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Introduction

The quest for higher performance via deep pipelining, speculative and multi-threaded execu-
tion, and chip-multiprocessing, has yielded microprocessors with greater performance, but at the
expense of greater design complexity. The costs of higher complexity are many-fold, includ-
ing increased verification time, higher power dissipation, and reduced scalability with process
shrinks/variations. The Workshop on Complexity-Effective Design (WCED) was founded with the
intention of bringing together microarchitects, circuit designers, performance modelers, compiler
developers, verification experts, and system designers to discuss and explore hardware/software
techniques and tools for creating future designs that are more complexity-effective.

A complexity-effective design feature or tool either (a) yields a significant performance and/or
power efficiency improvement relative to the increase in hardware/software complexity incurred;
or (b) significantly reduces complexity (design time and/or verification time and/or improved scal-
ability) with a tolerable performance/power impact. The papers in this year’s WCED program
address both of these themes.

We wish to thank Evelyn Duesterwald, the Workshops Chair, and the other ISCA organizers that
allowed us to offer the workshop, the WCED Program Committee (Dennis Abts, R. Iris Bahar,
David Brooks, Alper Buyuktosunoglu, George Cai, Babak Falsafi, Keith Farkas, Antonio Gonza-
lez, Peter Hofstee, Gokhan Memik, Chuck Moore, and Jose Renau), and all workshop authors and
presenters. We welcome any and all feedback that will help us improve WCED in future years.

Dave Albonesi
Pradip Bose
Prabhakar Kudva
Diana Marculescu

WCED Co-Chairs



Printed Circuit Board Layout Time Estimation

Cyrus Bazeghi and Jose Renau
University of California, Santa Cruz

ABSTRACT
System design complexity is growing rapidly. As a result, cur-
rent development costs can be staggering and are constantly
increasing. As designers produce ever larger and more com-
plex systems, it is becoming increasingly difficult to estimate
how much time it will take to design and verify these designs.
To compound this problem, system design cost estimation still
does not have a quantitative approach. Although designing a
system is very resource consuming, there is little work in-
vested in measuring, understanding, and estimating the effort
required.

To address part of the current shortcomings, this paper in-
troducesµPCBComplexity, a methodology to measure and
estimate PCB (printed circuit board) design effort. PCBs
are the central component of any system and can require
large amounts of resources to properly design and verify.
µPCBComplexityconsists of two main parts, a procedure to
account for the contributions of the different elements in the
design, which is coupled with a non-linear statistical regres-
sion of experimental measures. We useµPCBComplexityto
evaluate a series of design effort estimators on several PCB
designs. By using the proposedµPCBComplexitymetric, de-
signers can estimate PCB design effort.

1 Introduction
Printed circuit board (PCB) design effort keeps growing as ad-
ditional constraints such as rising clock frequencies, reduced
area, increasing number of layers, mixed signal devices, and
the ever increase in component numbers and densities. All of
these factors combined have led to a steady rate of increase
in development costs for current systems. As we design ever
larger, denser and more complex systems, it is becoming in-
creasingly difficult to estimate how much time would be re-
quired to design and verify them. To compound this problem,
PCB design effort estimation still does not have a quantitative
approach. We present in this paper a first step toward creat-
ing a design effort metric that is highly correlated with design
effort for PCB layout. We follow the same approach taken
in [1] as the principles that are applicable to microprocessors
are also applicable to PCBs. In this paper, design effort cor-
responds to the number of engineering-hours required for im-
plementation (layout) of a PCB design.

This work was supported in part by the National Science Foundation under
grants 0546819; Special Research Grant from the University of California,
Santa Cruz; and gifts from SUN.

This paper analyzes and proposes various statistics to esti-
mate the layout effort required to develop PCBs. We investi-
gate and quantify statistics such as area, component count, pin
count and device types and sizes for many PCBs. We analyze
several of these statistics, and propose a metric, obtained af-
ter applying non-linear regression over the different statistics,
which we callµPCBComplexity. In addition, we provide in-
sights on the correlation between several statistics and design
effort for several known layout design times.

Different designs have different constraints, leading to spe-
cific challenges; typical design constraints being area, fre-
quency, and cost. For example, having area being a primary
design constraint, may lead to a requirement for additional
layers, more expensive package types, and more complex
placement and routing. A design constrained by cost, on the
other hand, may require a balance between number of layers,
area, drill density, types of packages and possibly the number
of different drill sizes. Having clear constraints is necessary in
estimating layout effort as it can drastically affect complexity.

We define design effort to be the layout time required by
one engineer. Design effort is equivalent to layout time when
the project has a single developer, which is frequent even for
complex PCBs. Nevertheless, for a given effort requirement,
it is possible to reduce the design time by increasing the num-
ber of workers. Nevertheless, increasing the number of work-
ers decreases the productivity per worker. The relationship
between these two elements has been widely studied in soft-
ware metrics and business models. Since the conversion be-
tween design effort and design time can be approximated, the
remainder of this paper focuses only on design effort.

The rest of the paper is organized as follows. Section 2
covers other work in this area; Section 3 describes the sta-
tistical techniques that allow us to calibrate and evaluate the
µPCBComplexityregression model; Section 4 describes the
setup for our evaluation; Section 5 evaluates several statistics
for the boards in our analysis; and Section 6 presents conclu-
sions and future work.

2 Related Work
The capability to rapidly develop complex PCBs is a tremen-
dous competitive advantage, since high development produc-
tivity is essential for the success of any design team. Al-
though some companies have used statistical methods to es-
timate PCB design time, those methods are considered trade
secrets [9]. Other companies do not release details because
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they provide competitive advantage over other companies. As
a result, we are unaware of any published work on the topic of
predicting the engineering hours required for a PCB design.

[1] focuses on microprocessor design effort. While the
work described in this paper focuses on PCB design met-
rics, [1] uses the same regression model, but both papers ana-
lyze different set of statistics and targets.

Another paper that looks at productivity is [7] which iden-
tifies the need for standards or infrastructures for measur-
ing and recording the semiconductor design process. They
propose improving design technology, time-to-market, and
quality-of-result by addressing the Design Productivity Gap
and the Design ”Technology” Productivity Gap. However,
this previous work focused mostly on the problems associated
with the infrastructure and design tools related to the physical
implementation of semiconductor designs, while the focus of
this paper is layout effort associated with PCB designs.

In [8] a factor similar to the productivity factor is described.
They use the “process productivity parameter” to tune the es-
timating process for software projects. They contend that if
you know the size, time, and the process productivity param-
eter you can use it to make estimates for a new project. So
long as the environment, tools, methods, practices, and skills
of the people have not changed dramatically from one project
to the next.

Much research has been done in Design for Manufactur-
ing (DFM) and Design for Production (DFP) which seek to
improve the production and manufacturing times of PCB as-
semblies. This paper seeks to develop a metric that can aid
in predicting the layout effort, based on analysis of charac-
teristics of PCBs at a low-level so as to better plan for future
generations of systems. In [2] the issue of embedded passive
components is discussed as a necessity to the smaller elec-
tronic devices requiring ever smaller PCBs. They note that
board area is becoming so critical that to keep pace with the
size constraints new techniques are required. Our goal would
be to eventually develop a set of metrics and a model that esti-
mates design effort by also taking into account manufacturing
times.

3 Approach
Our goal is to develop a quantitative approach and to have
a model that quickly estimates design effort based on sev-
eral easily gathered statistics. This is important because being
able to predict design effort is advantageous in helping to re-
duce design costs. To build the model, we analyze many com-
mercial computer/electronic devices and gather data from the
PCBs within. The layout times for these PCBs were well doc-
umented which was a requirement for this analysis. Table 1
lists the critical components of PCB designs as determined
by [2]. These parameters contribute to the complexity of a
design, and hence the time required to do layout.

Some design parameters listed in Table 1 are dependent on
other factors. For example, the size of the board is defined by
the number of embedded and discrete passive components and

1. Board dimensions (length and breadth)
2. Total wiring requirements
3. Number of layers
4. Number of embedded resistors (if used)
5. Number of embedded capacitors (if used)
6. Set of active component types and their number
7. Thickness of the board
8. Number of discrete resistors
9. Number of discrete capacitors

Table 1:Critical design parameters for a PCB.

total wiring requirements. However, the total wiring require-
ments are governed by the number of embedded and discrete
passive components in the PCB. And further more, the total
number of layers in the PCB depends on the size of the board,
the number of embedded and discrete resistors and bypass ca-
pacitors [2].

These critical design parameters are focused towards man-
ufacturability, not design effort estimation. We used them as
a starting point in determining what parameters or metrics to
analyze and include for correlation with design effort. None
of the boards in our study have embedded passive compo-
nents, instead we focus on the total number of all components
(passive and discrete) and the pin count for them. These are
easily obtainable values.

Since the routing data is not easily obtainable, the number
of pins for all the components in the design are taken into ac-
count instead. While this is not an ideal metric since not all
pins are used or have very short traces (VDD or GND), it is
readily obtainable an does not hamper the focus of this pa-
per, namely effort prediction starting from higher level design
descriptions, such as a bill of materials (BOM) or schematics.

In order to find a metric highly correlated with design ef-
fort, several statistics were gathered from the existing designs.
For each isolated board with a known design effort, we look
at several statistics and apply non-linear regression to find a
highly correlated metric.

We present our design effort model as the aggregate of a set
of statistics (Si). Each of which has a specific constant (wi),
associated with it, which assigns a weight to the importance
of every statistic used as input in the model. The aggregate
of the statistics is inversely proportional to the productivity
of a specific design team which is represented by a constant
(ρ). The model is presented in Equation 1. In order to find
suitable values for each of the data weights (wi) we perform
mixed non-linear regressions on this equation. The design
team productivity factor (ρ) is constant per design group, and
it needs to be adjusted on a per company or design team basis.
If the ρ is unknown, then the absolute design effort is invalid
and only the breakdown inside the project is correct. Obtain-
ing the value ofρ is simple; all that is needed is to have the
design effort for a single project. Alternatively, it is possible
to develop a productivity benchmark suite that calibratesρ for
a given company.
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Design Effort=
1
ρ
×

n∑
k=1

(wk × Sk) (1)

In order to determine the weights that give a generalized so-
lution to Equation 1, [1] proposes to use a mixed non-linear
regression model. If there are no productivity adjustments,
it is possible to use a simpler non-linear regression model.
While the sum of a large number of random variables is dis-
tributed normally, the product of a number of random vari-
ables is distributedlognormally — a distribution where the
logarithm of the variable is normally distributed [4]. There-
fore, since the random variables have a log normal distribution
an even simpler linear regression model can not be used.

To evaluate the accuracy of the model (Section 5), we use
σ as a measure of error associated with the fit. Consequently,
it is important to understand what different values ofσ tell us
about the quality of the estimate. For a givenσ, we can find
a confidence intervalfor the estimated effort. Thex% confi-
dence interval for a metric is defined to be the range of efforts
(Estimatelow, Estimatehigh) such thatP (Estimatelow <
metric prediction< Estimatehigh) = x/100. For example,
the 90% confidence interval gives us two valuesa andb such
that there is a 90% chance that the actual effort is between
metric prediction× a and metric prediction× b.

3.1 Productivity Adjustments

In software development projects, it is well known that dif-
ferent development teams have different productivities. For
example, it has been shown that the productivity difference
between teams can be up to an order of magnitude [5]. We be-
lieve that a similar effect occurs between PCB design teams.
The productivity differences may be due to multiple factors,
including the average experience of the designers in the team
and the tools used. In our model,ρ captures this effect.

The boards under study in this analysis all come from one
manufacturer and so the use of a productivity factor was not
necessary.

3.2 Team Size Dynamics

Although some board designs require long periods of time, it
is very rare to find multiple developers doing different sec-
tions of the same board. The PCB layout effort by nature is
a linear task done by one engineer at a time. To reduce the
design time, we have found two approaches: multi-timezone
working environments, and ”surgical” teams.

A multi-timezone team has different designers working on
multiple time zones, this is, once a designer stops working
a new designer can continue and pick up where the previous
designer left. A “surgical team” [6] follows an alternative de-
sign organization, with the surgeon, or chief designer, at the
helm and a supporting staff that has their tasks allocated by
the chief of staff. In the PCB case, we may have other design-
ers doing such tasks as making footprint images for compo-
nents, which can be a tedious effort.

3.3 R-Language

This section provides the R-language [10] code to fit the
non-linear mixed-effects model and the non-linear regression
model. The mixed-effects model is needed when productivity
adjustments (ρ) are required, a simpler model is used when
no productivity adjustments are required.

Recall that our model has a multiplicative lognormal er-
ror and also a lognormal distribution for the random effect
ρ. Simply taking the logarithm of both sides of the equation
gives us the requisite additive normal error and normal ran-
dom effect as follows. Hence the need for a non-linear model.

# mixed-effects non-linear model
nlme(model=log(Effort) ˜

(log_rho) + log(w1*stat1 + w2*stat2)
,random = log_rho ˜ 1 | team
,fixed = list(w1 ˜ 1, w2 ˜ 1)
,start = c(0.1, 0.1)
,data=(traw)
,method="ML")

# non-linear model
nls(log(Effort) ˜

log(w1*stat1 + w2*stat2)
,start=list(w1=0.1,w2=0.1)
,data=traw)

The R-language is also used to compute the confidence
intervals. To obtain a 90% confidence interval for a given
σ (s) generated, the following R-language codec(exp(s ∗
qnorm(0.05)), exp(s ∗ qnorm(0.95))) is used.

4 Evaluation Setup
We gathered data from a number of PCB designs for the anal-
ysis done in this paper. Table 3 shows the types of statistics
gathered for each of the boards analyzed. When calculating
the area consumed for each component we did not consider
the cases where routing, or in the more rare case placement,
could be done underneath a component. Several board de-
signers pointed out that the component and pin density of the
board was one of the crucial factors to estimating design ef-
fort. To capture component and pin density, we define them
with equation 2 and equation 3 respectively.

Component Density=
# Components

PCB Area× # Sides w/ components
(2)

Pin Density=
# Pins

(PCB Area)
(3)

Table 2 gives a description of the boards along with the
engineering notes that we were able to gather from the de-
signers. Boards B7-B11 used SPECCTRA for OrCAD which
is a common autorouter used in industry. No data was avail-
able on the use of an autorouter for boards B1-B6 but it can
be safely assumed that some autoroute tool was used.

In discussions with the designer of boards B8 and B9 the
size of the LCD in the system dictated the size of the PCB
and the housing that contained it. The LCD was counted as a
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Board Description Engineering Notes

B1 Signal Conditioning Many thru-hole components. Analog board with many important signal paths
B2 AE RMS Many thru-hole components. Analog board with many important signal paths
B3 PMD Motor Controller Many high density components
B4 Motor Driver New footprints
B5 Enviro Controller Forgot reasons why it took so long
B6 Current Source Many components on a small board. Mechanical constraints
B7 Arbitrary Waveform Generator/Amplifier Placement constraints due to noise reduction
B8 ACDC Monitor Cost major factor. Time consuming to keep to a 2 layer board
B9 Tank Monitor Cost major factor. Time consuming to keep to a 2 layer board
B10 Air spring remote Very small. RF constraints
B11 Air Spring Controller 2 Isolated grounds with placement constraints

Table 2:Description of boards analyzed.

Board Statistic Description

PCB Size (mm2) Physical size of the PCB
# of Sides w/ Comp Either 1 or 2 sides has components
# of Routing Layers Layers used for routing traces

# of Layers The total number of layers in the PCB

Components
# Passive Passive components (resistors. . . )
# Digital Digital integrated circuits (IC)
# Analog Analog ICs or devices (opamps. . . )

# Mixed Signal ICs with both digital and analog sections
Total # Total count of all components on PCB

Total Area (mm2) Total area of all components on PCB
Density Ratio of component area to area

Pins
# Passive Pins for all passive components
# Digital Pins for all digital components
# Analog Pins for all analog components

# Mixed Signal Pins for all mixed signal components
Total Pins for all devices on PCB

Density Ratio of number of pins to area

Table 3:Description of the statistics gathered from the PCBs.

component in our analysis and took one complete side of both
these boards, forcing the placement and routing of all other
components to one side. Cost was the main consideration for
both these boards also and this forced the designer to route
everything using only 2 layers.

Among boards B7 through B11 the smallest board, B10,
was judged to be the most difficult to layout. Where as boards
B7 and B11 were the easiest. This was attributed to the ar-
eas available to do the placement and routing. B7 and B11
were two of the largest boards reviewed and they were not
area constrained, this gives much latitude to the designer for
placement and makes the autorouter produce better results.
With a more constrained area more human intervention is re-
quired during the routing phase which was the case for B10.

For the placement stage we only had to consider the number
of sides of the board on which components were mounted.
Most of the boards in this study had the components all on one
side, though a few had bypass capacitors mounted on one side,
which accounted for a negligible amount of space. Again,
thru-hole devices would effect the available placement area as
it did the available routing area as space would be lost on both
sides of the board, unlike with surface mounted components.
This was not a factor in this study since most boards only used
one side for placement. Boards B8 and B9 had components on
both sides but one side was populated by only one component,

the LCD. Board B10, the only other board with components
on both sides, did not have any thru-hole devices present.

