vector registers. Figure 5.2 shows the latency

and throughput for vector addition and multiplication as the parallelization factor increases for a

S-CIM vector engine implemented using a 256× 256 SRAM with 32 vector register support.

Latency – Figure 5.2 shows the latency for a vector addition and multiplication normalized to

that of parallelization factor of one. As the parallelization factor increases, the number of segments

decreases accordingly; because the number of cycles required to perform a vector addition and

multiplication correlates to the number of segments, the latency of these operations decreases as

well. However, one can observe from Figure 5.2 that the latency is not linearly correlated with

75

the number of segments. The insight behind this is the control overhead induced by initializing

counters and control branching to process segments serially.

Throughput – Figure 5.2 shows the throughput for a vector addition and multiplication. Start-

ing with a parallelization factor of one, the S-CIM vector engine experiences column under-

utilization (as previously exemplified in Figure 5.1). As the parallelization factor increases, the

elements are composed of fewer segments; as a result, the column under-utilization is lessened

and the throughput increases despite having the same number of in-situ ALUs (since the latency

of the in-stu ALUs decreases). The throughput peaks when the parallelization factor reaches four,

achieving balanced utilization for the S-CIM SRAM. Beyond balanced utilization, the S-CIM vec-

tor engine experiences row under-utilization and the number of in-situ ALUs is decreased causing

a drop in the throughput. Although, as discussed previously, the latency will decrease further as

the parallelization factor increases, the decrease is not enough to compensate for the reduction in

the number of in-situ ALUs.

Key Insights – This section shows that both bit-serial and bit-parallel are sub-optimal and in-

duce problems such as row and columnunder-utilization; moreover, the taxonomy shows that tar-

geting bit-hybrid, which is neither bit-serial nor bit-parallel is the optimal design decision. To our

knowledge, EVE is the first to make this observation and explore bit-hybrid design space. Previous

work has predominantly explored either bit-serial or bit-parallel. Duality cache, which leverages

bit-serial execution, tried to mitigate column under-utilization by dividing vector registers into four

banks and introducing explicit move instructions inserted automatically through compiler analy-

sis. As a result, duality cache binaries are not optimal nor portable across designs with different

sub-array sizes. EVE’s elegant bit-hybrid approach alleviates column under-utilization without

the need for compiler solutions, making its binaries optimal and portable regardless of underlying

hardware micro-architecture.

5.3 EVE Circuits

EVE transforms traditional 6T-SRAM into a vector execution unit with additional peripheral

hardware. EVE leverages the circuit design from prior work on VRAM [AHAA+20] as the periph-

eral hardware with additional modifications to expand its functionality, as well as proposing a new

circuit design for supporting bit-hybrid execution. Considering a 32-bit precision, EVE-1 utilizes a

76

Bitline Logic

Bitcell Array

D
ec

od
er

 B

BL BLB

sel_and

sel_nand

sel_nor

sel_or

sel_xnor

sel_xor

data_out mask_out

sel_data_in

data_in

sel_add

ff_en

wr_xreg_cin
wr_xreg_init

sel_mask_in
sel_mask_bus

mask_in

msb

srn+1

xreg_init_val

lat_en

Bus Logic

XOR/XNOR Logic

ADD Logic

XRegister

Mask Logic

D
ec

od
er

 A

+ -

Figure 5.3: EVE-1 Bit-Serial Circuits – Composed of five different stacks: bus logic,
XOR/XNOR logic, add logic, XRegister, and mask logic.

77

sn

BL BLB

sel_and

sel_nand

sel_nor

sel_or

sel_xnor

sel_xor

data_out mask_out

sel_data_in

data_in

sel_add

ff_en

cin
wr_xreg_bus
wr_xreg_sr

sel_mask_in
sel_mask_lsb
sel_mask_msb

lsb

mask_in

srn

msb

coutb

srn+1

en_shft

l_shft
r_shft

s_shft

sn-1

sn+1

sn

sel_shft

Constant Shifter

Bus Logic

XOR/XNOR Logic

ADD Logic

XRegister

Mask Logic

Bitline Logic

Bitcell Array

D
ec

od
er

 A

D
ec

od
er

 B

Figure 5.4: EVE-32 Bit-Parallel Circuits – Composed of six different stacks: bus logic,
XOR/XNOR logic, add logic, XRegister, constant shifters, and mask logic.

78

sn

BL BLB

sel_and

sel_nand

sel_nor

sel_or

sel_xnor

sel_xor

data_out mask_out

sel_data_in

data_in

sel_add

ff_en

cin
wr_xreg_bus
wr_xreg_sr

sel_mask_in
sel_mask_lsb
sel_mask_msb

lsb

mask_in

srn

msb

coutb

srn+1

l_shft
r_shft

enen+1

s_shft

en_shft

en_shft

l_shft
r_shft

s_shft

sn-1

sn+1

en-1

cin_init

cin_shft

cout

sn

sel_shft

Constant Shifter

Bus Logic

XOR/XNOR Logic

ADD Logic

Spare Shifters

Mask Logic

XRegister

Bitline Logic

D
ec

od
er

 A

Bitcell Array

D
ec

od
er

 B

+ -

Figure 5.5: EVE-1 Bit-Serial Circuits – Composed of seven different stacks: bus logic,
XOR/XNOR logic, add logic, XRegister, constant shifter, spare shifter, and mask logic; Blue lines
indicate connections and components existing only in the LSB column of the segment. Red lines
indicate connections and components existing only in the MSB column of the segment.

79

bit-serial execution approach, and EVE-32 utilizes a bit-parallel execution approach, while EVE-n

targets an n-bit-hybrid execution approach.

The EVE circuits are composed of different stacks of logic and take as an input the outcome

of a bit-line compute operation. To perform bit-line compute, the differential sense-amplifiers

in the traditional 6T-SRAM are modified to support reconfigurable differential and single-ended

modes. An extra address decoder is added to allow the selection of two wordlines simultaneously.

When performing bit-line compute operation, the two operands (i.e., wordlines) to the operation

are selected simultaneously and the sense-amplifiers are set in the single-ended mode. As a result,

the sense-amplifiers compute four bit-wise logical operations: and, nand, or, and nor. The circuit

for an EVE design is a stack composed of a mixture from seven different layers of logic: bus logic,

XOR/XNOR logic, add logic, XRegister, mask logic, constant shifter, and spare shifter. Due to the

bit-wise nature of the bus logic and XOR/XNOR logic, these layers are the same for the different

EVE designs. The bus logic amplifies and selects one of the values computed by the circuit for it

to be written back to the SRAM. Meanwhile, the XOR/XNOR logic uses the nand and or values

to compute the xor and xnor of the operands.

The remainder of the section discusses the design of the rest of the stack for each EVE design.

The first, second, and third subsections discuss EVE-1 circuit, EVE-32 circuit, and EVE-n circuit,

respectively.

5.3.1 EVE-1 Bit-Serial Circuit

For bit-serial execution, EVE adopts the same circuit from BS-VRAM [AHAA+20]. Although

BS-VRAM does not support variable shift/rotation, the functionality can be supported through

programming the circuits to perform multiple reads/writes to shift the values down the rows without

any changes to the circuit. The circuit, shown in Figure 5.3, is composed of five different layers

of logic: bus logic, XOR/XNOR logic, add logic, XRegister, and mask logic. Each column of the

circuit operates independently to process 32-bit values over the span of multiple cycles. The add

logic in each column employs a single block of a Manchester carry chain to perform a one-bit full

addition and uses the xor and xnor of the operands along with the carry-in to calculate the sum

and the carry-out of the addition. The XRegister stores the carry bit from the add logic facilitating

a bit-serial addition. The mask logic contains a single latch to store the masking value for each

80

column. The input to the latch can either be one of the values computed by the circuit or an input

mask provided to the SRAM.

5.3.2 EVE-32 Bit-Parallel Circuit

The bit-parallel circuit in EVE heavily leverages the BP-VRAM [AHAA+20]. However, as

BP-VRAM does not support variable shifts and rotations, extra layers have been added to the stack

to facilitate shift/rotation support. The EVE-32 bit-parallel circuit, Figure 5.4, is composed of six

layers: bus logic, XOR/XNOR logic, add logic, XRegister, constant shifter, and mask logic. To

support bit-parallel execution, sets of 32 columns are grouped together to process 32-bit values in

parallel. For the add logic, a Manchester carry chain is used to propagate the carry of the addition

and calculate the sum value. Each column contains a block of the Manchester carry chain. The

XRegister is configured as a shift-right register spanning the 32 columns. This shift register aids in

executing complex operations such as multiplication, division, and shift. The mask logic contains

a single latch to store the masking value. As with bit-serial circuit, the input to the latch can either

be the values computed by the circuit or an input mask provided to the SRAM through port.

In contrast to BP-VRAM, the EVE-32 bit-parallel circuit contains constant shifter logic, which

can be used to execute variable shifts and rotations. After the 32-bit value is loaded, the shifter

supports conditional one-bit shift-left and shift-right. The condition for the constant shifter is set

to the mask of the column. By leveraging conditional one-bit shifts, a variable shift larger than

one can be computed through binary decomposition of the shift amount. For each bit of the shift

amount at index i, the constant shifter can perform multiple one-bit shifts adding up to 2i. By

iterating through the shift amount, the conditional one-bit shifts will eventually add-up to the shift

amount over time.

5.3.3 EVE-n Bit-Hybrid Circuit

The circuit for EVE-n is set at design-time to target a fixed parallelization factor of n (where

n is between 2 and 16). The EVE-n bit-hybrid circuit, shown in Figure 5.5, is composed of seven

layers: bus logic, XOR/XNOR logic, add logic, XRegister, constant shifter, spare shifter, and mask

logic. The circuit processes one n-bit segment from an element in parallel and processes each of

the n-bit segments serially. Every n columns of the SRAM are grouped together to form an n-bit-

81

hybrid execution hardware. The mask logic contains a single latch used to store a mask for a given

column. The mask can be set to the XRegister value of either the most-significant column or the

least-significant column of the segment. The mask latch can also be loaded with either a value

computed by the circuit or an input mask.

For the add logic, an n-bit Manchester carry chain is used to perform full n-bit addition between

two segments. The carry is then stored in one of the unused flip-flops in the spare shifter. Then, the

flip-flop is wired to provide the stored carry as the carry-in for the Manchester carry chain when

adding subsequent segments. Unlike the bit-serial circuit, the XRegister is no longer used to store

the carry. As a result, the XRegister can be used as a shift-right register, similar to the XRegister

in the bit-parallel circuit, to implement complex operations such as multiplication, division, and

shift.

For shifts, the bit-hybrid circuit employs a constant shifter, similar to the bit-parallel circuit.

However, the constant shifter processes one n-bit segment. To be able to perform shifts in a bit-

hybrid fashion across multiple segments, the bit-hybrid circuit utilizes a newly introduced layer

called the spare shifter. As the constant shifter performs either a left or right shift, the spare

shifter performs either a right or left shift, respectively. As a result, the spare shifter can store the

bits being shifted across different segments. A binary decomposition approach similar to that of

the bit-parallel circuit can be used to perform the shifts efficiently. However, indices in the shift

amount greater than or equal to log2(n) implies shifts that are integer multiples of the segment size.

These shifts can be performed much more efficiently in the bit-hybrid approach than the bit-parallel

approach by conditionally shifting a whole n-bit segment rather than performing conditional one-

bit shifts.

