
CAPE: A Content-Addressable Processing Engine

Helena Caminal

Cornell University

hc922@cornell.edu

Kailin Yang

Cornell University

ky362@cornell.edu

Srivatsa Srinivasa

Intel Labs*

srivatsa.rs@intel.com

Akshay Krishna Ramanathan

Pennsylvania State University

axr499@psu.edu

Khalid Al-Hawaj

Cornell University

ka429@cornell.edu

Tianshu Wu

Cornell University

tw387@cornell.edu

Vijaykrishnan Narayanan

Pennsylvania State University

vxn9@psu.edu

Christopher Batten

Cornell University

cbatten@cornell.edu

José F. Martı́nez

Cornell University

martinez@cornell.edu

Abstract—Processing-in-memory (PIM) architectures attempt
to overcome the von Neumann bottleneck by combining compu-
tation and storage logic into a single component. The content-
addressable parallel processing paradigm (CAPP) from the
seventies is an in-situ PIM architecture that leverages content-
addressable memories to realize bit-serial arithmetic and logic
operations, via sequences of search and update operations over
multiple memory rows in parallel. In this paper, we set out
to investigate whether the concepts behind classic CAPP can
be used successfully to build an entirely CMOS-based, general-
purpose microarchitecture that can deliver manyfold speedups
while remaining highly programmable. We conduct a full-stack
design of a Content-Addressable Processing Engine (CAPE), built
out of dense push-rule 6T SRAM arrays. CAPE is programmable
using the RISC-V ISA with standard vector extensions. Our
experiments show that CAPE achieves an average speedup of
14 (up to 254) over an area-equivalent (slightly under 9 mm2 at
7 nm) out-of-order processor core with three levels of caches.

Index Terms—Associative processing, associative memory, vec-
tor processors

I. INTRODUCTION

Processing-in-memory (PIM) architecture proposals attempt

to overcome the von Neumann bottleneck by combining com-

putation and storage logic into a single component [15], [17],

[18], [22], [29], [31], [34], [36], [44], [50]. In particular,

in-situ PIM architectures leverage low-level computational

abilities in the memory array itself [12], [16], [21], [30],

[40], [42]. Content-addressable memories (CAMs) arguably

constitute the first in-situ PIM architectures, as they have been

around for more than 60 years [41]. They are equipped with

additional logic per bitcell to perform searches to many cells

simultaneously [35]. Content-addressable parallel processor

(CAPP) designs from the seventies [20], [37], [39] extend

CAMs with the ability to update multiple rows in parallel.

By sequencing such search/update operations, CAPP designs

can also perform a variety of arithmetic and logic operations

(called associative algorithms) in a massively parallel and bit-

serial fashion [20].

Recently, some interesting proposals have emerged that

advocate for leveraging the foundations of CAPP in modern

microarchitectures [33], [49], [51]. However, the proposed

*Work done in part while a Ph.D. student at the Pennsylvania State
University.

solutions entail emerging memory technology [33], [51] or

expensive 12T memory bitcells [49], and they require either

low-level programming [33], [49] or a restrictive programming

language with a custom compilation flow [51].

In this paper, we set out to investigate whether the concepts

behind classic CAPP architectures can be used successfully to

build an entirely CMOS-based, general-purpose microarchi-

tecture that can deliver manyfold speedups while remaining

highly programmable. We conduct a full-stack design of a

Content-Addressable Processing Engine (CAPE), built out of

dense push-rule 6T SRAM arrays. CAPE is programmable

using the RISC-V ISA with standard vector extensions [46].

We envision CAPE to be a standalone core that specializes

in associative computing, and that can be integrated in a tiled

multicore chip alongside other types of compute engines. Our

experiments show that CAPE achieves an average speedups of

14 (up to 254) over an area-equivalent (slightly under 9 mm2

at 7 nm) out-of-order processor core tile with three levels of

caches accross a diverse set of representative applications.

The contributions of this paper include:

• A CMOS-based implementation of an associative-

compute-capable engine based on dense 6T SRAM ar-

rays.

• An optimized data layout on these SRAM arrays that

maximizes operand locality.

• A microarchitecture organization that can perform data-

parallel computations on tens of thousands of vector

elements.

• A system organization able to perform efficient data

transfers to maintain the benefits of its inherent massively

parallel computational power.

• A mapping of the standard RISC-V ISA to this microar-

chitecture, which allows for generality, high programma-

bility, and compatibility with existing compilation flows.

II. ASSOCIATIVE COMPUTING

An associative computing engine [20]: 1) stores data in

vector form, 2) can compare a key against all vector elements

in parallel (search), and 3) can update all matching elements

in bulk with a new value (update). These operations are

typically arranged in search-update pairs, and they are bit-

serial, element-parallel—i.e., a search-update pair operates on

557

2021 IEEE International Symposium on High-Performance Computer Architecture (HPCA)

2378-203X/21/$31.00 ©2021 IEEE
DOI 10.1109/HPCA51647.2021.00054

!"""!"""!"""!
! #"""!"""#

#"""!"""!"""#

#"""#"""!

$! $!"#

!"#$"%&
!"#$%& '()#*"

% &"'!("#(")* % &"'#(")("+*
!"#$%&%"'(!
)*(+"%

%!

,--"$%../"
0123"%.4"!

5678"96:4;8

!

#

"!""

#

#

#"$!%

&'"(!%

!

!

#

!

#

!

'

!

'

< !

!

!

"!""

#

!

#"$!%

)*+"$'

!

!

#

#

#

#

'

!

'

! < #

!

!

"!""

#

!

#"$!%

&'"(!%

!

!

#

#

#

#

!

'

!

<

!

!

"!""

#

!

#"$!%

)*+"$'

!

!

#

#

!

#

!

'

!

< !

!

!

"!""

#

!

#"$!%

&'"(!%

!

!

#

#

!

#

!

'

!

! <

!

!

"!""

!

!

#"$!%

)*+"$'

!

#

#

#

!

#

!

'

!

! <#

%!

!"""!"""!"""!
! #"""!"""#

#"""!"""!"""#

#"""#"""!

$! $!"#

!"#$"%&
!"#$%& '()#*"

%!%!

!"""!"""!"""!
! #"""!"""#

#"""!"""!"""#

#"""#"""!

$! $!"#

!"#$"%'
!"#$%& '()#*"

%!%!

Fig. 1: Associative increment instruction as a bit-serial sequence
of search-update operations to a vector of three two-bit elements.
Carry bit column c is initialized to 1.

the same bit of all the elements of a vector (or several vectors).

The sequence of search-update pairs that operate sequentially

on all the bits of each vector value constitute basically an

instruction in this associative computing paradigm. Associative

algorithms are thus simply sequences of such instructions,

much like a regular program. Consider a vector increment

(Figure 1)—that is, all vector elements go up in value by

one. An associative computing engine would first add 1 to the

least significant bit of all vector elements and remember any

carry. Then, for each element, it would add the corresponding

carry to the next bit; and so forth. Of course, an associative

computing engine cannot “add” bits per se. Instead, it imple-

ments bitwise addition through a sequence of search-update

pairs that essentially follow the truth tables for a half adder,

one bit combination at a time: 1) Search vector elements for

which the ith bit is 0 and the running carry for that element (an

additional bit of storage) is 1, then bulk-update the ith bit of

matching elements to 1 and their running carry to 0. 2) Search

vector elements whose ith bit is 1 and the running carry for

that element is also 1, then bulk-update the ith bit of matching

elements to 0 and the running carry to 1.