5 Evaluation
Our evaluation analyzes 11 different printed circuit boards.
Table 4 shows the main results and characteristics for each of
these. The first column corresponds to each of the statistics or
metrics presented in Table 3 (Section 4). Columns B1 to B11
correspond to each of the boards (Table 2). The last column
corresponds to theσ between the row and design effort. Since
all the boards are designed by the same team, we do not eval-
uate the productivity factor (ρ). This simplifies the analysis,
and we can use non-linear regression instead of the mixed-
effects non-linear regression model. Withσ we can compute
the confidence interval. For the lognormal distribution used,
the mapping betweenσ and the 90% confidence interval is
shown in Figure 1. We will use this chart to compare the ac-
curacy of different estimators.
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Figure 1: Mapping between the standard deviation of the
error (σ) and the 90% confidence interval for the lognormal
error distribution used.

The design effort values were obtained by interviewing the
original designers. Obviously, there is perfect correlation with
itself soσ = 0. A zeroσ results in a perfect(1, 1) confidence
interval. We now proceed to analyze easily available statistics
like number of components and pin count. These two sets
of statistics are easily available before the PCB design starts.
They are part of the PCB specification.

From the boards analyzed, we observe that it is best to
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B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 σ

Design Effort (hours) 68 35 43 21 48 48 24 40 32 24 12 0

Components
# Passive 213 165 101 80 108 222 116 86 83 19 47 0.52
# Digital 15 0 17 0 8 2 0 11 8 4 4 0.99
# Analog 24 24 1 10 24 50 28 4 16 1 11 1.10
# Mixed Signal 11 0 7 0 0 3 0 0 0 0 0 0.75
Total # 263 189 126 90 140 277 144 101 107 24 62 0.51
Total Area (mm2) 6214 9053 6964 2719 9144 6579 8104 12193 12296 777 5430 0.93

Pins
Passive 563 429 365 182 414 578 414 194 188 39 109 0.62
Digital 154 0 518 0 107 32 0 175 173 88 32 2.18
Analog 188 208 8 98 72 400 150 25 53 14 65 1.19
Mixed Signal 172 0 208 0 0 48 0 0 0 0 0 2.00
Total 1077 637 1099 280 593 1058 564 394 414 141 206 0.43

PCB Size (mm2) 22194 22194 22194 16258 38710 20452 22194 10968 10968 1277 25548 0.52
# of Sides w/ Comp 1 1 1 1 1 1 1 2 2 2 1 3.17
# of Routing Layers 2 2 3 2 2 2 3 2 2 4 2 1.18
# of Layers 4 4 6 4 4 4 4 2 2 4 2 0.94

Component Density (x1000) 62 45 30 29 19 71 34 24 26 49 13 0.48
Pin Density 50 30 51 18 16 54 26 37 39 115 8 0.64
µPCBComplexity(hours) 60 44 44 16 37 57 32 35 33 24 13 0.2

Table 4:Statistics, design effort, and correlation results of study boards.

use the total number of components to estimate design ef-
fort (σ = 0.51). Although traces for analog components and
digital components are more difficult than traces for passive
components, the low amount of digital and/or analog compo-
nents on several of the boards make it difficult to use them
as a method to estimate effort. Figure 1 shows the confidence
interval for aσ = 0.51 as the intersection between the compo-
nents line and the confidence interval line(0.43, 2.31). This
means that using the number of components on the specifica-
tion, we have a 90% confidence that the design effort would
be between 0.43 and 2.31 times the prediction.

Statistics about the pins are as easily available as compo-
nents even before the design starts. The number of pins is an
even better predictor (σ = 0.43) than the number of compo-
nents (σ = 0.51). The resulting 90% confidence interval for
the number of pins is(0.49, 2.03). This means that just by us-
ing the pins, we have a 90% confidence that the prediction is
roughly half or double the expected design effort. Not shown
in the table is the result of combining the number of pins and
the components to predict design effort. The results did not
improve because there is a high correlation between pins and
components.

Area is an interesting statistic. Just by knowing the final
dimension of the board, we can estimate design effort with
a (0.43, 2.35) confidence interval. This is roughly the same
accuracy as the number of components. The reason is that
PCBs are always area constrained1. If the specification pro-
vides a realistic area constraint, it could be a good way to es-
timate design effort. Table 4 also shows other statistics such
as number of sides used, routing layers, and number of layers.
Those statistics are not so useful by themselves because they
are highly quantized, and this makes them difficult to use to
predict effort.

The proposedµPCBComplexitymetrics are now evaluated.

1Bigger PCBs have higher cost.

To obtainµPCBComplexityshown in Table 4, we analyzed
multiple combinations of parameters and followed sugges-
tions from experienced board designers. The best results were
achieved when using the following equation:

Effort ∝ # Passive Comp.+ Comp. Density+ Pin Density
(4)

Section 4 explains how to compute component density and
pin density. To obtain the factors on equation 4, we perform
non-linear regression as explained in Section 3. Although
neither pin nor component density can achieve better predic-
tions than the number of pins, when integrated together in
theµPCBComplexitymetric we achieve a 0.2σ. As Figure 1
shows, this represents a(0.72, 1.39) confidence interval. This
roughly means that by using the proposedµPCBComplexity
metrics, with a 90% confidence designers can predict design
effort with less than 40% error.

Figure 2 shows a scatter-gather plot between design effort
and ourµPCBComplexitymetric. This is an intuitive way to
see that there is a high correlation between design effort and
the metric proposed.

µPCBComplexityworks well because PCB design com-
plexity increases as the component and pin density increases.
Designers can increase the number of layers on the PCB to
decrease the pin density or increase the area to reduce both
densities. The problem is that both approaches require more
costly boards. As a result, designers trade-off between time
to market and density.

6 Conclusions & Future Work
The goal of this paper was to explore the correlation of some
easily obtained metrics of a PCB and see which were most
correlated to the design effort required during the layout stage
of development. Many simplifications were made; we did not
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Figure 2: Scatter-gather plot of design effort vs. PCB
metric

account for traces of differing sizes, we did not look at hole
sizes or density, the frequency of the boards were not consid-
ered, nor the extra considerations required for analog noise
filtering. Also, we need additional PCBs from more compa-
nies with teams of differing sizes to develop a more general
model for predicting design effort.

Many factors and constraints effect the design effort re-
quired for a board to be successfully placed and routed. Some
difficulty metric would be helpful but guidelines need to be
established as difficulty is a very subjective term. Being able
to analysis different options for a board would be useful, such
as being able to change the size of the board to see what ef-
fect it would have on the estimated design effort. This could
be expanded to also include the number of layers since this
would ease routing congestion.

We see this initial research leading into more areas of study
in PCB design optimization and analysis. We are currently
analyzing data from additional PCB designs from different
sources. These new designs have more components, more
layers, higher frequencies, and more power plains. This will
give us additional metrics to add to our model for possible
better correlation to design effort. These designs also have
more designers on the team which will necessitate some team
or company productivity factor.

We have extended the previously proposedµComplexity
models [1] to the PCB domain. We plan to apply the model
to a number of classes at UCSC that do board development to
give design guidelines to students and further refine our ap-
proach. Our model and metrics will eventually be available to
researchers and industry for use in scheduling and planning
PCB projects.

The evaluation shows that a simple statistics like PCB
area size and number of components yield some correlation
with design effort. With a 90% confidence, area has a (0.43

2.35) confidence interval. This means that roughly by look-
ing at any of those statistics the typical design time error is
half/double with a 90% confidence. Much better results can
be achieved with the proposedµPCBComplexitymetric. In
that case the confidence interval for a 90% confidence is (0.72
1.39). This roughly means that less than 40% estimation error
is done with a 90% confidence.

Despite the good results, we still believe that much work
needs to be done in gathering relevant designs to evaluate
(with associated known design times) and to refine the met-
rics and models. A major goal would be a rule of thumb type
equation that given some easily obtainable design parameters
an accurate estimator of design time would be generated.
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ABSTRACT
This paper presents core fusion, a reconfigurable chip
multiprocessor (CMP) architecture where groups of fun-
damentally independent cores can dynamically morph
into a large execution engine, or they can be used as
distinct processing elements, as needed at run time by
applications. Core fusion gracefully accommodates work-
load diversity and incremental parallelization in CMPs. It
requires no additional programming effort or specialized
compiler support, maintans ISA compatibility, and keeps
both hardware and software complexity manageable.

Our evaluation pits core fusion against more tradi-
tional homogeneous and asymmetric CMP architectures
and shows that, when confronted with workload diversity,
core fusion is the only architecture evaluated in the paper
that is consistently at or near the top performance level,
whereas every other architecture lags significantly behind
in at least one scenario.

1 INTRODUCTION
Chip multiprocessors (CMPs) hold the prospect of de-
livering long-term performance scalability while dramati-
cally reducing design complexity compared to monolithic
wide-issue processors. Complexity is reduced by design-
ing and verifying a single, relatively simple core, and then
replicating it [8]. Performance is scaled by integrating
larger numbers of cores on the die and harnessing increas-
ing levels of TLP with each new technology generation.

Unfortunately, high-performance parallel programming
constitutes a tedious, time-consuming, and error-prone
effort. In that respect, the complexity shift from hard-
ware to software that ordinary CMPs represent is one
of the most serious hurdles to their success. In the short
term, on-chip integration of a modest number of relatively
powerful (and relatively complex) cores may yield high
utilization when running multiple sequential workloads,
temporarily avoiding the complexity of parallelization.
However, although sequential codes are likely to remain
important, they alone are not sufficient to sustain long-
term performance scalability. Consequently, harnessing
the full potential of CMPs in the long term makes the
adoption of parallel programming inevitable.

To amortize the cost of parallelization, many program-
mers choose to parallelize their applications incremen-
tally. Typically, the most promising loops/regions in a
sequential execution of the program are identified through
profiling. A subset of these regions are then parallelized,
and the rest of the application is left as “future work.”
Over time, more effort is spent on portions of the remain-
ing code. We call these evolving workloads. As a result of
this “pay-as-you-go” approach, the complexity (and cost)
associated with software parallelization is amortized over

a greater time span. In fact, some of the most common
shared-memory programming models in use today (e.g.,
OpenMP [14]) are designed to facilitate the incremental
parallelization of sequential codes. We envision a diverse
landscape of software in different stages of paralelliza-
tion, from purely sequential, to fully parallel, to every-
thing in between. As a result, it will remain important
to efficiently support sequential as well as parallel code,
whether standalone or as regions within the same appli-
cation at run time. This requires a level of flexibility that
is hard to attain in ordinary CMPs.

Asymmetric chip multiprocessors (ACMPs) [5, 26, 27]
attempt to address this by providing cores with varying
degrees of sophistication and computational capabilities.
The number and the complexity of cores are fixed at de-
sign time. The hope is to match the demands of a variety
of sequential and parallel workloads by executing them
on an appropriate subset of these cores. Balakrishnan et
al. [5] study the impact of performance asymmetry on ex-
plicitly parallelized applications, finding that asymmetry
hurts parallel application scalability and renders the ap-
plications’ performance less predictable unless relatively
sophisticated software changes are introduced. Hence,
while ACMPs may deliver increased performance on se-
quential codes, they may do so at the expense of parallel
performance, requiring a high level of software sophisti-
cation to maximize their potential. We address ACMPs
again in our evaluation (Section 6).

Instead of trying to find the right design trade-off be-
tween complex and simple cores (as ACMPs do), we
would like a CMP to provide the flexibility to dynami-
cally synthesize the right mix of simple and complex cores
based on application requirements. We propose to accom-
plish this through core fusion, an architectural technique
that empowers shared-memory CMP cores with the abil-
ity to collaboratively exploit high levels of ILP as needed,
while still retaining the capacity to deliver high perfor-
mance on parallel codes. We use a homogeneous CMP as
our substrate, with fundamentally independent cores and
conventional memory coherence/consistency support. To
materialize core fusion, we build upon and extend con-
cepts and mechanisms originally developed for clustered
processors (Section 7). We adopt a highly modular ap-
proach in both front- and back-end, and provide the abil-
ity to fuse and split cores seamlessly at run time.

Core fusion does not require changes to the ISA, it
leverages mature micro-architecture technology, and it
can interface with the application through simple instru-
mentation of ordinary parallelization libraries, macros, or
directives, without requiring additional programming ef-
fort or specialized compiler support. This alone sets our
proposal apart from other reconfigurable architectures,
such as TRIPS [38] or Smart Memories [31], and from



speculative architectures such as Multiscalar [39]. Sec-
tion 7 conducts a review of this and other related work.

Core fusion keeps hardware complexity manageable by
maintaining the modularity of fine-grain CMPs, and by
avoiding large, monolithic hardware structures. Software
complexity is also kept manageable because (a) the chip’s
support for sequential codes and run-time reconfiguration
facilitates a smoother, more progressive path to paral-
lelization, and (b) programmers can still optimize and
reason about parallel code using familiar abstractions,
without any additional hurdles (e.g., programming for
asymmetry in ACMPs). Hence, core fusion strikes an
attractive balance between hardware and software design
complexity, and provides a level of flexibility that is hard
to come by today in the research literature, much less in
the market.

Our evaluation pits core fusion against more traditional
CMP architectures, such as fine- and coarse-grain ho-
mogenous cores, as well as asymmetric CMPs. When
confronted with a variety of evolving, parallel, multi-
programmed, and sequential workloads, our results show
that core fusion’s flexibility and run-time reconfigurabil-
ity makes it the only CMP architecture evaluated in the
paper that is the top performer or more closely tracks the
top performer in all cases, whereas all other architectures
lag significantly behind in at least one scenario.

Contributions
To our knowledge, this is the first paper that adresses
workload diversity and software evolution in CMPs via re-
configurability while maintaining ISA compatibility and
requiring no additional programming effort or specialized
compiler support. In the course of formulating core fu-
sion, this paper makes the following additional contribu-
tions:

• A reconfigurable, distributed front-end and instruc-
tion cache organization that can leverage individual
cores’ front-end structures to support an aggressive
fused back-end, without overprovisioning individual
front-ends.

• A complexity-effective remote wake-up mechanism
that allows operand communication across cores
without requiring additional register file ports, wake-
up buses, bypass paths, or issue queue ports.

• A reconfigurable, distributed load/store queue and
data cache organization that (a) fully leverages in-
dividual cores’ data caches and load/store queues in
both fused and split modes of operation, (b) sup-
ports coherence when running parallel code, gener-
ates zero coherence traffic when running sequential
code in fused mode, and requires minimal changes to
each core’s CMP sub-system, (c) guarantess correct-
ness without requiring data cache flushes upon run-
time configuration changes, and (d) supports mem-
ory consistency in both modes.

• A reconfigurable, distributed ROB organization that
can fully leverage individual cores’ ROBs to support
an agressive fused core, without overprovisioning or
unnecessarily replicating individual ROBs.

• Hardware mechanisms and a simple application in-
terface to enable run-time reconfiguration and sup-
port for evolving workloads, that requires no special-
ized compiler support.
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Figure 1: Example CMP organization and the crossbar addi-
tions needed to support core fusion.

• A quantitative assessment of the incremental par-
allelization process on contemporary CMP architec-
tures, and demonstration of the shortcomings of stat-
ically defined homogeneous and asymmetric CMPs
when confronted with workload diversity in general.

The rest of this paper is organized as follows. Section 2
describes our fine-grain CMP substrate, Section 3 details
hardware mechanisms that empower this substrate with
fusion capability to run sequential codes fast, Section 4
introduces the support for evolving workloads through
runtime reconfiguration, Section 5 describes our method-
ology, Section 6 presents our results, Section 7 surveys
related work, and Section 8 lists our conclusions.

2 FINE-GRAIN CMP SUBSTRATE
In order to deliver high performance on scalable parallel
applications, we depart from a CMP substrate with a
homogeneous set of small cores. In doing so, we maximize
the core count to exploit high levels of TLP, and enjoy the
simplicity and modularity advantages of fine-grain CMPs.
Figure 1 shows a simplified diagram of our baseline CMP.
The chip consists of eight two-issue, out-of-order cores.
A system bus connects the L1 data caches and enables
snoop-based cache coherence. Beyond the system bus,
the chip contains a shared L2 cache and an integrated
memory controller. The figure is not meant to represent
an actual floorplan, but rather a conceptual one.

3 CORE FUSION HARDWARE
Our proposal delivers high performance on sequential
codes by empowering basic CMP cores with the ability
to collaboratively exploit high levels of ILP. This is made
possible primarily by employing fetch, rename, operand,
and commit cross-core wiring (Figure 1), which we call
crossbars for simplicity. Fetch and rename crossbars co-
ordinate the operation of the distributed front-end, while
operand and commit crossbars are responsible for data
communication and distributed commit, respectively. Be-
cause these wires link nearby cores together, they require
three clock cycles to transmit data between any two cores.

The architecture can fuse groups of two or four cores,
making it possible to provide the equivalent of eight two-
issue, four four-issue, or two eight-issue processor config-
urations. Asymmetric fusion is also possible, e.g., one
eight-issue fused CPU and four more two-issue cores.
This flexibility allows core fusion to accommodate work-
loads of a widely diverse nature, including workloads with
multiple parallel or sequential applications.



