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Abstract—Vector accelerators can efficiently execute regu-
lar data-parallel workloads, but they require expensive multi-
ported register files to feed large vector ALUs. Recent work
on in-situ processing-in-SRAM shows promise in enabling area-
efficient vector acceleration. This work explores two differ-
ent approaches to leveraging in-situ processing-in-SRAM: BS-
VRAM, which uses bit-serial execution, and BP-VRAM, which
uses bit-parallel execution. The two approaches have very differ-
ent latency vs. throughput trade-offs. BS-VRAM requires more
cycles per operation, but is able to execute thousands of opera-
tions in parallel, while BP-VRAM requires fewer cycles per op-
eration, but can only execute hundreds of operations in parallel.
This paper is the first work to perform a rigorous evaluation
of bit-serial vs. bit-parallel in-situ processing-in-SRAM. Our re-
sults show that both approaches have similar area overheads.
For 32-bit arithmetic operations, BS-VRAM improves through-
put by 1.3–5.0⇥ compared to BP-VRAM, while BP-VRAM im-
proves latency by 3.0–23.0⇥ compared to BS-VRAM.

I. INTRODUCTION

Vector accelerators are seeing a resurgence in both general
purpose and domain-specific processing [15, 17, 18]. These
accelerators can achieve high performance on well-structured
workloads by using a complex vector ALU and register file.
To keep the vector ALU busy, vector register files are usually
highly multi-ported which incurs significant area and energy
overheads. Recent work on in-situ processing-in-SRAM at-
tempts to reduce these overheads by fusing the vector ALU
and register file. In-situ processing-in-SRAM uses bit-line
computation to perform basic bit-wise logical operations in
a single read of a traditional SRAM [8, 9]. Each SRAM col-
umn can be transformed into a bit-serial ALU by adding extra
logic, multiplexing, and state elements in the peripheral cir-
cuitry. Alternatively, a set of SRAM columns can be grouped
into a bit-parallel ALU by adding bit-parallel logic in the pe-
ripheral circuitry instead.

In this paper, we provide a detailed implementation for
bit-serial vector RAM (BS-VRAM) and bit-parallel vec-
tor RAM (BP-VRAM) as two representative design points
for processing-in-SRAM. These two flavors of VRAM sup-
port a variety of micro-operations for implementing macro-
operations. Starting with an implementation of a traditional
28 nm 6T-SRAM in OpenRAM [6], we designed and laid
out the additional peripheral circuitry required to implement
BS-VRAM and BP-VRAM. Although surprisingly both de-
signs have comparable area overhead, they have very dif-
ferent performance characteristics. For a 32-bit MAC op-
eration, BS-VRAM has 5⇥ higher throughput (6.4 GOPS)
than BP-VRAM (1.3 GOPS), while BP-VRAM can achieve
6.5⇥ lower latency (197.9 ns) when compared to BS-VRAM
(1281 ns). BS-VRAM consumes lower energy per operation,

but we discuss possible techniques to help close this gap. As
the two designs require similar peripheral circuitry, this work
can be seen as a step towards building a reconfigurable bit-
serial/bit-parallel vector accelerator that is able to achieve ei-
ther high-throughput or low-latency depending on the appli-
cation requirements.

Our main contributions are: (1) a detailed circuit-level de-
sign of BS-/BP-VRAM in 28nm technology; (2) implementa-
tion of 17 macro-operations in BS-/BP-VRAM using micro-
operations; (3) a detailed study of the trade-offs in area, cycle
time, latency, throughput, and energy for BS-VRAM vs. BP-
VRAM. To our knowledge, this is the first work to rigorously
explore the trade-offs between a bit-serial vs. bit-parallel ap-
proach to in-situ processing-in-SRAM.

II. VRAM CIRCUITS

BS-VRAM and BP-VRAM start with a basic 6T SRAM
with support for bit-line computation (i.e., extra decoder and
reconfigurable single-ended/differential sense amplifiers as
in [8,9]). Bit-line computation simplifies the required periph-
eral logic to implement BS-VRAM and BP-VRAM. Figure 1
shows the additional peripheral circuitry required to enable
BS-VRAM and BP-VRAM beyond what is necessary for bit-
line computation.

