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ABSTRACT
Database analytic query workloads are heavy consumers of data-
center cycles, and there is constant demand to improve their perfor-
mance. Associative processors (AP) have re-emerged as an attractive
architecture that offers very large data-level parallelism that can
be used to implement a wide range of general-purpose operations.
Associative processing is based primarily on efficient search and
bulk update operations. Analytic query workloads benefit from data
parallel execution and often feature both search and bulk update
operations. In this paper, we investigate how amenable APs are to
improving the performance of analytic query workloads. For this
study, we use the recently proposed Content-Addressable Process-
ing Engine (CAPE) framework. CAPE is an AP core that is highly
programmable via the RISC-V ISA with standard vector extensions.
By mapping key database operators to CAPE and introducing AP-
aware changes to the query optimizer, we show that CAPE is a
good match for database analytic workloads. We also propose a set
of database-aware microarchitectural changes to CAPE to further
improve performance. Overall, CAPE achieves a 10.8× speedup on
average (up to 61.1×) on the SSB benchmark (a suite of 13 queries)
compared to an iso-area aggressive out-of-order processor with
AVX-512 SIMD support.

CCS CONCEPTS
•Computer systems organization→ Single instruction,mul-
tiple data; • Information systems→ Query operators; Query
optimization.
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1 INTRODUCTION
Data analysis is a critical tool that drives business decision-making.
The value of data-driven decisions is undeniable, and as a result,
both the volume of data and the associated computing needs are
continuously increasing [7]. The architecture community has pro-
posed a wide variety of solutions with the potential to bring large
performance benefits to database platforms [8–13, 31, 32, 39, 41, 43,
47, 53, 56, 60, 64, 65]. By and large, custom designs trade generality
for performance.

Associative Processors (AP), first introduced in the 1970s [22],
have recently re-emerged as an attractive concept for general pur-
pose applications that exhibit data-level parallelism [15, 46, 66, 68].
In addition to their very long vector-style compute capabilities, APs
provide efficient multi-row search and update operations. As it turns
out, database systems that run analytic workloads not only struc-
ture operands in vector-like columns but also contain searches and
updates at the core of their operators. Thus, we hypothesize that
APs may have the potential to accelerate analytic query workloads.

In this paper, we investigate how amenable APs are to deliv-
ering high performance on analytic query workloads. We build
a research prototype database system called Castle that executes
end-to-end analytic query workloads on the recently proposed
Content-Addressable Processing Engine (CAPE) [15]. CAPE is an
associative processor core that is highly programmable via the
RISC-V ISA with standard vector extensions. By updating database
operator algorithms and query optimization strategies, we show
that CAPE is a strong match for database analytic workloads. We
also propose database-aware microarchitectural changes to CAPE
to further improve the performance of CAPE for our target work-
loads.
Overall, our contributions are:
(1) An in-depth analysis and evaluation of the fit between APs and

analytic query workloads. To the best of our knowledge, this is
the first paper to explore this synergy for end-to-end database
analytic query workloads.

https://doi.org/10.1145/3470496.3527435
https://doi.org/10.1145/3470496.3527435
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Figure 1: Waterfall chart of the speedup geomean of CAPE
compared to an AVX-512 baseline for the SSB benchmark
queries.

(2) An efficient mapping of database operators using the standard
RISC-V vector abstraction and query optimization strategies for
CAPE.

(3) A set of database-aware microarchitectural changes for CAPE
to further improve performance on analytic query workloads
while maintaining its programmability and performance as a
general-purpose core.
To evaluate the performance of database analytic queries on

CAPE, we compare to an area-equivalent aggressive out-of-order
processor with AVX-512 SIMD extensions using a widely used end-
to-end benchmark suite. Our results highlight the importance of
a codesign approach to effectively improve performance. Figure 1
is a waterfall chart of the speedup geometric mean achieved by
Castle on SSB (a benchmark suite of 13 queries), as obtained in
our evaluations (Sections 4 and 6). This type of chart visualizes
the contribution of different components to a total. Interestingly,
we observe a slowdown of 0.3× by simply using CAPE-adapted
database operators (Section 3). However, by adding CAPE-specific
query optimization strategies (Section 3.4), the speedup improves
to 5.3× over the baseline. Additional database-aware microarchi-
tectural changes to CAPE (Section 5) further increase the overall
speedup to 10.8×.

2 BACKGROUND
In this section, we introduce the three main components of the
Castle framework: associative processors, the Content-Addressable
Processing Engine (CAPE), and relational databases.

2.1 Associative Processors
An associative processor (AP) [22] 1) stores data in vector form, 2)
can compare a key against all vector elements in parallel (search),
and 3) can update all matching elements in bulk with a new value
(update). These two primitive operations, search and update, are
supported via associative memories and can each be applied simul-
taneously to an entire vector of elements. The two primitives are
typically arranged in search-update pairs, which are sometimes
bit-serial (e.g., for arithmetic operations) and element-parallel—i.e.,
a search-update pair operates on the same bit of all the elements
of a vector (or several vectors). The sequence of search-update

pairs that operates sequentially on all the bits of each vector value
constitutes an associative algorithm.

We describe how associative algorithms implement higher-level
operations and how APs execute them by using vector increment
as an example (Figure 2). A vector increment increases all vector
elements in value by one. To perform the operation, first, 1 is added
to the least significant bit of all vector elements, and any carry
is remembered. Then, for each element, the corresponding carry
is added to the next bit, and so forth. Of course, an associative
processor cannot “add” bits per se. Instead, it implements bitwise
addition through a sequence of search-update pairs that follow the
truth tables for a half adder (Figure 2 left), one bit position at a time.
For each bit position i . At a high level, the logic is as follows: 1)
Search vector elements for which the ith bit is 0 and the running
carry for that element (an extra bit of storage) is 1, then update the
ith bit of matching elements to 1 and their running carry to 0. 2)
Search vector elements whose ith bit is 1 and the running carry for
that element is also 1, then update the ith bit of matching elements
to 0 and the running carry to 1.

Note that, in this example, we do not perform search-update
pairs for the two cases where the output is the same as the input—
namely, neither the element’s bit nor the running carry flip as a
result of applying the half adder truth table (crossed-out entries in
the truth tables of Figure 2). Also, some additional support beyond
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Figure 2: Associative increment instruction as a sequence
of search-update operations to a vector of three two-bit el-
ements (left to right and top to bottom). Carry bit column c
is initialized to 1, as seen in [15]. The operation is done once
all carry bits are zero (bottom-right).
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search/update is needed: 1) We need two bits of additional storage
per vector element: One bit serves as the running carry (initialized
to 1 at the beginning of the instruction with a single bulk-update),
and another bit “tags” matching elements (tag bits) in each of the
searches. 2)We also need tomask out the bits not participating in the
search or update (indicated by “X” in Figure 2) in order to constrain
searches and updates to the ith bit of each element. 3) The sequence
of operations that implement the increment instruction needs to
be “stored” somewhere (e.g., the micro-memory of a sequencer).

As stated before, most arithmetic operations on APs operate
bit-serially; in fact, they often require multiple search and update
operations per bit. As a result, even a relatively simple increment
instruction on a 32-bit value requires over 100 such operations. The
key to AP performance is that operations are carried out simulta-
neously on an extremely large number of vector elements, typically
tens to hundreds of thousands.

2.2 A Content-Addressable Processing Engine
A Content-Addressable Processing Engine (CAPE) [15] is a general-
purposeAP core that adopts a contemporary ISA abstraction, namely
RISC-V with standard vector extensions, and can be readily inte-
grated into a tiled architecture. CAPE has been shown to accelerate
a broad range of data-parallel workloads [15].

CAPE’s architecture comprises four main blocks (Figure 3). The
Control Processor (CP) is a tiny in-order core that runs RISC-V code
with standard vector extensions [62]. It processes scalar instructions
locally and offloads vector instructions to the Compute-Storage
Block (CSB), which acts as a coprocessor and is CAPE’s associative
engine. The CSB is content-addressable memory that is organized
into large vectors (order of 104 32-bit vector elements). The maxi-
mum degree of data parallelism for each associative operation is
the length of these vectors (also denoted as MAXVL in this paper).
A vector instruction commits in the CP only after it completes
in the CSB. In the shadow of an outstanding vector instruction,
subsequent scalar logic/arithmetic ALU instructions may issue and
execute (if not data-dependent with the vector instruction) but not
commit. The increment example described in Section 2.1 maps to
standard RISC-V vector instructions.