In this section, we describe in detail the proposed addi-
tions to a baseline CMP to enable core fusion and present
the structural changes at the front- and back-end of each
core’s pipeline. Whenever possible, we try to leverage the
basic core’s fundamentally independent nature.Without
loss of generality, the following discussion describes the
fusion mechanism involving four basic cores. We assume
a RISC ISA where every instruction can be encoded in
one word. For CISC-like ISAs, predecoding/translation
support is assumed.

3.1 Front-End
3.1.1 Collective Fetch
Due to their fundamentally independent nature, each
core is naturally equipped with its own PC, instruction
cache, branch predictor and branch target buffer (BTB),
as well as return address stack (RAS). A small control
unit called the fetch management unit (FMU) is attached
to the fetch crossbar. The crossbar latency is three cy-
cles. When cores are fused, the FMU coordinates the
distributed operation of all core fetch units.

Fetch Mechanism and Instruction Cache
Cores collectively fetch an eight-instruction block in one
cycle by each fetching a two-instruction portion (their
default fetch capacity) from their own instruction cache.
Fetch is generally eight-instruction aligned, with core zero
being responsible for the oldest two instructions in the
fetch group, core one for the next two, and so forth. When
a branch target is not fully aligned in this way, fetch still
starts aligned at the appropriate core (lower-order cores
skip fetch in that cycle), and it is truncated accordingly
so that fully aligned fetch can resume on the next cycle.

Cache blocks, as delivered by the L2 cache on an i-cache
miss, are eight words regardless of the configuration. On
an i-cache miss, a full block is requested. This block is
delivered to the requesting core if it is operating inde-
pendently, or distributed across all four cores in a fused
configuration to permit collective fetch. To achieve this,
we make i-caches reconfigurable, along the lines of ear-
lier works [31]. Each i-cache has enough tags to organize
its data in two- or eight-word blocks, and each tag has
enough bits to handle the worst of the two cases. When
running independently, three out of every four tags are
unused, and the i-cache handles block transfers in eight-
word blocks. When in fused configuration, the i-cache
uses all tags, covering two-word blocks. (How to dynam-
ically switch from one i-cache mode to the other is ex-
plained later in Section 4.)

Because fetch is collective, it makes sense to just repli-
cate the i-TLB across all cores in a fused configuration.
Notice that this would be accomplished “naturally” as
cores miss on their i-TLBs, however taking multiple i-
TLB misses for a single eight-instruction block is unnec-
essary, since the FMU can be used to refill all i-TLBs
upon a first i-TLB miss by a core. Finally, the FMU
can also be used to gang-invalidate an i-TLB entry, or
gang-flush all i-TLBs as needed.

Branches and Subroutine Calls

Prediction. During collective fetch, each core accesses
its own branch predictor and BTB. Because collective
fetch is always aligned, dynamic instances of the same
static branch instruction are guaranteed to access the
same branch predictor and BTB. Consequently, the ef-
fective branch predictor and BTB capacity is four times

as large. This is a desirable feature, since the penalty
of branch misprediction is bound to be higher with the
more aggressive fetch/issue width and the higher number
of in-flight instructions in the fused configuration.

Each core can handle up to one branch prediction per
cycle. The redirection of the (distributed) PC upon taken
branches and branch mispredictions is enabled by the
FMU. Each cycle, every core that predicts a taken branch,
as well as every core that detects a branch mispredic-
tion, sends the new target PC to the FMU. The FMU
selects the correct PC by giving priority to the oldest
misprediction-redirect PC first, and the youngest branch-
prediction PC last, and sends the selected PC to all fetch
units. Once the transfer of the new PC is complete, cores
use it to fetch from their own i-cache as explained above.

Naturally, on a misprediction, misspeculated instruc-
tions are squashed in all cores. This is also the case for
instructions fetched along the not-taken path on a taken
branch, since the target PC will inevitably arrive with a
delay of a few cycles.
Global History. The FMU can also provide the abil-
ity to keep global history across all four cores if needed
for accurate branch prediction.1 To accomplish this,
the GHR can be simply replicated across all cores, and
updates be coordinated through the FMU. Specifically,
upon every branch prediction, each core communicates
its prediction—whether taken or not taken—to the FMU.
Two bits suffice to accomplish this. Additionally, as dis-
cussed, the FMU receives nonspeculative updates from
every back-end upon branch mispredictions. The FMU
communicates such events to each core, which in turn
update their GHR. Upon nonspeculative updates, ear-
lier (checkpointed) GHR contents are recovered on each
core. The fix-up mechanism employed to checkpoint and
recover GHR contents can be along the lines of the out-
standing branch queue (OBQ) mechanism in the Alpha
21264 microprocessor [24].
Return Address Stack. As the target PC of a sub-
routine call is sent to all cores by the FMU (which flags
the fact that it is a subroutine call), core zero pushes the
return address into its RAS. When a return instruction
is encountered (possibly by a different core from the one
that fetched the subroutine call) and communicated to
the FMU, core zero pops its RAS and communicates the
return PC address back through the FMU. Notice that,
since all RAS operations are processed by core zero, the
effective RAS size does not increase when cores are fused.
This is reasonable, however, as call depth is a program
property that is independent of whether execution is tak-
ing place on an independent core or on a fused configu-
ration.

Handling Fetch Stalls
When one fetch engine stalls as a result of an i-cache or
i-TLB miss, or there is contention on a fetch engine for
branch predictor ports (two consecutive branches fetched
by the same core in the same cycle), it is necessary for
all fetch engines to stall, so that correct ordering of the
instructions in one fetch block can be maintained (e.g.,
for orderly FMU resolution of branch targets), and to al-
low instructions in the same fetch group to flow through
later stages of the fused front-end (most notably, through

1Because each core is responsible for a subset of the branches in
the program, having independent and uncoordinated history regis-
ters on each core could place correlated branches on different cores
and make it impossible for the branch predictor to learn of their
correlation.



rename) in a lock-step fashion. To support this, cores
communicate fetch stalls to the FMU, which informs the
other cores. Because of the three-cycle crossbar latency,
it is possible that the other cores may over-fetch in the
shadow of the stall handling by the FMU if (a) on an
i-cache or i-TLB miss, one of the other cores does hit in
its i-cache or i-TLB (very unlikely in practice, given how
fused cores fetch), or (b) generally in the case of con-
tention for branch prediction ports by two back-to-back
branches fetched by the same core (itself exceedingly un-
likely). In any case, once all cores have been informed, in-
cluding the delinquent core, they discard any over-fetched
instruction (similarly to the handling of a taken branch)
and resume fetching in sync from the right PC—as if all
fetch engines had synchronized through a “fetch barrier.”

3.1.2 Collective Decode/Rename
After fetch, each core pre-decodes its instructions inde-
pendently. Subsequently, all instructions in the fetch
group need to be renamed. As in clustered architectures,
steering consumers to the same core as their producers
can improve performance by eliminating communication
delays.

Renaming and steering of instructions is achieved
through a small control unit called the steering manage-
ment unit (SMU). The SMU consists of a global steer-
ing table to track the mapping of architectural registers
to any core, four free-lists for register allocation (one for
each core), four rename maps and steering/renaming logic
(Figure 2). The steering table and the four rename maps
together allow up to four valid mappings of each archi-
tectural register, and enable operands to be replicated
across multiple cores. Cores still retain their individual
renaming structures, but these are bypassed when cores
are fused.

Figure 3 depicts the high level organization of the re-
name pipeline. After pre-decode, each core sends up to
two instructions to the SMU through a set of links. We
assume it is possible to support three-cycle cross-core
communication over a repeated link. Three cycles after
pre-decode, the SMU receives up to two instructions and
six architectural register specifiers (three per instruction)
from each core. After renaming and steering, it uses a
second set of links to dispatch up to six physical regis-
ter specifiers, two instructions and two copy operations
to each core. Restricting the SMU dispatch bandwidth
in this way keeps the wiring overhead manageable, lowers
the number of required rename map ports, and also helps
achieve load balancing among the fused cores. Collec-
tively, the incoming and outgoing SMU links constitute
the rename crossbar.

The SMU uses the incoming architectural register spec-
ifiers and the four free lists to rename up to eight instruc-
tions every pipeline cycle. Each instruction is dispatched
to one of the cores via dependence based steering [33]. For
each instruction, the SMU consults the steering table to
steer every instruction to the core that will produce most
of its operands among all cores with free rename crossbar
ports. Copy instructions are also inserted into the fetch
group in this cycle. In the next cycle, instructions (and
the generated copies) are renamed by accessing the appro-
priate rename map and free list. Since each core receives
no more than two instructions and two copy instructions,
each rename map has only six read and eight write ports.
The steering table requires eight read and sixteen write
ports; note that each steering table entry contains only
a single bit, and thus the overhead of multi-porting this
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small table is relatively low. After rename, regular and
copy instructions are dispatched to the appropriate cores.
If a copy instruction cannot be sent due to bandwidth
restrictions, renaming stops at the offending instruction
that cycle, and starts with the same instruction next cy-
cle, thereby draining crossbar links and guaranteeing for-
ward progress. Similarly, if resource occupancies prevent
the SMU from dispatching an instruction, renaming stops
that cycle, and resumes when resources are available. To
facilitate this, cores inform the FMU through a four-bit
interface when their issue queues, ROBs, and load/store
queues are full.

Registers are recycled through two mechanisms. As in
many existing microprocessors, at commit time, any in-
struction that renames an architectural register releases
the physical register holding the result of the previous
instruction that renamed the same register. This is ac-
complished in core fusion over a portion of the rename
crossbar, by having each ROB send the specifiers for these
registers to the SMU. However, copy instructions do not
allocate ROB entries, and recycling them requires an al-
ternative strategy. Every copy instruction generates a
replica of a physical register in one core on some other
core. These replicas are not recovered on branch mispre-
dictions. Therefore, a register holding a redundant replica
can be recycled at any point in time as long as all instruc-
tions whose architectural source registers are mapped to
that physical register have read its value. To facilitate
recycling, the SMU keeps a one-bit flag for each register
indicating whether the corresponding register is currently
holding a redundant replica (i.e., it was the target of a
copy instruction). In addition, the SMU keeps a table
of per-register read counters for each core, where every
counter entry corresponds to the number of outstand-
ing reads to a specific physical register (each counter is
four bits in a sixteen-entry issue queue, which is our case
(Section 5)). These counters are incremented at the time
the SMU dispatches instructions to cores. Every time an
instruction leaves a core’s issue queue, the core communi-
cates the specifiers for the physical registers read by the
instruction, and the SMU decrements the corresponding
counters. When a branch misprediction or a replay trap is
encountered, as squashed instructions are removed from
the instruction window, the counters for the correspond-
ing physical registers are updated appropriately in the
shadow of the refetch.

3.2 Back-End
Each core’s back-end includes separate floating-point and
integer issue queues, a copy-out queue, a copy-in queue, a



physical register file, functional units, load/store queues
and a ROB. Each core’s load/store queue has access only
to its private L1 data cache. The L1 caches are con-
nected via a split-transaction bus and are kept coherent
via a MESI protocol. This split-transaction bus is also
connected to an on-chip L2 cache that is shared by all
cores. When running independently on one core, the op-
eration of the back-end is no different from the operation
of a core in a homogeneous CMP. When cores get fused,
back-end structures are coordinated to form a large vir-
tual back-end capable of consuming instructions at a rate
of eight instructions per cycle.

3.2.1 Collective Execution
Operand Crossbar
Copy instructions wait in the copy-out queues for their
operands to become available, and once issued, they
transfer their source operand and destination physical
register specifier to a remote core over the operand cross-
bar (Figure 1). The operand crossbar is capable of sup-
porting every cycle two copy instructions per core. In
addition to copy instructions, loads use the operand cross-
bar to deliver values to their destination register.

Wake-up and Selection
When copy instructions reach the consumer core, they are
placed in a copy-in queue to wait for the selection logic
to schedule them. Each cycle, the issue queue scheduler
considers the two copy instructions at the queue head for
scheduling along with the instructions in the issue queue.
Once issued, copies wake up their dependent instructions
and update the physical register file, just as regular in-
structions would do.

Reorder Buffer and Commit Support
The goal of the fused in-order retirement operation is to
coordinate the operation of four ROBs to commit up to
eight instructions per cycle. Instructions allocate ROB
entries locally at the end of fetch. If the fetch group con-
tains less than eight instructions, NOPs are allocated at
the appropriate cores to guarantee alignment. Of course,
on a pipeline bubble, no ROB entries are allocated.

When commit is not blocked, each core commits two in-
structions from the oldest fetch group every cycle. When
one of the ROBs is blocked, all other cores must also
stop committing on time to ensure that fetch blocks are
committed atomically in-order. This is accomplished via
the commit crossbar, which transfers stall/resume signals
across all ROBs. To accommodate the communication
delay across the crossbars, each ROB is extended with a
speculative head pointer in addition to the conventional
head and tail pointers. Instructions always pass through
the speculative ROB head before they reach the actual
ROB head and commit. If they are not ready to commit
at that time, they send a stall signal to all cores. Later,
when they become ready, they move past the specula-
tive head and send a resume signal to the other cores.
The number of ROB entries between the speculative head
pointer and the actual head pointer is enough to cover
the crossbar delay. This guarantees that ROB stalls al-
ways take effect in a timely manner to prevent committing
speculative state. In our experiments, we set the crossbar
communication latency to three cycles, and consequently
the actual head is separated from the speculative head by
six instruction slots on each core at all times.

INDEX OFFSET

LSQ Bank ID

TAG

Figure 4: LSQ bank assignment and core-fusion-oblivious
cache line indexing/tagging.

3.2.2 Load/Store Queue Organization
Our scheme for handling load and store instructions is
conceptually similar to previously proposed clustered ar-
chitectures [12, 41, 6, 29, 22], but a number of important
differences exist. While most proposals in clustered archi-
tectures have chosen a centralized L1 data cache or have
distributed it based on bank assignment, in core fusion,
we keep the private nature of each L1 cache, and con-
sequently we require only minimal modifications on the
CMP cache subsystem.

In the fused mode, we adopt a banked-by-address LSQ
implementation. This allows us to keep data coherent
without requiring cache flushes after dynamic reconfig-
uration, and to support elegantly store forwarding and
speculative loads. The core that issues each load/store
to the memory system is determined based on effective
addresses. The two bits that follow the block offset are
used as the LSQ bank-ID to select one of the four cores
(Figure 4), and enough index bits to cover the L1 cache
are allocated from the remaining bits. The rest of the ef-
fective address and the bank-ID are stored as a tag (note
that this does not increase the number of tag bits com-
pared to a conventional indexing scheme). Making the
bank-ID bits part of the tag is important to properly dis-
ambiguate cache lines regardless of the configuration.

Effective addresses for loads and stores are generally
not known at the time they are renamed. This raises a
problem since at rename time memory operations need
to allocate LSQ entries from the core that will eventually
issue them to the memory system. We attack this prob-
lem through bank prediction [6, 9]. Upon pre-decoding
loads and stores, each core accesses its bank predictor by
using the lower bits of the load/store PC. Bank predic-
tions are sent to the SMU through the rename crossbar,
and the SMU steers each load and store to the predicted
core. Each core allocates load queue entries for the loads
it receives. On stores, the SMU also signals all cores
to allocate dummy store queue entries regardless of the
bank prediction. Dummy store queue entries guarantee
in-order commit for store instructions by reserving place-
holders across all banks for store bank mispredictions.
Upon effective address calculation, remote cores with su-
perfluous store queue dummies are signaled to discard
their entries (Recycling these entries requires a collaps-
ing LSQ implementation.) If a bank misprediction is de-
tected, the store is sent to the correct queue.

In the case of loads, if a bank misprediction is detected,
the load queue entry is recycled (LSQ collapse) and the
load is sent to the correct core. There, it allocates a
load queue entry and resolves its memory dependences
locally. Notice that, as a consequence of bank mispredic-
tions, loads can allocate entries in the load queues out
of program order. Fortunately, this is not a problem for
store-to-load forwarding because load queue entries are
typically tagged by instruction age to facilitate forward-
ing. However, there is a danger of deadlock in cases where
the mispredicted load is older than all other loads in its
(correct) bank and the load queue is full at the time the
load arrives at the consumer core. To prevent this situ-
ation, loads search the load queue for older instructions



when they cannot allocate entries. If no such entry is
found, a replay trap is taken, and the load is steered to
the right core at rename time. Otherwise, the load is
buffered until a free load queue entry becomes available.
Address banking of the LSQ also facilitates speculative
loads and store forwarding. Since any load instruction is
free of bank mispredictions at the time it issues to the
memory system, loads and stores to the same address
are guaranteed to be processed by the same core. De-
pendence speculation can be achieved by integrating a
store-set predictor [16] on each core (since cores perform
aligned fetches, the same load is guaranteed to access the
same predictor at all times.)