A. Bit-Serial Compute Logic (BSCL)

The inputs to the BSCL are the output of each sense-
amplifier and its complement. Bit-line computation provides
bit-wise logical AND, NAND, OR, and NOR on these inputs.

The BSCL is composed of the following blocks. Bus
Logic: BSCL uses a distributed bus with NMOS pass-
transistors to choose between basic bit-wise logical opera-
tions (i.e., AND, NAND, OR, NOR). XOR/XNOR Logic:
Computing XOR and NOR in BSCL requires an additional
NAND gate and inverter. ADD Logic: BSCL uses a modified
serial Manchester carry chain (MCC). As addition is com-
puted bit serially, the carry out is stored for the subsequent
cycle while previous carry is used as carry in. The carry in is
XOR’ed with the bitwise logical XOR to compute the sum.
XRegister: XRegister’s input is multiplexed to choose either
the carry out from the ADD logic or an input carry, which
enables initializing the carry to zero for an addition or one
for a subtraction. The output of the XRegister is the input to
the ADD logic. Mask Logic: The mask logic in BSCL is a
latch with a multiplexer to choose either the unbuffered bus
or an input mask. The output of the latch is the mask used by
the SRAM for writes. In a conventional write, the input mask
will be chosen to be stored in the latch.
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Figure 1. VRAM
Circuits – High-level
block diagram of VRAM
microarchitecture
showing a column slice
of circuit-level details of
all the different logic
blocks of both VRAM
flavors. BP-VRAM
shares many logic blocks
implementation with
BS-VRAM, shown in
(c), and only differ in
three blocks that are
shown in (d). The boxed
logic blocks are
explained in section II
from top to bottom. The
blocks are: bus logic,
XOR/XNOR logic,
ADD logic, XRegister,
and mask logic.

B. Bit-Parallel Compute Logic (BPCL)

Bit-parallel compute logic reuses all but the last three
blocks from BSCL. ADD Logic: Bit-parallel addition re-
quires a carry propagation for which BPCL uses an MCC.
The addition result is computed by XOR’ing the carry-in of
every column with the bitwise logical XOR value. For better
performance, lightweight buffering along the carry chain is
inserted by using the inversion property of the adder. XRegis-
ter: The XRegister can act as shift register for the multiplier,
controlling whether a µop is conditionally executed. The in-
put of every flip-flop is multiplexed choosing either the in-
put mask, the output of the compute logic on the bus, or the
output of the XRegister of the column to the left (thus shift-
ing right). Mask Logic: To generate the appropriate mask of
every column, a multiplexer is added to select between the
XRegister output of the current column, the XRegister out-
put of the first column of the element (i.e., least-significant
bit "LSB"), or the XRegister output of the last column of the
element (i.e., most-significant bit "MSB"). For masking, mul-
tiplication uses the LSB while comparators use the MSB.

III. VRAM MICRO-PROGRAMMING

BS-VRAM and BP-VRAM implement single-cycle primi-
tives µoperations (µops). This section describes the supported
µops and illustrates how a sequence of µops can be used to
implement a complex macro-operation.

A. Micro-Operations

Normal SRAM read and write in a VRAM use the rd and
wr µops. The remaining µops are as follows:

Bit-line Compute (blc): This µop performs a read and
uses the compute logic to generate AND, NAND, OR, NOR,
and ADD. The sense-amps latch their outputs, meaning these
logic value can be reused until the next blc or rd.

Writeback (cond.wb.src ): After executing a blc, a
writeback µop writes the selected source back to the SRAM.

The writeback µop includes two parameters: a condition and
a source selection. The condition (supported only by BP-
VRAM) specifies whether the mask bit of a column would be
set to: the corresponding mask_in bit, the element’s LSB, or
its MSB. BS-VRAM and BP-VRAM utilize the already exist-
ing write mask (native to SRAMs) to conditionally writeback.

Write to Mask (wr_mask.src ): Instead of writing to the
SRAM, BS-VRAM and BP-VRAM allow writing to the mask
state element (which is the latch in BS-VRAM and the XReg-
ister for BP-VRAM). An algorithm can generate the mask
dynamically for subsequent conditional writes.

Shift Right Logical (srl): This µop (supported only by BP-
VRAM) shifts the content of the XRegister to the right by one
bit. Multiplication uses the LSB of the XRegister as a mask
for conditional addition. By shifting, the algorithm can step
through the bits of the multiplier from the LSB to the MSB.

