## ENGRI 1210 Recent Trends in Computer Engineering

**Christopher Batten** 

School of Electrical and Computer Engineering Cornell University

Hardware Xcel for Deep Learning

## The Computer Systems Stack



Hardware Xcel for Deep Learning

## The Computer Systems Stack

| Computer Engineering | Application                  |
|----------------------|------------------------------|
|                      | Algorithm                    |
|                      | Programming Language         |
|                      | Operating System             |
|                      | Instruction Set Architecture |
|                      | Microarchitecture            |
|                      | Register-Transfer Level      |
|                      | Gate Level                   |
|                      | Circuits                     |
|                      | Devices                      |
|                      | Technology                   |

In its broadest definition, computer engineering is the development of the abstraction/implementation layers that allow us to execute information processing applications efficiently using available manufacturing technologies

## Electrical Engr vs. Comp Sci vs. Comp Engr



In its broadest definition, computer engineering is the development of the abstraction/implementation layers that allow us to execute information processing applications efficiently using available manufacturing technologies

## **Cornell Computer Engineering Curriculum**



## **Cornell Computer Engineering Curriculum**





## **Three Key Trends in Computer Engineering**

Trend #1: Growing Diversity in Applications and Systems





- Trend #2:
   Software/Arch
   Interface Changing
   Radically
- Trend #3: Technology/Arch Interface Changing
   Radically

Students entering the field of computer engineering have a unique opportunity to shape the future of computing and how it will impact society

## Bell's Law

Roughly every decade a new, smaller, lower priced computer class forms based on a new programming platform resulting in entire new industries



The Computer Systems Stack

Trends in Computer Engineering 

Hardware Xcel for Deep Learning

### M3: Michigan Micro Mote



Adapted from Y. Lee et al., JSSC, 2013.

**ENGRI 1210** 

Recent Trends and Applications in Computer Engineering

## **Three Key Trends in Computer Engineering**

Trend #1: Growing Diversity in Applications and Systems





- Trend #2:
   Software/Arch
   Interface Changing
   Radically
- Trend #3: Technology/Arch Interface Changing
   Radically

Students entering the field of computer engineering have a unique opportunity to shape the future of computing and how it will impact society

## **Activity: Specifications of Modern Processors**

#### http://tiny.cc/engri1210-2

- Breakout into groups of 3 students
- 2. Browse WikiChip
- 3. Find a few processors
- 4. Enter year, frequency, core count, power in Google form
- 5. Come back into main zoom room



## **Trends in High-Performance Processors**



## **Parallelization & Specialization Are Now Critical**



## **Celerity System-on-Chip**

UCSD, Washington, Cornell, Michigan w/ DARPA CRAFT Program

- $5 \times 5$ mm in TSMC 16 nm FFC
- 385 million transistors
- 511 RISC-V cores
  - 5 Linux-capable Rocket cores
  - ▷ 496-core tiled manycore
  - 10-core low-voltage array
- 1 BNN accelerator
- 1 synthesizable PLL
- 1 synthesizable LDO Vreg
- 3 clock domains
- 672-pin flip chip BGA package
- 9-months from PDK access to tape-out



## **Three Key Trends in Computer Engineering**

Trend #1: Growing Diversity in Applications and Systems





- Trend #2:
   Software/Arch
   Interface Changing
   Radically
- Trend #3: Technology/Arch Interface Changing
   Radically

Students entering the field of computer engineering have a unique opportunity to shape the future of computing and how it will impact society

## **Technology Scaling is Slowing**



Recent Trends and Applications in Computer Engineering

## **Three Key Trends in Computer Engineering**

Trend #1: Growing Diversity in Applications and Systems





- Trend #2:
   Software/Arch
   Interface Changing
   Radically
- Trend #3: Technology/Arch Interface Changing
   Radically

Students entering the field of computer engineering have a unique opportunity to shape the future of computing and how it will impact society