5.4 EVE Micro-Programming

To control the circuits detailed in Section 5.3, EVE employs a micro-operation (µop) abstraction

that enables writing micro-programs to achieve elaborate and more complex operations. Each µop

takes a single cycle to execute and has well-defined inputs, outputs, and side-effects. This section

discusses the micro-programming aspect of EVE. The remainder of the section is organized as

follows: the first subsection details the different µops implemented by EVE; the second subsection

explains how different macro-operations are implemented by sequencing µops.

82

µOperation Syntax Description

read rd a, src read a into src
write wr d, src write src into d

blc blc a, b Bit-line compute of a and b
lshift lshft 1-bit shift left
rshift rshft 1-bit shift right
lrotate lrot 1-bit rotate left
rrotate rrot 1-bit rotate right
mask shft m_shft 1-bit shift right the XRegister

cnt_init init cnt, val Initialize cnt to val
cnt_decr decr cnt Decrement cnt by one

bnz bnz cnt, l Branch to l if cnt is not zero
bnd bnd cnt, l Branch to l if cnt is a decade
ret ret Conclude execution

Table 5.2: Supported EVE Micro-Operations – m = {msb, lsb, none}. src = {(n)and, (n)or,
x(n)or, add, shift, data_in}.

5.4.1 Micro-Operations

Table 5.2 lists all the µops supported by the different EVE-n types. There are three types of

µops: arithmetic, control, and counter. Arithmetic µops are executed by the circuits detailed in

Section 5.3. The other two categories are executed by the control logic. The arithmetic µops are as

follows:

Read/Write (rd/wr a, [dst/src], mask) – These two µops represent the native SRAM

read and write. The µops take as an operand a destination to store resulting read; or a source to the

data for the write. Both operations include a mask as an operand to specify which columns in the

SRAM are active or inactive to during the read/write execution.

Bit-Line Compute (blc a, b) – This µop performs a bit-line compute operation between

wordline a and wordline b. It starts by enabling the two decoders in the EVE SRAM at the same

time selecting wordline a and wordline b. Then, it reconfigures the sense-amplifiers in the single-

ended mode. The sense-amplifiers will compute the bit-wise logical operations and feed these

values to the rest of the EVE circuitry (as detailed in Section 5.3).

Shift Left/Right ({l,r}shift) – This µop shifts left or right the content of the constant shifter

by one bit. For EVE-32, only the constant shifter is shifted. However, for EVE-n, a spare shifter

83

is shifted along side the constant shifter; whereas constant shifter is shifted left or right, the spare

shifter is shifted in the opposite direction (i.e., right or left, respectively).

Writeback (wb d, src, mask) – After executing a blc, this µop reads the value computed

by src and writes it back to the EVE SRAM at wordline d. The destination of the write back

can also be specified as the mask registers (XRegister in bit-parallel and bit-hybrid; mask logic in

bit-serial).

Mask Shift (mask_shift) – Conditionally executing µops is an essential functionality to im-

plement more complex operations. To this end, for bit-hybrid and bit-parallel, the mask_shift

µop allows manipulating a masking value through left shifts without the need for additional SRAM

reads. The mask registers can be loaded through the writeback µop.

EVE also includes 12 counters shared by all EVE SRAMs. These 12 counters are grouped in

three groups: segment counters (seg_cnt[0-3]), bit counters (bit_cnt[0-3]), and array coun-

ters (arr_cnt[0-3]). Each group is initialized to a specific value, which is inferred from the

EVE configuration and execution state: segment counters are initialized to number of segments;

bit counters are initialized to the size of a segment; and array counters are initialized to the number

of active arrays in EVE. When the value in any counter is decremented to zero, the counter is reset

to its initial value. There are two sets of flags that track the state of each counter: zero flags, which

track whether each counter has reached zero and was reset to its initial value; and binary decade

flags, which record whether a counter has reached a binary decade. Counter µops are executed

by a unified control logic to manipulate the counters. The first counter µop is: incr/decr cnt,

which increments or decrements the counter specified by cnt. The second µop is: init_cnt,

val, which forces an initialization of the counter cnt to the value val—a specified value inferred

from the EVE configuration and execution state (e.g., number of segments, segment size, or active

SRAM arrays).

To control which arithmetic µop is executed, a unified control logic in EVE executes control

µops to manipulate a micro-program counter (µpc). There are two classes of control µops: con-

ditional and non-conditional branches. Conditional branches inspect the corresponding flags for

a specified counter and redirect the µpc depending on the condition (i.e., whether the counter has

reached zero or a binary decade). The inspected flag for the conditional branch is reset when the

branch is taken. Non-conditional branches change the µpc unconditionally. Control µops include a

84

Each µop is used as op c, a, b: a and b are inputs
and result is stored in c. addr_X is the row address
of X. Labels are at beginning of line with colon. Con-
trol µops use labels as destination to redirect execu-
tion flow. <(X): indicates setting the data_in port to X.
Semicolon (;) indicates a mini-op composed of two to
three µops.

loop:
1 blc addr_a, addr_b

; decr seg_cnt[0]
2 wb addr_c, add

; bnz seg_cnt[0], loop

(a) add

1 rd addr_b, mask
iter:

2 blc addr_c, addr_a
; decr seg_cnt[0]

3 wb addr_c, add, mask
4 rd addr_c
5 wb addr_c, add

; bnz seg_cnt[0], iter
6 mask_shift

; decr bit_cnt[0]
; bnz bit_cnt[0], iter

7 rd addr_b, mask
; decr seg_cnt[1]
; bnz.r seg_cnt[1], iter

(b) mul

Figure 5.6: add and mul Macro-Operations.

ret flag, which indicates whether the current micro-program is terminating execution and yielding

to the next micro-program.

5.4.2 Macro-Operations

Incoming vector instructions are broken down into one or multiple macro-operations. Any of

these macro-operations to be executed on the EVE SRAM are implemented as a micro-program

(µprogram), which is a sequence of micro-operation tuples with a micro-program counter (µpc).

Each tuple is composed of three µops, one from each of the three categories outlined in Sec-

tion 5.4.1. These tuples are executed in the following order: counter µop, arithmetic µop, then

control µop.

Figure 5.6 shows the bit-hybrid implementation of integer addition and multiplication. Integer

addition, shown in Figure 5.6(a), is executed by performing bit-line computation between corre-

sponding segments of the two input elements and then writing the results back into the destination.

The carry between the segments is propagated through the XRegister in the circuits. The con-

trol required for the addition is straight-forward requiring a simple count-down loop that iterates

over the segments. Integer multiplication, shown in Figure 5.6(b), requires more elaborate control

with nested loops and different bounds for each loop. An outer loop (iter) handles predicated

85

Way 0

eWay 0

Way n/2

eWay n/2

...

...

DTUCTRL

O3

I$ D$

L2

VCU/Cache Controller

L2 Bank 0

VSU

Way 0

eWay 0

Way n/2

eWay n/2

...

... ...

DTU

VMUVRU

O3

I$ D$

L2

...

LLC
SLICE 0

LLC
SLICE k

CTRL

eWay x
EVE

RAM ...

...

EVE

RAM

EVE

RAM

EVE

RAM

EVE

RAM

EVE

RAM

EVE

RAM

EVE

RAM

...

EVE

RAM ...
..
.

EVE

RAM

EVE

RAM

EVE

RAM

EVE

RAM

EVE

RAM

EVE

RAM

EVE

RAM

...

L2 Bank m

Figure 5.7: EVE Micro-Architecture.

summation for calculating the multiplication (executed for N iterations, where N is the number of

segments). The inner loop (i.e., iter_add) will perform a single addition (executed for n itera-

tions).

5.5 EVE Micro-Architecture

This section introduces the micro-architecture of EVE, shown in Figure 5.7. To facilitate vector

execution in EVE SRAM, a vector control unit (VCU) converts incoming vector instructions into

one or multiple macro-operations. Depending on the type of the vector instruction, these macro-

operations are broken down into a sequence of micro-operations by the help of either the vector

sequencing unit (VSU), vector memory unit (VMU), and/or vector reduction unit (VRU). The

stream of micro-operations are executed by EVE SRAMs. The VCU coordinates execution and

communitcation between these units and the control processor.

5.5.1 Vector Control Unit (VCU)

When the control processor encounters a vector instruction, it is inserted in a special queue

waiting to be sent to EVE. As EVE does not support precise exceptions, the vector instructions

are only sent to EVE when they are ready to be committed. Once sent, the vector instructions

are committed to unblock the commit logic. Then, these vector instructions are sent to the retire

stage awaiting a response confirming their execution from EVE. If a writeback is to be expected

from a vector instruction (e.g., vmv.x.s), the instruction instead stalls the commit logic awaiting

a response from EVE with the value to be written back. To manage scalar-vector memory de-

86

pendency and synchronization, a new vector memory fence instruction (vmfence) is introduced.

The vmfence stalls the load-store-queue (LSQ) in the control processor from executing subsequent

memory instructions until the vector fence is committed. Once at the commit stage and all pending

scalar stores are performed, the vmfence is sent to EVE and stalls awaiting a response.

Once a vector instruction is received, depending on its type, the VCU creates one or more

macro-operations. For non-memory and non-cross-element vector instructions, the VCU creates

one macro-operation that is executed by the VSU. Once the macro-operation is sent to the VSU,

the vector instruction is marked as performed and a response is sent back to the control processor.

For memory and reduction/cross-element vector instructions, two macro-operations are created:

one macro-operation is sent to either the VMU to initialize the memory operation or the VRU to

initialize the reduction operation; the second macro-operation is sent to the VSU to perform the

necessary reads and writes from and to EVE SRAMs. For vector memory fences, the VCU stalls

waiting for the VMU to drain all pending loads and stores; then, the VCU executes the fence by

simply sending a response to the control processor.

5.5.2 Vector Sequencing Unit (VSU)

The vector sequencing unit (VSU) decodes macro-operations into a sequence of µops primitives

as explained in Section 5.4. The arithmetic µops are sent to the EVE SRAMs for execution as

detailed by Section 5.3, while the control µops are executed by the VSU. The VSU consists of a

micro-program counter (µPC), a ROM containing the implementation of various macro-operations,

and a set of counters. The µPC points to the current µop tuple being executed in the ROM. The

set of counters help in executing the various control µops (e.g., bnz and bnd). The VSU adapts

a VLIW-style encoding for the µops. Each cycle the VSU fetches a tuple consisting of three

different µops: arithmetic µop, counters µop, and control µop. These micro-operations can be

executed simultaneously. Executing control µops with the ret flag set will cause the VSU to stop

executing the current vector instruction and return control back to the VCU.

5.5.3 Vector Memory Unit (VMU)

Executing memory vector instructions requires upwards of three macro-operations. One macro-

operation is for the vector memory unit (VMU), shown in Figure 5.8, to generate the appropriate

87

VMU
IDX Data

ProcLogic LineBuffer

ReqLogic LineBuffer

S
T

Q

L
D

Q

LineBuffer

Shuffle/Align

VMUReq

To L2 Cache From L2 Cache

Shuffle/Align
Metadata

Data Out

Figure 5.8: VMU Micro-Architecture.

requests to the memory sub-system. Another one or two macro-operations are for the VSU to

read indices required for the memory requests and to perform a read/write for the data from/to

the EVE SRAMs. The VMU guarantees cache-line alignment for the generated requests. As for

memory gather instructions (i.e., indexed loads), the VMU generates a request for each element

and then performs the required gather operation to form a single line to be written back into the

EVE SRAMs. An extra port in the TLB of the control processor is dedicated for the VMU to

translate virtual addresses for incoming requests.