Load/store vector instructions en route to the CSB go through the
Vector Memory Unit (VMU). Other vector instructions go through

Associative
μops
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Figure 3: CAPE functional blocks (not drawn to scale): Con-
trol Processor, Compute-Storage Block (CSB), Vector Mem-
ory Unit (VMU), and Vector Control Unit (VCU). CAPE can
be used as a plug-and-play core in a multicore CPU.

Instructions Steps (n bits) Mode

Arithmetic

vv add 8n + 2

Bit-serialvv subtraction 8n + 2
vv multiplication 4n2 + 4n
vv reduction sum ∼n

Logic
vv logical and 3

Bit-parallelvv logical or 3
vv logical xor 4

Comparison
vs equality (search) n + 1

Bit-serialvv equality n + 4
vv inequality 3n + 6

Table 1: An illustrative subset of associative operations,
their costmodel for n bits, and their computemode. The“vv”
and “vs” refer to vector-vector and vector-scalar, respec-
tively, to denote the type of their input operands. The result
is always a vector operand.

the Vector Control Unit (VCU), which generates microcode se-
quences to drive the CSB. VMU and VCU generate/transfer control/-
data signals to the CSB, respectively. The RISC-V vector register
names in each instruction are used to index the appropriate vector
operands in the CSB.

The CSB is composed of tens of thousands of associative sub-
arrays, which can perform massively parallel operations (shown
as blue boxes in Figure 3). Each subarray is made up of 6T bit-
cells that can readily support the four microoperations used in
CAPE’s computational model: single-element reads and writes, as
well as highly-efficient multi-element (vector) searches and up-
dates. CAPE’s associative arrays are built out of SRAM technology.
A CAPE with a 4 MB CSB is comparable in area to a conventional
out-of-order core [15].

As described in [15], the CSB is organized in chains of 32×32
(rows×columns) memory subarrays. Each of these subarrays i prop-
agates the tag bits to their next i + 1 neighbor, hence, forming a
chain. The CSB comprises thousands of chains that operate in lock-
step, executing the same command independently (some chains
may be disabled if the program requires less parallelism than the
one supported by the hardware).

Associative algorithms were originally proposed as bit-serial
operations [22], and CAPE performs arithmetic operations in this
way. CAPE’s array geometry and bitslicing of data values allow
logical associative algorithms (e.g., vector XOR) to be performed in
a bit-parallel fashion [15] (Table 1).

2.3 Relational Database Management Systems
Relational Database Management Systems (RDBMS) are software
systems that store, manage and query collections of data orga-
nized as relations (also called tables). A defining characteristic of
databases is the declarative interface. Queries submitted to the sys-
tem are expressed in a declarative language (e.g., SQL). As a result,
a user does not have to be aware of the database internals to use
it; a declarative query defines the result of a computation but does
not describe the computation. Further, the declarative interface
allows the database system to organize data, build indices (auxiliary
data structures that speed up data retrieval), and choose the best
algorithm for each operation without the user’s involvement. A



ISCA ’22, June 18–22, 2022, New York, NY, USA Helena Caminal, Yannis Chronis, Tianshu Wu, Jignesh M. Patel, and José F. Martínez

critical component that enables a database system to be performant
is the query optimizer. The query optimizer produces an execution
plan for each query by considering data properties and internal
system information that are not exposed to the user.

The workflow for using a database includes loading collections
of data organized as relations, submitting queries, and collecting
results also organized as relations. Relational databases include
many components; a parser that transforms queries into trees of
operators; a query optimizer that transforms the parser output into
an execution plan; an execution engine that executes the optimized
execution plan using a library of operators; a storage engine that
stores the relations and manages secondary structures (e.g., indices).
Analytic Query Processing— is a class of workloads that ana-
lyzes large volumes of data and produces summary statistics (also
known as Online Analytical Processing or OLAP). Analytic queries
are long-running and apply complex analyses to the data. There are
three core operators used in analytic queries: selection, join, and
aggregation. Selections retrieve the qualifying rows of a relation
that match a set of predicates. Joins combine two relations based
on the values in a set of columns. Aggregations group rows of a
relation based on the value of a set of columns and calculate a
summary statistic for each group (e.g., SUM, MAX, STDDEV).

3 CASTLE: A DATABASE SYSTEM FOR
ASSOCIATIVE PROCESSING

In this section, we present Castle, a research prototype database
system built for a CAPE core. Castle follows a columnar design,
which is the preferred option for analytic workloads [58]. Vector-
ization and CAPE naturally align with columnar processing: data is
stored in vectors and operations produce masks (associative search)
or consume them (bulk update). In this section, we describe the
implementation of Castle’s database operators for CAPE. Then,
we adapt query optimization for multi-join queries. The optimized
query plans for CAPE differ from those produced by traditional
optimizers (see Section 3.4 for details), which points to the impor-
tance of changing conventional database optimization strategies
for CAPE.

The algorithms presented in this section are vector-length ag-
nostic. CAPE exposes its parallelism via RISC-V’s variable vector
length mechanism. Data analytic workloads process datasets typi-
cally much larger than that, which requires data movement between
a CAPE (or conventional) core and main memory. Castle used the
variable vector length mechanism to load partitions of the input
columns to CAPE’s CSB that are automatically sized to the largest
between the hardware vector length (e.g., MAXVL) and the remain-
ing input, until the entire input has been processed.1. Often, Castle
retains intermediate results in-situ for subsequent operators and
reduces data movement to/from main memory to further improve
performance.

3.1 Indexing and Selection
Indexing: A database index on a relation maps a value to a relation
row (specifically a row id). Indices are used to speed up query pro-
cessing by retrieving the rows that match a value without the need

1Similar to other RISC-V vectorized binaries, Castle binaries can be run on CAPE
cores with different MAXVL without the need to modify or recompile them.

row_id A m1 m2 Smask
0 1 0 0 0

S: (A=5) or (A=6)

value_array = {5, 6, 5}

m1

Smask = m1 or m2
1 5 1 0 1
2 7 0 0 0
3 6 0 1 1
4 5 1 0 1

m2

Figure 4: Example of selection and mask compaction.

to scan the entire relation. In CAPE, searches are single-cycle prim-
itives. Data loaded in CAPE is effectively indexed by virtue of being
accessible as a RISC-V vector operand, without requiring building
or maintaining an additional data structure. Drawing a parallel to
existing indexing structures, a vector in Castle is a hashmap with
no collisions that uses the identity function as a hash function.
Selection: A Castle selection operator applies predicates to one or
more column(s) loaded in vectors in parallel, and produces a mask
to identify the matching rows. The output mask is stored in a vector
register. Masks can be logically combined as defined by a predicate.
Compaction after selection: Figure 4 presents an example of a se-
lection operation that filters column A. The selection predicate is
(A = 5 or A = 6). A search is performed for each equality predicate
and outputs a mask (m1 andm2). The two masks are combined into
the final selection result mask Smask . Depending on the upstream
usage, we can opt to compact the output to a (software data struc-
ture) values array that can be accessed by subsequent operators. A
values array contains the values whose mask bit is set. The figure
presents the output of the selection in the two data formats (mask
and a value array).

3.2 Join
A join (denoted by ▷◁) finds matching rows from two relations ac-
cording to a predicate. Traditional join algorithms (i.e., nested-loops
join, hash join, lookup join [27]) iterate over the first relation and
probe the second relation to find matching rows (probe phase).
Some algorithms (i.e., hash join) accelerate probes with indices,
which are built as part of the join operation (build phase). Tradi-
tionally, the index is built on the smaller relation, and the larger
relation is used for probing (probe side) since creating an index is
more expensive than probing it.