Note that, in the example above, we do not bother with

search-update pairs for the two cases where the output is the

same as the input—neither the element’s bit nor the running

carry flip as a result of applying the half adder truth table

(crossed-out entries in the truth tables of Fig. 1). Note also

that some additional support beyond search/update would be

needed, namely: 1) We need two bits of additional storage

per vector element: One bit to serve as the running carry

(initialized to 1 at the beginning of the instruction with a single

bulk-update), and one bit to “tag” matching elements (Match)

in each of the two searches. Fortunately, these extra bits can

be reused across vector element’s bits (in fact, they can be

reused across instructions, even if the vector names change).

2) In order to constrain searches and updates to the ith bit

of each element, we must be able to mask out the other bits.

3) The sequence of operations that implements the increment

instruction needs to be “stored” somewhere (e.g., the micro-

memory of a sequencer).

Associative computing was originally proposed as a bit-

serial paradigm: for each bit it requires multiple search and

update operations. Already for a relatively simple increment

instruction on a 32-bit value this would represent over one

hundred such operations. However, the key is to realize that

this can be done simultaneously to an extremely large number

of vector elements, and therein lies the power of associative

computing. As our results will show, such vector-level paral-

lelism more than makes up for the bit-serial nature of these

operations. And our array organization enables, in some cases,

bit-parallel associative instructions.

In addition to the massive data level parallelism, associa-

tive computing offers unique trade-offs compared to (more

traditional) very long vector architectures. The associative

computing paradigm evidently accelerates search and update

operations commonly found in databases and text-based search

applications (e.g., word count). Moreover, algorithms can be

tuned to align to the strengths of associative engines. An

illustrative example of this is the histogram benchmark (used

in Section VI-E), which builds a histogram from pixel values

found in an image. The thread-parallel code splits an image

and distributes it to different threads that update a shared

data structure for each pixel value. In turn, our vector code

leverages very efficient searches to perform a brute-force

sequence of searches for every possible pixel value (0 to 255),

which leads to a speedup of 13× over an area-comparable

baseline.

III. OVERVIEW OF CAPE

Our goal is to leverage associative computing to deliver

manyfold speedups while remaining highly programmable and

general. We propose a Content-Addressable Processing Engine

(CAPE), an implementation of associative computing as an in-

situ processor-in-memory (PIM) core that uses state-of-the-art

CMOS technology, adopts a contemporary ISA abstraction,

and can be readily integrated into a tiled architecture.

CAPE’s architecture comprises four main blocks (Figure 2).

The Control Processor (CP) is a small in-order core that

runs standard RISC-V code with vector extensions [46]. It

processes scalar instructions locally, and offloads vector in-

structions to the Compute-Storage Block (CSB), which acts as

a coprocessor and is CAPE’s associative computing engine. A

vector instruction commits in the CP only after it completes in

the CSB. In the shadow of an outstanding vector instruction,

subsequent scalar logic/arithmetic ALU instructions may issue

and execute (if not data-dependent with the vector instruction),

558

!""#$%
&#'"

()"'%

*!+,-./
*0#1,$ 234 ()"'%

*5)3
234

!"#$%"&

'%"()**"%
+

067

,-.

,!. !/0

*0#84
98-8

*:-#+)
98-8

-12#3!"!#$%

!"#$

0;<7 0;97
()"'%

4)$)%"5)#)"6*

7%(82$)($6%)

("%)9

("%): ("%);

<#$)5%1$)=

>'.?

7(()&@

!7'A

B'>7

Fig. 2: CAPE System: Control Processor, Compute-Storage Block
(CSB), Vector Memory Unit (VMU), and Vector Control Unit
(VCU).

but not commit.1 Subsequent vector instructions, however, stall

at issue until the outstanding vector instruction commits.

Load/store vector instructions en route to the CSB go

through the Vector Memory Unit (VMU). Other vector in-

structions go through the Vector Control Unit (VCU), which

generates microcode sequences to drive the CSB and carry out

the appropriate operations. VMU and VCU generate/transfer

control/data signals to the CSB. The RISC-V vector register

names in each instruction are used to index the appropriate

vector operands within the CSB. These ultra-long vectors

(order of 104 vector elements) are CAPE’s primary source

of parallelism.

The CSB is composed of tens of thousands of associative

subarrays which can perform massively parallel operations.

Each subarray is made up of 6T bitcells that can readily

support the four microoperations used in CAPE’s compu-

tational model: single-element reads and writes, as well as

highly-efficient multi-element (vector) searches and updates.

The RISC-V variable-length vector support allows for the very

long vectors found in CAPE to be seamlessly leveraged by the

applications.

IV. CAPE’S COMPUTE-STORAGE BLOCK

In this section, we describe the low-level organization of

CAPE’s compute-storage block (CSB). First, we describe

CSB’s memory cell, a binary CAM which leverages a recent

dense push-rule 6T SRAM design [26]. Then, we explain how

these cells and data are arranged to optimize for the in-situ

searches and updates that constitute the basis of associative

computing. Finally, we describe CSB’s support for reduction

operations, which are a staple of many modern vector ISAs.

A. Cell and Subarray

Compared to standard 6T SRAM cells, traditional CAM

cells require extra transistors and wires to enable content

search [35]. Recently, however, Jeloka et al. propose a binary

CAM (BCAM) based on push-rule 6T SRAM cells, which is

able to perform reads, writes, and searches while maintaining

the density of conventional SRAM [26]. The key difference

1As in many vector processing memory models, CAPE does not support
store-load or store-store memory disambiguation between vector and scalar
instructions—the compiler or programmer needs to insert memory fences as
needed.

!""!

!
"
#
$%
&
!"
#$
%&
'
(
%

!! !" !#

!"#"

!"""

$"$# $"#$"$" $"" $"$! $"!

%&'()*+&,'-./-01123

"##

$%#

$%#

"##

$%#

$%#

4

5

5

4

5

4

5

4

5

4

4

5

4

5

5

4

4

5

& ' &

$"$# $"#$"$" $"" $"$! $"!

'
(
)
#
*"

)
*+
,
$%
(
&
(
% 4

5

4

5

5

4

5

4

4

5

4

5

4

5

4

5

4

5

&

'

(

!"##

!""#

!"#!

!"#"

!"""

!"##

!""#

!"#!

!""!

$"$67-0118-$"$$ 7-9:1

"##

"##

$%#

$%#

$%#

$%#

)(*+*,#-./0*123456

(

(

&

)(*+*,!27849*3-:56

Fig. 3: Three-by-three illustrative 6-T SRAM array performing
search (top) and update (bottom).

between this design and a conventional SRAM cell is that each

row has two separate wordlines—wordline right (WLR) and

wordline left (WLL)—, each connected to one of the access

transistors of a cell. The design reuses the already existing

wordlines as searchlines, and the bitlines as matchlines (the

latter requires an AND gate per column).

Figure 3 is an illustrative example of a three-by-three

6T SRAM array with split wordlines performing search and

update operations (read and write work as expected for a

conventional SRAM). For a particular vector, it stores vector

elements across columns; thus, different rows mean different

bits of a vector element.

A search operation will look for matches in every column

at the same time. In order to search for a 1, we set WLR

to VDD and WLL to GND. To search for a 0, we set WLR

to GND and WLL to VDD. To exclude a row from a search

(“don’t care”), we set both WLR and WLL to GND. At each

column, ANDing bitlines BL and BLB yields the outcome of

the search for each column: 1 for a full match, or 0 for at

least one bit mismatch. To perform a bulk update across all

columns, we assert both WLR and WLL of the active rows to

be updated, and set all BL/BLB to VDD/GND or GND/VDD

to write 1s or 0s, respectively.