5.5.4 Vector Reduction Unit (VRU)

The vector reduction unit handles reduction instructions (e.g., vredsum.vs) as well as vector

cross-element instructions (e.g., vrgather). Assuming B bits as the read/write bandwidth of the

EVE SRAM, the VSU is able to stream B
n elements (i.e., E) into the VRU for a given n-bit-hybrid

configuration. The elements will be streamed one segment at a time over the span of 32
n for 32-bit

element precision. The VRU contains E ports with each port having a fast lightweight detranspose

logic. After all the segments are received, the VRU begins performing a dot-operation between the

received E elements and the previously reduced E elements. Finally, once all elements have been

streamed and the dot-operation between the different element groups has finished, the VRU starts

a linear reduction operation. Then, the VSU issues a read µop to read the calculated reduction and

either write it to a destination vector register or back to the control processor.

88

5.5.5 Reconfigurability

To support EVE, half of the private L2 cache ways are designed with EVE SRAMs instead

of vanilla SRAMs. These ways operate as normal SRAMs performing reads and writes for L2.

To spawn EVE, the associativity for the private L2 cache is reduced by half and the L2 cache is

way-partitioned into: cache ways, and EVE ways. The cache ways constitute the new L2 and

continue to service the core with no impact, aside from the halved associativity. The overhead

of setting up EVE consists of reconfiguring the remaining EVE ways through invalidating cache

lines residing in these ways. For dirty cache lines, the invalidation causes a writeback to the LLC.

For clean cache lines, the invalidation causes the number of sharers to be decremented in the LLC,

depending on the cache protocol. Since the cache hierarchy is inclusive, the invalidation and write-

back to LLC should scale linearly with the number of cache lines (i.e., each cache line should incur

constant number of cycles to invalidate in L1 and write-back to the LLC). To achieve this, a simple

FSM machine and a counter can iterate through the reconfigured EVE ways causing the L2 to stall.

However, the core can continue to be serviced from L1 as long as no misses are encountered. To

reconfigure EVE ways back to L2 cache, there is no overhead and simply the cache associativity

can be increased with all the cache lines returned to the L2 cache initialized as invalid.

5.6 Circuits Evaluation

This section discusses the evaluation methodology and results of EVE’s circuits.

5.6.1 Methodology

To evaluate the circuit of the different EVE designs with varying parallelization factors, we

leveraged OpenRAM [GSA+16], which is an open-source Python-based memory generator. Open-

RAM was modified to generate layout of an SRAM memory capable of bit-line computation on

a 28nm technology node. Bit-line computation required an additional decoder to the SRAM as

well as modifying the sense-amplifiers to support reconfigurable modes: differential and single-

ended. A simplified version of the EVE-1 and EVE-32 circuits were implemented and used as an

estimate for the proposed circuits. The simplified version lacked support for constant shifting; but,

otherwise, matched the rest of the proposed circuits. The simplified circuits were implemented

89

IO Single-issue in-order RV64GC core:
• L1I: 1-cycle-hit 4-way 32KB
• L1D: 2-cycle-hit 4-way 32KB
• L2: 8-way 8-bank 8-cycle-hit 512KB

O3 Out-of-order 8-way RV64GC core:
• Same L1I, L1D, and L2 as IO

O3+IV Small vector unit integrated into O3:
• Same L1I, L1D, and L2 as O3
• IV: 4-element VL, out-of-order issue, 3 exec pipes

O3+DV Decoupled vector engine connected to O3:
• Same L1I, L1D, and L2 as O3
• DV: 64-element VL, in-order issue, 4 exec pipes

O3+EVE EVE engine connected to O3:
• Same L1I and L1D as O3
• L2: 4-way 8-bank 8-cycle-hit 256KB in vector mode
• EVE-x: in-order issue, 1 exec pipe
• VL (elements): EVE-{1,2,4}=2048, EVE-8=1024, EVE-16=512, EVE-32=256

LLC Same for all systems: 16-way, 12-cycle-hit & 2MB

Memory Same for all systems: single-channel DDR4-2400

Table 5.3: Simulated Systems.

and laid out on the aforementioned 28nm technology node and they passed DRC and LVS checks.

After the simplified circuits were verified through SPICE simulations, they were added as modules

to OpenRAM. Then, OpenRAM was modified to include these circuits as part of the peripheral

hardware for EVE SRAM. By leveraging the flexibility of OpenRAM, once OpenRAM was capa-

ble of generating EVE-1 and EVE-32 SRAMs, multiple designs of bit-parallel EVE SRAM (i.e.,

EVE-32) with varying bit-precision (b) were generated effortlessly (i.e., b = {2, 4, 8, 16, 32}).

Each b bit-parallel EVE SRAM was used as proxy to analyze b-bit-hybrid EVE SRAMs as both

designs have the same critical combinational path (i.e., carry propagation). Cycle-time for the

EVE-n SRAM was estimated through the extracted netlist for the SRAM generated by OpenRAM.

Area overhead was estimated by inspecting the layout of the simplified circuits adding estimated

area from the missing stacks.

90

5.6.2 Results

OpenRAM was used to generate the layout of a 256× 128 simplified EVE SRAM, which

includes the simplified EVE circuit in its peripheral hardware. The layout passed the DRC and

LVS checks for the 28nm technology node. Schematic circuits for the full bit-serial, bit-parallel,

and bit-hybrid EVE configuration was built and used to verify correct functionality.

According to the layout, the 256× 128 simplified EVE SRAM incurs 8.2% area overhead

compared to a vanilla 28nm SRAM generated by OpenRAM. By estimating the additional stacks

for the different designs, EVE-1 incurs 9.0% area overhead, EVE-x (bit-hybrid) incurs 15.6%

area overhead, and EVE-32 incurs 12.6% area overhead. An EVE SRAM is composed of two

banked 256× 128 sub-arrays, further reducing the area overheads by half: EVE-1 (4.5%), EVE-x

(7.8%), and EVE-32 (6.3%). As for the cycle-time, the baseline vanilla SRAM has a cycle-

time of 1.025ns with the read logic being the critical timing path. By estimating n-bit-hybrid

circuit through bit-parallel circuit with n-bit precision, our analysis shows that n-bit-hybrid (with

n <= 8) has a cycle-time equivalent to that of the baseline with no penalty. However, targeting

16-bit-hybrid incurs a cycle-time penalty of about 15% (cycle time of 1.175ns). 32-bit-hybrid

configuration further increases the overhead to 51% (cycle-time of 1.55ns).

Vanilla SRAM supports two basic operations: read, and write. EVE SRAM supports read

and write basic operations as well as extra operations (shown in Table 5.2). According to power

analysis conducted on the extracted netlist from the layout, EVE SRAM energy for the basic op-

erations (i.e., read and write) are similar to the vanilla SRAM. Other than bit-line compute op-

eration (blc), the extra operations supported by EVE SRAMs incur much lower energy since no

sense-amplifiers nor bit-line pre-charging is involved. Bit-line compute (blc) in EVE SRAM incur

around 20% higher energy when compared to a read (the most energy-expensive operation in the

vanilla SRAM). Despite the energy increase, EVE is energy-efficient since no energy-expensive

data movements are needed through the H-tree.

5.7 Architecture Evaluation

This section discusses the performance methodology and evaluation of the different EVE de-

signs.

91

Scalar

Name Suite Input DIns IOc

vvadd k 8.388M 75.5M 205M
mmult k 1024 8.60B 48.5B

k-means ro 10Kx34 2.11B 3.59B
pathfinder ro 5Mx10 1.08B 2.43B
jacobi-2d rv 2Kx10 1.59B 8.50B
backprop ro 524K 1.17B 15.7B
sw g 2070 1.38B 1.69B

Table 5.4: Benchmark Applications List – k = kernel, ro = rodinia, rv = RiVEC, g = genomics,
DIns = number of dynamic instructions in ROI, IOc = number of cycles to run on an in-order core.

5.7.1 Methodology

To model the performance of the different EVE designs, we leveraged gem5 [BBB+11,LPAA+20,

TCB18a], which is a cycle-approximate simulator. We built cycle-approximate models for EVE-n

and other baseline systems in gem5 and verified their correctness. In our modeling, we used two

core types as the scalar baselines: out-of-order (O3) and in-order (IO). For the O3 core, we lever-

aged gem5’s out-of-order core. As for IO core, we developed our own single-issue, in-order core.

For the memory sub-system, we used ARM’s CHI cache coherency model [gem21]. We modified

ARM CHI to include special ports to connect vector units to either the L2 cache or the LLC, while

modeling arbitration between the L1 and the vector unit.

To quantify the performance of EVE, we leveraged two scalar baselines and two vector base-

lines, detailed in Table 5.3. The two scalar baselines are in-order core (IO) and out-of-order

core (O3). Since an EVE design incurs about 15% area overhead in the L2 cache, we evalu-

ated the performance of an O3 system with 15% bigger L2 cache. An O3 system with 15%

bigger L2 cache performs equivalently to an O3 without the increase in the L2 cache. The

two vector baselines are: integrated vector unit added to an out-of-order core (O3+IV) (loosely

based on [SBB+17a,RBGZ19]) and decoupled vector unit added to an out-of-order core (O3+DV)

(loosely based on [EAE+02]). The development and design for the vector baseline models are

discussed in Chapter 3. IV shares three execution pipes with the control core (two floating-

point/SIMD pipes, and memory execution pipe) and shares the load-store queue. Constant strides

and indexed memory operations are decomposed to micro-operations and handled as scalar load-

92

s/stores by the load-store queue. As for DV, it has four execution pipes: simple integer, pipelined

complex integer, iterative complex integer/cross-element, and memory execution pipe. DV in-

cludes a detailed model of a vector memory unit (VMU) capable of performing unit-stride, strided,

and indexed memory operations. The VMU uses its TLB port to translate addresses for each

generated cacheline memory request. Our model accounts for the request generation and address

translation with one cycle and it assumes translated addresses always hit in the TLB.

We built a flexible cycle-approximate model of EVE in gem5 to calculate the performance of

the different EVE-n designs. The model contains four units: vector control unit (VCU), vector

sequencing unit (VSU), vector reduction unit (VRU), and vector memory unit (VMU). The control

processor sends a vector request to EVE upon encountering a vector instruction in commit stage.

The VCU handles the incoming vector requests as well as the outgoing vector responses. The

VCU forwards the requests in the order received to the VSU and the VMU. The VSU performs

a micro-decoding and starts executing the micro-program for the vector request. Each generated

µops from the VSU is sent to the EVE SRAMs in one cycle. The VSU stalls special read/write

µops from/to the DTU until the data is ready. Our model performs a separation between execution

and timing by using the µops to estimate timing while execution for the vector instructions happens

functionally.

We evaluated the performance of the different EVE designs on applications form Rodinia

[CBM+09] and RiVEC [RHP+20] benchmark suites (shown in Table 5.4). The applications were

vectorized manually using vector intrinsics in LLVM 13. The characterization of the scalar and

vector versions of the applications is detailed in Table 5.5.