CAPE has dedicated support to search all elements of a vector for
a matching key simultaneously and, therefore, can skip the index
build phase. By eliminating the index build cost, Castle can choose
the smaller relation as the probe side and reduce the number of
probes. In the common case for analytic workloads, there is a size
imbalance between the relations to be joined [14], which favors the
Castle join algorithm.

Algorithm 1 Castle Join
Rel1 ▷◁ (=join) Rel2 on Rel1.ColA=Rel2.ColB

1: while ColA is not consumed do
2: v0 = vload_vector(next ColA partition)
3: for i=0; i < |ColB|; ++i do
4: v1 = search(v0, ColB[i])
5: construct the join result in the desired format
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Algorithm 1 presents the pseudocode for the Castle join operator
that joins Rel1 and Rel2. The two relations are joined on ColA from
Rel1 and ColB from Rel2. We iteratively load all partitions of ColA
in vector register v0 (line 2). For each tuple of the ColB relation
we search v0, and get back a mask of matches in v1 (lines 3-4).
Depending on how the result of a join is going to be used, we have
two options: a) keep a mask of the joined tuples that corresponds
to the relation loaded in CAPE (used for semi-joins as their result
only includes data from one of the joined relations) b) materialize
the full result (or the part of the result that is needed by upstream
operators) in the CSB or main memory. Bulk updates are used to
materialize the join result in the CSB.

3.3 Aggregation
An aggregation operation is used to produce summaries for groups
of rows. Modern data processing engines use sort-based or hash-
based approaches [27] that rearrange rows into their respective
groups to evaluate an aggregation.

Castle’s aggregation operator uses an associative search instruc-
tion to discover the rows that belong to the same group in a data-
parallel way and can calculate group-wide statistics via vector
reductions using predication.2 Predication allows selecting a subset
of a vector to be processed, in this case the rows that belong to
the same group can be reduced without physically rearranging the
data. This process is repeated for each group present in the data.
We illustrate Castle’s aggregate operator implementation using the
following example query:
SELECT GCol , SUM(SCol) FROM R GROUP BY GCol;

Algorithm 2 shows the pseudocode for the example aggregate query
that sums the values of column SCol for each unique value of the
columnGCol value and returns the result to main memory. Algo-
rithm 2 allocates two parallel arrays in main memory to store the
final result: one for the group keys (mm_arr_д) and one for the
group aggregate values (mm_arr_sum). The result could alterna-
tively be stored in associative vectors depending on the downstream
usage. The two relevant columns GCol, SCol are loaded in vectors
(lines 3-4). An input mask with the same length as the columns is
initialized to all 1s (line 5). The input mask keeps track of all the
rows that we have not been processed so far. If the aggregation
is performed on the output of another operator (e.g., a selection),
then the input mask is the previous operator’s output mask. Iter-
atively, we discover each group and calculate its sum aggregate
value (lines 7-11). In each iteration, we find the index of the first
set bit in the input mask (v2). Retrieving the first set bit of a mask
in Castle is performed using CAPE’s priority encoder tree (using
the vmfirst instruction, lines 6, 14) [15]. Using the row index (idx ),
we retrieve the corresponding grouping column value (line 8). The
next step is to find all other rows that belong to the same group by
performing a search on theGCol vector for the value of the current
group key (line 9). The mask produced by the search is used to
calculate the sum per group and unset the processed rows from the
input mask (v2). To sum up the values of SCol that belong to the
current group, we use the predicated vsum operation, which sums
all values of a vector indicated by a mask (line 10) using a hardware

2Predication in vector architectures refers to the ISA feature that allows an in-
struction to disable certain vector elements.

Algorithm 2 Castle Aggregation
SELECT sum(SCol), GCol ... GROUP BY GCol

1: mm_arr_g = new mm_array() ▷ array in main memory
2: mm_arr_sum = new mm_array() ▷ array in main memory
3: v0 = vload_vector(GCol) ▷ loads a column into a vector
4: v1 = vload_vector(SCol)
5: v2 = mask_init(1) ▷ replicates a constant in a vector
6: idx = vmfirst(v2) ▷ get the index of the the first set bit
7: while idx != -1 do
8: groupkey = GCol[idx]
9: v3 = vsearch(v0, groupkey) ▷ vector search
10: s = vsum(v3, v1) ▷ predicated (by mask v3) sum v1
11: v2 = vxor(v2, v3) ▷ unselect elements of current group
12: mm_array_g .append(groupkey)
13: mm_array_sum.append(s)
14: idx = vmfirst(v2)
15: Return mm_array_g, mm_array_sum

reduction tree [15]. To unselect the elements of the current group
that have already been processed, a vector xor operation is used
(line 11). When this index (idx ) becomes -1, then the entire input is
processed and we exit the loop and the aggregation is completed.
The cost of Castle’s aggregation correlates with the number of
unique groups found.

3.4 Query Optimization – Join Ordering
Database systems employ a module called query optimizer, and a
key goal of an optimizer is to explore plans with different join orders.
An optimized plan can be far more efficient than a naive plan [40]. In
addition to the order of execution of joins, query optimizers choose
the shape of the query plan, which dictates the probe side of joins
(Section 3.2). Databases designed for analytic workloads organize
data in a star (or a snowflake) schema, where one relation (fact)
is much larger than the rest (dimensions) [48]. The information
contained in the fact relation connects (joins) the smaller relations.
Therefore, columns from fact relation are involved in nearly every
join.

Traditional database systems favor plans with a left-deep shape.
In a left-deep plan, indices are built on the dimension relations and
the fact relation is the probe side. The alternative plan shapes are
right-deep and zig-zag. Right-deep plans use the dimension relations
as the probe sides and build indices on the fact relation and the
intermediate result of each join. Zig-zag plans change the direction
of the data flow through the sequence of join operators, and are
essentially a combination of right-deep and left-deep subplans.

Left-deep plans allow for deeper pipelining of joins in a tradi-
tional database system. Pipelined join execution means that a tuple
from the fact relation is used to probe all the dimension relations
before the following fact tuple is joined. Right-deep plans are gen-
erally not preferred in a traditional system as intermediate results
have to be materialized (to build an index on them) [40] before the
next join, making them more expensive compared to other plans.

CAPE implicitly indexes data loaded into a vector register, so
the Castle join operator changes the relation of the join that is
traditionally the probe side to increase performance by reducing
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the number of probes (Section 3.2). As a result, right-deep plans
that use the dimension relations as the probe sides are more efficient
in Castle compared to left-deep plans.

As joins are performed in a multi-join query the intermediate
join result may become smaller than the yet unjoined dimension
relations. At that point, it is more cost-effective to switch the join
direction. Castle also has the ability to evaluate zig-zag join plans,
which allow for a change in the probe side mid-plan. This is a supris-
ing result, the data flow direction change mid-plan is expensive in
traditional systems, as it breaks the join pipeline. In CAPE, there
is no need for an index-building step between joins, and thus the
switch can be made without breaking the existing join pipeline.

Let us use an example to illustrate the implications of the three
plan shapes in Castle, namely left-deep, right-deep, and zig-zag,
and present the cost estimation formula used by Castle’s optimizer.
Further, we will use this example to illustrate an interesting side-
effect of right-deep plans when executed on CAPE. The example
query joins two dimension relations d1, d2 with the fact relation f :

SELECT *

FROM fact as f, dimension1 as d1, dimemsion2 as d2

WHERE fact.c1 = d1.c1 AND d2.c2 = dim2.c2 AND ...

To join two relations in Castle, we probe one relation (relation1)
for every tuple in the second relation (relation2), which requires
|relation2 | ∗ |Part(relation1) |2 searches, where Part(X) splits rela-
tion X in MAXVL-sized partitions.3 The probing for all tuples of
relation2 is repeated for every partition of relation1 loaded to CAPE.

Figure 5 visualizes the three plans using our example query.
Using sample query statistics lifted from the SSB benchmark, we
calculate the cost for each plan. Since the dimension relations are
smaller than the fact relation, a right-deep plan decreases the exe-
cution cost in Castle. The right-deep plan for our example query is
cheaper than the left-deep plan, as d1 is smaller than the f relation.
As an added benefit for right-deep plans, the execution cost is in-
dependent of the join order. The execution cost only depends on
the sizes of the dimension relations because we load the whole fact
relation (as shown by the cost formula). Thus, a right-deep plan in
Castle generally safeguards us from executing a plan with a bad
join order [40] due to inaccurate intermediate result size estima-
tions [33]. This behavior is not the case in a traditional database
system since in the case of a hash join, hash maps would have to
be built on the intermediate join results (the size of which could
be underestimated [40] during query optimization where estimates
are used to decide the join order).