B. Data Layout

We organize the CSB in subarrays of 32 by 32 cells (plus

some peripheral logic, as we will see later). Further, we bit-

slice each vector element across CSB subarrays of the same

559

560

! "#$%&#'&#(&#)* + "#,
!"#$"%&'() '$*)++),!"#$%"&!"'()*&

+&,%+-+.&/+-$"&#

-./01

%

%

!

' 2!.+01

345

6478/

9

!!

%

%

'

!'

!

:(

(
(!

"#$%#&!'

!"

%

'

%

'

;

%

-./01

%

!

%

' 2!.+01

345

6478/

9

!!

%

%

'

!'

!

:(

(
, !

"#$%#&('

!"

%

'

%

'

;

<

Fig. 6: Associative (bit-serial) reduction sum of a four-element
two-bit vector. Bit-vectors are echoed through the tag bits by
searching for value 1 to each column, from the most to the least
significant bit. Then, the population count (pop count) of the tag
bits is shifted by 2 (multiplied by 2) and accumulated at each
step.

logic to optionally allow the tag bits of subarray i to select the

columns of subarray i + 1 that should be updated (Figure 5,

right). This is how, in the increment example on Figure 1, the

tag bits generated in the search can be used to select the vector

elements to be updated for both subarray i (to update v0i) and

subarray i+ 1 (to update ci+1) of every chain.

E. Supporting Reduction Sum Operations

Finally, we discuss CSB’s support for reduction sum (red-

sum) operations, which aggregates the elements of a vector

by adding them to produce a scalar result (Figure 6). This

algorithm flows from the most to the least significant bits of

the input, and the steps for each bit are: 1) search for ‘1’ on

each bit i (mask the rest); 2) the tag bits are reduced into

an integer value (population count); 3) the output of the pop

count is accumulated and multiplied by 2 at each step. CAPE

supports redsum operations across chains, using external logic

composed by: one pop count per chain, a left shift block (to

multiply by two), an adder, and a register to store the scalar

result. In Section VI, we give details on a specific redsum

logic implementation used on a system made up of thousands

of chains.

V. CAPE ARCHITECTURE

In this section, we describe the mapping of the RISC-V

vector abstraction to the CSB (Section IV). We also describe

the micro-architecture of the VCU (Section V-D) and VMU

(Section V-E), which generate control commands for the CSB

and enable efficient data transfers between the CSB and the

main memory, respectively.

A. ISA

Vector architectures have been around for decades [19], and

code vectorization is a well understood way to express data

parallelism. This suggests that a vector ISA abstraction of

the CAPE architecture is an attractive way to make CAPE

highly programmable and versatile. Recently, the RISC-V

Foundation has released a specification for RISC-V vector

extensions [46]. Because of its increasing popularity, free

availability, and support for vector length agnostic (VLA)

RISC-V

vector

Truth

Table

Active

Rows/Sub

Red

Cycles

Total

Cycles

Per-

lane

Inst Ent. Srch Upd (n bits) (n bits) E (pJ)

Arith.

vadd.vv 5 3 1 0 8n + 2 8.4

vsub.vv 5 3 1 0 8n + 2 8.4

vmul.vv 4 4 1 0 4n
2
− 4n 99.9

vredsum.vs 1 1 0 n ∼ n 0.4

Logic

vand.vv 1 2 1 0 3 0.4

vor.vv 1 2 1 0 3 0.4

vxor.vv 2 2 1 0 4 0.5

Comp.

vmseq.vx 1 1 0 n n + 1 0.4

vmseq.vv 2 2 1 n n + 4 0.5

vmslt.vv 5 2 1 0 3n + 6 3.2

Other vmerge.vv 4 3 1 0 4 0.5

TABLE I: Metrics of an illustrative subset of RISC-V vector
instructions supported by CAPE. Left to right: instruction’s
mnemonic and mode, truth table entry count, active rows per
subarray for search and update, reduction cycle count, total cycle
count, and energy per vector lane (pJ).

instructions, we choose RISC-V as the ISA abstraction for

our CAPE architecture.

RISC-V vector names map to the appropriate CAPE loca-

tions transparently through the VCU; the programmer never

sees CAPE’s CSB as addressable memory (although CAPE

can be configured alternatively to be used as a memory-only

tile by the chip, which we briefly address in Section VII).

RISC-V’s VLA support [46], whereby vector length is pro-

grammable, is easily supported in CAPE, by simply masking

out the unused CSB columns or turning off entire chains. The

flexibility that VLA support provides is actually key to CAPE’s

ability to accommodate a variety of applications with different

amount of data-level parallelism.

Table I shows relevant metrics of an illustrative subset

of RISC-V instructions supported by CAPE. Note that logic

instructions are very efficient, because their execution is bit-

parallel. Generally, arithmetic instructions are bit-serial due

to the need to propagate carry/borrow information. Equality-

comparison instructions map directly to CAPE’s bit-parallel

search operation (Figure 4, top-right). However, since each

vector element is bit-sliced, there needs to be a bit-serial

post-processing of each the tag bits in order to generate a

single match/mismatch value. The maximum number of active

rows/subarray during update and search illustrates that our

circuits need only be able to search to at most four rows

and to update to one row.2 Note that arithmetic instructions

(i.e. vadd.vv) will update to two subarrays simultaneously,

but to only one row/subarray. The truth table entry count

corresponds to the number of search-update pairs needed to

execute per bit of the input operands; it is an estimation of the

instruction’s complexity. While some instructions have smaller

truth tables than others, they may traverse them multiple times

(for example, vmul.vv traverses its truth table a quadratically

number of times, compared to vadd.vv).

While CAPE could support floating point with some modi-

fications to the data layout and microcode sequences, we leave

it for future work. With the current chain organization, CAPE

could also handle element types smaller than 32 bits relatively

easily, by configuring the microcode to handle sequences under

2This also the case for the RISC-V vector instructions not shown in Table I.

561

!"! ! "

!"! ! !

#$%&' #$%&'#$%

$&&

(')* +,&*- ./$0,1.23&

!!!

4'35)'

6'75',)'8

!"#$%&!'()

!*+ *,-.,%/,(01&2*3

9:3$*'6'$8)/

4'$31
;;

+3%'
""

03<!

0,!
($%5'
=$&>

44&5,/67,(

!""

6
'
$
8)
/

44&3,86(9

?
"
--?
@
!

!
"
#
$%

&'()!

./$0,1A8B5:!

!
"
#
$%

!
"
#
$%

**

*

4'3!

!!!

&'()"

./$0,1A8B5:"

4'3"

!!!

4'3#

!!!

4'3$

!!!

./$0,1A8B5:# ./$0,1A8B5:$

!
"
#
$%

!
"
#
$%

!
"
#
$%

**

*

!!

!

!!!

!
"
#
$%

!
"
#
$%

!
"
#
$%

!
"
#
$%

!
"
#
$%

!
"
#
$%

?
"
--?
@
!

!!!

!!!

A4'3!
!!!

A4'3# !!!
#8B21.C ;B1)/$0,&

;;

D')B3'8

;;

='2B8E
!!!

!!!

F4

!!!

""

03<$

0,$

'''

!""