5.7.2 Results

Figure 5.9 shows the simulated performance (normalized to IO) of the different EVE designs

against other baselines. Table 5.6 details the performance of the different EVE designs normalized

to different baselines. O3+DV achieves the best performance on the chosen data-parallel work-

loads, as expected. On average, O3+DV achieves 21.58× speedup over the in-order scalar baseline

(IO). O3+IV achieves a speedup of 5.58× over IO and 1.74× speedup over out-of-order scalar

baseline (O3). Among all the different EVE designs, EVE-8 achieves the best performance of

25.60× over the IO baseline, which is comparable to O3+DV performance. EVE-16 achieves the

best next performance among EVE designs; however, EVE-16 suffers from a cycle-time penalty

93

Vector (VL=64)

Name DIns VI% ctrl ialu imul xe us st idx prd DOp VO% VPar WInf ArInt

vvadd 1.6M 42% 20 20 0 0 7 0 0 0 35.5M 96% 22.6 0.47 0.33
mmult 151M 44% 25 25 25 0 25 0 0 0 3.35B 97% 22.2 0.39 2.00

k-means 51.5M 46% 1 52 18 ∼0 ∼0 10 7 1 1.53B 98% 29.8 0.72 2.44
pathfinder 22.5M 50% 31 37 0 0 16 0 0 25 513M 97% 22.8 0.48 1.20
jacobi-2d 35.4M 44% 8 50 8 17 7 0 0 0 940M 98% 26.6 0.59 4.50
backprop 21.5M 39% 13 19 25 ∼0 5 12 0 0 488M 96% 22.7 0.42 1.00
sw 20.4M 39% 10 55 0 11 10 14 0 10 433M 97% 21.2 0.31 2.75

Table 5.5: Benchmark Applications Characterization – DIns = number of dynamic instructions
in ROI, IOc = number of cycles to run on an in-order core, VI% = percent of dynamic instructions
that are of vector type, ctrl = vector control instructions, ialu = vector integer alu instructions,
imul = vector integer multiplication and division instructions, xe = vector cross-element instruc-
tions, us = vector unit stride memory instructions, st = vector constant stride memory instructions,
idx = vector indexed memory instructions, prd = predicated vector instructions, DOps = total num-
ber of operations (scalar instructions + vector instructions × active vector length), VO% = percent
of operations performed by vector unit, VPar = logical parallelism (total ops / dynamic instruc-
tions in vectorized program), WInf = work inflation (total ops in vectorized program / dynamic
instructions in scalar program), ArInt = arithmetic intensity (mathematical operations / memory
operations) for vector unit.

that affects its scalar performance. As a result, EVE-8 is a very compelling design point incurring

modest overhead, yet achieving performance comparable to a decoupled vector unit.

EVE incurs a modest area overhead making it area-comparable to O3+IV. The VMU employed

by EVE is similar and sized equivalently to O3+IV’s VMU. EVE requires only eight data trans-

pose units (DTUs). Each DTU is equivalent in size to half a sub-array. The ROM required for

to implement the macro-operations is equivalent to one sub-array. In total, EVE incurs a 7.8%

increase in the number of sub-arrays in the L2 cache (which contains 64 sub-arrays). Considering

EVE-8, the circuits incur 7.8% area overhead, but since only half the SRAMs are EVE SRAMs,

the circuit overhead is 3.9% . Overall, EVE-8 incurs a total area overhead of 11.7% . EVE in its

best configuration can achieve 4.59× performance speedups over the O3+IV. By achieving higher

performance at a similar area overhead, EVE is more area-efficient than O3+IV.

Compute Throughput – Figure 5.10 shows the execution breakdown of different EVE designs

running several applications. The execution breakdown, normalized to EVE-1, clearly shows the

column under-utilization effect in S-CIM: the percentage of time where EVE is busy executing use-

ful work goes down as the parallelization factor increases until balanced utilization (i.e., EVE-4),

94

Speedup vs. O3+IV E-8 vs.

Name DV E-1 E-2 E-4 E-8 E-16 E-32 E-1 E-32

vvadd 3.64 3.19 3.23 3.24 3.28 3.23 3.38 1.03 0.97
mmult 4.42 0.93 1.84 3.55 5.34 5.29 4.60 5.71 1.16

k-means 2.28 1.22 1.32 1.35 1.86 1.82 1.51 1.53 1.24
pathfinder 8.11 5.37 6.27 6.33 6.30 6.30 6.20 1.17 1.02
jacobi-2d 6.36 6.18 9.50 11.30 13.49 13.50 12.69 2.18 1.06
backprop 2.14 2.01 2.05 2.07 2.07 2.06 2.06 1.03 1.01
sw 3.44 2.43 3.97 5.32 6.21 6.14 5.08 2.55 1.22

geomean 3.87 2.88 3.64 4.03 4.59 4.55 4.16 1.59 1.10

Table 5.6: Benchmark Applications Results – DV = O3+DV, E-x = EVE-x, geomean = calcu-
lated for: {k-means, pathfinder, jacobi-2d, backprop, sw}.

then it starts to increase due to row under-utilization and slower clock. The reason behind this

behavior is: despite the hardware vector length being constant, the latency of the in-situ ALUs de-

creases going from EVE-1 to EVE-4 (with EVE-4 being balanced utilization), giving EVE higher

compute throughput and thus requiring less time to perform the same amount of work; beyond

EVE-4, row under-utilization coupled with slower clock (for EVE-16, and EVE-32 only) causes

lower compute throughput and thus EVE requires more time to perform the same amount of work.

For applications that are memory-bound (i.e., vvadd, pathfinder, backprop-int), the execution

time for the different parallelization factors is dominated by memory stalls. Therefore, compute

throughput have a negligible impact on the overall performance. vvadd is inherently memory

bound, while the others (as will be shown later) are faced with hardware limitations from the

memory sub-system.

Transpose/Detranspose Overhead – Although EVE employs a very conservative transpose

units, the transpose/detranspose overhead is minimal in most applications, as shown in Figure 5.10.

One of the applications that experience measurable overhead from transpose/detranspose is vvadd,

which is heavily memory bound. In vvadd, the bandwidth of transpose/detranspose in EVE fails to

match the bandwidth of the data streaming from the cache sub-system. As a result, the transpose

units start to induce negligible stalls. pathfinder is a the only application that show significant

transpose/detranspose overheads. EVE struggles to overlap compute with transpose/detranspose

and as a result, the execution stalls waiting for the data.

95

Figure 5.9: Performance Evaluation – performance of the different EVE configuration on appli-
cations from Rodinia and RiVEC benchmark suite normalized to the performance of an in-order
core.

Figure 5.10: Execution Breakdown – profiling execution breakdown between different categories
(normalized to EVE-1 execution time); busy=executing useful work; vru_stall=VRU structural
hazard stall; ld_mem_stall=load memory stall; st_mem_stall=store memory stall; ld_dt_stall=load
transposing stall; st_dt_stall=store detransposing stall; vmu_stall=VMU structural hazard stall;
empty_stall=empty cycle stall; dep_stall=register dependency stall.

Figure 5.11: Cache-Induced Stalls in the VMU – showing the percentage of time the VMU is
faced with a stall when sending a request to the LLC (normalized to EVE-1 execution time). These
stalls do not necessarily cause a bubble/stall in execution as they can be hidden by overlapping
outstanding compute in EVE.

96

In EVE-1, the transpose/detranspose overhead is insignificant regardless of the application.

Due to its low compute throughput, EVE-1 is able to overlap execution with the transpose/detrans-

pose operation. This effect is more prominent in mmult, which is compute-bound. As the compute

throughput increases starting from EVE-1 till EVE-4, the transpose/detranspose overhead increases

while memory stalls are non-existent; EVE-32, however, requires no transpose/detranspose and,

therefore, has higher performance despite the increase in its compute time. For pathfinder (which

has a significant transpose/detranspose overhead), EVE-32 achieves higher performance despite its

lowered compute throughput, also. In sw, the lack of transpose/detranspose operation for EVE-32

allows it to match EVE-16 performance while still having lower compute throughput and fre-

quency.

Limited MSHR Effect – For applications dominated by memory stalls, as explained before,

some are inherently memory-bound, while others are limited by the number of available MSHRs

in the LLC. Figure 5.11 shows the percentage of execution time in which the VMU experiences

a stall in issuing a cache request. Execution breakdown for kmeans-int indicates a significant

amount of memory stalls; these stalls are explained by Figure 5.11 as it shows that the VMU ex-

periences cache-induced stalls for almost half of the execution time between EVE-1 and EVE-4.

In EVE-8, however, due to row under-utilization, the hardware vector length is halved and, thus,

the required number of MSHRs is also halved. Indeed Figure 5.11 shows that the cache-induced

stalls are reduced by more than half. As the hardware vector length is halved further for EVE-16

and EVE-32, the cache request stalls in the VMU keep on decreasing further. Although similar

behavior is observed in pathfinder enabling EVE-8 in achieving the highest performance, the trans-

pose/detranspose overhead is a bottleneck in achieving higher performance. Finally, backprop-int

performs strided-memory operations with a very large stride. As a result, no two elements in these

operations would reside in the same cacheline, and thus this application requires significantly more

MSHRs than available. This is further shown in Figure 5.11 where the VMU experiences cache-

induced stalls for more than 90% of the time while executing backprop-int. While these stalls

are lowered as the parallelization factor increases and the hardware vector length is halved, the

decrease in these stalls is very minimal and indicates a significant limitation on the number of

available MSHRs.

Energy/Power Analysis – According our evaluation of EVE circuits, the peak power con-

sumption of the SRAM arrays is expected to increase by 20% . Although this figure might look

97

concerning, performing vector operations in EVE requires a mixture of multiple µops, and as such

the expected power consumption overhead is lower than 20% . Previous work [FMD19,EWW+18,

AJS+17] have shown the energy efficiency of S-CIM execution, and more recent work [AHAA+20]

have shown that different execution paradigms have comparable energy efficiency. EVE leverages

these energy efficient S-CIM execution techniques with bit-hybrid execution. Moreover, vector

execution in EVE is energy-efficient as it eliminates the need for highly multi-ported vector reg-

ister files that incur high access energy. Also, since the compute is fused with storage, there is no

need for expensive redundant data movement from private L2 caches (through the costly H-tree)

to these highly multi-ported vector register files, only to be read again to the functional units.

Area Efficiency Analysis – The best design point of EVE achieves comparable performance to

O3+DV while incurring an area overhead equivalent to O3+IV. Compared to O3 core, the O3+IV

baseline area is estimated to be 1.10× , while the O3+DV baseline area is estimated to be 2.00× .

As for EVE design points, EVE-1 has an area estimate of 1.10× , EVE-2 through EVE-16 has

an area overhead of 1.12× , and EVE-32 has an area overhead of 1.11× . The best EVE best

design point, EVE-8, is able to increase performance by 4.59× at comparable area overhead to the

O3+IV. EVE-8 also achieves over twice the area-normalized performance compared to O3+DV.

EVE-8 is able to attain higher area-normalized performance than O3+DV by achieving comparable

performance at a much lower area-overhead.

5.8 Related Work

Conventional vector processing architectures use dedicated long-vector engines to accelerate

data-parallel computation [DVWW05, EAE+02, ABS+07, TNH+06]. These machines achieve in-

credibly high performance on data parallel workloads at the expense of a significant cost in area.