Although right-deep plans in Castle are generally more perfor-
mant compared to left-deep plans, they are not necessarily optimal.
As the joins are executed, if the probe side becomes smaller than
the yet unjoined dimension relations, then a zig-zag plan is more
efficient. In our example, the result of f joined with d1 (f ▷◁ d1) is
smaller than d2; thus, using a zig-zag shape, which makes f ▷◁ d1
the probe size, yields a significant cost improvement.

Building on the observations described above, Castle employs
an optimization rule to decide the join order together with the
plan shape so that the number of searches is minimized. The rule

2The vertical lines denote the relation size measured in number of rows.
3Here, MAXVL is used to denote the degree of parallelism offered by the CSB
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Figure 5: Query plans with different plan shapes for a query
that joins (▷◁) a fact relation (f) with two dimension relations
(d1 and d2). Under each plan, we calculate the execution cost
in terms of searches. Operators are evaluated bottom-up as
shown in the query plans and the leaf nodes constitute the
input relations to the query. Next to each node, we indicate
if they are used as probe side (green symbol) or stored (in
MAXVL-sized partitions) in the CSB (blue box).

considers the vector length of CAPE, as well the estimated query
statistics (sizes of intermediate results).

In our evaluation (Section 4.2), we found that the best execution
plans for Castle are usually zig-zag shaped and, less often, right-
deep shaped. This is a surprising result and emphasizes the need
for a hardware-aware strategy to design database systems.

4 EVALUATION OF DATABASE ANALYTICS
ON CAPE

In this section, we show a first end-to-end performance evalua-
tion of a database analytic workload executed by Castle running
on unmodified CAPE. We evaluate the CAPE optimized database
operators and query optimization strategies presented in Section 3,
and analyze the usage of vector instructions.

4.1 Experimental Methodology and Setup
Castle System Configuration— We run experiments for a CAPE
core with a CSB that supports a maximum vector length (MAXVL)
of 32,768 vector elements4 and has an effective capacity of 4 MB
(32 32-bit vectors of 32,768 elements). The control processor (CP) is
modeled using the RISC-V RV64G MinorCPU gem5 model, running
at 2.7 GHz, and it is configured as a dual-issue, in-order, five-stage
pipeline. The simulated system uses a DDR4 main memory with 64
GB of capacity, eight channels, and a maximum bandwidth of 153.6
GB/s. CAPE does not have an L3 cache, although past work has
suggested that the CSB could be configured as one [15]. Table 2 sum-
marizes the architectural configuration. To compile the vectorized
Castle code (written in C) we use the RISC-V toolchain [5].
Baseline System Configuration— We choose an out-of-order,
superscalar core based on a high-end Intel Skylake processor mod-
eled with the DerivO3CPU gem5 model, which is similar in area

4For reference, an Intel AVX512 [4] vector coprocessor can support a vector length
of 16 (32-bit elements).
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Baseline Core CAPE’s Ctrl Processor

System
configuration

out-of-order core, 2.7GHz
32 kB/32kB/1MB L1D/L1I/L2
5.5MB L3 (shared), 512B cache line

in-order core, 2.7GHz
32 kB/32kB/1MB L1D/L1I/L2
512B cache line

Core
configuration

8-issue, 224 ROB, 72 LQ, 56 SQ
4/4/4/3/1 IntAdd/IntMul/FP/Mem/Br units
TournamentBP, 4,096 BTB, 16 RAS

2-issue in-order, 5 LSQ
4/1/1/1 Int/FP/Mem/Br units
TournamentBP, 4,096 BTB, 16 RAS

L1 D/I cache 8-way, LRU,MESI, 2 tag/data latency 8-way, LRU, 2 tag/data latency
L2 cache 16-way,LRU,MESI,14 tag/data latency 16-way,LRU,14 tag/data latency
L3 cache 11-way, LRU, 50 tag/data latency, shared N./A.
Main memory 64GB DDR4, 8 channels, 19GBps per channel

Table 2: Experimental setup

to one CAPE core when scaled to the same technology node and
frequency [15]. To compare Castle against an AVX-512 equipped
core, we first measure performance on a real state-of-the-art Intel
Xeon CPU using code with and without AVX-512 instructions5 and
calculate the performance ratio. We then use that ratio to scale up
the performance of our gem5 CPU baseline, and that becomes the
AVX-512 baseline system we compare against.
SSB Benchmark— To evaluate the end-to-end performance of
Castle, we use the Star Schema Benchmark (SSB) [48].We havemod-
ified the benchmark in two ways: (1) we compress string columns
that are used in selection and join predicates using standard encod-
ing techniques to 32-bit values, which is CAPE’s default data size
(compression is a commonly used technique in data analytic work-
loads [28, 59, 63]) 2) For simplicity, we omit the sorting of the final
result in all configurations, which amounts to a negligible process-
ing time in the SSB queries. We present results for SSB scale factor
(SF) 1 (∼600MB of raw data). We have also used the simulation
framework to run experiments for scale factors from 0.5 up to 10
and the results are similar. Note that, at SF1 the capacity of CAPE’s
CSB is 150× smaller than the input relations of the benchmark. Our
simulation infrastructure models the data movement to and from
main memory faithfully.
Reference Codebases— To evaluate Castle, we use two highly
optimized reference codebases that implement the SSB benchmark.
First, a scalar codebase that targets a traditional core. Second, a
codebase vectorized specifically for AVX-512 [4].

To confirm that the reference codebases are competitive against
state-of-the-art production databases, we compared them against
MonetDB v11.41.11 (Jul2021-SP1 https://www.monetdb.org/) [23,
61]. For MonetDB, we set the number of worker threads to 1 to
compare against our single threaded reference codebases, as the
focus of this paper is on a single-core scale. Running natively on a
Xeon CPU, the scalar reference codebase is on average 2.1× faster
than MonetDB and the AVX-512 reference codebase is 3.8× faster
than MonetDB. For the rest of the paper, we will use the AVX-512
vectorized reference codebase running on a AVX-512 equipped core
as our baseline.

4.2 Results of the SSB Queries
Figure 6 shows the performance of Castle running on a CAPE core
compared to our baseline for all 13 queries in the SSB benchmark
at scale factor 1 (Section 4.1). We observe speedups between 1.4×
and 20.7×, with a geometric mean of 5.3×.

5We disabled the automatic compiler vectorizer for the scalar binary.
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Figure 6: Speedup of Castle for SSB queries SF=1, visualized
with a waterfall chart. For each query the left bar shows the
speedup over our baseline using only the CAPE database op-
erators, while the right bar is the speedup when Castle also
uses the CAPE-aware query optimization strategies.

CAPE Database Operators— As shown in Figure 6, simply vec-
torizing database operators for CAPE does not yield a performance
improvement when executing most end-to-end queries. In fact,
there is a slowdown of 70% on average. In this setting, the query
optimizer uses the same optimization strategies as traditional data-
base systems, which produce left-deep plans for all SSB queries
(Section 3.4).
QueryOptimization for Joins— The unique performance charac-
teristics of associative processors drastically change the traditional
cost behavior of database operators (Section 3.2). Analytic queries
usually execute multiple joins (SSB queries 4-13 execute two to four
joins). In Section 3.4, we proposed modifying the join optimization
strategy of query optimization to consider additional plan shapes.
Using the CAPE-aware query optimizer, Castle optimizes query
plans specifically for associative processing and achieves a 5.3×
speedup over our baseline.

For SSB, right-deep plans on CAPE are almost always more
performant than left-deep plans. Out of the 13 best performing
plans (one for each query), 8 are zig-zag, and the remaining five
are right-deep. Note that queries 1-3 have only one join, and for
queries 4 and 7, a right-deep plan is the most performant option.