When running parallel application threads in fused
mode, the memory consistency model must be enforced
on all loads and stores. We assume relaxed consistency
models where special primitives like memory fences (weak
consistency) or acquire/release operations (release consis-
tency) enforce ordering constraints on ordinary memory
operations. Without loss of generality, we discuss the
operation of memory fences below. Acquire and release
operations are handled similarly.

For the correct functioning of synchronization primi-
tives, fences must be made visible to all load/store queues
belonging to the same thread. We achieve this by dis-
patching these operations to all the queues, but having
only the copy in the correct queue perform the actual
synchronization operation. The fence is considered com-
plete once each one of the local fences completes locally
and all memory operations preceding each fence commit.
Local fence completion is signaled to all cores through a
one-bit interface in the portion of the operand crossbar
that connects the load-store queues across the cores.

4 DYNAMIC RECONFIGURATION
Our discussion thus far explains the operation of the cores
in a static fashion. This alone improves performance
on highly parallel or purely sequential applications, by
configuring the CMP prior to executing the application.
However, partially parallelized applications will benefit
most from the ability to fuse/split cores at run time, as
they dynamically switch between sequential and parallel
code regions, respectively. Supporting dynamic reconfig-
uration of the architecture requires several actions to be
taken to ensure correctness upon core fusion and fission,
and an application interface to coordinate and trigger re-
configuration.

Fortunately, the modular nature of our architecture
makes reconfiguration relatively easy. In general, we en-
vision run-time reconfiguration enabled through a simple
application interface. The application requests core fu-
sion/fission actions through system calls. In most cases,
this can be readily encapsulated in conventional paral-
lelizing macros or directives.
Fusion. After the completion of a parallel region, the
application may request cores to be fused to execute the
upcoming sequential region. Cores need not get fused on
every parallel-to-sequential region boundary: if the se-
quential region is not long enough to amortize the cost of
fusion, execution can continue without reconfiguration on
one of the small cores. All in-flight instructions following
the system call are flushed, and the appropriate rename
map on the SMU is updated with mappings to the archi-
tectural state on this core. Data caches do not need any
special actions to be taken upon reconfigurations; the co-
herence protocol naturally ensures correctness across con-
figuration changes. I-caches undergo tag reconfiguration

upon fusion and fission as described before (Section 3.1),
and all cache blocks are invalidated for consistency. This
is generally harmless if it can be amortized over the du-
ration of a configuration. In any case, the programmer
or the run-time system may choose not to reconfigure
across fast-alternating program regions (e.g., short serial
sections in between parallel sections). In no case is the
shared L2 affected by reconfiguration.
Fission. Fission is achieved through a second system
call, where the application informs the processor about
the approaching parallel region. Fetch is stalled, in-flight
instructions are allowed to drain, and enough copy in-
structions are generated to gather the architectural state
into core zero’s physical register file. When the transfer
is complete, control is returned to the application.

5 EXPERIMENTAL SETUP
5.1 Architecture
We evaluate the performance potential of core fusion by
comparing it against five popular static CMP architec-
tures. As building blocks for these systems, we use two-,
four-, and six-issue out-of-order cores. Table 3 and Ta-
ble 4 show the microarchitectural configuration of the
two-issue cores in our experiments. Four- and six-issue
cores have two and three times the amount of resources
as each one of the two-issue cores, respectively, except
that first level caches, branch predictor, and BTB are four
times as large in the six-issue core (the sizes of these struc-
tures are typically powers of two.) Across different base-
lines and core fusion, we always maintain the same pa-
rameters for the shared portion of the memory subsystem
(system bus and lower levels of the memory hierarchy).
All configurations are clocked at the same speed. Our
experiments are conducted using a detailed, heavily mod-
ified version of the SESC [36] simulator. Contention and
latency are modeled at all levels, including three-cycle
wire delays for cross-core communication across fetch, re-
name, operand and commit crossbars, as well as the la-
tency of the eight-stage rename pipe when running in
fused mode.

Since we explore an inherently area-constrained design
space, choosing the right number of large and small cores
requires estimating their relative areas. Palacharla et
al. [33] show that the area overheads of key microarchi-
tectural resources scale superlinearly with respect to issue
width in monolithic cores. Olukotun et al. [32] indicate
that replicating narrow-issue cores supports higher aggre-
gate peak issue width compared to a monolithic proces-
sor. Kumar et al. [26, 27] estimate that a single-threaded
version of the eight-issue Alpha EV8 core requires more
than nine times the area of the four-issue EV6 core when
implemented in the same technology. These results sug-
gest that area requirements of monolithic cores grow su-
perlinearly with the width of the pipeline (assuming that
resources are scaled proportionally). Therefore, a large
monolithic core cannot generally support the same ag-
gregate issue width as a fine-grain CMP with multiple
small cores using the same silicon area.

Burns et al. [11] estimates the area requirements of out-
of-order processors by inspecting layout from the MIPS
R10000 and from custom layout blocks, finding that four-
and six-issue cores require roughly 1.9 and 3.5 times the
area of a two-issue core, respectively, even when assuming
clustered register files, issue queues, and rename maps,
which greatly reduce the area penalty of implementing



large SRAM arrays.2 Furthermore, as mentioned above,
our six-issue baseline’s first level caches and branch pre-
dictor are four times (as opposed to three times) as large
as a two issue core. Consequently, we model their area
requirements to be two and four times higher than a two-
issue core, respectively.3 We believe these estimates are
somewhat optimistic.

We estimate the area overhead of our crossbar addi-
tions conservatively, assuming that no logic is laid out
under the metal layer for wiring. We use the wiring
area estimation methodology described in [28], assum-
ing a 65nm technology and Metal-4 layer wiring with a
280nm wire pitch [4]. Accordingly, we find the area of one
fetch crossbar (74 bits/link) to be 0.30mm2, the area of
one rename crossbar (218 bits/link) to be 0.80mm2, and
the area of one operand crossbar (76 bits / link) to be
1.46mm2. The area of the commit crossbar is negligible
as it is two bits wide. This yields a total area overhead of
2.56mm2 for fusing a group of 4 cores, corresponding to
a total crossbar area overhead of 5.12mm2 for our eight-
core CMP. Using CACTI 3.2, we also estimate the total
area overhead of the SMU and bank predictors (4 bank
predictors, one per core) to be 0.13 and 0.72mm2, respec-
tively, for a total of 1.7mm2 for the entire chip. Adding
these to the crossbar area estimates, we find the total
area overhead of core fusion to be 6.72mm2. Even for a
non-reticle-limited, 200mm2 die that devotes half of the
area to the implementation of the cores, this overhead
represents a little over half the area of one core. Never-
theless, we conservatively assume the area overhead to be
equal to one core.

Table 1 details the number and type of cores used in
our studies for all architectures we model. Our core-
fusion-enabled CMP consists of eight two-issue cores.
Two groups of four cores can each be fused to synthesize
two large cores on demand. For our coarse-grain CMP
baselines, we experiment with a CMP consisting of two
six-issue cores (CoarseGrain-6i) and another coarse-grain
CMP consisting of four four-issue cores (CoarseGrain-4i).
We also model an asymmetric CMP with one six-issue
and four two-issue cores (Asymmetric-6i), and another
asymmetric CMP with one four-issue and six two-issue
cores (Asymmetric-4i). Finally, we model a fine-grain
CMP with nine two-issue cores (FineGrain-2i). The ninth
core is added to compensate for any optimism in the area
estimates for six- and four-issue cores, and for the area
overhead of core fusion. We have verified that all the par-
allel applications studied use this ninth core effectively.

CMP Configuration Composition (Cores)
CoreFusion 8×2-issue
FineGrain-2i 9×2-issue

CoarseGrain-4i 4×4-issue
CoarseGrain-6i 2×6-issue
Asymmetric-4i 1×4-issue + 6×2-issue
Asymmetric-6i 1×6-issue + 4×2-issue

Table 1: Simulated architectures.

2Note that, when all resources are scaled linearly, monolithic
register files grow as O(w3), where w is the issue width. This is due
to the increase in the number of bit lines and word lines per SRAM
cell, times the increase in physical register count.

3We also experimented with an eight-issue clustered core (opti-
mistically assumed to be area-equivalent to the six-issue core), but
found its performance to be inferior. Consequently, we chose the
six-issue monolithic core as our baseline.

5.2 Applications
We evaluate our proposal by conducting simulations on
sequential, multiprogrammed, parallel and evolving par-
allel workloads. Our parallel workloads represent a
mix of scalable scientific applications (three applications
from the Splash-2 suite [40] and two applications from
SPEC OpenMP [3]), and parallelized data mining appli-
cations [2, 30, 35]. The input sets we use are listed in
Table 2.

Our sequential workloads comprise ten integer and
eight floating point applications from the SPEC2000
suite [23]. We use the MinneSpec reduced input sets [25].
In all cases, we skip the initialization parts and then sim-
ulate the applications to completion.4

5.2.1 Evolving Workload Construction
We derive our evolving workloads from existing applica-
tions by following a methodology that aims at mimick-
ing an actual incremental parallelization process. Specifi-
cally, we use Swim and Equake from the SPEC OpenMP
suite, and MG from the OpenMP version of the NAS
benchmarks to synthesize our evolving workloads. These
scalable applications contain multiple parallel regions
that exploit loop-level parallelism [3]. We emulate the
incremental parallelization process by gradually trans-
forming sequential regions into parallel regions, obtain-
ing more mature versions of the code at each turn. To do
this, we first run each application in single-threaded mode
and profile the runtimes of all regions in the program. We
then create an initial version of the application by turn-
ing on the parallelization for the most significant region
while keeping all other regions sequential. We repeat this
process until we reach the fully parallelized version, turn-
ing on the parallelization of the next significant region at
each step along the process.

5.2.2 Multiprogrammed Workload Construction
Similar to highly parallel applications, workloads with
high degrees of multiprogramming typically benefit most
from maximizing on-chip core count to exploit TLP ag-
gressively [19]. We do not evaluate these separately as the
demands they place on the architecture in terms of core
count and per-core performance are virtually the same as
highly parallel applications (which we cover in our evalu-
ation), favoring fine-grain CMP configurations with many
cores (which core fusion builds upon). Consequently, we
turn our attention to desktop workloads which typically
exhibit low degrees of multiprogramming.

We derive our multiprogrammed workloads from the
SPEC2000 suite [23]. We classify applications as high-
and low-ILP benchmarks based on how much speedup
they obtain in going from a two-issue core to four- and
six-issue cores. We then use these classifications to guide
our workload construction process. We set the degree
of multiprogramming to two applications, and we form
a total of nine workloads with different ILP characteris-
tics: high-ILP workloads, low-ILP workloads, and mixed
(both high and low ILP) workloads. When running these
workloads, only two CPUs are active at any point in time.

4Our simulation infrastructure currently does not support the
other SPEC benchmarks.
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Figure 5: Speedup over stage zero run on FineGrain-2i.

Splash-2 Description Problem size
BARNES Evolution of galaxies 16k part.

FMM N-body problem 16k part.
RAYTRACE 3D ray tracing car

Spec OpenMP
SWIM-OMP Shallow water model MinneSpec-Large

EQUAKE-OMP Earthquake model MinneSpec-Large
NAS OpenMP

MG Multigrid Solver Class A
Data Mining

BSOM Self-organizing map 2,048 rec., 100 epochs
BLAST Protein matching 12.3k sequ.

KMEANS K-means clustering 18k pts., 18 attr.
SCALPARC Decision Tree 125k pts., 32 attr.

Table 2: Simulated parallel applications and their input
sizes.

Two-Issue Core
Frequency 4.0 GHz
Fetch/issue/commit 2/2/2
Int/FP issue queues 16/16
ROB entries 48
Int/FP registers 32+40 / 32+40 (Arch.+Rename.)
Integer FUs 1×ALU 1×AGU 1×Br. 1/1×Mul/Div
Floating-point FUs 1×ALU 1/1×Mul/Div
Ld/St queue entries 12/12
Max. unresolved br. 12
Br. penalty 7 cycles (minimum)
Max. br. pred. rate 1 taken/cycle
Br. predictor Alpha 21264
BTB size 512 entries, direct mapped
RAS entries 32
Bank predictor 2K-entries
iL1/dL1 size 16 kB
iL1/dL1 block size 32B / 64B
iL1/dL1 associativity 2-way
iL1/dL1 round-trip 2 cycles (uncontended)
iL1/dL1 ports 1 / 2
iL1/dL1 MSHR entries 8
dL1 coherence protocol MESI-based protocol
Consistency model Release consistency
Cross-core communication 3 cycles

Table 3: Baseline two-issue processor parameters.

Shared-Memory Subsystem
System bus transfer rate 64GB/s
System bus width 256 bits
Shared L2 4MB, 64B block size
Shared L2 associativity 8-way
Shared L2 banks 16
L2 MSHR entries 32
L2 round-trip 10 cycles (uncontended)
Memory round-trip 320 cycles (uncontended)

Table 4: Shared-memory subsystem parameters.

6 EVALUATION
6.1 Evolving Application Performance
Figure 5 compares the performance of all six architec-
tures on our evolving workloads. Each graph shows

the speedups obtained by each architecture as applica-
tions evolve from sequential (stage zero) to highly paral-
lel (stage three for MG and Equake-OMP, stage four for
Swim-OMP). When running on the asymmetric CMPs,
we schedule the master thread on the large core so that
sequential regions are sped up. Parallel regions are ex-
ecuted on all cores (we also experimented with running
parallel regions on small cores only, but found that the
results were inferior). We evaluate our proposal by apply-
ing dynamic core fusion to fuse/split cores when running
sequential/parallel regions, respectively.

When applications are not parallelized (stage zero), ex-
ploiting ILP is crucial to obtaining high performance.
As a result, coarse-grain CMPs, asymmetric CMPs and
CoreFusion all enjoy speedups over the fine-grain CMP.
In this regime, performance is strictly a function of
the largest core on the chip. For instance, in MG,
configurations with four-issue cores (CoarseGrain-4i and
Asymmetric-4i) improve performance by a factor of 1.2,
while configurations with six-issue cores (CoarseGrain-6i
and Asymmetric-6i) obtain a speedup of 1.64. CoreFu-
sion achieves a speedup of 1.5, outperforming all but the
six-issue configurations due to its ability to exploit high
levels of ILP. Similar trends are observed on Swim-OMP
and Equake-OMP.

When an initial parallelization of the application is per-
formed (stage one), all architectures benefit from exploit-
ing thread-level parallelism (TLP). However, significant
portions of the applications are still sequential, and ex-
ploiting ILP is still crucial for getting optimum perfor-
mance. On MG, CoreFusion and Asymmetric-6i both
obtain a speedup of 2.5. Asymmetric-6i’s monolithic core
marginally outperforms CoreFusion’s fused core, but as
a result of dynamic fusion and fission, CoreFusion enjoys
a higher core count on parallel regions, thereby exploit-
ing higher levels of TLP. In this regime, Asymmetric-4i
obtains a speedup of only 2.1: this configuration has two
more cores than Asymmetric-6i, but the application does
not yet support enough TLP to cover the performance
hit with respect to Asymmetric-6i’s six-issue core on se-
quential regions. CoarseGrain-4i obtains a speedup of
2.2. Because of the scarcity of TLP in this evolutionary
stage, FineGrain-2i performs worst among all architec-
tures, with a speedup of only 1.8. Similar trends emerge
in Equake. On Swim, Asymmetric-6i and CoarseGrain-6i
obtain speedups of 2.8, followed by CoreFusion’s speedup
of 2.3.

Over time, greater portions of the applications are par-
allelized (stage two for MG and Equake-OMP, stages
two and three for Swim-OMP). In this regime, exploit-
ing ILP and TLP are equally important for obtaining
high speedup. In all three applications, CoreFusion out-
performs all other architectures. CoreFusion obtains



speedups of 4.8, 4, and 6.3 on MG, Equake-OMP, and
Swim-OMP. This is followed by speedups of 4.6 and 3.8
from Asymmetric-4i on MG and Equake-OMP, and a
speedup of 6 from FineGrain-2i on Swim-OMP. Due to
the increased level of TLP, the fine-grain CMP starts to
outperform architectures that invest heavily in ILP ex-
ploitation (Asymmetric-6i and CoarseGrain-6i).

Eventually, enough effort is expended in paralleliza-
tion to convert each benchmark into a scalable paral-
lel application (stage four). In MG, performance is de-
termined strictly by core count. FineGrain-2i obtains
the best speedup (6.9), followed immediately by Core-
Fusion (6.4). Asymmetric-4i obtains a speedup of 5.8,
while architectures that invest in ILP (Asymmetric-6i
and CoarseGrain-6i) take a significant performance hit
(speedups of 4.3 and 3.2, respectively). In Swim-OMP
and Equake-OMP, CoreFusion still performs the best,
followed closely by the fine-grain CMP. This is because
all parallel applications, regardless of their paralleliza-
tion stage, have sequential regions (on which CoreFusion
outperforms the FineGrain-2i through dynamic fusion).
Note, however, that statically allocating a large core to
obtain speedup on these regions does not pay off, as
evidenced by the lower performance of the asymmetric
CMPs compared to CoreFusion: attempting to exploit
ILP in these regions is worthwhile only if it does not ad-
versely affect the exploitation of TLP.