'''

#$%

9
:
3
$
*'

#$%&'
"---

#$%&'

"---

;85'
"---

;85'

!

4
'
3

;85' ;85'#$%

!!!

Fig. 7: CSB architecture (left), chain controller (bottom-middle),
finite-state machine (FSM) (top-middle), truth-table (TT) decoder
(top-right), and TT Memory (bottom-right).

32 bits, with support for padding/sign extension in some cases

(also handled by the microcode).

B. CAPE Micro-architecture

Recall that the CAPE system is organized into four blocks

(Figure 2) the control processor (CP), the vector control unit

(VCU), the vector memory unit (VMU) and the compute-

storage block (CSB). The CSB is made up of CAPE chains

which have already been described in Section IV-D. In Sec-

tions V-D and V-E, we describe in detail the VCU and the

VMU.

C. Exception Handling

Vector instructions are issued to the VCU/VMU only when

they are committed at the end of the Control Processor’s

pipeline, and thus they are not subject to rollback due to

exceptions triggered by earlier instructions. As for exceptions

triggered by a vector instruction itself, a) load/store operations

can be restarted at the index where a page fault occurred3 and

b) an arithmetic/logic exception would probably be handled

imprecisely, consistently with the ISA specification for vector

instructions.

D. Vector Control Unit

The vector control unit (VCU) breaks down each vector in-

struction into a sequence of commands. Commands include the

four CAPE microoperations (read, write, search and update),

as well as reconfiguration commands (e.g., to reconfigure the

vector length). We implement a distributed design of the VCU,

built from multiple chain controllers, shared across chain

groups (Figure 7, left).

A global control unit maintains a programmable truth table

memory and a set of control status registers (CSRs). When

the VCU receives a vector instruction, it propagates the truth

table data of the corresponding associative algorithm to each

of the chain controllers which store it in a small, dedicated

CAM (global command distribution).

3Vector-indexed loads/stores are more challenging and left for future work,
and consequently, they have not been used in this work. Software restart

markers may be a solution to this issue at a minimal performance overhead
compared to imprecise solutions [24].

The chain controllers then distribute the commands to the

apropriate subarray(s) in the chain (local command distribu-

tion). The chain controller (Figure 7, center) is composed of

a sequencer, a truth table memory (TTM) and a truth table

decoder. Each TTM entry corresponds to one search-update-

reduce data pack, encoded efficiently to only store values for

the bits involved in the operations. The entries in the TTM

use a standard format to represent any associative algorithm’s

truth table. Four additional bits per TTM entry (valid bits

and accumulator enable) are used to indicate if a search

(with/without accumulation) or update operations are active,

and if the reduction logic is going to be used.

The sequencer implements a simple FSM with five states

(Figure 7, top center): (1) Idle, (2) Read TTM, (3) Generate

comparand and mask for search, (4) Generate data and mask

for update, and (5) reduce. The controller is by default in the

idle state. Once the Control Processor sends a new request,

the sequencer transitions into state (2). The controller keeps

track of one counter, µpc, which helps navigate the entries

in the TTM, and another counter, bit, to keep track of the

bit we are operating on and generating the apropriate idx and

subarray select signal for the chain controller. The counters

are initialized appropriately: µpc=0 every truth table (TT)

loop, and bit is set to either MSB or LSB, depending on the

operation, given an operand size.

The truth table decoder (Figure 7, top-right) produces the

search and update data and masks, from the values stored

in the TTM by shifting them by the appropriate amount and

ORing them to generate a single digital word to used by the

subarray row and column drivers. This approach is similar to

a vertical micro-code scheme. On a 32-bit configuration, the

chain controllers distribute 143 bits of commands through the

chain command buses, as shown in Figure 7.

E. Vector Memory Unit

CAPE communicates with the memory system via the

Vector memory Unit (VMU). When receiving a vector memory

instruction from the control processor, the VMU will break

it into a series of sub-requests to main memory. Each sub-

request accesses a block of memory of the memory system’s

data bus packet size. When the sub-request is served to the

VMU, the CSB consumes it as follows: Similar to the byte

interleaving scheme across different chips of a DRAM DIMM

for optimal throughput, CAPE stores adjacent vector elements

in different chains, which have the ability to perform the

transfer independently, in a single cycle. This allows for the

vector loads and stores to complete a full sub-request transfer

in a single cycle. We design our system in order to ensure that

the sub-request size is smaller than the total number of chains,

so that sub-requests do not need to be buffered in the VMU.

CSB reads and writes are concurrent to the main memory data

transfers.

CAPE’s CSB is cacheless: Due to the large footprint of the

vector memory request and the limited temporal locality, it is

not beneficial to have a data cache between CAPE and the

main memory. As a result, the VMU is directly connected

562

to the memory bus, and follows the same cache coherence

protocol as the control processor’s caches. Nonetheless, the

cache coherence introduces very trivial performance overhead,

since the CSB and the control processor share small amounts

of data.

F. Reconfigurable Active Window

Set vector length: Variable-length vectors allow for applica-

tions to request a desired amount of data parallelism. In order

to modify the vector length (vl), programmers can use the

standard RISC-V instructions vsetvl or vsetvli, which

will return the maximum amount of lanes supported by the

hardware (MAX_VL) or the exact amount requested, if it is

smaller than MAX_VL. In CAPE, that translates into using

more or fewer columns, or even full chains. As supported

by the RISC-V standard documentation, the elements in any

destination vector register with indices greater than vl (tail

elements) remain unchanged [46].

Set vector start: Similarly to MAX_VL, RISC-V’s standard

CSR vstart is used to specify the index of the first active

element in a vector instruction.

CAPE support for the active window: Setting a vl smaller

than its hardware limit MAX_VL will mask columns that are

stored in different chains. To implement that, each chain

controller locally computes a mask given its chain ID, the

vstart value, the vl value. The mask is used in updates

to generate the column signal: the address bus signals will

contain zeroes on the masked columns. If all elements in

a chain are masked, the chain controller can power-gate its

peripherals while still maintaining the data stored unchanged.

G. Vectorizing for CAPE

Programmers can use RISC-V assembly, vector intrinsics

or a vectorizing compiler to map well-structured data-parallel

code to the CAPE instruction set. Many classic vector op-

timization techniques will directly apply to CAPE including

loop reordering, loop restructuring, and memory access trans-

formations [13], [32]. In this section, we discuss two CAPE-

specific optimizations that can improve performance when

compared to traditional vector architectures.

Vertical vs. Horizontal Operations – Traditional vector

architectures discourage horizontal (i.e., cross-lane) operations

since they are usually implemented using expensive and slow

reduction trees. CAPE’s horizontal operations use a combina-

tion of an intra-chain reduction sum (redsum) primitive and

a modest global bit-serial reduction tree (see Section IV-E).

The ability to bit-serially reduce all rows of all chains si-

multaneously results in performance roughly proportional to

the bitwidth (we give implementation details of the reduction

tree for a system of 1,024 chains in Section VI-C). A vector

redsum instruction is thus eight times faster than an element-

wise vector addition. This trade-off opens new algorithmic

optimizations that favor using vector redsum instructions when

possible.

Replica Vector Load – It can be challenging to fully utilize

CAPE’s long vector registers when applications operate over

Fig. 8: Layout of one CAPE chain made up of 32 subarrays and
its peripherals. Area is 13x175µm2.