As discussed in Section 3.4, left-deep plans are favored by con-
ventional state-of-the-art database systems due to their superior
performance, but in Castle, they are the worst-performing option in
the 13 SSB queries. All plan shapes access the same amount of data
(the relations to be joined). However, depending on the plan shape,
a different number of searches is performed, which translates to the
processing effort required. Figure 5 shows an example of a query
where right-deep plans and zig-zag plans can significantly reduce
the number of searches. Our evaluation confirms that our proposed
optimization strategy picks the best plan shape for each query and
improves performance.

4.3 Vector Instruction Usage for Analytics
Where Does the Time Go? Figure 7 shows a breakdown of the
percentage of cycles spent for each type of vector instruction per
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Figure 7: Breakdown of CSB cycles spent for different types
of vector instructions (“vv” indicates vector-vector instruc-
tions, as opposed to vector-scalar, “vs”, like searches).

SSB query. We observe two clear cases: queries 2 and 3 are domi-
nated by arithmetic and comparison instructions, while queries 1
and 4-13 are dominated by search instructions.
What is the Most Expensive Database Operator? We grouped
the cycles spent by database operator (join, aggregation, selection)
across the 13 SSB queries. The execution cost of the SSB queries
is dominated by joins: 96% of the cycles required to execute all 13
queries are spent on performing joins (this behavior is common in
many analytic workloads).

Given the usage pattern of vector instructions by Castle, we
can improve the overall performance of analytics on CAPE by
optimizing the vector instructions and operators most commonly
used by analytic queries. In Section 5, we propose three database-
aware microarchitectural improvements motivated by the results
presented in this section.

5 MICROARCHITECTURAL
ENHANCEMENTS FOR DATABASE
PROCESSING

In this section, we discuss three CAPE microarchitectural enhance-
ments motivated by the results of Section 4.

5.1 Adaptive Bitwidth for Arithmetic
As shown in Section 4.3, vector-vector arithmetic and comparison
instructions dominate the performance of queries 2 and 3. Arith-
metic and comparison vector instructions are generally bit-serial
(see Table 1). Thus, when operands can be represented using smaller
bitwidths, the cost of arithmetic and comparison instructions is
reduced. In SSB, most relation columns are stored in a 32-bit repre-
sentation, but often values do not use the full range (e.g., require 5
bits instead of 32).

To improve the performance of these instruction types, we pro-
pose an Adaptive Bitwidth Arithmetic (ABA) scheme that dynami-
cally discovers and uses the minimum bitwidth required for each
vector instruction. Our approach has two phases: Phase 1 discov-
ers the bitwidth required. Phase 2 configures CAPE’s microcode
sequencer6 to use the new discovered bitwidth and sign-extends
the results after completing the operation. In the worst case, the
minimum required bitwidth is the same as the bitwidth defined
by the relation column representation (in SSB, 32 bits, most of the
time).

6In CAPE, the vector control unit contains a microcode sequencer that produces
search-update pairs to implement vector instructions [15].

Reducing the required bitwidth can significantly reduce the cost
of expensive bit-serial operations. For example, ABA reduces the
cost of a 32-bit multiplication from 4,224 to 80 (or 976) cycles if
the discovered required bitwidth for both (or one of the) operands
is 4 bits. We support mixed bitwidths, where different operands
in an instruction require different bitwidths (that is, in a ‘‘vmul
v2<-v0*v1’’, v0 requires a different bitwidth than v1). ABA pro-
duces an exact result and does not incur any precision loss by
reducing the bitwidth. CAPE offers a set of Control Status Regis-
ters (CSRs) that are used for various settings, using configuration
instructions (e.g., vsetvl). ABA uses one of the CSRs to store the
required bitwidth used by the critical bit-serial operations.

Phase 1, the discovery of the required bitwidth, can be performed
in two ways. The first option is collaborative with the database
system, which calculates min/max statistics per column at ingestion
time (most database systems do it by default [54]). These statistics
can be used to set the bitwidth of the vector instructions appro-
priately. The second option is to embed the discovery phase in
the instruction itself, necessary when operating on columns for
which statistics may not have been collected (i.e., columns gener-
ated as intermediate results in a query). If the DBMS does not set a
bitwidth, the bit-serial instructions may embed the discovery phase
every time they are executed. In this case, we perform a sequence of
parallel searches to discover the required bitwidth for our operands.

To reduce the bitwidth used for an operation to b operand bits, in
position b and higher should all be 1 (a negative number) or all 0 (a
non-negative number). Bitwidth discovery is made by searching for
all zeroes 0...0XXXX (and all ones 1...1XXXX), masking the lower
bits. We keep trying lower bitwidths until the search for all 1s or
0s is not successful. To reduce the overhead of bitwidth discovery,
we limit the number of guesses to a subset of possible bitwidths: 4,
8, 16, and 32 bits.

Finally, the operands are sign-extended by performing a series
of bit-serial updates. First, we check the most significant bit of
the required bitwidth (bit 3 for a 4-bit, 3 to 0, configuration) by
searching for 0 (and 1) and updating with 0 (and 1) all the rows that
match in the most significant bits.

In summary, ABA reduces the cost of bit-serial vector instruc-
tions. Section 6 shows that ABA achieves speedups between 1.03×
and 1.2× for queries 1-3, compared to a rigid 32-bit scheme.

5.2 Adaptive Data Layout
This section presents a method for optimizing the delay of search
instructions. CAPE uses a bitsliced data layout which, among other
benefits, guarantees operand locality of vector operands required
by most types of vector instructions [15]. This design choice targets
general-purpose applications that involve a significant amount of
vector-vector instructions (e.g., vadd.vv) rather than vector-scalar
instructions (e.g. vmseq.vx aka search) [15]. Unlike in general-
purpose applications, search instructions dominate the performance
of analytic workloads (Figure 7). We propose a new data layout to
accelerate search instructions and an adaptive method that switches
between data layouts.
Bitslicing to Guarantee Operand Locality— As covered in Sec-
tion 2.2, CAPE’s CSB is organized in memory subarrays (shown
as blue boxes in Figure 8) [15]. CAPE’s subarrays are organized in



Accelerating Database Analytic Query Workloads
Using an Associative Processor ISCA ’22, June 18–22, 2022, New York, NY, USA

bit 0

M
AX

VLid
x

v10 v20 v11v21 v131 v231

...

...

...

... ... ...

bit 0 bit 1 bit 31

v1 
(value)

v2
(mask)

...

...

... ... ...

all bits one bit

...

ta
g 

bi
tsvalue

subarray
(32-bit values)

GP Mode CAM Mode

chain chain

...

32 cols

bit i of v1[idx]
bit i of v2[idx]

bit i of v1[]

bit i of v2[]

......

...

mask
subarray

(32 masks) ta
g 

bi
ts

ta
g 

bi
tsGP

subarray
(32 bitsliced

names)

32 cols32 cols

32
 ro

w
s

Figure 8: Physical mapping to the associative arrays found
in the CSB on a General-Purpose Mode (left) and on a CAM
Mode (right). OnGPMode, all subarrays store one bit of each
vector register name. On CAM Mode, value subarrays may
store any contiguous 32-bit value while the mask subarray
is logically allocated to store only mask operands.

chains that include a chain logic that enables the accumulation of
intermediate tag bits for various instructions. A search microopera-
tion generates a mask stored in the subarray’s tag bits to indicate
math/mismatch per row.