Trends in Computer Engineering

Hardware Xcel for Deep Learning 

## **Image Recognition**



Trends in Computer Engineering

Hardware Xcel for Deep Learning 

## **Training vs. Inference**



Hardware Xcel for Deep Learning 

## ImageNet Large-Scale Visual Recognition Challenge



Trends in Computer Engineering

Hardware Xcel for Deep Learning 

## **ML Hardware Acceleration in the Cloud**



#### **NVIDIA DGX-1**

- Graphics processor specialized just for machine learning
- Available as part of a complete system with both the software and hardware designed by NVIDIA



#### Google TPU

- Custom chip specifically designed to accelerate Google's TensorFlow C++ library
- Tightly integrated into Google's data centers
- 15–30× faster than contemporary CPU and GPUs



#### **Microsoft Catapult**

- Custom FPGA board for accelerating Bing search and machine learning
- Accelerators developed with/by app developers
- Tightly integrated into Microsoft data center's and cloud computing platforms

Trends in Computer Engineering

Hardware Xcel for Deep Learning 

## **ML Hardware Acceleration at the Edge**



#### **Amazon Echo**

- Developing AI chips so Echo line can do more on-board processing
- Reduces need for round-trip to cloud
- Co-design the algorithms and the underlying hardware



#### **Facebook Oculus**

- Starting to design custom chips for Oculus VR headsets
- Significant performance demands under strict power requirements



#### **Movidius Myriad 2**



Hardware Xcel for Deep Learning •

## **ML** Acceleration Can Incorporate All Three Trends



- ISAAC: Convolutional neural network accelerator which uses in-situ analog arithmetic in crossbars of emerging resistive memory devices
- Captures all three trends
  - New applications and systems in ultra-low-power TinyML
  - New software/architecture interface for accelerator
  - New technology/architecture interface with non-traditional devices

Adapted from A. Shafiee et al., ISCA, 2016.

Trends in Computer Engineering

# Top-five software companies are all making chips

Facebook: w/ Intel, in-house AI chips?
Amazon: Echo, Oculus, networking chips
Microsoft: Hiring for AI chips?
Google: TPU, Pixel, convergence?
Apple: SoCs for phones, wireless chips

Chip startup ecosystem for machine learning is thriving!

- Graphcore
- Nervana
- Cerebras
- Wave Computing
- Horizon Robotics
- Cambricon
- DeePhi
- Esperanto
- SambaNova
- Eyeriss
- Tenstorrent
- **Mythic**
- ThinkForce
- Groq
- Lightmatter



Algorithm

PL

OS

ISA

μArch

**RTL** 

Gates

Circuits

Devices

Technology

## **Take-Away Points**

- We are entering an exciting new era of computer engineering
  - Growing diversity in applications & systems
  - Radical rethinking of software/architecture interface
  - Radical rethinking of technology/architecture interface
- This era offers tremendous challenges and opportunities, which makes it a wonderful time to study and contribute to the field of computer engineering

## **ECE 2400 Computer Systems Programming**

#### Part 1: Procedural Programming

introduction to C, variables, expressions, functions, conditional & iteration statements, recursion, static types, pointers, arrays, dynamic allocation

#### Part 2: Basic Algorithms and Data Structures

Iists, vectors, complexity analysis, insertion sort, selection sort, merge sort, quick sort, hybrid sorts, stacks, queues, sets, maps

#### Part 3: Multi-Paradigm Programming

transition to C++, namespaces, flexible function prototypes, references, exceptions, new/delete, *object oriented programming* (C++ classes and inheritance for dynamic polymorphism), *generic programming* (C++ templates for static polymorphism), *functional programming* (C++ functors and lambdas), *concurrent programming* (C++ threads and atomics)

#### Part 4: More Algorithms and Data Structures

trees (binary trees, binary search trees), tables (lookup tables, hash tables), graphs (DFS, BFS, shortest path first, minimum spanning trees)

## **ECE 2400 Computer Systems Programming**

#### PA1–3: Fundamentals

- PA1: Math functions
- PA2: List and Vector Data Structures
- PA3: Sorting Algorithms

#### PA4–5: Handwriting Recognition System

- PA5: Linear vs. Binary Searching
- PA5: Trees vs. Tables

#### Every programming assignment involves

- ▷ C/C++ "agile" programming
- State-of-the-art tools for build systems, version control, continuous integration, code coverage
- Performance measurement
- Short technical report