Read Write
Search

4 Rows

Update

w/o Prop

Update

w/ Prop
Red

D (ps) 237 181 227 209 209 217

BS E (pJ) - - 1.0 1.2 1.2 -

BP E (pJ) 2.8 2.4 5.7 3.8 - 8.9

TABLE II: Delay (D) and dynamic energy of bit-serial (BS E)
and bit-parallel (BP E) microoperations executed by one chain.
Note that read requires bidirectional communication.

matrices with a modest number of elements in each dimension.

CAPE includes a new replica vector load instruction (vlrw.v

v1, r1, r2) which loads a chunk of r2 contiguous values,

starting from the address in r1, and replicates them along the

vector register v1. Replica vector loads are particularly useful

when vectorizing dense matrix multiplication in three steps:

(1) a unit-stride vector load reads multiple rows from the first

matrix into one vector register; (2) a replica vector load reads a

single row from the (transposed) second matrix and replicates

this row into a second vector register; and (3) iterate over the

rows and use vmul and vredsum to efficiently calculate the

partial product.

VI. EVALUATION

In this section, we discuss our circuit, instruction, and

system modeling. Subsection A, Microoperation modeling

provides delay and energy estimates for each CAPE microop-

eration on one chain. Subsection B, Instruction modeling com-

bines these circuit-level estimates with an associative behav-

ioral emulator to estimate the delay and energy for each vector

instruction. Subsection C, System modeling integrates these

instruction-level estimates into a cycle-approximate gem5-

based [14] simulation model capable of executing binaries for

both micro-benchmarks and complete applications. We use this

multi-level modeling approach to explore system-level trade-

offs.

A. Microoperation Modeling

We simulate a memory subarray of 32 columns by 36 rows

(32 rows: 1 row/vector name, and 4 additional rows for meta-

data) based on the 6T bicell from Jeloka et al.’s design with

split wordlines [26] (Figure 3). A CAPE subarray consists of

SRAM bitcells, precharge circuitry, write drivers, search AND

gates, tag bit accumulator and tag bits. All of these are de-

signed using ASAP 7nm PDK circuit simulation libraries [45].

The latency and energy results incorporate wordline, bitline

resistance and capacitances. We then model this subarray as

a black box and instantiate it in the synthesized chain design

using Synopsys DC compiler [7]. Synthesis results are further

fed into an auto-place and route tool [9] for floorplan and

placement to generate a chain layout (Figure 8). The control

signals are routed to all the subarrays which are driven by wire

repeaters to reduce the overall delay.

Delay of CAPE Primitives – Conventional wisdom might

suggest that parallel microoperations (i.e. search and update)

563

should be significantly slower (potentially 32 times since

they might operate on 32 elements per chain) than reads

or writes. In CAPE, both the circuit design and data layout

enable very efficient searches and udpates, since they are

done across columns (with their own independent circuitry)

and not rows. Searches are only done to at most four rows

simultaneously, which speeds up the sensing of the search

outcome. Updates write to at most one row per subarray, which

essentially turns them into single-row conventional writes. In

addition, updates do not use a (priority) encoder or address

decoder, but rather re-use the outcome of searches (stored in

the tag bits) to conditionally update columns. Overall, CAPE’s

microoperation delays are balanced and range between 181

and 237 picoseconds (Table II). The reduced size of the

SRAM arrays enables very fast accesses (90 ps). For that

reason microoperation delays are largely dominated by the

peripheral logic (i.e. AND and OR gates, flip-flop) and the

local command distribution delay of the control signals (55 ps).

Read is the slowest microoperation (Table II), explained by the

round-trip wire delay: once to transfer the control signals to

all subarrays, and another one to transfer back the data read

to the controller.

Energy of CAPE Primitives – CAPE’s operand bit-slicing

across the subarrays in a chain forces reads and writes to

access a single bitcell (same row and column) of all subarrays

in a chain. In turn, the same data layout allows for search and

updates to maintain most subarrays in a chain idle, reducing

the dynamic energy. For searches, only one subarray/chain will

be active (because of operand locality); and for update, only

one or two (if propagation is needed) subarrays/chain will be

active. We show dynamic energy estimates of a single chain in

Table II, which include local command distribution of the 184

bits to all subarrays, array access, as well as peripheral logic

energy consumption. We show estimates for dynamic energy

of the bit-serial (BS E) and bit-parallel (BP E) flavours of each

microoperation. Note that bit-parallel microoperations are very

energy-efficient given the shared control logic and command

distribution.

B. Instruction Modeling

We use the chain layout, delay, and energy modeling from

the previous section and combine them with the associative

behavioral emulator to derive detailed ISA instruction-level

energy and delay modeling for an entire chain.

Delay of CAPE Instructions – The associative emulator

models the associative behavior of subarrays with read, write,

search and update capability. We implement the associative

algorithms required for each vector instruction and extract mi-

crooperation mix count for a configuration of 32-bit operand.

Energy of CAPE Instructions – We combine the associa-

tive emulator’s microoperation statistics with the microoper-

ation energy modeling in Table II to estimate the energy of

each CAPE instruction executing on a single chain.

In Table I we can see the energy spent for each vector in-

struction per scalar operation (that is, per vector lane). As ex-

pected, arithmetic instructions are the most energy consuming

Baseline Core CAPE’s Ctrl Processor

System

configuration

out-of-order core, 3.6GHz

32 kB/32kB/1MB L1D/L1I/L2

5.5MB L3 (shared), 512B LL cache line

in-order core, 2.7GHz

32 kB/32kB/1MB L1D/L1I/L2

512B L2 cache line

Core

configuration

8-issue, 224 ROB, 72 LQ, 56 SQ

4/4/4/3/1 IntAdd/IntMul/FP/Mem/Br units

TournamentBP, 4,096 BTB, 16 RAS

2-issue in-order, 5 LSQ

4/1/1/1 Int/FP/Mem/Br units

TournamentBP, 4,096 BTB, 16 RAS

L1 D/I cache 8-way, LRU,MESI, 2 tag/data latency 8-way, LRU, 2 tag/data latency

L2 cache 16-way,LRU,MESI,14 tag/data latency 16-way,LRU,14 tag/data latency

L3 cache 11-way, LRU, 50 tag/data latency, shared N./A.

Main memory 4H HBM, 8 channels, 16GBps/512MB per channel

TABLE III: Experimental setup

explained by their large cycle count. Vector multiplication is

clearly the most energy expensive instruction, it performs more

than 3,000 searches and udpates, combined. Logic instructions

(vand, vor, vxor) are very efficient, since they perform

very few (bit-parallel) microoperations. vredsum includes the

energy consumed in doing the bit-parallel search, 3.0 pJ, as

well as the energy consumed by the reduction logic, 8.9 pJ.

CAPE Cycle Time – The system’s critical path is 237 ps

(4.22 GHz), wich corresponds to the slowest microoperation

(read). We conservatively reduce by 65% the maximum CAPE

frequency to 2.7 GHz to account for clock skew and uncer-

tainty.

C. System Modeling

We use the modeling from the previous sections to derive

our global reduction logic and command distribution models

as well as our system-level simulation framework.

Reduction Logic – We have synthesized the global reduc-

tion logic described in Section IV-E for a system of 1,024

chains. The global reduction is pipelined into 5 stages with a

critical path of 217 ps. We estimate the number of stages to

model different CSB capacities by replicating or removing the

different pipeline stages.

Global Command Distribution – It includes the delay

between the VCU and each of the chain controllers, and it

is estimated using a first-order approximation of wire delay

on Metal 4 of an H-Tree that distributes the VCU signals

control to each of the chain controllers, using wire repeaters

to improve the delay. The global command distribution is

pipelined and is not included as part of the cycle time: it adds

a constant number of cycles of overhead per vector instruction.

