
IBM Research

06/18/06 | Workshop on Complexity-Effective Design © 2002 IBM Corporation

Tradeoffs between complexity, power and
performance

Victor Zyuban
IBM T.J. Watson Research Center

IBM Research

Sources of Complexity in Modern Microprocessors | Workshop on Complexity-Effective Design © 2002 IBM Corporation

Performance, power and complexity

Complexity is not proportional to area
– Data flow is responsible for most of the area, control circuits which

typically take very little area are responsible for most of the complexity

– Arrays take significant area but logically are very simple
Complexity is not proportional to power

– Data flow with lots of activity is responsible for most of the power

– Arrays and register files are logically simple, but are a significant
power component

– Control circuits that take care of corner cases show very little switching
activity but are the most challenging in terms of complexity

– Hardware for the handling of memory coherence, translation, MP
support, microcode typically shows very little activity, but is most
challenging in terms of the number of bugs

Performance always costs complexity

IBM Research

Sources of Complexity in Modern Microprocessors | Workshop on Complexity-Effective Design © 2002 IBM Corporation

Trading complexity for power

Clock gating
– Saves switching power, but increases design complexity

– In certain timing critical sections clock gating requires redesign
– when asynchronous even is expected, some prediction hardware

may be needed to speculatively turn on the hardware in
anticipation of the event

Adaptive structures, reconfigurable structures (proposals from
academia)

– Most architectural power-savings techniques proposed by academia
are not adopted by industry because of complexity

IBM Research

Sources of Complexity in Modern Microprocessors | Workshop on Complexity-Effective Design © 2002 IBM Corporation

Trading complexity for area

Multi-cycle issue to functional unit saves area are but increases
complexity
Techniques to save area: sharing ports to register files, sharing
register mappers, sharing some of the functional block between
units all lead to growth in complexity
Multithreading: sharing structures between threads saves area but
increases design complexity

Sharing execution units, branch prediction

Sharing caches, tlbs, mcode, decode, interrupt handling

Sharing issue windows, load-store queues, issue logic

IBM Research

Sources of Complexity in Modern Microprocessors | Workshop on Complexity-Effective Design © 2002 IBM Corporation

Trading performance for complexity

Pipeline depth increases frequency and drives the complexity
Need to precompute control signals

Pipelining of the state machines beyond certain point may be extremely
challenging.
Stalling of the pipeline requires overflow buffers
Most of the architectural performance features drive complexity

Out of order issue, speculative issue, replacing stall with rejects and instruction
replays, run ahead execution

IBM Research

Sources of Complexity in Modern Microprocessors | Workshop on Complexity-Effective Design © 2002 IBM Corporation

Some thought on the complexity metric

The tradeoff space looks more like this: performance and complexity
versus power and area.
Improving performance and reducing power will inevitably drive design
complexity. I don’t think there is a way to change this.
What we can do is use sensitivity analysis to target complexity balanced
design.

In a complexity balanced design the marginal complexity cost of every
performance improving and power saving features are the same

Suppose we are at the design point where we are trading 3% power per 1% in
performance

A certain performance feature improves performance by p% to compensate for
increase in complexity we would have to give up certain power savings
features (say some of clock gating), which would increase power by q%. The
performance feature is justified if 3p>q.

If on top of that the performance feature has a direct power costs x%, then it is
justified only if 3p>q+x