CAPE bitslices vector elements: bit i of all vector register names
is stored in the same subarray [15]. Figure 8-left shows how vectors
v1 and v2 are mapped to the subarrays in the CSB. The rest of
the vector register names in the RISC-V alphabet (v0, v3-v31)
are mapped to the CSB the same way. Bitslicing guarantees that
the operands of any vector instruction will be stored in the same
subarray. For example, bit 0 of v1 and v2 will be in the left-most
subarray, bit 1 in the next subarray, and so on. In this paper, we call
the execution mode using this bitsliced layout General-Purpose (GP)
Mode.
Search in a Bitsliced Layout is Expensive— Figure 9-left shows
a search (vector-scalar equality comparison) of a key in a vector in
CAPE (vmseq.vx instruction). Each bit of the key i is distributed to
the appropriate subarray that contains the same bit index i of the
vector register names. The search initially produces partial results
as each subarray generates a bit-level result: is bit i of the key
equal to bit i of the column operand? But to determine a full value
match, these partial results must be combined. CAPE’s solution is
to leverage a shared tag bit bus that bit-serially accumulates the
partial results into a final mask using shared chain logic, leading
to a performance cost relative to the value bitdwith (33 cycles on a
32-bit configuration) [15].
To Bitslice or Not To Bitslice— Analytic queries are highly sen-
sitive to the cost of searches. An alternative data layout that better
matches the processing pattern of searches is to store all bits of
a value contiguously in one subarray (Figure 9-right). Using this
contiguous layout, a search produces the final result in the tag bits

of a subarray in a single cycle and takes three cycles to complete in
the CSB.

The drawback of this contiguous data layout is that it is not
performant for bit-serial instructions as two operands would be
stored in different subarrays. Each search/update microoperation
would now require three additional cycles to transfer the two inter-
mediate tag bits to the chain logic and the resulting tag bits back to
the destination subarray, and most bit-serial instructions perform
hundreds or thousands of the search/update microoperations (see
Table 1).

Hence, we propose an Adaptive Data Layout (ADL) that switches
between:

• GP Mode: values are bitsliced to preserve operand locality
and achieve optimal performance for arithmetic operations
(Figure 8, left) [15]. The VCU interprets values in bitsliced
data layout and produces control signals to each subarray
accordingly.

• CAMMode: values are stored contiguously in a single sub-
array. Searches are performed efficiently in a single value
subarray (1 cycle), followed by a copy of the final mask from
the local tag bits to the chain register (1 cycle), and a final
transfer to the mask subarray, which contains all the masks
produced until now (1 cycle) (Figure 8, right).

Programs can switch back and forth between these two modes
with minimal overhead while leveraging the full potential of the
hardware for all instructions.
Switching Modes— Similar to other configuration instructions
found in the standard RISC-V vector extension, such as vsetvl [62],
we propose vsetdl, which allows for switching between the GP and
CAM modes. We envision the database system to insert the switch
instructions based on the upcoming operators in the execution
flow. If the microarchitecture does not support layout switching,
the instruction is decoded into a no-operation (no-op), and CAPE
remains in GP Mode. This instruction is completed in a single cycle
after it graduates from the CP’s pipeline.
Preserving Information Across Layouts— When a setdl in-
struction is committed, the values inside the CSB are interpreted
in the new layout. Therefore, data columns present in the mem-
ory before the setdl instruction will contain corrupted data after
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the change. Columns loaded after the setdl instructions will be
loaded following the new data layout. To maintain data across
switches, column operands need to be stored back to main memory
and loaded again with the new layout—this strategy incurs a data
movement cost. However, we have observed that, in analytic query
processing, most of the time, data columns are not reused across
computations that are performed in different modes, but only masks
are. Therefore, data backup and restoration through main memory
is, in practice, rarely needed.

To support the preservation of mask information across modes,
we propose a new instruction, vrelayout, which copies a mask
from mode A to B. After a vrelayout instruction is executed, sub-
sequent instructions operating in the new execution mode can use
the mask. The cost of this new instruction is two cycles regardless
of the source and destination mode.

A vrelayout instruction that transferring mask from GP Mode
to CAMMode is done in two steps: 1) search 1 on the column where
tha mask is stored (and mask out the rest) to echo the mask to the
tag bits. Note that, in GP mode, all subarrays have a replica of the
mask, and any replica can be used for the relayout. Within the same
cycle time, we can transfer the tag bits to the chain logic. Finally, 2)
transfer the tag bits from the chain logic to the appropriate mask
subarray and use it to perform a predicated update (copy tag bits
into the subarray). The reverse operation, to relayout a mask from
CAM Mode to GP Mode would perform the same steps in exact
reverse order. The only difference would be that the final update
would happen in lock-step to all subarrays in a chain.

In CAM Mode, vector loads move vector operands into one
subarray of every chain. Since we reserve one subarray per chain
for mask storage, the rest of the subarrays can flexibly be used to
store on any vector register. We use a simple register renaming
scheme that includes a free list of subarrays and assigns physical
subarrays to vector registers as instructions are sent to the VCU.
The subarrays are freed when there is a layout switch to GP Mode
or when there is a new vector load to a used vector register. In the
unusual case of using more vector registers than memory subarrays,
the compiler will employ traditional register spilling techniques7.
The hardware support consists of a small 64-byte CAM and the
associated logic to manage it.

In summary, ADL transforms the search instructions from bit-
serial to bit-parallel, reducing their delay significantly. Configu-
ration instructions for switching between layouts or to preserve
masks across layouts are lightweight (1 cycle), and vrelayout can
be used to preserve masks across layout switches (2 cycles). In
Section 6, we show that, on average, SSB is 1.5× faster with ADL.

5.3 Multi-Key Search for Joins
In this section, we propose a technique to optimize the execution
of joins via a dedicated multi-key search vector instruction. Joins
in Castle search for multiple keys from the probe side relation in
a vector containing a partition of the other relation by calling the
vmseq.vx instruction for each probe key (Section 3.2). We propose
a new multi-key search instruction that exposes this pattern to

7In our benchmark suite, we have observed that there are no more than four vector
loads within a CAMMode region, which does not register spill in a conventional CAPE
design point.

CAPE, specifically "vmks v4, v3, keys[], numkeys", searches
for numkeys keys (stored consecutively starting at memory address
keys[]) in vector v3, and produces a mask in v4.

The vmks instruction flows through all the pipeline stages of the
control processor, like any other vector instruction, and is sent to
the vector memory unit (VMU) [15], which initiates a request for
the numkeys keys starting at address keys[] from main memory.
Similar to the other vector memory instructions in CAPE, the CSB
waits until the memory request is completely served. Keys are
stored in a buffer in the VMU before they are transferred to the
CSB subarrays, which perform the searches. Once numkeys keys
are fetched to the buffer, they are distributed to all the subarrays
that contain v3, using the existing global distribution network [15].

The internal bandwidth for transferring search keys to CSB
subarrays is limited to a single key per cycle, thus search keys are
consumed sequentially by the CSB. The memory request is not
overlapped with the distribution of search keys and searches. The
cost of vmks is: Cycles(vmks) = M + numkeys + 2. Here, M cycles
are the delay of the memory request, numkeys cycles are needed
to distribute and search numkeys keys, and two additional cycles
are needed to copy the mask from the tag bits to the destination
vector in the subarrays. Normally, after each search instruction,
the tag bits would be moved to the destination vector (here, v4),
which would result in each search instruction costing one cycle
(to search) and two cycles (to move the tag bits to a vector). Since
vmks will perform a sequence of searches (for numkeys keys) in
the same subarray consecutively, we can leverage the existing OR
functionality in the local tag bits [15] to combine the intermediate
masks, in-situ, at no extra performance cost and only move the
result bit mask once to v4, for each numkeys keys we search for.

The multi-key search instruction embeds more processing per
fetch-decode overhead compared to conventional search instruc-
tions vmseq.vx. Also, joins that use vmks need fewer transfers of
intermediate masks (tag bits to destination vector) because the in-
termediate masks are combined (ORed) in the same subarray. The
numkeys factor should be decided carefully. One important design
parameter is the buffer size: larger numkeys factors require larger
buffers. However, a buffer smaller than a cacheline underutilizes the
system’s data transfers since CAPE’s VMU operates at a cacheline
size. Moreover, as we will see in Section 6, the number of keys from
the probe side in end-to-end queries can be fewer than a cacheline.
In those cases, the database system will use conventional search
instructions vmseq.vx.

To conclude, multi-key searches pack more compute per fetch-
decode instance, which leads to an average speedup on SSB of
1.4× over the queries with conventional search instructions. In Sec-
tion 6, we discuss the design considerations of the buffer required
to support vmks.