System Methodology – We model the CAPE System

by extending the gem5 cycle-approximate simulator frame-

work [14]. The control processor is modeled using the RISC-

V RV64G MinorCPU and is configured as a dual-issue, in-

order, five-stage pipeline. We modified the MinorCPU to send

commands to the VMU or VCU. The simulator accurately

models the global reduction tree and command distribution

delays. We have developed detailed timing models of CAPE’s

VMU, VCU, and CSB. The VMU is connected to an HBM

memory system [27] to perform data transfers to/from the

CSB. We model the CSB delays of each vector instruction

as described in Section VI-B.

Area Reference – We want to be able to make area-

equivalent comparisons. To that end, we estimate the area

of our baseline out-of-order CPU based on a high-end Intel

Skylake processor in 14 nm technology. Each Skylake tile

contains a processor, more than 1MB of private caches, and

564

565

566

Results– In Figure 11 we show speedup of CAPE32k

and CAPE131k, which have comparable area to one and

two out-of-order cores with their caches (see baselines in

Section VI-C). We also show performance of a three-core

system, for reference. We see that CAPE32k accelerates all

applications by 14× on average, compared to one core, at a

similar area design point. Both matrix multiply (matmul) and

PCA (pca) are matrix-based applications with relatively small

input sizes. However, the for-loop inter-iteration dependencies

found in pca prevented us from using the CAPE-specific

instruction vldr (Section V-G) that increases CAPE’s vector

utilization, enabling a significant increase in parallelism neces-

sary to compensate the bit-serial costly vmul.vv instruction.

CAPE131k accelerates the apps by 14.4× on average,

compared to two cores, at a similar area design point. String

match (strmatch), word count (wrdcnt) and reverse index

(revidx) show worse performance, compared to CAPE32k.

This scalability bottleneck is explained by the the sequential

traversing of the input file, as well as the serialized post-

processing of each match (similar to idxsrch of Section VI-D).

In turn, the dramatic increase in peformance for Kmeans

(kmeans) is due to its algorithmic nature. For CAPE32k,

Kmean’s dataset does not fit in the CSB, which results in

having to load it multiple times. Instead, Kmean’s dataset fits

in CAPE131k’s CSB, which translates into having to load it

one single time and reuse it until the solution converges. In

addition, the number of vector instructions inside the for-loops

in the program is minimized due to the possibility to fully

unroll all the iterations.

Comparison with SIMD baseline– One could argue that

CAPE is a vector-first compute core, where non-vector instruc-

tions are supported by an adjoining scalar engine (CAPE’s

small Control Processor, already included in the area esti-

mation and the simulations). In contrast, today’s CPUs are

typically scalar-first compute cores, where vector instructions

may be supported by an adjoining vector engine (e.g., Intel

AVX [10] or ARM SVE [43]). To tease out whether CAPE

indeed constitutes an attractive compute tile for vectorizable

code, we conduct an additional simulation experiment us-

ing a commercial-grade model of an ARM core with SVE

support [43]. Specifically, we use ARM’s upstream gem5

model [8], configured to match our RISC-V out-of-order

baseline’s size and latency (Table III), and equipped with

four SIMD ALUs. We manually vectorize the applications

using SVE intrinsics [5]. Although the standalone core in

the ARM configuration is similar to that of our baseline,

direct quantitative comparisons are tricky because of the

different ISAs and compilation flows. Nevertheless, the results

in Figure 12 shows speedups for the Phoenix Benchmarks

running on the three SIMD configurations, normalized to a

scalar-only run. The results in Figure 11 (CAPE32k vs RISC-

V baseline) and Figure 12 (ARM+SVE vs ARM baseline)

suggest that CAPE32k can achieve, on average, more than five

times as much performance as the 512-bit SVE configuration

(comparable to Intel’s most aggressive SIMD implementation,

AVX-512).

Roofline Study– Similar to the microbenchmarks section,

we also plot the Phoenix apps using the Roofline model. By

looking at Figure 11 and Figure 10, we can extract that the

speedups of constant-intensity applications (matmul, lreg, hist,

kmeans) improve from CAPE32k to CAPE131k. However, the

speedup of variable-intensity applications (wrdcnt, revidx, str-

match) worsens; an exception is pca, whose speedup remained

unchanged for reasons discussed in the last section and is

reflected in its fixed position on the Roofline plot. Kmeans’

change in intensity is explained by its algorithmic nature,

previously discussed in the Results section. Unlike the other

variable-intensity applications, its throughput on CAPE131k is

much larger and closer to the compute-bound roofline, which

leads to a dramatic increase in speedup: 426× with respect to

an area comparable multicore system.

As expected, the throughput of constant-intensity apps shifts

from compute-bound towards memory bound, explained by

their vertical movement in the roofline space, with increased

CSB capacity. This indicates that these apps are able to

effectively utilize the increased computational capabilities of

CAPE, until they are limited by the memory, which highlithgts

CAPE’s need for a high throughput memory system like HBM.

In contrast, the throughput of variable-intensity applications

remain far from the memory-bound roofline, suggesting that

they take advantage of the increased computational capability

to a much lesser degree. Like the microbenchmark idxs-

rch, these text-based applications must sequentially traverse

through the matches of parallel searches, and perform actions

that are difficult to vectorize. As a result of Amdahl’s law, any

speedup from the vectorized regions is overshadowed by the

cost of sequential regions, causing overall speedup to plateau.

Coupled with increasing command distribution, the speedup

in fact decreases as CAPE scales up.

VII. MEMORY-ONLY MODE

Although CAPE’s primary mission is to implement a RISC-

V vector ISA efficiently as an associate computing tile,

CAPE’s CSB could alternatively be reconfigured as storage

by the chip whenever it may be more advantageous. In this

section, we briefly outline three examples of CAPE’s use as

a memory-only tile; a detailed description of these or other

possible mechanisms is out of the scope of the paper. In

general, some additional support is needed to accept external

requests.

Scratchpad: A scratchpad is simply a block of physical mem-

ory which can be typically accessed directly using ordinary

loads and stores (i.e., mapped into the virtual addressing

space). In a multicore chip, a scratchpad may be useful, for

example, to store private data or to exchange noncacheable

data across cores. To support this mode, all is needed is for the

VMU to be able to take in memory requests from remote nodes

through the system interconnect and perform the appropriate

physical address indexing.

Key-value storage: The scratchpad above can be further

customized to operate as key-value storage, which is simply a

repository of key-value pairs, where a value can be read from

567

or written to by first finding its unique key (or, if it is not

found, by first allocating a new key-value pair). Because the

CSB is content-addressable, it naturally supports this mode.

Assuming, for example, that both key and value are 32-bit

wide, and that each CSB chain is made up of 32 subarrays,

then a chain can store 16 × 32 = 512 key-value pairs (that’s

about half a million key-value pairs in the smaller CAPE

configuration of our evaluation, CAPE32k). Again, as in the

case of the scratchpad, the VMU should be able to take in key-

value requests from the system, and contain the appropriate

indexing logic. To insert new key-value pairs, the VCU may

assist by running a microprogram that scans the CSB looking

for free entries, and/or the control processor may execute a

small program that maintains a free list.