Subword packed SIMD is an attempt to reap some of the same benefits as conventional vector

processing without paying the same area overhead. These designs re-use many of the scalar com-

ponents of a processor to perform vector operations [PW96,int07,SGC+16]. However, their perfor-

mance is limited by the lack of available hardware units and limited instruction sets. Recently, next-

generation scalable vector length ISA extensions which are flexible enough to support both of the

traditional hardware paradigms have been developed [CSZ+19, CXL+20, Sat20, SBB+17a, RISC-

98

V Foundation19]. These vector extensions also have the flexibility to support new developments

in the vector processing space, like EVE.

Traditional processing-in-memory (PIM) techniques have primarily involved implementing

computation logic in DRAM chips [PAC+97b, ESS+99, OCS98]. The goal of these implemen-

tations is to address the memory bandwidth wall by reducing the amount of data transfer across

the system memory bus. Some recent variations have leveraged 3D manufacturing techniques to

reduce the amount of change required to the physical design of the memory circuits [FFAMK15,

AHY+15]. These designs aim to address the fact that modifying DRAM chips is a difficult propo-

sition due to the incredibly high circuit density and desire for wide compatibility by implementing

the compute circuitry on separate chips that can be assembled with 3D manufacturing techniques.

While traditional processing-in-memory (PIM) focuses on bringing compute closer to data,

in-situ processing proposes to reconfigure the memory into compute engines achieving higher

efficiency and performance. Rowclone [SKF+13] is among the earliest work to explore trans-

forming DRAM into a compute engine capable of in-DRAM row cloning. Ambit [SLM+17] and

DRISA [LNM+17] proposed transforming the DRAM into an accelerator capable of massive bit-

wise logical operations between multiple rows. ComputeDRAM [GTW19] explores implementing

this technique with entirely stock DRAM chips.

While the work on in-situ processing-in-DRAM seems promising and can be explored beyond

rudimentary bit-wise logical operations, special technology considerations and reduced margins-

of-error make DRAM a difficult choice. Instead, SRAM is a more promising venue to explore in-

situ processing. Jeloka et. al. [JASB16,JASB15] introduces the bit-line compute technique, which

performs digital bit-wise logical operations between SRAM rows. Bit-line compute constitutes an

important precursor to subsequent processing-in-SRAM work. Compute caches [AJS+17] uses

bit-line compute to transform the caches in a chip multi-processor into bit-wise logical compute

engines.

Further work based on bit-line compute explored extending its functionality by utilizing a bit-

serial approach to complex integer and floating-point operations. This work has demonstrated

the ability to use bit-line compute to transform caches in a CMP into fixed-function accelerators

for neural networks [EWW+18] and single-instruction-multiple-threads (SIMT) engine [FMD19].

To mitigate transposing data, Wang et. al. [WWE+19] explored adding bit-line compute to an

8T-SRAM allowing the computation to be performed horizontally in the compute-bitline (CBL),

99

while data read and writes are performed on the vertical bitlines. The 8T bitcell hinders its use

in traditional caches due to low density. EVE leverages traditional 6T-SRAM, thus retaining high

density and can be used in traditional caches. VRAM [AHAA+20] explored utilizing bit-serial and

bit-parallel execution paradigms to extend the functionality of bit-line compute. As bit-serial exe-

cution achieves high throughput but high latency and bit-parallel execution achieves lower latency

at the expense of lower throughput [AHAA+20], EVE proposes bit-hybrid execution to balance

throughput and latency.

Another line of work [GGP+13,MYKG16,YMG15,ZL20,YEK18,CYS+21] on in-situ compute-

in-memory explores leveraging associative compute abstraction [Fos76,Say76,Say94]. Some work

in this space proposes utilizing analog compute on emerging resistive technology [GGP+13,ZL20,

YEK18] to perform the computations. However, analog compute accuracy suffers due to process

variation. Other work utilizes CAM search/multi-write [CYS+21, MYKG16, YMG15] to perform

the computations, incurring extremely long latencies for the operations.

5.9 Conclusion

This chapter have demonstrated the ability of EVE to resolve the tension between performance

and area in next-generation vector architectures. By employing S-CIM techniques, EVE is able

to reconfigure private L2 caches into ephemeral vector engines with comparable performance to

decoupled vector engines. EVE addresses the S-CIM programming challenge by adopting next-

generation vector architecture. For the S-CIM serialization latency challenge, EVE mitigates the

serialization overhead by proposing a novel bit-hybrid execution mechanism facilitating lower

compute and memory latency. EVE serves as a motivation for future research in leveraging S-CIM

techniques to alleviate the area-overhead associated with next-generation vector architectures.

Future research can explore techniques to further increase the utilization of the S-CIM arrays

(e.g., dynamic micro-operation scheduling) with the help of an out-of-order core. Since EVE is

an example of a new breed of very long next-generation vector machines, another line of research

is to address the limited MSHRs efficiently to enable EVE to utilize memory bandwidth more

effectively. EVE have shown the ability of bit-hybrid execution paradigm in balancing latency and

throughput with focus on integer operations, future research can explore using bit-hybrid execution

to balance latency and throughput for floating-point operations.

100

CHAPTER 6
CONCLUSION

As specialization is becoming a driving factor for regular improvements and efficiency, there

has been a recent resurgence of next-generation vector architectures, such as ARM Scalable Vec-

tor Extension (SVE) [Ste16,SBB+17b], RISC-V Vector extension (RVV) [RISC-V Foundation19],

and Intel Advanced Vector Extension (AVX-512) [int12]). There are two conventional implemen-

tations for next-generation vector micro-architectures: an integrated vector unit, and decoupled

vector engine. There is a fundamental tension between these two micro-architectures: An in-

tegrated vector unit achieves modest performance while having low area overhead; however, a

decoupled vector engine achieves higher performance at the cost of significantly higher area over-

head. Recently, SRAM-based compute-in-memory (S-CIM) have shown a lot of promise in ad-

dressing the tension between these two micro-architectures. Previous work on S-CIM have either:

(1) exclusively explored bit-serial or bit-parallel execution paradigm; and/or (2) lacked a fitting

programming abstraction. This thesis shows that bit-serial execution achieves high throughput at

the expense of high latency, while bit-parallel execution achieves lower latency at the cost of lower

throughput. The thesis proposes the novel approach of bit-hybrid execution to balance throughput

and latency. Moreover, the thesis leverages a circuits-to-architecture exploration to evaluate bit-

hybrid execution thoroughly. The thesis presents a circuit template that can target any bit-hybrid

design point. This thesis makes a case for bit-hybrid execution paradigm for S-CIM to balance

latency and throughput. The rigorous analysis and results in this thesis shows the potential and

promise of bit-hybrid execution paradigm for further research. This thesis, also, introduces a new

breed of vector micro-architectures capable of supporting hardware vector length of thousands of

elements, thus presenting a new challenge for vector abstraction. The rest of this chapter summa-

rizes primary contribution of this thesis and discusses future research directions.

6.1 Thesis Summary and Contribution

This thesis began by motivating the need to address the tension between two next-generation

vector micro-architectures: integrated vector units and decoupled vector engines. With the slow-

down of Moore’s Law and the end of Dennard’s Scaling, there is a need for specialization to retain

regular improvements in performance and efficiency. In this thesis, I present a background on

101

vector architectures and highlight the rise of next-generation vector architecture. Then, I explain

the tension between the two extreme points of next-generation vector micro-architectures: while

integrated vector unit achieves modest performance while incurring low area overhead, decoupled

vector engine achieves higher performance at significantly higher area overhead. Then, I present a

background on compute-in-memory and highlight it as means to address the previously mentioned

tension.

The thesis then discusses AgileBNN–an early attempt to address the need for specialization in a

post Moore’s Law and post Dennard’s Scaling era. AgileBNN is a fixed-function accelerator for bi-

naried neural network (BNN) developed and synthesized using a novel high-level synthesis (HLS)

flow. AgileBNN was part of the Celerity SoC, a 5×5 mm chip implementing the tiered accelerator

fabric (TAF) architecture. A tiered accelerator fabric includes three tiers: (1) general-purpose tier,

(2) massively-parallel tier, and (3) specialization tier. AgileBNN formed the specialization tier in

the Celerity SoC. With co-operative execution, AgileBNN was able to increase its area normalized

performance and achieving 2× higher area normalized when compared to state-of-the-area accel-

erators. AgileBNN inspired two main themes in thesis: the rigidity of AgileBNN’s fixed-function

aspect inspired the adoption of the more programmable specialized vector abstraction; and (2) the

ability of AgileBNN to reconfigure other components to increase its performance and reduce its

effective area foot-print inspired the pursuit of ephemerality.

The core of the thesis is a circuits-to-architecture exploration of the ephemeral vector engines

(EVE). Starting with the observation that previous work on S-CIM explored building vector execu-

tion units leveraging bit-serial execution, the exploration of EVE starts with a circuits investigation

to build a S-CIM vector execution unit using bit-parallel execution paradigm. To the best of my

knowledge, this was the first work to explore an execution paradigm other than bit-serial. There

were two main outcomes of this investigation: (1) bit-serial and bit-parallel execution incur similar

and comparable area overhead; and (2) bit-serial execution achieves high throughput at the expense

of high latency, while bit-parallel execution achieve low latency at the cost of low throughout. This

work motivated the later pursuit of a more balanced execution paradigm in-between bit-serial and

bit-parallel. To address this motivation, this thesis proposes bit-hybrid execution paradigm to bal-

ance latency and throughput. By breaking elements into segments, the circuit of bit-hybrid-capable

S-CIM vector unit operates on the bits of a segment in parallel, while the segments themselves are

processed serially. To the best of my knowledge, this is the first work that motivates and proposes

102

bit-hybrid execution to balance latency and throughput. To perform an architectural exploration,

this thesis discusses modeling two next-generation vector micro-architectures: integrated vector

unit and decoupled vector engine. Using a circuits-to-architecture evaluation methodology, this

thesis shows that EVE is able to leverage a bit-hybrid execution paradigm to reconfigure on-the-fly

private level-2 caches of a core to construct a vector execution engine. EVE is able to balance la-

tency and throughput to achieve vector performance comparable to an aggressive decoupled vector

engine while incurring an area overhead equivalent to that of integrated vector unit.

To reiterate the major contribution of this thesis:

• I presented highly configurable cycle-approximate models for a decoupled vector engine and

an integrated vector unit, which serve as a tool to enable future research on next-generation

vector architectures.

• I proposed a novel template for ephemeral vector engines (EVE) circuits that can, at design

time, be configured to target: bit-serial execution, bit-parallel execution, and any paralleliza-

tion factor in-between.

• I proposed ephemeral vector engines (EVE), a novel next-generation vector architecture that

leverages SRAM-based compute-in-memory circuits to transform L2 caches on-the-fly into

vector execution engines. I also presented a holistic exploration from circuits to architecture

of the EVE designs with different parallelization factors.

• To my knowledge, I am the first to make the case for bit-hybrid execution paradigm in

SRAM-based compute-in-memory to balance throughput and latency.

6.2 Future Work

This thesis has showcased how EVE leverages bit-hybrid execution to balance latency and

throughput, thus achieving performance comparable to an aggressive decoupled vector engine

while incurring an equivalent area overhead to a lightweight integrated vector unit. This section

discusses some promising research directions for future work.