6 EVALUATION OF CAPE’S
MICROARCHITECTURAL
ENHANCEMENTS

In this section, we evaluate the database-aware microarchitectural
changes of CAPE that we presented in Section 5. We use the exper-
imental setup and methodology described in Section 4.
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6.1 Experimental Setup
Area Considerations– For multi-key search support (Section 5.3),
we evaluate buffer sizes of 64 bytes, 512 bytes, and 2 Kbytes which
can store up to 16, 128, and 512 32-bit keys. The buffer is integrated
as part of the vector memory unit (VMU), thus, on the same SRAM
technology node as the CAPE core [15]. We estimate the area of
the buffer storage using the High Performance SRAM bitcell size
in 7 nm technology (0.032 µm2) [1]. As a result, the buffers take
16.384 , 131.072 , and 1048.576 µm2. Compared to a CAPE core area,
8.8mm2 [15], we consider the area overhead of the considered
buffer sizes negligible.
Power Considerations– Similarly to [15], we break down each
microoperation into the several steps required (wordline activation,
cell access, bitline level amplification, etc.) and obtain the delay
and energy (including both dynamic and leakage) using SPICE and
CACTI [2]. CSB’s leakage power is 0.48 W [15]. The CP power is
estimated to be similar to a 20nmCortex-A53 corewith 256 kB L2 [6]
(269 mW at 1.3 GHz [3]). Since CAPE is designed in 7nm, we scale
the power by multiplying with the frequency ratio 2.7/1.3 (using
CAPE’s and Cortex-A53’s frequencies, respectively), resulting in
CP’s power being 155 mW. We expect that the power burned by
the VCU and VMU is negligible compared to the CP and even
more so compared to the CSB. In conclusion, we find that CAPE’s
TDP is 16.39 W, including both leakage and dynamic power. 8 The
microarchitectural enhancements proposed in Section 5 do not
increase CAPE’s power estimations, as we discuss below.

The discovery phase of ABA (Section 5.1) realizes a sequence
of bit-serial searches which do not surpass the worst-case micro-
operation’s power (16.23 W). ABA may reduce the execution time
of some instructions, leading to a reduction in the overall energy
consumed. ABA uses updates to sign extend the final result in a
bit-serial way (rather than updating all sign bits in a single cycle
which burns significantly more power) to maintain CAPE’s original
TDP at a minimal performance overhead (e.g., up to 16 cycles on
instructions that take hundreds or thousands of cycles).

ADL (Section 5.2) allows search operations to be executed in
a single subarray while the rest of the subarrays in a chain are
idle (and their peripherals can be power-gated). Inside each sub-
array, more columns are searched, which does not increase the
TDP (compared to single-column searches used in bitsliced mode)
as the peripherals cannot be disabled at such low granularity. In
total, ADL saves power by power-gating the peripherals of the idle
subarrays.

Finally, MKS (Section 5.3) adds a buffer for the probe keys but
performs searches in the same way as ADL, resulting in the same
TDP. MKS actually reduces the number of fetches and decodes for
joins; therefore, it reduces the overall energy consumed.

Overall, the microarchitectural enhancements proposed in Sec-
tion 5 do not increase CAPE’s original TDP (16.39 W) [15]. While
this is less than 3× higher than the TDP reported for the isoarea
baseline (5.63 W), Castle obtains 10.8× speedup on average using
the same silicon area. Moreover, the actual power consumption
during regular operation is significantly lower.

8TDP estimates in the original CAPE paper were intentionally very conservative
upper bounds; here we use tighter upper-bound estimates.
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Figure 10: Speedup of Castle for SSB queries SF=1 compared
to the baseline. Individual query speedups are truncated to
improve the figure’s readability.

Software Changes– We extend Castle to set the required bitwidth
when it is found to be smaller than the default on the input columns,
and to insert layout switching (setdl), mask relayout (vrelayout)
when appropriate, as presented in Section 5.2. We changed Castle’s
join operator to consider multi-key search instructions (vmks) when
appropriate.
Model of the Microarchitectural Enhancements– We extend
the instruction-level model used in [15] to model the bitwidth dis-
covery and the new cost of the reduced bitwidth instructions of the
ABA scheme (Section 5.1) and incorporated the new costs into the
gem5model.We also extend the gem5 tomodel the new instructions
for the ADL and MKS optimizations presented in Section 5.

6.2 Results on the SSB Benchmark
Figure 10 shows the improvement in Castle’s performance with the
microarchitectural enhancements compared to the baseline for all
queries of the SSB benchmark at scale factor 1 (Section 4.1). We
observe speedups between 2.5× and 61.1×, while the geometric
mean of the speedups is 10.8×. We now break down this speedup
according to each microarchitectural enhancement’s contribution.
Adaptive Data Layout (ADL)— With ADL, Castle is 8.2× faster
than the baseline. The overhead from vrelayout (updates the lay-
out of masks present in CAPE), setdl (changes the data layout)
instructions, and from reloading vector registers is offset by the
performance improvement of the search instructions.
Multi-Key Search (MKS)— Figure 10 shows that, by adding multi-
key searches in joins, the speedup of SSB further increases to 10.5×
over the baseline. These results use a buffer size of 512 bytes which
matches the cacheline size. The Castle join operator calls vmks to
search for a set of numkeys keys, where the size of numkeys keys
matches the size of the buffer. We have experimented with buffer
sizes of 64 bytes and 2 kilobytes that lead to relative performance of
0.8× and 2.0× on average for all SSB queries, compared to the 512
bytes-sized buffer results. A smaller than cacheline buffer will waste
memory bandwidth since CAPE’s VMU requests are at cacheline
size granularity.

We should note that not all SSB joins will take advantage of multi-
key search instructions. For example, queries 2 and 3 sometimes
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probe for less than cacheline size number of keys and, as a result,
would slow down with vmks due to unnecessary data movement. In
these cases, vmks is not used. Further, SSB queries perform an ag-
gregation after the joins, aggregations take as input the join output
mask. Applying vmks to left-deep join subplans pivots the output
mask and makes it incompatible with aggregations. Therefore we
use vmks only on right-deep subplans.
Adaptive Bitdwith for Arithmetic (ABA)— Queries 1-2 show
a significant benefit from ABA as they execute many expensive
vector multiplications and comparisons (Figure 7). ABA speeds up
queries 1-3 by 1.13× on average and increases the overall speedup
to 10.8× of the SSB benchmark. Query 3 multiplies only a small
number of elements and, thus, the Castle chooses not to use the
expensive vector multiplication in favor of scalar multiplication
(executed in the CP) most of the time; consequently, ABA has a
small effect on this query (speedup of 1.03×).

6.3 Discussion on Data Movement
The unique performance characteristics of CAPE enable different
execution strategies compared to traditional database systems (Sec-
tion 3). These execution strategies, along with the ability of CAPE
to retain intermediate results as masks, may lead to reduced mem-
ory usage. To execute SSB, the baseline transfers 1.51× more bytes
compared to Castle. Thus, the reduced memory usage is benefi-
cial to Castle, but it is not the only contributor to its performance
advantage.

7 MICROBENCHMARK STUDY
In this section, we evaluate Castle using threemicrobenchmarks one
for each of the three core operators found in analytic workloads: se-
lection, aggregation, and join (Section 3). We use microbenchmarks
to understand the different factors that affect Castle’s performance
by comparing them to highly-optimized baselines vectorized for
AVX-512 (Section 4.1). We assume the same experimental setup as
described in Section 4 for Castle as well as the baseline.

7.1 Selection
A selection operator filters rows based on a predicate (i.e. equality,
inequality, etc). Our selection microbenchmark applies an equality
predicate (relation column = val) to a column of 32-bit integers.
We study the performance of Castle while varying the input size
and the selectivity of the selection (how many rows satisfy the
predicate). The baseline iterates over all rows of the input column
to apply the predicate. Both the Castle and the baseline selection
operators produce a bitmask that indicates if a row satisfied the
predicate.

We experimented with inputs containing from 103 to 109 rows
and varied selectivity from 1% up to 90%. Castle’s speedup over the
baseline ranges from 13× up to 22×, and it increases with the input
size. The cost to load data from main memory to Castle or to the
CPU dominates the running time of a selection. Castle’s speedup
increases for larger input sizes as CAPE’s dedicated VMU efficiently
performs data transfers compared to a CPU (as shown in [15]’s
Figure 9). The CPU performs more work for larger selectivities
(update the corresponding bit in the result bitmask per matching

row), thus the overall speedup of Castle slightly increases with
selectivity.