Cache: The CSB can leverage key-value storage functionality

to work as a shared victim cache of the L2 caches, an

additional slice of the LLC, etc. To do this, the control

processor and the VCU should be programmed to work closely

with the controller of the cache it is augmenting (e.g., on a

miss, an L2 cache controller sends a message to the CAPE

tile to check if the block is present in the victim cache CAPE

is emulating, concurrently to initiating an LLC access). In

one possible implementation, each cache line (tag and data)

are stored row-wise (since cache blocks can be fairly large);

neither tag nor data are bit-sliced. Jeloka et al.’s row read/write

operations [26] take one/two cycles, respectively. Since the

CSB has 32 rows of subarrays, and each subarray has 32 rows

of bitcells, CAPE as a cache can support up to ten index bits

in the address (1,024 rows). An access to the CAPE cache can

be carried out with a few microinstructions that search for a

tag match among a set of rows and, if a hit is found, command

the VMU to deliver the data block.

VIII. RELATED WORK

PIM architectures bring logic close or into memory to mit-

igate the effects of data movement [15], [17], [18], [22], [29],

[31], [34], [36], [44], [50]. Recent in-situ PIM solutions are

based on bitline computation, enabled either on DRAM [30],

[40] or SRAM [12], [16], [21] memory technology. CAPE’s

associative processing provides an alternative to bitline com-

putation. Most in-situ PIM proposals require a custom ISA

or ISA extensions [12], [16], [40], but Fujiki et al. proposes

to use SIMT as programming abstraction [21]. Our system

provides a direct map to standard RISC-V vector code [46],

able to reuse existing compilation flows.

Recently, some proposals [23], [33], [49], [51] have

emerged proposing to utilize the foundations of traditional

associative processing [20], [37], [39] for modern microar-

chitectures. However, these solutions require emergent tech-

nologies [23], [33], [51], custom compilation flows [23], [51],

expensive 12T memory bitcells [49], or data copies to ensure

operand locality in the associative arrays [51]. Moreover,

[23] does not perform in-situ associative processing, like

CAPE. Other emergent resistive devices with support for

searches do not leverage associative computing [25], require

sophisticated technology scaling techniques to preserve the

accuracy [48], or represent an alternative architectural design

point as processing-in-storage devices. [28].

Zha et al. propose an associative processor based on RRAM

crossbar memory arrays [51]. Their approach is fairly different

from CAPE. First, their algorithmical optimization relies on a

TCAM array, which has a reduced capacity. While Zha et al.’s

compiler is constrained by common SIMD vectorization limi-

tations (e.g. they need to know the unrolling factor at compile

time, no divergence support), CAPE reuses the standard RISC-

V’s vector abstraction resulting in a clean interface compatible

with existing code and compilation flows (An example of it is

its vector length agnostic paradigm, which allows the unrolling

factor to be determined at runtime.). Finally, Zha et al.’s

performance evaluation uses a simplistic fixed-latency timing

model. This methodology fails to capture the interactions

between the memory system or the task dispatching from the

host.

IX. CONCLUSIONS

In this paper, we explored whether the concepts behind

classic associative processing can guide the design of a next-

generation, general-purpose CMOS microarchitecture that can

deliver order-of-magnitude speedups while remaining highly

programmable.

To do that, we conducted a full-stack design of a CMOS-

based implementation of an associative engine based on dense

6T push-rule SRAM arrays. The resulting CAPE microarchi-

tecture is scalable to data-level parallel computations on tens

of thousands of vector elements, and it is fully programmable

via a RISC-V ISA with standard vector instructions. Our

evaluation shows that CAPE achieves average speedup of 14

(up to 254) across eight diverse applications, relative to an

area-equivalent (slightly under 9 mm2 at 7 nm) out-of-order

processor core with three levels of caches.

ACKNOWLEDGMENT

This work was supported in part by the Semiconductor

Research Corporation (SRC) through the Center for Research

on Intelligent Storage and Processing-in-memory (CRISP) and

the Center for Applications Driving Architectures (ADA), two

of six centers of the JUMP program co-sponsored by DARPA;

by SRC and NSF through an E2CDA NSF Award #1740136,

by NSF Award #2008365, and by NSF SHF Award #2008471.

We thank Olalekan Afuye and Alyssa Apsel for early discus-

sions and help with circuit design; Angela Jin, Ysabel Tan,

and Socrates Wong for their help with experiments; Giacomo

Gabrielli and Giacomo Travaglini for their help with some of

the Arm tools; Michael Woodson for his technical support;

and Ameen Akel and Sean Eilert from Micron Technology

for their advice.

REFERENCES

[1] “14 nm lithography process,” https://en.wikichip.org/wiki/14 nm
lithography process.

[2] “16 nm lithography process,” https://en.wikichip.org/wiki/16 nm
lithography process.

[3] “7 nm lithography process,” https://en.wikichip.org/wiki/7 nm
lithography process.

568

[4] “Amd epyc 7502 processor,” https://www.amd.com/en/products/cpu/
amd-epyc-7502.

[5] “ARM C Language Extensions for SVE,” https://static.docs.arm.com/
100987/0000/acle sve 100987 0000 00 en.pdf.

[6] “Cortex-A53 - Microarchitectures - ARM,” https://en.wikichip.org/wiki/
arm holdings/microarchitectures/cortex-a53.

[7] “DC Ultra: Concurrent Timing, Area, Power, and Test Op-
timization,” https://www.synopsys.com/implementation-and-signoff/rtl-
synthesis-test/dc-ultra.html.

[8] “Git repositories on gem5,” https://gem5.googlesource.com.
[9] “Innovus Implementation System,” https://www.cadence.com/en

US/home/tools/digital-design-and-signoff/soc-implementation-and-
floorplanning/innovus-implementation-system.html.

[10] “Intel 64 and ia-32 architectures software developer’s manual volume
2a: Instruction set reference.” Intel Corporation. 2015.

[11] “Skylake (server) Microarchitectures,” https://en.wikichip.org/wiki/intel/
microarchitectures/skylake (server)#Extreme Core Count .28XCC.29.

[12] S. Aga, S. Jeloka, A. Subramaniyan, S. Narayanasamy, D. Blaauw, and
R. Das, “Compute Caches,” in 2017 IEEE International Symposium on

High Performance Computer Architecture, 2017.
[13] D. F. Bacon, S. L. Graham, and O. J. Sharp, “Compiler transformations

for high-performance computing,” ACM Computing Surveys, 1994.
[14] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,

J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5 simulator,”
SIGARCH Computer Architecture News, 2011.