Jump if not done (j_n_done_{0,1}): There are two coun-
ters for control flow, and each counter can be initialized to
the desired bitwidth (e.g., 8, 32). This control µop decre-
ments one of these counters (indicated with the suffix). If
the counter is zero, the counter is reset and execution falls
through to the next µop. If the counter is not zero, execution
jumps to the label.

B. Macro-Operations

Both flavors of VRAM utilize arithmetic and control µops
to implement multi-cycle macro-operations (see Table I). In
BS-VRAM, single-loop control is used to implement sim-
ple macro-operations (e.g., bit-wise logic and addition) while
nested-loop control is required for complex macro-operations
(e.g., multiplication and division). In BP-VRAM, bit-parallel
hardware is used for simple macro-operations while single-
loop control is only required to implement complex macro-
operations using a mixed bit-serial/bit-parallel approach. Fig-
ure 2 shows the implementation of addition and multiplica-
tion in both BS-/BP-VRAM. Addition in BS-VRAM is a loop



TABLE I. SUPPORTED MACRO-OPERATIONS

Macro-Operation Cycle Count # Temporary Rows
BS-VRAM BP-VRAM BS-VRAM BP-VRAM

add 64 2 0 0
sub 128 4 0 0

and,nand,or 64 2 0 0nor,xor,xnor

mul 1185 133 0 1
mac 1153 132 0 1
udiv 1712 519 5 1
rem 1680 390 4 2

slt,sle,sgt,sge 162 6 1 0
seq 96 11 1 1

loop:
1 blc addr_a, addr_b
2 wb.add addr_c

; j_n_done_0 loop

(a) add in BS-VRAM

1 blc addr_a, addr_b
2 wb.add addr_c

(b) add in BP-VRAM

1 set_cin 1
2 wb_mask <(1)

init:
3 wr addr_C <(0)

; j_n_done_0 init
iter:

4 rd addr_B
5 wr_mask.and

iter_add:
6 blc addr_C, addr_A
7 wb.add addr_C

; j_n_done_1 iter_add
8 j_n_done_0 iter

(c) mul in BS-VRAM

1 wr addr_c <(0)
2 rd addr_a
3 wb.and t0
4 rd addr_b
5 wr_mask.and

iter:
6 blc addr_c, t0
7 msb.wr.add addr_c

; srl
8 rd t0
9 wb.add t0

; j_n_done_0 iter

(d) mul in BP-VRAM

Figure 2. add and mul Macro-Operations – Each macro-op is used as
op c, a, b, where a and b are inputs and the resulting value would
be stored in c. addr_X is the row address of variable X. Labels are at
beginning of line with colon. Control µops use labels as destination
to redirect execution flow. <(X): indicates setting the data_in port
of the VRAM to the specified value X. Semicolon (;) indicates a
mini-op composed of two µops.

where each iteration uses a bit-line compute µop (blc) fol-
lowed by writing back the result of the ADD logic (wb.add).
Whereas, addition in BP-VRAM only requires one bit-line
compute µop (blc) and one write back (wb.add).

IV. EVALUATION

This section discusses the evaluation methodology as well
as the area, performance, and energy results of BS-/BP-
VRAM.

A. Methodology

OpenRAM [6] was adapted to produce a layout for a tradi-
tional 6T-SRAM targeting a 28nm technology node. Open-
RAM was also extended to produce a layout for bit-line
compute-capable SRAM (BC-SRAM) by adding an extra
decoder and reconfigurable single-ended/differential sense-
amplifiers. Finally, OpenRAM was used to produce the lay-
out for BS-VRAM and BP-VRAM based on BC-SRAM by
adding the layout for the compute logic.

Figure 3 shows the layout of BS-VRAM. This layout is
used to create a detailed extracted netlist for cycle time and
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Figure 3. BS-VRAM Layout – BP-VRAM
have identical floorplan and similar sizing.

TABLE II.
SUB-ARRAY AREA

COMPARSION

Design Area (µm2)

SRAM 22,868 (1.00⇥)
BL-SRAM 23,722 (1.04⇥)
BS-VRAM 24,940 (1.09⇥)
BP-VRAM 24,786 (1.08⇥)

SRAM = Traditional 6T
SRAM, BL-SRAM = bit-line
compute capable SRAM,
BS-VRAM = bit-serial
vector RAM, BP-VRAM =
bit-parallel vector RAM.

energy analysis. The energy of each µop is estimated by av-
eraging the energy consumed for 10 random inputs. Macro-
operation energies are estimated by accumulating the energy
of all executed µops. The cycle time is estimated by simulat-
ing the worst-case inputs on the extracted netlist.