Floating-Point Support – The thesis focused on integer support for EVE showing promising

results. The thesis was able to explore the impact of bit-hybrid execution on integer arithmetic as

well as memory operations. Previous work on S-CIM have already explored floating-point support

103

for bit-serial execution [FMD19]. Future work can explore floating-point support for bit-hybrid

execution. As EVE have shown that there is some trade-offs between segment size and through-

put/latency for integer and memory operations, future work can explore the impact of segment size

on floating-point operations.

MSHR Bottleneck in Super-Long-Vector Engines – This thesis introduces EVE as a new

breed of super-long-vector machines with hardware vector length of thousands of elements. In

the architectural evaluation of EVE, it was shown that MSHRs are a bottleneck for super-long-

vector machines due to their limited amount. When a miss occurs, the cache controller sends a

memory request for a cacheline and records all needed meta-data in a data structure called miss

status handling register (MSHR). This meta-data is required to track on-going misses as well as

handling responses from memory that arrives out-of-order. These MSHRs are designed to handle

memory requests on cacheline granularity. While fitting for scalar compute, multiple MSHRs

are required for a single vector memory operation. This problem is further exacerbated super-

long-vector machines, as shown in this thesis. Future work can explore mitigating the limitation

of MSHRs for super-long-vector machines. The idea of creating super MSHR can alleviate this

bottleneck by enabling a single MSHR to represent more than one cacheline. For a secondary-

miss search, these super MSHR need to be treated differently than regular MSHRs. Addressing

this bottleneck can further increase the performance of EVE unlocking its potential.

Sparsity in EVE – While this thesis have shown a lot of promise in EVE, S-CIM vector

unit struggle with sparsity. Most S-CIM vector units leverage their super-long hardware vector

lengths to mitigate their inherent longer latencies, thus the break-even point for these units is

high. As a result, executing sparse workloads on these S-CIM vector units is quite challenging.

Although EVE is able to balance latency and throughput, EVE still has a higher break-even point

when compared to a traditional aggressive decoupled vector unit. Future work on circuits-to-

architecture exploration can address these challenges. Future work can inspect additional hardware

to increase EVE performance with sparsity. In addition, future work can explore additional units

and different micro-architectural solutions to increase performance for sparse workloads and sparse

datasets. Moreover, future work can explore additional instructions and suggestions to enhance

vector abstraction for sparse workloads.

104

BIBLIOGRAPHY

[AAHA+17] T. Ajayi, K. Al-Hawaj, A. Amarnath, S. Dai, S. Davidson, P. Gao, G. Liu,
A. Lotfi, J. Puscar, A. Rao, A. Rovinski, L. Salem, N. Sun, C. Torng,
L. Vega, B. Veluri, X. Wang, S. Xie, C. Zhao, R. Zhao, C. Batten, R. G.
Dreslinski, I. Galton, R. K. Gupta, P. P. Mercier, M. Srivastava, M. B.
Taylor, and Z. Zhang. Celerity: An Open Source RISC-V Tiered Ac-
celerator Fabric. Symp. on High Performance Chips (Hot Chips), Aug
2017.

[ABS+07] D. Abts, A. Bataineh, S. Scott, G. Faanes, J. Schwarzmeier, E. Lund-
berg, T. Johnson, M. Bye, and G. Schwoerer. The Cray BlackWidow: A
Highly Scalable Vector Multiprocessor. SC’07: Proceedings of the 2007
ACM/IEEE Conference on Supercomputing, Nov 2007.

[AHAA+20] K. Al-Hawaj, O. Afuye, S. Agwa, A. Apsel, and C. Batten. Towards a
Reconfigurable Bit-Serial/Bit-Parallel Vector Accelerator using In-Situ
Processing-In-SRAM. Int’l Conf. on Circuits and Systems (ISCAS),
pages 1–5, Oct 2020.

[AHY+15] J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi. A Scalable Processing-
in-Memory Accelerator for Parallel Graph Processing. Int’l Symp. on
Computer Architecture (ISCA), Jun 2015.

[AJLR18] A. Agrawal, A. Jaiswal, C. Lee, and K. Roy. X-SRAM: Enabling In-
Memory Boolean Computations in CMOS Static Random Access Mem-
ories. IEEE Trans. on Circuits and Systems I, Jul 2018.

[AJR+19] A. Agrawal, A. Jaiswal, D. Roy, B. Han, G. Srinivasan, A. Ankit, and
K. Roy. Xcel-RAM: Accelerating Binary Neural Networks in High-
Throughput SRAM Compute Arrays. IEEE Trans. on Circuits and Sys-
tems I, Apr 2019.

[AJS+17] S. Aga, S. Jeloka, A. Subramaniyan, S. Narayanasamy, D. Blaauw, and
R. Das. Compute Caches. Int’l Symp. on High-Performance Computer
Architecture (HPCA), Feb 2017.

[arm09] Introducing NEON: Development Article. Online Webpage, 2009
(accessed Jun, 2009). https://documentation-service.arm.com/
static/5f1071760daa596235e8320a.

[AYMC15] J. Ahn, S. Yoo, O. Mutlu, and K. Choi. PIM-Enabled Instructions:
A Low-Overhead, Locality-Aware Processing-in-Memory Architecture.
Int’l Symp. on Computer Architecture (ISCA), Jun 2015.

[BBB+11] N. Binkert, B. M. Beckmann, G. Black, S. K. Reinhardt, A. Saidi,
A. Basu, J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen,

105

K. Sewell, M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood. The gem5
Simulator. SIGARCH Computer Architecture News (CAN), 39(2):1–7,
Aug 2011.

[BC18] A. Biswas and A. P. Chandrakasan. Conv-RAM: An Energy-Efficient
SRAM with Embedded Convolution Computation for Low-Power CNN-
Based Machine Learning Applications. Int’l Solid-State Circuits Conf.
(ISSCC), pages 488–490, 2018.

[BDM+72] W. Bouknight, S. A. Denenberg, D. E. McIntyre, J. M. Randall, A. H.
Sameh, and D. L. Slotnick. The Illiac IV System. Proceedings of the
IEEE, 60(4):369–388, 1972.

[BTKK04] J. B. Brockman, S. Thoziyoor, S. K. Kuntz, and P. M. Kogge. A Low
Cost, Multithreaded Processing-in-Memory System. Proc. of Workshop
on Memory Performance Issues, Jun 2004.

[BYM+19] D. Bankman, L. Yang, B. Moons, M. Verhelst, and B. Murmann. An
Always-On 3.8µJ/86% CIFAR-10 Mixed-Signal Binary CNN Processor
With All Memory on Chip in 28-nm CMOS. IEEE Journal of Solid-State
Circuits (JSSC), 54(1):158–172, Jan 2019.

[CBM+09] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, , and
K. Skadron. Rodinia: A Benchmark Suite for Heterogeneous Computing.
Int’l Symp. on Workload Characterization (IISWC), Oct 2009.

[CDGT17] T. M. Conte, E. P. DeBenedictis, P. A. Garhini, and E. Track. Rebooting
Computing: The Road Ahead. IEEE Computer, 50(1):20–29, Jan 2017.

[CHS+16] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio. Bi-
narized Neural Networks: Training Deep Neural Networks with Weights
and Activations Constrained to +1 or -1. arXiv, arXiv:1602.02830, Feb
2016.

[CLL+18] W.-H. Chen, K.-X. Li, W.-Y. Lin, K.-H. Hsu, P.-Y. Li, C.-H. Yang, C.-X.
Xue, E.-Y. Yang, Y.-K. Chen, Y.-S. Chang, T.-H. Hsu, Y.-C. King, C.-
J. Lin, R.-S. Liu, C.-C. Hsieh, K.-T. Tang, and M.-F. Chang. A 65nm
1Mb Nonvolatile Computing-in-Memory ReRAM Macro with Sub-16ns
Multiply-and-Accumulate for Binary DNN AI Edge Processors. Int’l
Solid-State Circuits Conf. (ISSCC), pages 494–496, 2018.

[CLX+16] P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and Y. Xie.
PRIME: A Novel Processing-in-Memory Architecture for Neural Net-
work Computation in ReRAM-Based Main Memory. Int’l Symp. on
Computer Architecture (ISCA), Jun 2016.

106

[CRS+20] N. Challapalle, S. Rampalli, L. Song, N. Chandramoorthy, K. Swami-
nathan, J. Sampson, Y. Chen, and V. Narayanan. GaaS-X: Graph Analyt-
ics Accelerator Supporting Sparse Data Representation using Crossbar
Architectures. Int’l Symp. on Computer Architecture (ISCA), May/Jun
2020.

[CSZ+19] M. Cavalcante, F. Schuiki, F. Zaruba, M. Schaffner, and L. Benini. Ara:
A 1-GHz+ Scalable and Energy-Efficient RISC-V Vector Processor with
Multi-Precision Floating-Point Support in 22nm FD-SOI. IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems, 2019.

[CXL+20] C. Chen, X. Xiang, C. Liu, Y. Shang, R. Guo, D. Liu, Y. Lu, Z. Hao,
J. Luo, Z. Chen, C. Li, Y. Pu, J. Meng, X. Yan, Y. Xie, and X. Qi.
Xuantie-910: A Commercial Multi-core 12-stage Pipeline Out-of-order
64-bit High Performance RISC-V Processor with Vector Extension: In-
dustrial Product. Int’l Symp. on Computer Architecture (ISCA), 2020.

[CXZ+17] M. Cheng, L. Xia, Z. Zhu, Y. Cai, Y. Xie, Y. Wang, and H. Yang. TIME:
A training-in-memory architecture for memristor-based deep neural net-
works. Design Automation Conf. (DAC), Jun 2017.

[CYS+21] H. Caminal, K. Yang, S. Srinivasa, A. K. Ramanathan, K. Al-Hawaj,
T. Wu, V. Narayanan, C. Batten, and J. F. Martínez. CAPE: A Content-
Addressable Processing Engine. Int’l Symp. on High-Performance Com-
puter Architecture (HPCA), pages 557–569, 2021.

[DVWW05] T. Dunigan, J. Vetter, J. White, and P. Worley. Performance Evaluation
of the Cray X1 Distributed Shared-Memory Architecture. IEEE Micro,
25(1):30–40, Jan/Feb 2005.

[DXT+18] S. Davidson, S. Xie, C. Torng, K. Al-Hawaj, A. Rovinski, T. Ajayi,
L. Vega, C. Zhao, R. Zhao, S. Dai, A. Amarnath, B. Veluri, P. Gao,
A. Rao, G. Liu, R. K. Gupta, Z. Zhang, R. G. Dreslinski, C. Batten, and
M. B. Taylor. The Celerity Open-Source 511-Core RISC-V Tiered Ac-
celerator Fabric: Fast Architectures and Design Methodologies for Fast
Chips. IEEE Micro, 38(2):30–41, Mar/Apr 2018.

[ea18] R. A. et al. YodaNN: An Architecture for Ultralow Power Binary-Weight
CNN Acceleration. IEEE Trans. on Computer-Aided Design of Inte-
grated Circuits and Systems (TCAD), pages 48–60, Jan 2018.

[ea19a] M. R. el al. XNOR-Net: ImageNet Classification Using Binary Con-
volutional Neural Networks. Online Webpage, 2016 (accessed Oct 20,
2019).