[15] J. Draper, J. Chame, M. Hall, C. Steele, T. Barrett, J. LaCoss,
J. Granacki, J. Shin, C. Chen, C. W. Kang, I. Kim, and G. Daglikoca,
“The Architecture of the DIVA Processing-in-memory Chip,” in Pro-

ceedings of the 16th International Conference on Supercomputing, 2002.
[16] C. Eckert, X. Wang, J. Wang, A. Subramaniyan, R. Iyer, D. Sylvester,

D. Blaaauw, and R. Das, “Neural Cache: Bit-Serial In-Cache Accel-
eration of Deep Neural Networks,” in 2018 ACM/IEEE 45th Annual

International Symposium on Computer Architecture, 2018.
[17] D. G. Elliott, W. M. Snelgrove, and M. Stumm, “Computational RAM:

A Memory-SIMD Hybrid and its Application to DSP,” in 1992 Pro-

ceedings of the IEEE Custom Integrated Circuits Conference, 1992.
[18] D. G. Elliott, M. Stumm, W. M. Snelgrove, C. Cojocaru, and R. Mcken-

zie, “Computational RAM: implementing processors in memory,” IEEE

Design Test of Computers, 1999.
[19] R. Espasa, M. Valero, and J. E. Smith, “Vector Architectures: Past,

present and future,” in Proceedings of the 12th International Conference

on Supercomputing, 1998.
[20] C. C. Foster, Content Addressable Parallel Processors. John Wiley &

Sons, Inc., 1976.
[21] D. Fujiki, S. Mahlke, and R. Das, “Duality Cache for Data Parallel

Acceleration,” in Proceedings of the 46th International Symposium on

Computer Architecture, 2019.
[22] M. Gokhale, B. Holmes, and K. Iobst, “Processing in memory: the

Terasys massively parallel PIM array,” Computer, 1995.
[23] Q. Guo, X. Guo, R. Patel, E. Ipek, and E. G. Friedman, “AC-DIMM:

Associative Computing with STT-MRAM,” in Proceedings of the 40th

Annual International Symposium on Computer Architecture, 2013.
[24] M. Hampton and K. Asanović, “Implementing virtual memory in a

vector processor with software restart markers,” in Proceedings of the

20th Annual International Conference on Supercomputing. Association
for Computing Machinery, 2006.

[25] M. Imani, S. Gupta, Y. Kim, and T. Rosing, “FloatPIM: In-memory
acceleration of deep neural network training with high precision,” in
2019 ACM/IEEE 46th Annual International Symposium on Computer

Architecture (ISCA), 2019.
[26] S. Jeloka, N. B. Akesh, D. Sylvester, and D. Blaauw, “A 28 nm

configurable memory (TCAM/BCAM/SRAM) using push-rule 6t bit cell
enabling logic-in-memory,” IEEE Journal of Solid-State Circuits, 2016.

[27] Joonyoung Kim and Younsu Kim, “HBM: Memory solution for
bandwidth-hungry processors,” in 2014 IEEE Hot Chips 26 Symposium

(HCS), 2014.
[28] R. Kaplan, L. Yavits, and R. Ginosar, “PRINS: Processing-in-storage ac-

celeration of machine learning,” IEEE Transactions on Nanotechnology,
2018.

[29] P. M. Kogge, “EXECUBE- A new architecture for scaleable MPPs,” in
Proceedings of the 1994 International Conference on Parallel Process-

ing, 1994.

[30] S. Li, D. Niu, K. T. Malladi, H. Zheng, B. Brennan, and Y. Xie, “DRISA:
A DRAM-based reconfigurable in-situ accelerator,” in 2017 50th Annual

IEEE/ACM International Symposium on Microarchitecture, 2017.

[31] K. Mai, T. Paaske, N. Jayasena, R. Ho, W. J. Dally, and M. Horowitz,
“Smart Memories: a modular reconfigurable architecture,” in Proceed-

ings of 27th International Symposium on Computer Architecture, 2000.

[32] S. Maleki, Y. Gao, M. Garzaran, T. Wong, and D. Padua, “An Evaluation
of Vectorizing Compilers,” in Proceedings of the 28th Int’l Conf. on

Parallel Architectures and Compilation Techniques, 2011.

[33] A. Morad, L. Yavits, S. Kvatinsky, and R. Ginosar, “Resistive GP-SIMD
processing-in-memory,” ACM Trans. Archit. Code Optim., 2016.

[34] M. Oskin, F. T. Chong, and T. Sherwood, “Active Pages: a computation
model for intelligent memory,” in Proceedings. 25th Annual Interna-

tional Symposium on Computer Architecture, 1998.

[35] K. Pagiamtzis and A. Sheikholeslami, “Content-addressable memory
(CAM) circuits and architectures: a tutorial and survey,” IEEE Journal

of Solid-State Circuits, 2006.

[36] D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton,
C. Kozyrakis, R. Thomas, and K. Yelick, “A case for intelligent RAM,”
IEEE Micro, 1997.

[37] J. Potter, J. Baker, S. Scott, A. Bansal, C. Leangsuksun, and C. Asthagiri,
“ASC: an associative-computing paradigm,” Computer, 1994.

[38] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and C. Kozyrakis,
“Evaluating MapReduce for multi-core and multiprocessor systems,”
in 2007 IEEE 13th International Symposium on High Performance

Computer Architecture, 2007.

[39] G. E. Sayre, “Staran: An associative approach to multiprocessor archi-
tecture,” in Computer Architecture.Springer Berlin Heidelberg, 1976.

[40] V. Seshadri, D. Lee, T. Mullins, H. Hassan, A. Boroumand, J. Kim,
M. A. Kozuch, O. Mutlu, P. B. Gibbons, and T. C. Mowry, “Ambit:
In-memory accelerator for bulk bitwise operations using commodity
DRAM technology,” in 2017 50th Annual IEEE/ACM International

Symposium on Microarchitecture, 2017.

[41] A. E. Slade and H. O. McMahon, “A cryotron catalog memory system,”
in Eastern Joint Computer Conference: New Developments in Comput-

ers, 1957.

[42] P. Srivastava, M. Kang, S. K. Gonugondla, S. Lim, J. Choi, V. Adve,
N. S. Kim, and N. Shanbhag, “PROMISE: An end-to-end design of
a programmable mixed-signal accelerator for machine-learning algo-
rithms,” in 2018 ACM/IEEE 45th Annual International Symposium on

Computer Architecture, 2018.

[43] N. Stephens, S. Biles, M. Boettcher, J. Eapen, M. Eyole, G. Gabrielli,
M. Horsnell, G. Magklis, A. Martinez, N. Premillieu, A. Reid, A. Rico,
and P. Walker, “The ARM Scalable Vector Extension,” IEEE Micro,
2017.

[44] H. S. Stone, “A logic-in-memory computer,” IEEE Transactions on

Computers, 1970.

[45] V. Vashishtha, M. Vangala, and L. T. Clark, “ASAP7 predictive design
kit development and cell design technology co-optimization: Invited
paper,” in 2017 IEEE/ACM International Conference on Computer-

Aided Design, 2017.

[46] A. Waterman, Y. Lee, D. A. Patterson, and K. Asanovic, “The RISC-
V instruction set manual. Volume I User-level ISA,” https://www.amd.
com/en/products/cpu/amd-epyc-7502, 2014.

[47] S. Williams, A. Waterman, and D. Patterson, “Roofline: an insightful
visual performance model for multicore architectures,” Communications

of the ACM, 2009.

[48] H. E. Yantır, A. M. Eltawil, and F. J. Kurdahi, “Low-power resistive as-
sociative processor implementation through the multi-compare,” in 25th

IEEE International Conference on Electronics, Circuits and Systems

(ICECS), 2018.

[49] L. Yavits, A. Morad, and R. Ginosar, “Computer architecture with
associative processor replacing last-level cache and simd accelerator,”
IEEE Transactions on Computers, 2015.

[50] Yi Kang, Wei Huang, Seung-Moon Yoo, D. Keen, Zhenzhou Ge, V. Lam,
P. Pattnaik, and J. Torrellas, “FlexRAM: toward an advanced intelligent
memory system,” in Proceedings 1999 IEEE International Conference

on Computer Design: VLSI in Computers and Processors, 1999.

[51] Y. Zha and J. Li, “Hyper-AP: Enhancing associative processing through
a full-stack optimization,” in 2020 ACM/IEEE 47th Annual International

Symposium on Computer Architecture, 2020.

569