B. Results

Since OpenRAM’s SRAM implementation does not use
pushed design rules [7, 10], bitcells are roughly 80% larger
compared to an equivalent SRAM generated by a commer-
cial memory compiler. Due to larger bitcells, OpenRAM’s
SRAM consumes around 1.5⇥ write energy and 3⇥ read en-
ergy. The read energy difference is attributed to less opti-
mized sense-amplifiers that require a larger voltage drop on
the bitlines. OpenRAM’s SRAM achieves an operating fre-
quency of 1.1 GHz compared to commercial SRAM com-
piler, which can achieve up to 2 GHz. While using Open-
RAM without pushed design rules obviously incurs signifi-
cant overhead compared to a commercial memory compiler,
OpenRAM also enables detailed layout design of BS-/BP-
VRAM and rigorous comparative analysis. Our techniques
will also apply to pushed design rule SRAMs.

Table II shows that BS-/BP-VRAM incur marginal area
overhead compared to a traditional 6T-SRAM (10%). BS-
VRAM operates at slightly lower clock frequency (900 MHz)
compared to the SRAM (1.1 GHz) mainly due to the switch
from a differential sense-amp to a reconfigurable sense-amp.
The MCC is on the critical path in BP-VRAM resulting in
an operating frequency of 645 MHz. Table III shows BP-
VRAM, despite its lower frequency, can achieve 23⇥ lower
latency compared to BS-VRAM. However, BS-VRAM is
able to achieve 5⇥ higher throughput. Even with lower la-
tency, BP-VRAM struggles to compensate for fewer ALUs
compared to BS-VRAM. Per sub-array, BS-VRAM has 32⇥
more ALUs, while BP-VRAM reduces latency by only 23⇥.

Table III shows the energy comparison between BS-
VRAM and BP-VRAM for add and mul operating on 8-bit
and 32-bit data. BS-VRAM can reduce the number of ex-
ecuted µops for 8-bit data (and thus the energy), while BP-
VRAM essentially always operates on 32-bit data. For ex-
ample, BS-VRAM requires only 1.2 pJ for an 8-bit addition,
while BP-VRAM requires 4.8 pJ. BP-VRAM’s energy effi-
ciency could be improved by using transmission gates to seg-
ment the MCC. For 32-bit data, BP-VRAM’s add energy is
similar to BS-VRAM, but bit-parallel mul consumes more en-



TABLE III. DETAILED COMPARSION TABLE BETWEEN
BS-VRAM AND BP-VRAM

8-bit 32-bit

BS BP BS BP

Latency add 17.8 3.1 (5.8⇥) 71.1 3.1 (23.0⇥)
(ns) mul 116.7 57.4 (2.0⇥) 1316.7 206.2 (6.4⇥)

Throughput add 14.4 (5.5⇥) 2.6 3.6 (1.4⇥) 2.6
(GOPS) mul 2.2 (15.7⇥) 0.14 0.2 (5.0⇥) 0.04

Energy add 1.2 4.8 4.7 4.8
(pJ/Op) mul 9.0 58.1 112.5 221.3

ergy due the multiplicand shifts required to generate partial-
products (i.e., more reads and writes).

V. COMPARISON TO PRIOR WORK

Processing-in-memory has shown promise in increasing
performance and energy efficiency by moving the computa-
tion closer to the memory [2,3,11–14,16,20,22]. Specifically,
recent work on processing-in-SRAM uses bit-line compute
to push logic into the SRAM with minimal area-overhead.
Prior work demonstrates the potential for bit-line compute by
transforming the cache subsystem of a chip multi-processor
into different engines: a bit-parallel bit-wise logic engine [1];
a fixed-function accelerator for neural networks [4]; and a
SIMT accelerator [5].