In summary, performance differences between the best
and the worst architectures at any parallelization stage
are high, and moreover, the best architecture at one end
of the evolutionary spectrum performs worst at the other
end. As applications evolve through the incremental par-
allelization process, performance improves on all applica-
tions. Throughout this evolution, CoreFusion is the only
architecture that consistently performs the best or rides
close to the best configuration. While all static archi-
tectures get “stuck” at some (different) point along the
incremental parallelization process, core fusion adapts to
the changing demands of the evolving application and
obtains significantly higher overall performance.

6.2 Parallel Application Performance
Figure 6 compares the performance of core fusion against
our baseline CMP configurations on parallel workloads.
Results are normalized to the performance of single-
threaded runs on FineGrain-2i. As expected, on scalable
parallel applications, maximizing the number of cores
leads to significant performance improvements. The fine-
grain CMP performs best on this class of applications
due to its higher number of cores that allows it to aggres-
sively harness TLP. FineGrain-2i is followed immediately
by CoreFusion, which has one fewer core due to its area
overheads (our results confirm that the ninth core is ef-
fectively used in FineGrain-2i by all the parallel applica-
tions).

Asymmetric-4i devotes the area equivalent of two two-
issue cores to the implementation of the four-issue super-
scalar. As a result, it obtains an average speedup of 5.5
while CoreFusion and FineGrain-2i improve performance
by factors of 6.6 and 7. Similarly, Asymmetric-6i devotes
the area equivalent of four cores to the implementation
of the wide-issue superscalar. As a result, this configu-
ration experiences up to 2 times performance degrada-
tion with respect to the fine-grain CMP on scalable par-
allel applications. CoarseGrain-6i performs even worse
than Asymmetric-6i, since it only supports two cores, and
the additional performance improvements obtained by ex-

ploiting ILP are not enough to offset the performance loss
caused by foregoing TLP. CoarseGrain-4i obtains an av-
erage speedup of 4.6, and outperforms Asymmetric-6i on
five applications. This is due to the difficulties of obtain-
ing load balancing on asymmetric architectures [5]: while
CoarseGrain-4i distributes work to four equivalent cores,
Asymmetric-6i distributes an equal amount of work to
cores with significant differences in their computational
abilities. Ultimately, this causes Asymmetric-6i to run at
the speed of five two-issue cores, which is often outper-
formed by the four four-issue cores of the CoarseGrain-4i.

In summary, CoreFusion approaches the performance
of the fine-grain CMP on scalable parallel applications,
whereas coarse-grain and asymmetric designs sacrifice
parallel application performance significantly to improve
single-thread performance. These architectures are forced
to trade off TLP for ILP by their static nature, while
CoreFusion aims to synthesize the right ILP/TLP bal-
ance based on workload needs.

6.3 Multiprogramming Performance
Figure 7 shows the performance obtained by all six ar-
chitectures on multiprogrammed desktop-style workloads
(constructed as explained in Section 5.2.2). All results
are normalized to the performance of the fine-grain CMP.
In this figure, the first three workloads are combina-
tions of two high-ILP benchmarks (as explained in Sec-
tion 5.2.2), while the next three are combinations of high-
and low-ILP benchmarks. The last three workloads are
low-ILP workloads. For each workload, we report the
geometric mean of the speedups of each application in
the workload compared to a fine-grain CMP run of the
workload. Taking the geometric mean of the speedups
equally penalizes/rewards relative performance degrada-
tions/improvements in either benchmark in each work-
load. When running on asymmetric CMPs, we choose
the best static scheduling scheme using oracle knowl-
edge (e.g.; we choose the assignments that maximizes the
speedup on the asymmetric CMP). As a sanity check, we
also experimented with dynamic core assignment strate-
gies [27] for the asymmetric CMPs, but we found the
performance of the best (oracle) static assignment to be
better. When running on CoreFusion, we experimented
with two fused cores and did not merge/split cores at
runtime. As explained in Section 5.2.2, we do not con-
sider workloads with high degrees of multiprogramming
as their demands for high core count (at the expense of
per-core performance) are aligned with the requirements
of scalable parallel applications, and their evaluation re-
veals no additional insights in the context of our paper.

The results indicate that all architectures obtain
speedups over the fine-grain CMP on multiprogrammed
workloads. This is because FineGrain-2i heavily parti-
tions its area to maximize the core count. While this is
an excellent strategy for scalable parallel applications, the
lack of high-performance cores hurts the fine-grain CMP
when running multiple sequential applications. Due to
its two six-issue cores, CoarseGrain-6i performs the best
on all applications, obtaining an average speedup of 1.59.
CoreFusion’s two fused cores come next with a speedup of
1.36 on average. Asymmetric-6i and CoarseGrain-4i ob-
tain speedups of 1.3 each: while Asymmetric-6i improves
the performance of one application in the workload signif-
icantly, CoarseGrain-4i improves both applications, but
with smaller margins compared to Asymmetric-6i’s six-
issue core. The winner among these two configurations is
application dependent. Finally, Asymmetric-4i performs
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Figure 6: Speedup over single-thread run on FineGrain-2i. Figure 7: Speedup over FineGrain-2i.

worst after the fine-grain CMP, obtaining a speedup of
only 1.16. Not only does Asymmetric-4i have only a
single wide-issue core, but also, the performance deliv-
ered by this four-issue core is lower than Asymmetric-
6i’s six-issue core and either one of CoreFusion’s fused
cores. On high-ILP workloads, the differences are even
more pronounced. On art-equake, for example, CoreFu-
sion achieves a speedup of 1.54 while the ACMP-4i ob-
tains a speedup of only 1.23.

In summary, when the degree of multiprogramming is
low (typical case for desktop workloads), implementing
high-performance cores is the best choice. For this class
of workloads, the fine-grain CMP performs worst. Core-
Fusion is second best after CoarseGrain-6i, while still
maintaining the performance advantages of the fine-grain
CMP on parallel applications.

6.4 Sequential Application Performance
Figure 8 compares the performance of core fusion against
our baseline CMP architectures across SPEC 2000 appli-
cations. The plot on the top shows results on integer ap-
plications while the bottom plot corresponds to floating-
point benchmarks. We report speedups with respect to
the fine-grain CMP.

As expected, the results indicate that wide-issue cores
have significant performance advantages on sequential ap-
plications. Configurations with a six-issue monolithic
core obtain average speedups of 89% and 37% on floating-
point and integer benchmarks. (Speedups on floating-
point benchmarks are typically higher due to higher lev-
els of ILP present in these applications.) Configurations
that employ a four-issue core observe average speedups of
40% and 22% on floating-point and integer-benchmarks,
respectively. Core fusion improves performance over the
fine-grain CMP by 14-72% on floating-point applications,
with an average of 42%. On integer applications, speedup
improvements are in the 12-87% range, with an average
speedup of 30%.

In summary, the monolithic six-issue core performs
best when running sequential applications, followed by
CoreFusion’s fused core. FineGrain-2i is the worst archi-
tecture for this class of workloads. While core fusion en-
joys a high core count to extract TLP, it can aggressively
exploit ILP on single-threaded applications by adopting
a fused configuration.

7 RELATED WORK
7.1 Reconfigurable Architectures
Several researchers have voiced the potential advantages
of reconfigurable architectures capable of meeting the re-
quirements of a diverse set of workloads. Smart memo-
ries [31] is a tiled reconfigurable architecture where each
tile consists of an in-order processing core, local memory,
local interconnect, and a network interface to connect to
a global inter-tile network. TLP is exploited primarily
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Figure 8: Speedup over FineGrain-2i on SPECINT (top) and
SPECFP (bottom) benchmarks.

by using the cores as individual processing elements im-
plementing a RISC ISA. To extract ILP, in-order cores
are merged to form a VLIW machine. In contrast, core
fusion merges out-of-order cores to obtain wider out-of-
order execution engines while remaining transparent to
existing ISAs, and this does not require recompilation.
The polymorphous TRIPS architecture [38] is another re-
configurable computing paradigm that aims to meet the
demands of a diverse set of applications by splitting ultra-
large cores based on workload demands. TRIPS imple-
ments a custom ISA and relies heavily on compiler sup-
port for scheduling instructions to extract ILP.

7.2 Clustered Architectures
Core fusion borrows from some of the mechanisms de-
veloped in the context of clustered architectures [1, 6, 7,
10, 12, 13, 15, 18, 21, 33, 41]. Our proposal is closest to
the recent thrust in clustered multithreaded processors
(CMT) [17, 20, 29]. In this section, we give an overview
of the designs that are most relevant to our work, and
highlight the limitations that preclude these earlier pro-
posals from supporting workload diversity effectively.

El-Moursy et al. [20] consider several alternatives for
partitioning multithreaded processors. Among them, the
closest one to our proposal is a CMP that comprises mul-
tiple clustered multithreaded cores (CMP-CMT). This
design is attractive because it can (a) support large num-
bers of independent threads without incurring excessive
design complexity, (b) extract high levels of ILP from se-
quential applications, and (c) support fast clock rates by



avoiding large monolithic structures. The authors evalu-
ate CMT designs with both shared and private L1 data
cache banks, finding that restricting the sharing of banks
is critical for obtaining high performance with multiple in-
dependent threads. However, the memory system is not
reconfigurable; in particular, there is no mechanism for
merging independent cache banks when running sequen-
tial code. Consequently, sequential regions/applications
can exploit only a fraction of the L1 data cache and
load/store queues on a given core. Similarly, each thread
is assigned its own ROB, and these ROBs cannot be
merged. Finally, since the goal is to support large num-
bers of independent threads (as opposed to parallel ap-
plications), neither coherence nor memory consistency is-
sues are considered. Hence, despite the attractive features
listed above (which Core Fusion retains), the lack of re-
configurability in the memory system and the front-end,
coupled with the lack of coherence and consistency sup-
port makes this architecture inadequate for supporting
workload diversity.

Latorre et al. [29] propose a CMT design with multiple
front- and back-ends, where the number of back-ends as-
signed to each front-end can be changed at runtime. Each
front-end can fetch from only a single thread, and front-
ends cannot be merged or reconfigured. When running a
single thread, only one of these front- ends is active. As a
result, each front-end has to be large enough to support
multiple (potentially all) back- ends, and this replication
results in significant area overheads (each front-end sup-
ports four-wide fetch, has a 512-entry ROB, a 32K-entry
branch predictor, a 1K-entry i-TLB and a trace cache
with 32K micro-ops). Stores allocate entries on all back-
ends, and these entries are not recycled. Thus, when a
thread is allocated multiple back-ends, the effective size
of the store queue is the size of a single cluster’s store
queue. In other words, the store queue in each back-end
has to be large enough to accommodate all of the thread’s
uncommitted stores. Inevitably, these inefficiencies limit
the total number of threads that can be supported on the
same die, thereby prohibiting the exploitation of high lev-
els of TLP and making this architecture inadequate for
supporting workload diversity.

Collins et al. [17] explore four different alternatives for
clustering SMT processors. Among them, the most rele-
vant to our work is a processor with clustered front-ends,
execution units, and register files. The L1 data cache
and the load/ store queues are centralized. Each front-
end is capable of fetching from multiple threads, but the
front-ends are not reconfigurable, and multiple front-ends
cannot be merged when running a single thread. As the
authors explain, the reduced fetch/rename bandwidth of
each front- end can severely affect single-thread perfor-
mance. Due to its inability to deliver high performance
on sequential regions, this architecture is also inadequate
for supporting workload diversity.

Parcerisa et al. [34] partition the front-end of a conven-
tional clustered architecture to improve clock frequency.
The front-end is designed to fetch from a single thread:
parallel, evolving, or multiprogrammed workloads are not
discussed and reconfiguration is not considered. The
branch predictor is interleaved on high-order bits, which
may result in underutilized space unless the code is very
large and sparse in memory. Mechanisms for keeping
consistent global histroy across different branch predic-
tor banks are not discussed.

Chaparro et. al. [15] propose to distribute the re-
name map and the reorder buffer to obtain temperature
reductions. Fetch and steering are centralized. Their dis-

tributed ROB expands each entry with a pointer to the
next ROB entry (possibly remote) of the next dynamic in-
struction in program order. Committing involves pointer
chasing across multiple ROBs to determine the right set
of instructions. In core fusion, we depart from funda-
mentally independent cores and add the necessary mech-
anisms to achieve fusion. In particular, we also fully dis-
tribute our ROB, but without requiring expensive pointer
chasing mechanisms across cores.

7.3 Other Related Work
Trace Processors [37] overcome the complexity limitations
of conventional out-of-order processors by distributing in-
structions to processing units at the granularity of traces.
The goal is the complexity-effective exploitation of ILP in
sequential applications. Supporting other types of work-
loads (e.g., parallel codes) is not a design goal. The
centralized front-end is designed to fetch from a single
thread. MultiScalar processors [39] rely on compiler sup-
port to exploit ILP with distributed processing elements.
The involvement of the compiler is prevalent in this ap-
proach (e.g., for register communication, task extraction,
and marking potential successors of a task). On the con-
trary, core fusion does not require specialized compiler
support. Neither multiscalar nor trace processors address
the issue of accommodating workload diversity in CMPs
or facilitating incremental software parallelization, which
is a key focus of our work.

8 CONCLUSIONS
We have presented core fusion, an architectural technique
that allows homogeneous CMP cores to adaptively and
dynamically fuse into larger, more powerful processors to
aggressively exploit ILP. Through this mechanism, sev-
eral cores can be morphed into a single large execution
engine when running sequential applications or regions.
On the other hand, they can be used as distinct process-
ing elements for executing parallel threads. Core fusion
gracefully accommodates workload diversity and software
evolution in CMPs. It requires no additional program-
ming effort or specialized compiler support, maintains
ISA compatibility, and keeps both hardware and software
complexity manageable.

Our evaluation of core fusion running a mix of se-
quential, multiprogrammed, parallel, and evolving par-
allel workloads shows that core fusion effectively adapts
to the diverse and changing needs of these workloads,
closely tracking ideally-suited static CMP configurations,
and significantly outperforming ill-suited ones at each op-
erating point. In particular, we show that core fusion
exhibits overall superior behavior with respect to static
coarse-grain, fine-grain, and asymmetric CMP alterna-
tives of similar silicon budget.
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ment schemes for clustered multithreaded processors. In Inter-
national Conference on Supercomputing, pages 316–325, Malo,
France, June–July 2004.

[30] R. Lawrence, G. Almasi, and H. Rushmeier. A scalable parallel
algorithm for self-organizing maps with applications to sparse
data mining problems. Technical report, IBM, January 1998.

[31] K. Mai, T. Paaske, N. Jayasena, R. Ho, W. J. Dally, and
M. Horowitz. Smart Memories: a modular reconfigurable ar-
chitecture. In International Symposium on Computer Archi-
tecture, pages 161–171, Vancouver, Canada, June 2000.

[32] K. Olukotun, B. A. Nayfeh, L. Hammond, K. Wilson, and
K. Chang. The case for a single-chip multiprocessor. In In-
ternational Conference on Architectural Support for Program-
ming Languages and Operating Systems, pages 2–11, Cam-
bridge, MA, October 1996.

[33] S. Palacharla, N. P. Jouppi, and J. E. Smith. Complexity-
effective superscalar processors. In International Symposium
on Computer Architecture, pages 206–218, Denver, CO, June
1997.

[34] J. M. Parcesira. Design of Clustered Superscalar Microarchi-
tectures. Ph.D. dissertation, Univ. Politècnica de Catalunya,
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Abstract

Most computer hardware today isnondeterministic, meaning
that two executions of a program will not be cycle-for-cycle identi-
cal at the microarchitectural level even if they start from the same
microarchitectural state. Due to uninitialized state elements, I/O,
and timing variations on high-speed buses, the microarchitectural
states of the two executions will evolve differently.

Such nondeterminism complicates system verification and
makes hardware faults detected during bringup more difficult to re-
produce and analyze. Consequently, we believe that board-level
computer hardware should be designed in a way that supports
cycle-accurate deterministic replay. In this paper, we outline the
hardware required to provide this capability. We argue that the re-
sulting hardware complexity is minimal, providing a net savings in
bringup time and cost. We also show that potential applications of
deterministic hardware extend far beyond hardware verification.

1. Introduction and Motivation

We propose the Cycle-Accurate Deterministic REplay
(CADRE) architecture, which cost-effectively makes a board-level
computer cycle-deterministic — including processors, buses,
memory, chipset, and I/O devices. CADRE uses checkpoints, logs,
and certain hardware extensions to enable replayed executions
that match the microarchitectural state of the original execution
cycle-for-cycle. For example, assume that one of the processors in
the computer observes a bus signal transitionA at internal cycle
a and initiates an ALU operationB at cycleb. These events will
recur at exactly the same internal cycles during the re-execution.
Further, the microarchitectural states of the multiple processors,
memory controllers, and other components will evolve exactly as
they did during the original execution.