7.2 Join
To evaluate the performance of the Castle join operator, we join two
relations (fact and dimension) on 32-bit integer join keys and vary
the fact relation size ([1K, 100M] rows) and dimension relation size
([100, 20M] rows). We compare Castle’s performance to a highly
optimized hash join operator. The output of the join is a mask
indicating the matching tuples of the fact relation (e.g. a semi-join).
In Figure 11, each line corresponds to a different fact relation size
and we vary the dimension relation size (x axis). In general, in
analytic workloads one relation (the fact relation) is much larger
than the other relation, typical size ratios are 1:12 or 1:16 [14]. We
present two groups of lines, the dashed lines correspond to Castle
without the micro-architectural optimizations of Section 5, the solid
lines include the optimizations.

We make three key observations from the data shown in Fig-
ure 11. First, the Castle micro-architectural optimizations that target
joins (ADL and MKS) result in significant speedups (5× in many
cases). Second, the relative speedup over the CPU baseline is not
significantly impacted by the fact relation size, the 1M and 10M
fact relation size lines with the same optimization strategy are close
to each other. Finally, for very large dimension relation sizes, such
as 250K rows, the optimized Castle implementation and the opti-
mized CPU implementation have similar performance. Essentially,
for some join operations, and as we discuss below, these are likely
to be rare in workloads that are similar to SSB, one may want to
evaluate a join on the CPU. CAPE being closely integrated in a tiled
architecture along other cores allows for a software architecture in
which such decisions are made dynamically.

Next, let’s discuss what portion of the space shown in Figure 11
is actually of interest when running SSB queries in our experiments.
At a high level, most of the individual join operations in our work-
load experience performance gains that ranged from 2× to 70×.
Interestingly, within a given query, separate join operations in the
same query may see different individual gains, as different relations
are involved in different joins each with its individual filter/selec-
tion predicate. For example, query 10 has three join operations.
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At scale factor 1, the first join experiences a speedup of 2.4×, the
second join experiences a 56× speedup, and the third join sees a
speedup of 77×. (The query shows an overall speedup of 16×.) This
behavior is quite natural (and is seen across other SSB queries too)
as each join operation corresponds to a join with a probe side rela-
tion with a different size (here the dimension), resulting in different
speedups for each join.

7.3 Aggregation
The aggregation microbenchmark implements an aggregation op-
erator that performs a sum reduction for each group, similar to the
example shown in Section 3.3. In Figure 12, we show the speedup of
the Castle aggregation operator compared to a baseline hash-based
aggregation operator, while varying the number of unique groups
and input size.

The Castle aggregate operator performs a constant amount of
work per group using CAPE’s data-level parallelism (discovery of
rows that belong to a group and calculation of the aggregate value,
Section 3.3). As the number of groups increases each group contains
less rows, thus the vector utilization is reduced, which translates
into more work for the same input size. Thus, relative performance
(speedup in the figure) is higher for small number of unique groups.
For the SSB queries, the number of groups is within the range 3
to 600 and in this range the speedup of this microbenchmark is
between 62× and 30×.

As shown in figure 12 when the number of groups is greater
than 5,000, the baseline catches up to Castle, and beyond that the
baseline is faster (so such aggregates are better evaluated on the
CPU). Note that the speedup curve flattens to around 0.3× for very
large number of groups because at this parameter space, the baseline
CPU algorithm experiences a large (and increasing) number of cache
misses in a core hash table data structure that it uses to compute
the aggregate. Such very large number of unique groups is unusual
in analytic queries, and as noted above in the SSB benchmark the
maximum number of groups is 600.

7.4 Analysis
While microbenchmarks allow us to understand the sensitivity
to different parameters in isolation, they do not represent how

operators are organized in an end-to-end query. A critical additional
factor that contributes to the end-to-end query performance is how
a sequence of operators is executed. In Castle, the query execution
methods deliberately aim to fuse consecutive operators to increase
the “operational intensity” of data that is loaded in CAPE. So, if there
a join operator followed by an aggregation operator, the aggregate
computation is carried out eagerly on the (partial) join result. Such
operator fusion strategy may result in the query achieving higher
speedup than each individual operator running in isolation.

8 RELATEDWORK
There is a large body of work that bridges architecture and database
methods to speed up database workloads [8–13, 18, 31, 32, 39, 41,
43, 47, 53, 56, 60, 64, 65], which includes using the use of SIMD
extensions [16, 37, 51, 52, 69] and repurposing GPUs for database
workloads [24, 26, 30, 36, 44, 55]. There is also work on building spe-
cialized accelerators for database workloads [13, 35, 64, 65]. From
a market adoption perspective, however, most database systems
today run on commodity processors. Due to the importance of data-
base workloads, it is possible that multiple hardware solutions may
eventually find market adoption. In this paper, we offer CAPE as
an attractive alternative that provides a balance between a general-
ized and a specialized approach: First, by leveraging CAPE’s large
vector primitives that database workloads need, and then by using
a co-design approach that requires changes to database internals
and CAPE.

Specialized solutions map high-level database operators to sili-
con, enabling very high throughput [13, 35, 64, 65]. Such approaches
can support a predefined set of analytic operators very efficiently by
trading off generality, as extending their capabilities requires a new
hardware design. Further, highly specialized designs lack support
for other workloads, which may hinder their potential adoption
in datacenters. Castle leverages CAPE, which is a general-purpose
core programmable via the RISC-V ISA. CAPE can accelerate a
wide range of applications [15] and as shown in this paper it also
accelerates database processing. The proposed microarchitectural
additions (Section 5) do not sacrifice the generality or performance
for non-data analytics workloads.

Other designs propose to offer flexible architecture templates
that can be configured dynamically [9, 17, 18, 34, 43, 60]. These
designs bring an interesting trade-off as they offer high throughput
and generality. Some are based on reconfigurable hardware [17, 34],
which requires programming in a hardware-descriptive language.
Others use alternative languages and compilers for spatial archi-
tectures [60]. CPU-based solutions offer processor ISA as program-
ming interfaces [9, 43], but none are based on associative processing,
which brings unique features that match the core operations found
inside data analytics (search and update). ReSQM proposes to use
AP to map selection, sorting, and join [42] operators. However, the
evaluation only considers the operators in isolation in comparison
to a sub-optimal baseline and no end-to-end queries. Queries re-
quire updated query optimization strategies (Section 4) to leverage
the potential of AP.

The processing-in-memory (PIM) and processing-in-storage (PIS)
paradigms are promising concepts for data analytics [19–21, 25, 29,
38, 41, 42, 45, 49, 50, 57, 67]. While it is not the scope of this paper,
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associative processors could be designed as PIM or PIS and have the
potential to leverage similar trade-offs as the mentioned proposals.
The CAPE framework takes the same role as any conventional core
in a tiled architecture, given its implementation in SRAM technol-
ogy. Even at the moderate capacity design point studied, which
operates by loading large datasets in MAXVL-sized partitions, we
see speedups of order-of-magnitude scale compared to an compa-
rable area CPU. We leave the design considerations of PIM or PIS
flavors of associative processors for future work.

9 CONCLUSION
In this paper, we have explored efficient mappings of database op-
erators used in analytics to associative processors (AP). We have
shown that simply mapping those operators does not lead to per-
formance improvements compared to a highly-optimized database
running on an area-comparable out-of-order superscalar CPU with
AVX-512. We have proposed an AP-aware query optimizer that
produces optimal join orders, leading to a performance improve-
ments of 5.3× compared to the AVX-512 baseline. Guided by an
extensive study of bottlenecks of the optimized operators and query
optimizer on a CAPE core, we have proposed microarchitectural
enhancements to a CAPE core. The proposed additions to CAPE do
not sacrifice the generality or performance of non-data analytics
workloads. With the proposed software-hardware co-design, we
demonstrate an overall performance improvement of 10.8× over
the AVX-512 baseline.
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