Jeloka et al. were the earliest to introduce the concept of
bit-line compute, where computations are performed digitally
inside the SRAM [8, 9]. Wang et al. propose CRAM which
extends bit-line compute to an 8T SRAM and include sup-
port for integer arithmetic [19]. Instead of performing the
computation vertically, the 8T bitcell allows the computations
to be performed horizontally in the compute bitlines. Addi-
tional functionality is implemented using bit-serial logic in
the periphery with appropriate multiplexing. Sub-array bank-
ing helps mitigate area overhead by sharing column decoders
and compute logic with neighboring sub-arrays.

Table IV shows a comparison of BS-VRAM and BP-
VRAM against prior work. Despite CRAM’s single-cycle
read-write, BS-VRAM is has higher throughput because: all
sub-arrays in BS-VRAM can be active at the same time while
CRAM can only use half of the subarrays due to banking; per
sub-array, BS-VRAM has twice computing bit-lines resulting
in twice the ALUs compared to CRAM; and BS-VRAM op-
erates at a higher frequency. The use of a 6T bitcells help
BS-VRAM and BP-VRAM in occupying only half the area
of CRAM. Energy efficiency of CRAM is roughly 3⇥ higher
than BS-VRAM because CRAM uses lower wordline voltage
while performing a bit-line computation as well as utilizing
a more optimized sense-amp that reduces read and bit-line
computation energy.

Although CRAM achieves 2–3⇥ higher energy efficiency
in 8-bit and 32-bit mac, the gap between BS-VRAM and
CRAM can easily be closed by scaling the BS-VRAM sup-
ply voltage. Considering BS-VRAM achieves around 16–
18⇥ higher throughput, by scaling the voltage to 0.6 V, BS-
VRAM can achieve similar energy efficiency to CRAM while
maintaining higher throughput.

TABLE IV. COMPARSION TO PRIOR WORK

Paper VRAM ISSCC’19 JSSC’16 VLSI’17

BS BP [19] [9] [21]

Technology 28nm 28nm 28nm 28nm 40nm
Voltage 0.9V 0.9V 0.9V 0.9V 0.9V
SRAM Capacity 128kB 128kB 128kB 128kB 128kB
SRAM Macro 4kB 4kB 16kB 0.5kB 8kB
SRAM Bitcell 6T 6T 8T 6T 10T
Precision Arb. 32b Arb. Arb. Arb.
Freq (MHz) 900 645 225 594 90
Area (mm2)* 1.1 1.1 2.7 0.7 1.28

Logic Ops � � � �(a) �(b)
Basic Int Ops � � �
Cmplx Int Ops � � �(c)
Cmp Ops � � �(d)
Search � �
FX Ops � �
FP Ops �
8b MAC GOPS 76.0 4.5 4.2 n/a n/a
8b MAC GOPS/W 115.5 17.2 245.5 n/a n/a

32b MAC GOPS 6.4 1.2 0.4 n/a n/a
32b MAC GOPS/W 9.0 4.5 22.5 n/a n/a

* Area is extrapolated to a full chip with 128kB total capcaity considering 80% density;
BS-VRAM and BP-VRAM consider 10% overhead for a controller. Cmplx = Complex,
Cmps = comparators, FX = fixed-point, FP = floating-point. Logic ops: and, nand, or,
nor, xor, xnor. Basic int ops: add, sub. Cmplex int ops: mul, udiv, rem. Cmps ops:
slt, sle, sgt, sge, seq. FX Ops: addfx, subfx, mulfx, udivfx. FP Ops: addfp,
subfp, mulfp, udivfp. (a) limited to and, nor. (b) limited to and, nor, xor. (c)
limited to mul, udiv (d) limited to slt, sgt, seq. n/a = the corresponding work does
not support this functionality.

VI. CONCLUSION

Leveraging in-situ processing-in-SRAM opens a rich de-
sign space for vector accelerators by reducing area and energy
costs. Considering BS-VRAM and BP-VRAM as represen-
tative design points for bit-serial and bit-parallel approaches,
our exploration shows that bit-serial achieves higher through-
put compared to bit-parallel, while bit-parallel has lower la-
tency. Both approaches incur comparable area overhead. Al-
though the bit-serial has lower energy, we believe adding bet-
ter µop support for some macro-operation can bridge the gap.
Finally, both designs share a significant amount of circuitry.
A reconfigurable design is possible by adding multiplexing
to break the addition chain into individual adders, thus trans-
forming bit-parallel into bit-serial and vice-versa.
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