107

[ea19b] A. R. et al. A 1.4 GHz 695 Giga Risc-V Inst/s 496-Core Manycore Pro-
cessor With Mesh On-Chip Network and an All-Digital Synthesized PLL
in 16nm CMOS. Symp. on Very Large-Scale Integration Circuits (VL-
SIC), pages 30–31, Dec 2019.

[ea19c] A. R. et al. Evaluating Celerity: A 16-nm 695 Giga-RISC-V Instruc-
tions/s Manycore Processor With Synthesizable PLL. IEEE Solid-State
Circuits Letters (SSCL), pages 289–292, Dec 2019.

[ea19d] K. A. et al. The Rocket Chip Generator. Online Webpage, 2016 (accessed
Oct 20, 2019).

[EAE+02] R. Espasa, F. Ardanaz, J. Emer, S. Felix, J. Gago, R. Gramunt, I. Her-
nandez, T. Juan, G. Lowney, M. Mattina, and A. Seznec. Tarantula: A
Vector Extension to the Alpha Architecture. Int’l Symp. on Computer
Architecture (ISCA), Jun 2002.

[EBA+11] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and
D. Burger. Dark Silicon and the End of Multicore Scaling. Int’l Symp.
on Computer Architecture (ISCA), Jun 2011.

[ESS+99] D. Elliot, M. Stumm, W. Snelgrove, C. Cojocaru, and R. McKenzie.
Computational RAM: Implementing Processors in Memory. IEEE De-
sign and Test of Computers, Jan-Mar 1999.

[EWW+18] C. Eckert, X. Wang, J. Wang, A. Subramaniyan, R. Iyer†, D. Sylvester,
D. Blaauw, and R. Das. Neural Cache: Bit-Serial In-Cache Acceleration
of Deep Neural Networks. Int’l Symp. on Computer Architecture (ISCA),
Jul 2018.

[FFAMK15] A. Farmahini-Farahani, J. H. Ahn, K. Morrow, and N. S. Kim.
NDA: Near-DRAM Acceleration Architecture Leveraging Commodity
DRAM Devices and Standard Memory Modules. Int’l Symp. on High-
Performance Computer Architecture (HPCA), Feb 2015.

[FMD19] D. Fujiki, S. Mahlke, and R. Das. Duality Cache for Data Parallel Accel-
eration. Int’l Symp. on Computer Architecture (ISCA), Jun 2019.

[Fos76] C. C. Foster, editor. Content Addressable Parallel Processors. Van Nos-
trand Reinhold, 1976.

[FRF+03] B. B. Fraguela, J. Renau, P. Feautrier, D. Padua, and J. Torrellas. Pro-
gramming the FlexRAM Parallel Intelligent Memory System. Symp. on
Principles and practice of Parallel Programming (PPoPP), Jun 2003.

108

[gem21] Arm’s AMBA 5 CHI Ruby Model in gem5. Online Webpage, accessed
Nov 20, 2021. https://www.gem5.org/documentation/general_
docs/ruby/CHI/.

[GGP+13] Q. Guo, X. Guo, R. Patel, E. Ipek, and E. G. Friedman. AC-DIMM:
Associative Computing with STT-MRAM. Int’l Symp. on Computer Ar-
chitecture (ISCA), 41(3):189–200, 2013.

[GSA+16] M. R. Guthaus, J. E. Stine, S. Ataei, B. Chen, B. Wu, and M. Sar-
war. OpenRAM: An Open-Source Memory Compiler. Int’l Conf. on
Computer-Aided Design (ICCAD), Jan 2016.

[GTW19] F. Gao, G. Tziantzioulis, and D. Wentzlaff. ComputeDRAM: In-Memory
Compute Using Off-the-Sdelf DRAMs. Int’l Symp. on Microarchitecture
(MICRO), Oct 2019.

[GWPK04] J. Gebis, S. Williams, D. Patterson, and C. Kozyrakis. VIRAM1: A
Media-Oriented Vector Processor with Embedded DRAM. Design Au-
tomation Conf. (DAC), Jun 2004.

[HKK+99] M. Hall, P. Kogge, J. Koller, P. Diniz, J. Chame, J. Draper, J. LaCoss,
J. Granacki, J. Brockman, A. Srivastava, W. Athas, V. Freeh, J. Shin, and
J. Park. Mapping Irregular Applications to DIVA, a PIM-Based Data-
Intensive Architecture. Int’l Symp. on Supercomputing (ICS), pages 57–
75, 1999.

[IGKR19] M. Imani, S. Gupta, Y. Kim, and T. Rosing. FloatPIM: In-Memory Ac-
celeration of Deep Neural Network Training with High Precision. Int’l
Symp. on Computer Architecture (ISCA), Jun 2019.

[IKT+98] M. Ishida, T. Kawakami, A. Tsuji, N. Kawamoto, M. Motoyoshi, and
N. Ouchi. A Novel 6T-SRAM Cell Technology Designed with Rectan-
gular Patterns Scalable Beyond 0.18/spl mu/m Generation and Desirable
for Ultra High Speed Operation. International Electron Devices Meeting,
Dec 1998.

[int07] Intel SSE4 Programming Reference. Intel Reference Manual, 2007.
http://software.intel.com/file/18187.

[int12] Intel AVX. Online Webpage, 2012 (accessed March, 2012). http://
software.intel.com/en-us/avx.

[JASB15] S. Jeloka, N. B. Akesh, D. Sylvester, and D. Blaauw. A Configurable
TCAM/BCAM/SRAM Using 28nm Push-Rule 6T Bit Cell. Symp. on
Very Large-Scale Integration Circuits (VLSIC), Jun 2015.

109

[JASB16] S. Jeloka, N. B. Akesh, D. Sylvester, and D. Blaauw. A 28 nm Con-
figurable Memory (TCAM/BCAM/SRAM) Using Push-Rule 6T Bit-
Cell Enabling Logic-in-Memory. IEEE Journal of Solid-State Circuits
(JSSC), Apr 2016.

[JKK11] M. Jang, K. Kim, and K. Kim. The Performance Analysis of ARM
NEON Technology for Mobile Platforms. Symp. on Research in Applied
Computation, pages 104–106, 2011.

[JSPR08] T. Jhaveri, A. Strojwas, L. Pileggi, and V. Rovner. Enabling Technol-
ogy Scaling with "In Production" Lithography Processes. Optical Mi-
crolithography XXI, Feb 2008.

[KCL+18] W.-S. Khwa, J.-J. Chen, J.-F. Li, X. Si, E.-Y. Yang, X. Sun, R. Liu, P.-Y.
Chen, Q. Li, S. Yu, and M.-F. Chang. A 65nm 4Kb Algorithm-Dependent
Computing-in-Memory SRAM Unit-Macro with 2.3ns and 55.8TOPS/W
Fully Parallel Product-Sum Operation for Binary DNN Edge Processors.
Int’l Solid-State Circuits Conf. (ISSCC), pages 496–498, 2018.

[KHY+99] Y. Kang, W. Huang, S.-M. Yoo, D. Keen, Z. Ge, V. Lam, P. Pattnaik,
and J. Torrellas. FlexRAM: Toward an Advanced Intelligent Memory
System. Int’l Conf. on Computer Design (ICCD), pages 192–201, 1999.

[KKC+16] D. Kim, J. Kung, S. Chai, S. Yalamanchili, and S. Mukhopadhyay. Neu-
rocube: A Programmable Digital Neuromorphic Architecture with High-
Density 3D Memory. Int’l Symp. on Computer Architecture (ISCA), Aug
2016.

[KTHK03] K. Kitagawa, S. Tagaya, Y. Hagihara, and Y. Kanoh. A Hardware
Overview of SX-6 and SX-7 Supercomputer. NEC Research & Devel-
opment Journal, 44(1):2–7, Jan 2003.

[LDL+18] G. Li, G. Dai, S. Li, Y. Wang, and Y. Xie. GraphIA: an In-Situ Acceler-
ator for Large-Scale Graph Processing. Int’l Symp. on Memory Systems,
Oct 2018.

[LHS+21] E. Lee, T. Han, D. Seo, G. Shin, J. Kim, S. Kim, S. Jeong, J. Rhe, J. Park,
J. H. Ko, and Y. Lee. A Charge-Domain Scalable-Weight In-Memory
Computing Macro With Dual-SRAM Architecture for Precision-Scalable
DNN Accelerators. Int’l Conf. on Circuits and Systems (ISCAS),
68(8):3305–3316, 2021.

[LNM+17] S. Li, D. Niu, K. T. Malladi, H. Zheng, B. Brennan, and Y. Xie. DRISA:
A DRAM-based Reconfigurable In-Situ Accelerator. In 2017 IEEE/ACM
50th International Symposium on Microarchitecture MICRO, Boston,
MA, USA, pages 288–301, Oct 2017.

110

[LPAA+20] J. Lowe-Power, A. M. Ahmad, A. Akram, M. Alian, R. Amslinger,
M. Andreozzi, A. Armejach, N. Asmussen, B. Beckmann, S. Bharad-
waj, et al. The gem5 Simulator: Version 20.0+. arXiv preprint
arXiv:2007.03152, 2020.

[LXK21] C. Liu, Z. Xuan, and Y. Kang. A 40-nm 202.3nJ/Classification Neuro-
morphic Architecture Employing In-SRAM Charge-Domain Compute.
Int’l Conf. on ASIC, pages 1–4, 2021.

[LXZ+20] W. Li, P. Xu, y. Zhao, H. Li, Y. Xie, and Y. Lin. Timely: Pushing Data
Movements And Interfaces In Pim Accelerators Towards Local And In
Time Domain. Int’l Symp. on Computer Architecture (ISCA), May/Jun
2020.

[LZB14] D. Lockhart, G. Zibrat, and C. Batten. PyMTL: A Unified Framework
for Vertically Integrated Computer Architecture Research. Int’l Symp. on
Microarchitecture (MICRO), Dec 2014.

[MBY+18] B. Moons, D. Bankman, L. Yang, B. Murmann, and M. Verhelst. Bina-
rEye: An always-on energy-accuracy-scalable binary CNN processor
with all memory on chip in 28nm CMOS. Custom Integrated Circuits
Conf. (CICC), pages 1–4, Dec 2018.

[McK04] S. A. McKee. Reflections on the Memory Wall. Association for Comput-
ing Machinery, page 162, Apr 2004.

[MYKG16] A. Morad, L. Yavits, S. Kvatinsky, and R. Ginosar. Resistive GP-SIMD
Processing-In-Memory. ACM Trans. on Architecture and Code Optimiza-
tion (TACO), 12(4):1–22, 2016.

[OCS98] M. Oskin, F. T. Chong, and T. Sherwood. Active Pages: A Computation
Model for Intelligent Memory. Int’l Symp. on Computer Architecture
(ISCA), Jun 1998.

[PAB+97] D. Patterson, K. Asanovic, A. Brown, R. Fromm, J. Golbus, B. Grib-
stad, K. Keeton, C. Kozyrakis, D. Martin, S. Perissakis, R. Thomas,
N. Treuhaft, and K. Yelick. Intelligent RAM (IRAM): The Industrial
Setting, Applications, and Architectures. Int’l Conf. on Computer De-
sign (ICCD), pages 2–7, 1997.

[PAC+97a] D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton,
C. Kozyrakis, R. Thomas, and K. Yelick. A Case for Intelligent RAM.
IEEE Micro, pages 224–225, 1997.