Cycle-accurate determinism has many applications, but one of
the most obvious is in system bringup — the verification phase
when engineers begin running programs on first silicon. Since the
real processor is so much faster than the simulators used in earlier
verification phases, longer and more detailed tests, such as boot-
ing a full operating system, can finally be executed. The bringup
tests quickly reveal many previously unknown bugs, which must be
characterized. The characterization process typically begins with
finding a way to reliably reproduce an error. The engineer can then
employ “iterative debugging” — replaying the error and examin-
ing system state before and after to gain a full understanding of
the problem. With typical hardware, finding a test that reliably re-
produces the error is difficult or impossible, but with CADRE, it

is trivial. With CADRE, an engineer can replay a failing test over
and over, with the assurance that at each cycle, the signal and state
transitions will exactly match those of the original execution. He
can then stop the machine at different points and examine the inter-
nal state through a test access port or read out the complete system
state at any point and transfer it to an RTL simulator for detailed
analysis.

Deterministic hardware is also easier to test than nondeterminis-
tic hardware. Already, automatic testers are encountering problems
with nondeterminism [5]. These testers operate by presenting test
vectors at the chip’s input pins and observing the response vectors
on the output pins. In a nondeterministic system, response vectors
may not arrive at the tester at the expected time, or even in the ex-
pected order. In extreme cases, the data in the response vectors
could differ from the expected values. Cycle-accurate deterministic
hardware does not present these problems.

CADRE is not just for verification and test; it can be deployed in
the field, providing hardware vendors with a powerful tool to debug
customer-site failures. After the customer identifies what he be-
lieves to be a hardware error, he could send the vendor a checkpoint
preceding the crash. The vendor would then be able to reproduce
the fault exactly using in-house hardware and simulators. The idea
is similar to the current use of software crash feedback agents that
help software developers identify bugs in deployed software.

Cycle determinism also has less obvious applications. For ex-
ample, a cycle-deterministic system is easier to incorporate into
ann-way modular redundancy system. Traditional NMR systems,
such as HP’s NonStop server [2], require custom buffering and syn-
chronization logic between the processors and voters because each
processor may slowly slip behind or ahead of the others. Cycle-
deterministic components do not require such compensation logic
in NMR configurations, as cycle determinism ensures that as long
as the components have the same inputs, they will continue in lock
step.

Finally, hardware deterministic replay subsumes previous pro-
posals for software determinism to debug parallel programs [11]. In
a cycle-accurate deterministic system, the interleaving of replayed
memory accesses is guaranteed to match the original, since all ac-
cess occur at exactly the same cycle as during the original execu-
tion. Furthermore, as we will show later, interrupts and I/O events
will also recur exactly where they should. One issue with this ap-
proach is that special measures are needed to allow a debugger to
run on the target machine without interfering with hardware de-
terminism during replay. A solution to this problem is to run the
debugger on another machine attached to the target’s front side bus
or test access port.



2. Sources of Nondeterminism
A system supporting deterministic replay must have two key

properties: (1) A deterministic execution interval must begin at cy-
cle 0 with each state-holding element initialized to a known state.
(2) A component must receive a signal at thenth edge of its local
clock during replay iff it received the same signal at thenth edge
during the original execution. The first condition is the base case,
requiring that the original and replay executions start at exactly the
same state, and the second is the inductive step, ensuring that they
experience the same state transitions at the same cycles.

All nondeterminism is then traceable to one of two causes: (1)
incomplete initialization, in which some state-holding elements are
in an incorrect or unknown state at the start of replay, or (2) changes
in the arrival times of signals, possibly due to environmental factors.
Below, we discuss the two causes as they apply to each component
of the system.

CPUs Modern processors contain millions of bits of state con-
tained in registers, pipeline latches, SRAMs, and counters. Some
state bits, like those in the branch predictor tables, have no
architecturally-visible effect. Consequently, processors usually do
not provide any ISA-level means of resetting them, violating con-
dition 1. Additionally, dynamic power and temperature manage-
ment techniques such as clock duty cycle modulation and voltage-
frequency scaling (DVFS) are dependent on the environment (die
temperature). As a result, the timing of power and temperature
events is uncertain and condition 2 is violated.

Memory Systems The memory controller is the component re-
sponsible for scheduling memory read, write, refresh, and scrub-
bing operations. The Itanium-2 verification engineers [4] reported
that the memory refresh and scrubbing operations are a source of
nondeterminism because the scrubber and refresh walkers will be
working on different lines during the re-execution than in the origi-
nal. Therefore, scrubs and refreshes line up with the program’s read
and write accesses differently during replay. Due to contention, the
timing of all memory operations will change.

I/O and Interrupts The timing of I/O operations and interrupts is
notoriously unpredictable. For example, hard disks have mechani-
cal components that introduce non-deterministic seek times and ro-
tational delays. The timing of events from human-interface devices
and network interfaces is equally unpredictable.

Buses The buses that cross clock domains in a computer, for ex-
ample as they connect different chips, are a major source of non-
determinism. These buses are often source-synchronous [1], which
means that the transmitter generates and transmits a clock signal
that travels with the data to the receiver. One popular example is
HyperTransport [3]. In these buses, receiving a message occurs in
two steps (Figure 1). First, the rising edge of the transmitter clock
signal latches the data into a holding queue in the bus interface of
the receiver. We refer to this event as thearrival of the message.
Some time later, normally on the next rising edge of the receiver’s
core clock, the receiver removes the data from the queue and sub-
mits it for processing. We refer to this event as theprocessingof
the message.

Unfortunately, the exact arrival time is nondeterministic because
all clock and data pulses that traverse the bus are affected by phys-
ical and electrical processes such as temperature variations, volt-
age variations, channel cross talk, and inter-symbol interference
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Figure 1. Arrival and processing of a message at the receiver.

[1, 3, 8]. As a result, these signals experience a random but bounded
delay on the bus and could arrive at any time during a certain win-
dow. For example, the HyperTransport specification assumes an un-
certainty interval of one cycle even for very short buses [3]. Clearly,
this is a violation of condition 2.

Figure 2 illustrates how uncertainty in the arrival time of the
transmitter clock can give rise to nondeterminism at the receiver.
The receiver may see the rising edge of the transmitter clock ar-
rive anywhere in the hatched interval. If the receiver processes the
message on the first rising edge of the core clock after arrival, then
the processing time is nondeterministic because it depends on the
arrival time.
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Figure 2. Nondeterministic and deterministic processing.

3. Ensuring Cycle Determinism in Buses

To make bus transfers fully cycle-deterministic, we propose to
delay theprocessingof a message at the receiver until the last pos-
sible core clock cycle at which the message could have arrived. The
correct processing time is shown in Figure 2 as “deterministic pro-
cessing”. The cost of this approach is a small increase in latency for
some messages.

Our scheme works in any system where the ratio of the frequen-
cies in the transmitterT and receiverR is constant, although the
relative phase of the clocks may change with time (within bounds)
due to physical and electrical effects. However, for simplicity, this
paper will assume thatT andR operate at the same frequency.

CADRE adds adomain-clockcounter — an up-counter driven
by the local clock signal — to both the transmitter and the receiver.
At periodic global machine checkpoints (once per second), a broad-
cast signal resets all domain-clock counters. At any time, the differ-
ence between the transmitter’s and receiver’s domain-clock counts
is bounded by[p, q]. Additionally, the transmission delay of a mes-
sage on the bus (measured in domain-clock counts) is bounded by
[d1, d2]. The constantsd1, d2, p, andq are known at design time.
As a result, if the transmitter sends a message at countxT of its



domain-clock counter, the message willarrive at the receiver at
countyR of the receiver’s domain-clock counter, as given by:

yR = xT + [d1 + p, d2 + q] = xT + [θ1, θ2] (1)

We callθ2 − θ1 theUncertainty Interval.
Our scheme to enforce bus determinism is detailed in [7]. It

requires that the transmitter include in every message a short tag
ρ (typically 1 or 2 bits) that allows the receiver to determine when
the message was sent (xT ). Then, the receiver simply computes
zR = xT + θ2 and delays theprocessingof the message untilzR,
ensuring determinism.

The hardware required is shown in Figure 3. Our scheme adds
a Synchronizermodule to the bus interface of the receiver. This
hardware processes the tagρ arriving with the data, and uses it to
determine at what cyclezR to process the data. Full details are
in [7].
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Figure 3. Synchronizer module added to the bus interface of
the receiver.

4. Overall Deterministic System

To design a CADRE system, we build on the checkpointing and
logging mechanisms from ReVive [6] or SafetyNet [10]. The idea
is as follows. Periodically — say, once per second — processors
write back their caches to memory and invalidate caches and TLBs.
They then save their registers and completely re-initialize all inter-
nal state-holding elements to a known state. As execution proceeds
after the checkpoint, when a main-memory location is about to be
over-written for the first time since the checkpoint, the old value of
that location is saved in a Memory Log. This is done in hardware by
the memory controller. As discussed in [6, 10], this support enables
memory state rollback.

To make each CPU deterministic, we introduce theDETRSTin-
struction, which initializes all the state elements in the processor.
DETRSTis executed after every checkpoint. Moreover, each CPU
is augmented with a CPU Log that records a variety of events, such
as (i) clock duty cycle modulation, (ii) voltage-frequency scaling,
and (iii) nondeterministic interrupts and exceptions generated in-
side the processor chip. Examples of the latter are thermal emer-
gencies and ECC failures due to soft errors. During re-execution,
events in the log are replayed to reproduce the events in the original
execution.

To make the memory deterministic, we make two changes to the
memory controller. First, the controller makes memory refresh de-
terministic by resetting the refresh logic at each checkpoint. In this
case, if all of the inputs to the memory controller are determinis-
tic, the refresh logic will generate deterministic outputs. As long as
the checkpoint interval is long enough to allow at least one refresh
operation to complete per memory location, the DRAM will not
lose data. Moreover, to circumvent nondeterminism from memory
scrubbing, the controller includes in the checkpoint the register that
indexes the currently scrubbed line. When restoring the checkpoint,
the register is restored, enabling scrubbing to resume from exactly
where it was in the original execution.

Since I/O devices are inherently nondeterministic, CADRE uses
a logging-based solution. Specifically, CADRE places a buffering
module in the memory controller called the Input Log. The Input
Log records all the messages arriving from the I/O devices and the
interrupts that the I/O devices deliver. When replaying an execu-
tion, the I/O devices can simply be suspended by gating their clock
and disconnecting them temporarily from the data bus. The Input
Log will reproduce all of the signals that the I/O devices generated
during the original execution.

Finally, to enforce determinism in source-synchronous buses,
we use the module shown in Figure 3 at the receiver side of each
bus. If a bus is bidirectional, CADRE places one such module at
each end of the bus.

5. Feasibility

Possible concerns about CADRE include the added chip area,
design complexity, storage overhead, and performance overhead.
The area overhead of the added CADRE logic is very small; the
bus synchronizers comprise fewer than a thousand gates each, and
the memory and IO log controllers are also tiny. Only the Input
Log, which is implemented in SRAM, consumes significant space.
As for complexity, we feel that any additional design effort for a
CADRE system is more than offset by the improvements in verifi-
cation efficiency that cycle-accurate determinism provides.

The storage overhead is composed of the Input Log, CPU Logs,
and the ReVive/SafetyNet Memory Log. The latter is estimated to
be around 50 MB/s per processor in [11]. Although the size of the
Input Log varies with the application, we found it to be quite low
for a set of workloads that include SPECint, SPECfp, SPEComp,
SPECjbb, and SPECweb. While some applications may require
up to 100 MB/s during periods of high activity, no application ex-
ceeded 1 MB/s of input log bandwidth in the steady state. Finally,
the storage cost of the CPU Log is negligible since frequency scal-
ing and thermal events are rare in current processors.

The main contributor to performance overhead is the increased
memory latency introduced by the bus synchronizers that make the
path from the processor to memory deterministic. Other costs, such
as flushing caches at checkpoints, are negligible with checkpoint
intervals of one second or longer. So, assume that the memory con-
troller is on a different chip than the processor and that the intercon-
nection of the processor, memory controller, and memory modules
is through HyperTransport links. Given current technology [3], the
bus synchronizer on each link will add one cycle to each message
in the worst case. We therefore consider a worst case of four addi-
tional bus cycles for each memory access. Our simulation results



show that the resulting slowdowns on SPECjbb, SPEComp, SPEC-
cpu, and SPECweb are all less than 1%.

To summarize, extending a four-way CMP server with CADRE
hardware supporting a one second checkpoint interval would have
a storage cost of about 200 MB of DRAM plus a few MB of SRAM
(for the Input Log), a performance overhead of 1%, and a small area
cost. For that price, we obtain the ability to “rewind” execution to a
checkpoint one second in the past and re-execute deterministically
cycle-for-cycle.

6. Related Work

The state of the art in deterministic replay for hardware debug-
ging is Golan, a hardware testbed used to debug the Pentium-M
processor [9]. Golan attaches a logic analyzer to the pins of the
processor chip. Every input signal arriving at the pins is logged.
This includes data to satisfy cache misses. Like CADRE, Golan
takes a periodic checkpoint, which involves invalidating caches and
TLBs, saving the processor registers, and resetting the processor
state. Upon detection of a failure, Golan restores a checkpoint and
restarts execution while replaying the logic analyzer log.

A shortcoming of the Golan approach is that the checkpoint
interval (and therefore replay distance) is much shorter and stor-
age overhead is much greater than in CADRE. Additionally, the
probes that attach the logic analyzer to the processor pins present
a difficult electrical design problem because the pins cycle at high
frequency and no nondeterminism in the connection can be toler-
ated. Although Golan was highly successful in speeding Pentium-
M bringup, it is not suitable for field deployment.

7. Conclusions

We have proposed that hardware that enforces cycle-accurate
determinism be included in commodity computer systems to ease
verification and testing, and for other purposes. We have explained
what the main sources of nondeterminism are and how they can
be circumvented. Finally, we have argued that the area, complexity,
storage, and performance cost of the required hardware is minimal.
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Abstract

On-chip wire delays are becoming increasingly
problematic in modern microprocessors. To alleviate
the negative effect of wire delays, architects have con-
sidered splitting up large L2/L3 caches into several
banks, with each bank having a different access la-
tency depending on its physical proximity to the core.
In particular, several recent papers have considered
dynamic non-uniform cache architectures (D-NUCA)
for chip multi-processors. These caches are dynamic
in the sense that cache lines may migrate towards the
cores that access them most frequently. In order to re-
alize the benefits of data migration, however, a “smart
search” mechanism for finding the location of a given
cache line is necessary. These papers assume an ora-
cle and leave the smart search for future work. Exist-
ing search mechanisms either entail high performance
overheads or inordinate storage overheads. In this pa-
per, we propose a smart search mechanism, based on
Bloom filters. Our approach is complexity-effective:
it has the potential to reduce the performance and
storage overheads of D-NUCA implementations. Also,
Bloom filters are simple structures that incur little de-
sign complexity. We present the results of our initial
explorations, showing the promise of our novel search
mechanism.

1 Introduction

It is well-known that on-chip wire delays are emerg-
ing as a major bottleneck in the design of high-
performance microprocessor chips. As feature sizes
are reduced, wire delays do not scale down at the same
rate as logic delays [1, 5]. It has been projected that at
35nm technologies, less than 1% of the total chip area
will be reachable in a single cycle [1]. Communication

between distant modules on a chip will therefore cost
tens of cycles and will negatively impact performance.

On-chip cache hierarchies bear the brunt of growing
wire delays as they occupy a large fraction of chip area
in modern microprocessors. For example, more than
two-thirds of the chip area in Intel’s Montecito [11, 12]
can be attributed to L3 caches that have a capacity of
24MB. Such large cache structures are typically orga-
nized as numerous banks to help reduce latency and
power consumption [14]. Given an input address, the
request is routed to a subset of banks that then ser-
vice the request. The latency for any cache access is
a function of the distance between the bank that con-
tains the requested data and the cache controller. This
observation motivated the proposal by Kim et al. [7]
of a non-uniform cache architecture (NUCA). Within
a NUCA organization, the latency for a cache access
may be as little as a handful of cycles if the data is lo-
cated close to the cache controller, or up to 60 cycles if
the data is located in a distant bank. This architecture
is unlike a conventional cache organization where the
cache latency is uniform and determined by the worst-
case delay to access any block. Recent proposals have
extended NUCA designs to also handle chip multipro-
cessors [2, 4, 6].

NUCA organizations have been classified as static
(S-NUCA) and dynamic (D-NUCA) in the litera-
ture [7]. In static-NUCA, an address is mapped to a
unique cache bank. Given an address, the cache con-
troller sends the request to a single bank (typically de-
termined by examining the address index bits). While
such a mechanism is simple, it does not take advan-
tage of locality. The L2 or L3 cache latency for a data
structure is set as soon as it is allocated in the physical
memory address space. Dynamic-NUCA attempts to
improve performance by leveraging locality and mov-
ing recently accessed blocks to banks that are close to
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Figure 1. Baseline CMP with 8 cores that share a NUCA L2 cache. The L2 is partitioned into 256 banks and

each block is allowed to reside in one of 16 possible banks.

the cache controller. A block is now allowed to re-
side in different cache banks at different times. Given
an address, the cache controller identifies a number of
candidate banks to which the request can be sent. In
one approach, the banks can be sequentially probed
until the data is located – this can significantly increase
cache access latency. In a second approach, the banks
can be probed in parallel – this can increase contention
cycles because of the increased bandwidth pressure on
the inter-bank network. Hybrids of the two search ap-
proaches have also been proposed [2, 7].

A recent paper explores block migration policies
for a D-NUCA organization in a CMP [2]. The au-
thors show that D-NUCA can improve performance,
relative to an S-NUCA organization, provided there
exists an oracle to identify the bank that stores the
data. If a realistic hybrid data search mechanism is
incorporated, performance is actually worse than that
of S-NUCA. Hence, for D-NUCA to be effective, the
cache controller must identify a small subset of banks
to probe, with high accuracy. Kim et al. [7] propose
one mechanism for such a smart search for a single-
core chip. The cache controller maintains a partial
tag array that stores six bits of the tag for each cache
line. The cache controller then forwards the request
to only those banks that have tags that match the ad-
dress. While this mechanism has high accuracy, Beck-

mann and Wood [2] point out that such partial tag ar-
rays can lead to extremely high storage overheads. In
an 8-core CMP with 16MB of cache and block size
of 64 bytes, the total storage for 6-bit partial tags is
as high as 1.5MB (roughly 72M transistors). The effi-
cient design of a “D-NUCA smart search mechanism”
is considered an open problem and an important factor
in the success of block migration policies [2].

This paper presents a complexity-effective solution
to the smart search problem. It takes advantage of
Bloom filters to identify candidate cache banks with
high accuracy. Compared to partial tag arrays, it re-
duces storage requirements by an order of magnitude.
Power consumption can also be reduced by avoiding
access to large tag arrays and by avoiding transmission
of tags on the inter-bank network. This reduction in
network traffic decreases routing congestion and can
improve latency for all L2 transactions. Bloom filter
updates and look-ups are achieved with simple index-
ing functions.

Section 2 provides background on Bloom filters and
the baseline NUCA organization. Section 3 details
our proposed smart search mechanism. We present a
preliminary analysis of our approach in Section 4 and
draw conclusions in Section 5.



2 Background and Related Work

2.1 Non-Uniform Cache Architectures

The baseline processor organization that we use is
similar to that of Beckmann and Wood [2] and is il-
lustrated in Figure 1. Each processor core (including
L1 data and instruction caches) is placed on the chip
boundary and eight such cores surround a shared L2
cache. The L2 is partitioned into 256 banks and con-
nected with a mesh interconnection network. Each
core has a cache controller that routes the core’s re-
quests to appropriate cache banks.

In a static-NUCA organization, eight bits of the
block’s physical address can be used to identify the
unique bank that the block maps to. Each bank will
have to be set-associative to reduce conflict misses.

In an alternative static-NUCA organization, each
bank can accommodate a single way. If the L2 cache
is 16-way set-associative, a given block can map to
16 possible banks and four bits of the block’s physi-
cal address are used to identify this subset of banks.
When a block is brought into the cache, LRU (or even
the block’s address) can determine where the block is
placed and the block remains there until it is evicted.
This S-NUCA organization is no better than the orga-
nization described in the previous paragraph (in terms
of performance) and requires a “smart search mecha-
nism” to identify the bank that contains the block. We
describe it here because it forms the basis for dynamic-
NUCA organizations.

In dynamic-NUCA, LRU/block address determines
where the block is initially placed. Access counters
associated with each cache line keep track of the pro-
cessor cores that request the block. The block is grad-
ually moved to a bank that best reflects the “center
of gravity of processor requests”. Of the 16 can-
didate cache banks (ways) for a block, eight are in
close proximity to each of the eight cores (referred
to as the local banks), four are in the center region,
and the remaining four are in the intermediate region
(shown in Figure 1 by different colors). These 16
banks are classified as a single bankset and there ex-
ist 16 such banksets. The L2 cache is partitioned into
16 bankclusters. Each bankcluster contains one bank
from every bankset. Block migration causes a block
to move between bankclusters, or stated alternatively,
between banks within a bankset.

Given a block address, the cache controller must po-
tentially forward the request to 16 different banks in
order to locate the block. The smart search mechanism
proposed in this paper will be employed in this context.
Beckmann and Wood adopt the following mechanism:
the core’s local, intermediate, and four center banks
are searched in parallel; if the block is not located,
the other ten candidate banks are searched in paral-
lel. Such a mechanism entails high performance over-
heads and usually negates any performance improve-
ments from block migration. The search mechanism of
Kim et al. [7] maintains partial tag arrays at the cache
controller to identify a small subset of banks that can
be probed in parallel. Such a mechanism, extended to
CMPs, would entail marginal performance overheads,
but incur non-trivial storage overheads. Our proposed
mechanism has the potential to incur marginal perfor-
mance and storage overheads.

Block migration incurs other complexities as well
(regardless of the search mechanism). Firstly, access
counters must be maintained for every cache line (or
blocks can be aggressively migrated on every access).
Block migration cannot happen simultaneously with
block look-up, else there is the potential to signal a
false miss (the request fails to see the block in tran-
sit and triggers an L2 miss). A four-phase protocol is
required to implement migration correctly: (i) cores
are informed of the migration so that accesses to that
block are temporarily disabled, (ii) acknowledgments
are received from the cores, (iii) migration is effected,
(iv) cores are informed after migration so that accesses
can be enabled again. Block migration requires that
the search hints at each core be updated. The search
mechanism may dictate the amount of network traffic
required to update search hints.

2.2 Bloom Filters

We base our smart search algorithm on the concept
of Bloom filters [3]. Here, we describe general Bloom
filters. The particular variant that we use is detailed in
Section 3.3.

A Bloom filter is a structure for maintaining prob-
abilistic set membership. It trades off a small chance
of false positives for a very compact representation. A
general Bloom filter cannot return false negatives.

A Bloom filter consists of an array A of m one-
bit entries and k hash functions, {h1, h2, ...hk}. In an
empty filter, all bits in A are zero. To add item i to



the filter, h1(i) is computed. This value is then used to
index into A, and A[h1(i)] is set to one. This process
is repeated with each hash function, up to hk(i).

Testing for set membership is straightforward. To
test for the presence of i′, we examine A[h1(i

′)]. If
it is zero, then we can tell that i′ is not present in the
set. If it is one, we continue to check A[h2(i

′)] and
so on, up to A[hk(i′)]. If all such bits are one, the set
membership test returns true, but if any are zero, the
membership test returns false.

In set membership tests, false negatives are
impossible—if item i has been added to the filter, then
we are guaranteed that:

∀j{1 <= j <= k : A[hj(i)] = 1}

False positives, however, are possible; any or all of the
bits in A could have been set to one by the insertion
of a different item. Assuming “good” hash functions,
the probability of getting a false positive from a Bloom
filter is approximately 1 − e−kn/m [3], where n is the
number of items inserted into the set, k is the number
of hash functions, and m is the size of array A. For ex-
ample, for k = 5,m = 2048, and n = 256, the proba-
bility of a false positive is 2.1%. Such a filter requires
only 2048 bits of space, while an equivalent table with
256 entries for 32-bit numbers would require 8192 bits
of space.

It is not possible to remove elements from a Bloom
filter. If we were to try to do so, setting any of the
bits in A to zero could interfere with another element
in the set, causing a false negative. Removal requires
a “counting” Bloom filter, in which we keep counts of
how many elements in the set require a particular bit in
A to be set. Such filters, however, have higher storage
requirements, because each entry in A must now hold
a counter rather than a single bit. Thus, we do not use
counting Bloom filters in this paper.

3 Smart Search Design

Our smart search algorithm is based on the idea of
keeping approximate information about the contents
of L2 bankclusters. Kim et al.’s [7] partial tag array
uses a similar strategy, though in the context of single-
core chips. Such arrays would be prohibitively large
for processors with many cores and many bankclus-
ters. Thus, we turn to Bloom filters as a compact ap-
proximation.

3.1 Overall Design

At each core on the CMP, we maintain an approxi-
mation of the cache lines present in each L2 bankclus-
ter. For our baseline processor (Figure 1), each of the
8 cores maintains 16 filters, one for each L2 bankclus-
ter. While the number of filters is large, as we shall see
shortly, each filter is a relatively small structure.

The filters are used to direct L1 misses to the L2
bank or banks that seem likely to contain the requested
cache line. The search proceeds in a similar manner to
Beckmann and Wood’s [2]; when a core’s memory ac-
cess misses in L1, the core’s cache controller looks for
the cache line in the L2 bankclusters. First, it consults
the core’s local L2 bankcluster, the Center, and the In-
ter bankclusters. If migration has had its intended ef-
fect, these are the most likely places to find the line.
If none of those bankclusters hit, the core tries the
other cores’ local bankclusters before going to main
memory. In our search, we filter out request messages
by consulting, in parallel, the Bloom filters for each
bankcluster, and only sending messages to those that
hit. Due to the possibility of false negatives, discussed
in the next section, if no Bloom filters hit, or all of the
bankclusters consulted turn out to be false positives,
we send messages to all bankclusters skipped in the
first pass.

3.2 Managing the Filters

We next deal with content management: when are
items inserted into filter, and when are they removed?
The design principle we follow here is to keep com-
plexity low by minimizing our changes to the baseline
cache design. Thus, rather than adding new messages
for filter management, we use the messages already
sent by the cache. When one of the L2 banks inserts
a new line, we do not broadcast this event to all fil-
ters. Instead, we only insert addresses into our filters
on-demand; that is, when a core receives a line from
some L2 bank. The first time a cache line is accessed
by a given core, therefore, there is a compulsory miss
in the filters. For this reason, our filters can return a
false negative. We also see similar false negatives
when a cache line has migrated from one bankcluster
to another. Because the probability of false positives
returned by a Bloom filter is a function of the number
of items inserted into it, inserting no more items than
necessary will help keep the false positive rate low.



All filters start empty, with the bits in their arrays
cleared. The first time core c accesses line l, it will
have no entry for l in any of its filters. Assuming no
false positives, all filters will miss, and c will fall back
to searching all banks for l. If l is present in bankclus-
ter b, b will send the line to c. Upon receipt of the line,
c inserts l into its filter for bankcluster b. Thus, the
next time that c misses on l, it will know that b has at
some point held line l.

As time goes on, the filters will tend to return more
false positives for two reasons. First, due to the funda-
mental properties of Bloom filters, as more items are
inserted into a filter, its false positive rate rises. Sec-
ond, as time passes, the information in the filters be-
comes stale; some of the entries they have stored will
no longer be accurate because lines may have migrated
or been otherwise evicted from their original bankclus-
ters.

We clearly must have a mechanism in place for re-
moving filter entries to avoid a constantly-rising false
positive rate. Recall that in a simple Bloom filter, en-
tries cannot be removed. In addition, if we were to
track migrations or evictions, this would require new
messages between bankclusters and the filters.

In order to keep the complexity of our design down,
strategy we adopt is to clear an entire filter when its
false positive rate becomes too high. This decision can
be made locally by each filter, without requiring global
co-ordination. Filters can, for example, maintain a
simple n-bit saturating counter that is incremented on
each true positive and decremented on each false pos-
itive. This provides an approximation of the false pos-
itive rate over the last several memory accesses. For
our initial implementation, we clear a filter when its
ratio of false positives to true positives goes above
one—that is, when the false positive rate reaches 50%.
There is clearly a tradeoff between clearing the filters
frequently to reduce false positives and clearing them
infrequently to minimize the number of compulsory
misses thus incurred. This is a tradeoff we will explore
in future work.

3.3 Filter Design

The filter we chose is similar to the partitioned-
address Bloom filter used by Peir et al. [13] for pre-
dicting cache misses.

The bit array, A is divided into k slices,
A1, A2, ...Ak . Each hash function indexes into its cor-

Figure 2. Design of our Bloom filter, showing

hash functions h1 through h3, which are used as

indexes into bit array slices A1 through A3. A hit

is detected when ones are returned from all array

slices.

responding slice. For example, h1 indexes into A1, h2

indexes into A2, and so forth. Each slice can be im-
plemented as a separate structure, keeping the time re-
quired to access it small. All slices can be accessed in
parallel, meaning that the lookup time is independent
of the number of slices.

We use the simplest hash function possible, the
identity function. We split up the address into several
sets of bits, then use each to index into one of the array
slices.

The layout of our filter is depicted in Figure 2. We
assume a physical address width of 41 bits—this is one
bit wider than the current AMD Athlon 64 and Sun
Niagara [8] processors, and can accommodate two ter-
abytes of memory. We also assume 64 byte wide cache
lines, giving 6-bit offsets. This leaves us with 35-bit
cache line addresses. We divide these bits into two
groups of 12 and one group of 11, and use each group
to index into an array slice. Our design can easily be
adapted to other address widths by changing the num-
ber and size of the array slices.

Our filters are reasonably sized structures; there are
two arrays of 4096 bits each, and one array of 2048
bits. The total size for one filter is thus 10 Kb. Since



each core needs 16 filters, one for each bankcluster,
each core requires 160 Kb, and all eight cores together
require 1280 Kb, or 160 KB, of storage. Assuming
6-transistor SRAM cells, the total filter size is approx-
imately 7.68 million transistors.

In comparison, if we were to extrapolate the 6-bit
partial tag array used as a filter by Kim et al. [7] to an
8-way CMP with 16 banksets, it would require 1.5MB
of storage (approximately 72 million transistors). The
physical layout for both of these approaches can be or-
ganized as a roughly square memory structure. Our
structure requires proportionally more space for the
decoders and other RAM components, but we estimate
they should not be more than 20% of the storage tran-
sistors. Thus, our design has much lower overhead, at
least eight times smaller, than the existing work in this
area.

Filter sizes and hash functions different from the
ones we use in this paper may result in better perfor-
mance or smaller filters—we leave a careful study of
filter sizes and hash functions to future work.

4 Results

We now present the results of our initial explo-
ration. We have implemented our Bloom filter smart
search using the GEMS 1.2 [10] toolset. The Ruby
cache model of GEMS includes the D-NUCA de-
sign we have described as our baseline. GEMS inter-
faces with the full-system functional simulator, Sim-
ics [9]. For evaluation, we used 12 benchmarks from
the SPLASH-2 [15] parallel multithreaded program
set. We start with a cold cache in order to take into
account compulsory misses in the filters. All programs
ran for at least one billion instructions, and at least 500
thousand L2 accesses.

Our initial implementation tracks the management
of the Bloom filters and records their accuracy, but
does not yet modify the search itself. Thus, the re-
sults we present here reflect the accuracy of the filters,
and not the IPC or power improvements. Overall, we
find that the filter accuracy is high enough to indicate
that we have identified a promising technique for smart
search. Our results merit further examination, includ-
ing quantifying the cycles and power saved. We leave
these evaluations to future work.
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Figure 3. Percent of messages saved by our

smart search per L2 access.

4.1 Messages Saved

The key metric for evaluating our smart search is
how many messages it saves compared to the baseline
search. A saved message is a block request sent to
an L2 bankcluster by the baseline search, but filtered
out by our search. The effect of fewer messages is
decreased traffic on the L2 routing network, resulting
in lower power and fewer contention cycles. Power is
also saved because fewer bankclusters have to check
their tag arrays.

Figure 3 shows the average messages saved per L2
access. The average savings across all benchmarks is
35%, and two are better than 50%.

4.2 Transistor Efficiency

We now evaluate our work in terms of its complex-
ity effectiveness. To do so, we look at the number of
messages saved on each L2 access per million transis-
tors. We compare our filter with an idealized 6-bit par-
tial tag array, much like the one used in prior work [7].
Each core has one tag array per bankset, just as we
have one bloom filter per core per bankset. We do not
model synchronization messages for the tag arrays, as-
suming that the arrays are perfectly synchronized with
the corresponding bankset. Thus, the tag arrays in this
test performs better than would a real implementation.
As previously calculated, our filters are assumed to re-
quire 7.68 million transistors, and the partial tag arrays
are assumed to require 72 million transistors.

Figure 4 shows the the results of this test. The
number of messages saved for both structures is sim-
ilar. The accuracy of the idealized partial tag array
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Figure 4. Average messages saved on each L2

access, per million transistors. We compare our

filters with an idealized 6-bit partial tag array.
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Figure 5. Overall filter accuracy.

is slightly higher—it saves on average 1.2 more mes-
sages per lookup. However, the Bloom filters, because
of their much smaller size, make more efficient use of
transistors. On average, they are able to save more than
6 times as many messages per million transistors.

4.3 Filter Accuracy

We now look at filter accuracy in finer detail, shown
in Figure 5. This graph shows the number of true pos-
itives and true negatives over all filter lookups. As we
can see, our filter accuracy is quite good overall.

The dominant cause of inaccuracy is false positives.
This is due, in large part, to migration. When a cache
line migrates, our filters learn the new location, but
still remember the old location. We believe that the
primary way to improve our filter accuracy will be to
handle these migrations, removing line addresses from
their old bankclusters.