111

[PAC+97b] D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton,
C. Kozyrakis, R. Thomas, and K. Yelick. A Case for Intelligent RAM.
IEEE Micro, Mar 1997.

[PAC+97c] D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton,
C. Kozyrakis, R. Thomas, and K. Yelick. Intelligent RAM (IRAM):
Chips That Remember and Compute. Int’l Solid-State Circuits Conf.
(ISSCC), pages 224–225, 1997.

[PJZ+14] S. H. Pugsley, J. Jestes, H. Zhang, R. Balasubramonian, V. Srinivasan,
A. Buyuktosunoglu, A. Davis, and F. Li. NDC: Analyzing the Impact
of 3D-Stacked Memory+Logic Devices on MapReduce Workloads. Int’l
Symp. on Performance Analysis of Systems and Software (ISPASS), Jun
2014.

[PW96] A. Peleg and U. Weiser. MMX technology extension to the Intel archi-
tecture. Int’l Symp. on Microarchitecture (MICRO), Aug 1996.

[QJZ+20] K. Qiu, N. Jao, M. Zhao, C. S. Mishra, G. Gudukbay, S. Jose, J. Samp-
son, M. T. Kandemir, and V. Narayanan. ResiRCA: A Resilient Energy
Harvesting ReRAM Crossbar-Based Accelerator for Intelligent Embed-
ded Processors. Int’l Symp. on High-Performance Computer Architecture
(HPCA), Feb 2020.

[RBGZ19] J. Rupley, B. Burgess, B. Grayson, and G. D. Zuraski. Samsung M3
Processor. IEEE Micro, 39(2):37–44, 2019.

[RHP+20] C. Ramírez, C. A. Hernández, O. Palomar, O. Unsal, M. A. Ramírez, and
A. Cristal. A RISC-V Simulator and Benchmark Suite for Designing and
Evaluating Vector Architectures. ACM Trans. on Architecture and Code
Optimization (TACO), 17(4):30, Nov 2020.

[RISC-V Foundation19] RISC-V Foundation. RISC-V "V" Vector Extension.
https://github.com/riscv/riscv-v-spec/releases/download/0.7.1/riscv-
v-spec-0.7.1.pdf, Jun 2019.

[Rus78] R. M. Russel. The Cray-1 Computer System. Communications of the
ACM, 21(1):63–72, Jan 1978.

[Sat20] M. Sato. The Supercomputer “Fugaku” and Arm-SVE Enabled A64FX
Processor for Energy Efficiency and Sustained Application Performance.
19th International Symposium on Parallel and Distributed Computing
(ISPDC), 2020.

[Say76] G. E. Sayre. Staran: An Associative Approach to Multiprocessor Archi-
tecture. Computer Architecture, 4(2):199–221, 1976.

112

[Say94] G. E. Sayre. ASC: An Associative-Computing Paradigm. Computer,
27(11):19–25, 1994.

[SBB+17a] N. Stephens, S. Biles, M. Boettcher, J. Eapen, M. Eyole, G. Gabrielli,
M. Horsnell, G. Magklis, A. Martinez, N. Premillieu, A. Reid, A. Rico,
and P. Walker. The ARM Scalable Vector Extension. IEEE Micro, 37(2),
2017.

[SBB+17b] N. Stephens, S. Biles, M. Boettcher, J. Eapen, M. Eyole, G. Gabrielli,
M. Horsnell, G. Magklis, A. Martinez, N. Premillieu, A. Reid, A. Rico,
and P. Walker. The ARM Scalable Vector Extension. IEEE Micro, Mar
2017.

[Sch87] P. B. Schneck. The CDC STAR-100. Springer US, 1987.

[SEN+21] M. E. Sinangil, B. Erbagci, R. Naous, K. Akarvardar, D. Sun, W.-S.
Khwa, H.-J. Liao, Y. Wang, and J. Chang. A Charge-Domain Scalable-
Weight In-Memory Computing Macro With Dual-SRAM Architecture
for Precision-Scalable DNN Accelerators. IEEE Journal of Solid-State
Circuits (JSSC), 56(1):188–198, 2021.

[SGC+16] A. Sodani, R. Gramunt, J. Corbal, H.-S. Kim, K. Vinod, S. Chinthamani,
S. Hutsell, R. Agarwal, and Y.-C. Liu. Knights landing: Second-
generation intel xeon phi product. IEEE Micro, 36(2):34–46, 2016.

[SKF+13] V. Seshadri, Y. Kim, C. Fallin, D. Lee, R. Ausavarungnirun, G. Pekhi-
menko, Y. Luo, O. Mutlu, P. B. Gibbons, M. A. Kozuch, and T. C.
Mowry. RowClone: Fast and Energy-Efficient In-DRAM Bulk Data
Copy and Initialization. Int’l Symp. on Microarchitecture (MICRO), Dec
2013.

[SLM+17] V. Seshadri, D. Lee, T. Mullins, H. Hassan, A. Boroumand, J. Kim,
M. A. Kozuch, O. Mutlu, P. B. Gibbons, and T. C. Mowry. Ambit:
In-Memory Accelerator for Bulk Bitwise Operations Using Commodity
DRAM Technology. In 2017 IEEE/ACM 50th International Symposium
on Microarchitecture MICRO, Boston, MA, USA, pages 273–287, Oct
2017.

[SQLC17] L. Song, X. Qian, H. Li, and Y. Chen. PipeLayer: A Pipelined ReRAM-
Based Accelerator for Deep Learning. Int’l Symp. on High-Performance
Computer Architecture (HPCA), Feb 2017.

[SQR+20] W. A. Simon, Y. M. Qureshi, M. Rios, A. Levisse, M. Zapater, and
D. Atienza. BLADE: An in-Cache Computing Architecture for Edge
Devices. IEEE Trans. on Computers (TOC), Feb 2020.

113

[Ste16] N. Stephens. ARMv8-A Next-Generation Vector Architecture for HPC.
Symp. on High Performance Chips (Hot Chips), Aug 2016.

[STH+21] X. Si, Y.-N. Tu, W.-H. Huang, J.-W. Su, P.-J. Lu, J.-H. Wang, T.-W. Liu,
S.-Y. Wu, R. Liu, Y.-C. Chou, Y.-L. Chung, W. Shih, C.-C. Lo, R.-S. Liu,
C.-C. Hsieh, K.-T. Tang, N.-C. Lien, W.-C. Shih, Y. He, Q. Li, and M.-F.
Chang. A Local Computing Cell and 6T SRAM-Based Computing-in-
Memory Macro With 8-b MAC Operation for Edge AI Chips. IEEE
Journal of Solid-State Circuits (JSSC), Apr 2021.

[SZQ+18] L. Song, Y. Zhuo, X. Qian, H. Li, and Y. Chen. GraphR: Accelerat-
ing Graph Processing Using ReRAM. Int’l Symp. on High-Performance
Computer Architecture (HPCA), Feb 2018.

[TAHC+22] T. Ta, K. Al-Hawaj, N. Cebry, Y. Ou, E. Hall, C. Golden, and C. Bat-
ten. big.VLITTLE: On-Demand Data-Parallel Acceleration for Mobile
Systems on Chip. Int’l Symp. on Microarchitecture (MICRO), 2022.

[TCB18a] T. Ta, L. Cheng, and C. Batten. Simulating Multi-Core RISC-V Systems
in gem5. Workshop on Computer Architecture Research with RISC-V,
2018.

[TCB18b] T. Ta, L. Cheng, and C. Batten. Simulating Multi-Core RISC-V Systems
in gem5. Workshop on Computer Architecture Research with RISC-V
(CARRV), Jun 2018.

[TNH+06] S. Tagaya, M. Nishida, T. Hagiwara, T. Yanagawa, Y. Yokoya, H. Taka-
hara, J. Stadler, M. Galle, and W. Bez. The NEC SX-8 Vector Supercom-
puter System. High Performance Computing on Vector Systems, May
2006.

[Wat72] W. J. Watson. The TI ASC: A Highly Modular and Flexible Super Com-
puter Architecture. AFIPS: Fall Joint Computer Conference, pages 221–
228, 1972.

[Wil95] M. V. Wilkes. The Memory Wall and the CMOS End-Point. Association
for Computing Machinery, 23(4):4–6, Sep 1995.

[WM95] W. A. Wulf and S. A. McKee. Hitting the Memory Wall: Implications of
the Obvious. Association for Computing Machinery, 23(1):20–24, Mar
1995.

[WWE+19] J. Wang, X. Wang, C. Eckert, A. Subramaniyan, R. Das, D. Blaauw, and
D. Sylvester. A Compute SRAM with Bit-Serial Integer/Floating-Point
Operations for Programmable In-Memory Vector Acceleration. Int’l
Solid-State Circuits Conf. (ISSCC), Feb 2019.

114

[YEK18] H. E. Yantır, A. M. Eltawil, and F. J. Kurdahi. Low-Power Resistive
Associative Processor Implementation Through the Multi-Compare. Int’l
Conf. on Electronics, Circuits, and Systems (ICECS), pages 165–168,
2018.

[YMG15] L. Yavits, A. Morad, and R. Ginosar. Computer Architecture with As-
sociative Processor Replacing Last-Level Cache and SIMD Accelerator.
IEEE Trans. on Computers (TOC), 64(2):368–381, 2015.

[ZAS+14] Q. Zhu, B. Akin, H. E. Sumbul, F. Sadi, J. C. Hoe, L. Pileggi,
and F. Franchetti. A 3D-Stacked Logic-in-Memory Accelerator for
Application-Specific Data Intensive Computing. Int’l 3D Systems In-
tegration Conf., Jan 2014.

[ZJL+14] D. P. Zhang, N. Jayasena, A. Lyashevsky, J. L. Greathouse, L. Xu, and
M. Ignatowski. TOP-PIM: Throughput-Oriented Programmable Process-
ing in Memory. Proc. of Int’l Symp. on High-Performance Parallel and
Distributed Computing, Jun 2014.

[ZL20] Y. Zha and J. Li. Hyper-Ap: Enhancing Associative Processing Through
A Full-Stack Optimization. Int’l Symp. on Computer Architecture
(ISCA), pages 846–859, 2020.

[ZLW+22] J. Zhang, Z. Lin, X. Wu, Z. Tong, C. Peng, W. Lu, Q. Zhao, H. Wu, and
J. Chen. In-Memory Multibit Multiplication Based on Bitline Shifting.
IEEE Trans. on Circuits and Systems II, 69(2):354–358, 2022.

[ZSZ+17] R. Zhao, W. Song, W. Zhang, T. Xing, J.-H. Lin, M. Srivastava,
R. Gupta, and Z. Zhang. Accelerating Binarized Convolutional Neu-
ral Networks with Software-Programmable FPGAs. Int’l Symp. on Field
Programmable Gate Arrays (FPGA), Feb 2017.

[ZWV17] J. Zhang, Z. Wang, and N. Verma. In-Memory Computation of a
Machine-Learning Classifier in a Standard 6T SRAM Array. IEEE Jour-
nal of Solid-State Circuits (JSSC), 52(4):915–924, 2017.

[ZXY+17] Y. Zhang, L. Xu, K. Yang, Q. Dong, S. Jeloka, D. Blaauw, and
D. Sylveste. Recryptor: A Reconfigurable In-Memory Cryptographic
Cortex-M0 Processor for IoT. Symp. on Very Large-Scale Integration
Circuits (VLSIC), Jun 2017.

115