To illustrate this point, we consider a modified ver-
sion of D-NUCA that does not migrate blocks—it

Without migration
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Figure 6. False positive to true positive ratio for

D-NUCA caches with and without migration.

brings them into the cache according to D-NUCA po-
lices, but does not move them thereafter. We do not
claim that this cache policy is desirable, we use it only
to isolate the effects of migration on our false positive
rate.

The ratio of false positives to true positives with and
without migration are shown in Figure 6. This ratio
serves to isolate the percentage of false positives that
result from migration, and we can see in this figure that
the effect is significant. If we can, in future work, find
a way to address migration, the accuracy of our filters
will improve. Counting Bloom filters, which allow re-
moval of set elements, may be of help, but it remains
to be seen whether their higher storage requirements
would be worth the benefit.

4.4 Per-L2 access Statistics

Finally, we examine the “per-L2 access” character-
istics of the Bloom filters. We consider each L2 access
(resulting from an L1 miss) as a whole. Thus, if any
of a core’s sixteen filters correctly predicts a hit in a
particular bankcluster, we consider the whole access
to have hit, regardless of the predictions from other fil-
ters. If there are no true positives, but one or more
false positives, then the whole access is considered a
false positive. If there are no positives returned, we
classify the access as a true or false negative. Results
are aggregated across all eight cores.

Figure 7 shows the Bloom filter accuracy for the
SPLASH-2 benchmarks. This shows the percentage
of L2 accesses for which our filters return the correct
prediction (either a true positive or a true negative) on
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Figure 7. Filter accuracy per L2 access.

the first pass. We believe that the primary way to im-
prove this accuracy will be to deal with migrations, as
discussed in Section 4.3.

5 Conclusion

In this paper, we have explored the use of Bloom
filters to create a smart search algorithm for CMPs
with D-NUCA caches. Our results are very promising,
showing that such filters can have very high accuracy,
which results in a reduction of block requests. Our fil-
ters are complexity effective—they make efficient use
of transistors, and do not make changes to the baseline
coherency protocols.

Our initial explorations leave room for future work.
Of most immediate importance, we will move on to
quantify the cycle and power savings that result from
our smart search. As shown in Section 4.3, if we
can address the false positives that linger after block
migration, very large improvements will likely result.
Counting filters may help address this problem, but us-
ing them in this context is not straightforward.
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RegionTracker: Using Dual-Grain Tracking for Energy 
Efficient Cache Lookup

Abstract

This work proposes energy efficient memory hierarchy
lookup structures aimed primarily at relatively large,
higher-level on-chip caches. The mechanisms proposed
provide location information for a large fraction of cache
references and eliminate the corresponding accesses to a
larger, slower and less energy efficient tag array. A key
contribution of this work is the concept of dual-grain
tracking where a two-level, two-grain approach is used to
dynamically focus a set of few tracking resources on
high-payoff memory areas. A coarse-grain tracking
structure uses imprecise information to identify accesses
to new regions of memory and then directs the allocation
of a precise, fine-grain tracking structure. We propose
RegionTracker, a simple implementation of dual-grain
tracking which can be easily partitioned for optimizing its
power and latency, and which does not use cascaded
lookups or impose any restrictions on cache placement.
We demonstrate that RegionTracker can significantly
reduce lookup energy for various L2 caches. For
example, we show that a RegionTracker that uses just
6.9% of the storage used by a conventional tag array and
that can track just 128 8Kbyte regions, is able to reduce
L2 lookup energy by 35% on the average for a 4MB L2
cache. We also demonstrate that RegionTracker can
complement conventional, demand-driven tag set buffers
and that it provides better energy savings.

1  Introduction
This work proposes simple mechanisms to reduce

cache lookup energy in higher level (L2 and L3) on-chip
caches while targeting applications with relatively large
memory footprints. A number of application,
semiconductor technology and microarchitectural trends
suggest that the contribution of tag lookup power to
overall processor power will increase in the future. Tag
energy will increase as higher level caches become larger
and are accessed more frequently.

The size of higher level caches will increase as a result
of application and semiconductor technology trends.
Historically, application memory footprints and working
sets for “typical” applications have grown and evolved.
At the same time, the gap between processor and memory

speeds has also grown. Larger on-chip caches help reduce
the combined effects of these two trends.

Other semiconductor and microarchitecture trends will
result in an increased number of accesses to higher level
caches. Specifically, although semiconductor technology
improvements have lead to smaller and faster transistors,
corresponding increases in processing speeds have
limited the amount of SRAM storage that can be accessed
within a reasonable number of clock cycles. This
combines with the low latency requirement of first level
caches to limit the size of L1 caches. This limitation
suggests that higher level caches will be accessed more
often. Recent trends towards simultaneous and fine-grain
multithreaded cores, as well as towards chip-
multiprocessors have also resulted in larger high level,
on-chip caches with increased traffic. Hardware and
software prefetching further increase the demand for
cache bandwidth. Finally, this increased cache traffic is
becoming unbalanced as some requests, such as many
coherence and prefetching requests, only access the tag
arrays. 

This works proposes RegionTracker, a complexity
effective mechanism for increasing the energy efficiency
of cache lookups. RegionTracker supplements the tag
array, providing the same information for many lookups
and thus eliminate man tag array accesses. RegionTracker
uses two simple structures. The first structure tracks
which coarse grain regions currently have blocks cached.
It uses this information to detect the first access into
newly touched regions. A second structure maintains
fine-grain location information for individual blocks
within regions (i.e., where the blocks are cached), but
only for a small number of regions, as instructed by the
coarse-grain tracking structure. As we explain in more
detail in Section 2, typical application behavior is such
that these two structures can be used to locate the blocks
referenced by many cache accesses, exploiting the same
behavior that makes small translation look-aside buffers
effective. 

As Section 3 explains, the implementation of
RegionTracker is straightforward and imposes no
additional restrictions on what can be cached
simultaneously; it also requires no changes to existing
cache implementations and avoids associative lookups
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Department of Electrical and Computer Engineering
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and updates. Imprecise information is used by the coarse-
grain tracking structure, allowing a simple
implementation at the price of capturing most relevant
requests but not all. Key to the energy efficiency of
RegionTracker is that each access precisely addresses a
very small portion of the RegionTracker structures.
Although RegionTracker can also potentially reduce
lookup latency and improve performance, this work
focuses on RegionTracker’s ability to increase lookup
energy efficiency.

RegionTracker is an example of mechanisms that rely
on the concept of dual-grain tracking, or DGT for short.
DGT mechanisms track block residency information at
two levels of granularity so that a relatively small
structure can efficiently satisfy many cache lookups. 

This work makes the following contributions: (1) it
introduces the concept of DGT; (2) it proposes
RegionTracker, an energy efficient implementation of
DGT, and demonstrates that practically sized
RegionTrackers can reduce energy significantly (e.g.,
35% of lookup energy for a 4Mbyte cache with a
RegionTracker that requires just 6.9% of the resources
required by a conventional tag array); (3) finally, it shows
that RegionTracker provides better energy reduction than
tag set buffers.

The rest of this paper is organized as follows: In
Section 2 we introduce the DGT concept and briefly
discuss how lookup energy can be reduced. Section 3
presents the RegionTracker implementation. We review
related work in Section 4. In Section 5 we demonstrate
RegionTracker’s utility, and compare it to an existing
technique for tag lookup energy reduction. Finally, in
Section 6 we summarize this work.

For clarity, and without the loss of generality, we will
use the term tags for conventional memory hierarchy
lookup structures. The techniques we discuss, however,
are applicable to other recently proposed lookup
structures such as the centralized lookup arrays of the
NuRapid memory hierarchy [10]. We also restrict our
attention to level-two caches, however, the methods
proposed should be directly applicable to even higher
cache levels. Finally, all L2 caches used in this study are
8-way set-associative because through experimentation
we found that our techniques are not noticeably sensitive
to associativity. We also assume that the L2 uses 128-
byte blocks (a commonly used size today).

2  Dual-Grain Tracking 
RegionTracker (the implementation details are given in

Section 3) achieves high energy efficiency via a two-
level, dual-grain tracking (DGT) approach where the first
level uses coarse-grain tracking and the second level uses
fine-grain tracking for only a few, large memory regions.

A region is a large continuous, aligned memory area of
power of two size.

The coarse-grain level aims at detecting newly touched
regions that have no blocks currently cached. It does so
by detecting first misses. An access for block B within
region R sent to cache C is a first miss if and only if no
block within region R, including B, is currently cached
within C. Once a first miss is detected, the fine-grain
tracking level starts tracking the location of all blocks
within the region. This is done by recording whether or
not a block is cached, and if so, in which data way it is
cached. This requires only a few bits per block, as
opposed to a full tag. It is important to observe that when
a first miss is detected, complete location information is
also detected for the whole region since none of its blocks
are currently cached. Thus, a single access uncovers
information for many blocks, allowing the fine-grain
tracking level to track all blocks as they accessed. This
property eliminates the need for an initial search of the
L2, and makes DGT effective despite a lack of substantial
temporal locality in the L2 stream (temporal locality is
typically absorbed by the L1 cache).

RegionTracker was designed primarily to exploit a
behavior that is typical of many applications with large
memory footprints. Specifically, although these
applications access a very large set of regions over their
lifetime, they typically operate on a few memory regions
at any given time. The first time an application accesses a
region, it incurs a first miss, giving RegionTracker an
opportunity to track subsequent references within that
region. Assuming that only a few regions are accessed at
a time, RegionTracker should be able to track them all
successfully using few resources. Much later, after many
regions have been touched, a region may be accessed
again. Given that the application has a large memory
footprint, it is likely that all previously accessed blocks
within the region have since been evicted from the cache
as a result of capacity and, to a lesser extent, conflict
misses. Accordingly, another first miss will occur and
RegionTracker again has the opportunity to detect it and
start tracking the region. 

2.1  Reducing Lookup Energy with DGT
RegionTracker impacts energy and latency as

summarized in Table 1. Prior to accessing the tag array
for each cache lookup, RegionTracker is examined.
Ideally, RegionTracker provides sufficient information to
completely avoid the tag access. This assumes an in-
series tag and data array organization for the L2 where
the RegionTracker is accessed first and then the tags are
accessed only if needed, and finally a single data way is
accessed. This is the norm in commercial designs because
it reduces power, e.g., [6]. We define a hit in
RegionTracker as an access which indicates definitively
— 2 —



that the requested block is either not in the cache, or is
located in a specific cache way. In the first case, only a
single way of the tag array needs to be accessed in
addition to replacement tracking information to determine
and update the tag that will be replaced. In the latter case,
there is no need to access the tag array at all. A lookup
miss occurs when RegionTracker provides no precise
information. In this case, more energy is used as the tag
array has to be accessed after the RegionTracker. 

3  RegionTracker Design and Application
The RegionTracker implementation of DGT studied in

this work consist of two structures: (1) the Cached
Region Hash or CRH, and (2) the Cached Block Vector,
or CBV. The CRH is used to detect the first miss into a
region and is identical to the CRH proposed in [24]. The
CBV tracks the location of all the blocks within the few
regions that are currently fine-grain tracked. The
organization of both structures is shown in Figure 1. Both
structures are indexed using parts of the incoming
address. Without loss of generality, in this section we
assume a 2Mbyte L2 cache, 42-bit physical addresses and
8Kbyte regions. The relevant parts of the incoming
address are a unique region number (bits 41 through 13),
and the block offset within the region (bits 12 through 7).
The lower seven bits are the byte offset within a block
and are not used by any RegionTracker structures. We
assume only physical addresses are used with
RegionTracker. 

3.1  Cached Region Hash
The CRH keeps track of those regions that have blocks

currently cached. We opt for a simple Bloom-like
filter [5] which provides an imprecise representation of
the set of regions that are currently cached. It consists of
a table of counts which are incremented on each block
allocation, and decremented on each eviction. The CRH
is indexed using the region number of the block being
allocated or evicted. In this work, the index is simply
computed as a sufficient number of bits starting from the
least significant bit in the region number (e.g., bits 13
through 22 for a 1K entry CRH); however, other indexing
functions could be used. This simple, imprecise
implementation allows us to use a very small, and hence
energy and latency efficient structure to capture most first
misses. Specifically, the CRH represents a superset of all
regions that currently have blocks cached. The CRH can

also easily be partitioned to further improve energy
efficiency.

When a CRH counter is read, there are two possible
outcomes. A counter value of zero indicates a first miss to
a region. A non-zero counter value indicates that some
portion of that region may be cached. The uncertainty
results from potential aliasing of different regions onto
the same CRH entry. When a first miss is detected,
RegionTracker allocates a CBV entry for the region and
starts fine-grain tracking of the location of all blocks in
that region.

3.2  Cached Block Vector
The CBV is a table where each entry comprises a

region tag and a set of information bits for each block
within the region. For example, with 8Kbyte regions and
128-byte cache blocks, each CBV entry contains 64 block
information fields. In the configurations considered in
this work, the information fields encode whether or not
the block is cached and where. For an 8-way set-
associative cache, four bits are sufficient per block to
encode the nine possible states: “not cached” or “cached
in way N” where N ranges from 0 to 7. Depending on the
cache organization, other information may also be stored
in the information fields. For example, the CBV might
store status or coherence information, or in a NuRapid
memory hierarchy [10], the exact sub-array index can be

Table 1. How RegionTracker (DGT column) impacts power and 
latency and which parts of the conventional L2 tag array have 

to be accessed.
DGT L2 Energy Latency L2 Tag Access
miss miss increased increased all ways
hit miss decreased decreased single way + replacement information

miss hit increased increased all ways
hit hit decreased decreased status bits for one way as needed

Figure 1: (a) CRH and CBV organization for 8Kbyte regions, 42-
bit physical addresses, 128-byte blocks and an 8-way set-associative 
cache.(b) An alternative fully-associative CBV implementation that 

results in lower power and latency.
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stored in the CBV. In the implementations considered in
this work, status information is not stored in the CBV.

To access the CBV, the region number is compared
with the region tags. If a matching entry is found, the
information contained in the corresponding block field
can be used to access the appropriate data array. The
CBV is updated when blocks being tracked are allocated
or evicted from the cache so that the CBV block
information remains coherent. CBV entries are evicted
when space is exhausted and a new entry has to be
allocated following the detection of a first miss. Various
replacement policies are possible, but this work uses an
LRU replacement algorithm. While Figure 1 shows a
fully-associative CBV, other organizations are possible as
the CBV can be partitioned both vertically and
horizontally to reduce energy and latency. Although we
do not present the results here, for the programs we
studied an 8-way set-associative CBV achieves coverage
very close to a fully-associative CBV (within 2%).
Further CBV optimizations are possible to reduce energy
and latency, but the details are beyond the scope of this
work. We note that only four bits need to be read out of
the CBV array in Figure 1. Accordingly, only four
bitlines are discharged during reads.

3.3  Energy and Storage Requirements
Since each RegionTracker access uses less energy than

a conventional tag array access, using RegionTracker can
reduce the total lookup energy. Section 5.3 describes the
models used to calculate energy used by tag arrays and
the RegionTracker structures. The various RegionTracker
configurations presented in this paper use between 12%
and 16% of the energy of the tag array for each access. 

The low energy consumption results from two factors:
(1) small size, and (2) small number of bits accessed. The
RegionTracker configurations used in this work require
between 0.8% and 18% of the storage of the L2 tag array.
Appendix A provides a detailed discussion of the storage
requirements. In addition to its small size, RegionTracker
also benefits from only accessing a few bits on each
access. For the configurations studied in this work, each
CRH entry is only 10 bits, and only 4 bits in the CBV
entry need to be read for each access. This compares to
184 tag bits that need to be read and compared for a 4MB,
8-way set-associative L2 cache with 128-byte blocks and
42-bit addresses.

3.4  RegionTracker Complexity
RegionTracker successfully reduces cache lookup

energy with a minimal increase in hardware complexity.
Since RegionTracker places no restrictions on how the
cache operates, it does not introduce any new complexity
in the implementation of the cache itself.   Meanwhile,
the RegionTracker structures are small and simple, and
should lend themselves to a low complexity

implementation. Finally, relatively little information
needs to be communicated between the cache and
RegionTracker; thus, adding RegionTracker to the cache
access path should not significantly increase the overall
complexity.

4  Related Work
Given the proportion of chip area devoted to caches,

many contributions have been made to reducing cache
power. However, most existing proposals target level one
caches. The filter cache [16], consisting of a small cache
placed in front of the L1 cache, can service a large
fraction of L1 accesses, but misses to the filter cache
incur an increased latency. A similar mechanism has been
proposed for increasing L1 bandwidth [35], and [13]
explored the idea of using these line-buffers in front of
the L2 tag and data arrays to reduce power. Park et al.,
[26] proposed a simple modification to this scheme which
increased its effectiveness. These techniques exploit
temporal and fine-grain spatial locality. As shown in
Section 5.4, RegionTracker complements these
techniques by filtering many L2 accesses that would only
be caught by a larger TSB. Specifically, we show that a
tiny (two entry) TSB combined with a RegionTracker
outperforms a TSB with as many as 128 entries, and we
also demonstrate that RegionTracker is more energy
efficient.

A number of techniques have also been proposed for
reducing the area and power of tag arrays. Decoupled
sectored caches [32] and Caching Address Tags [34] are
two techniques which reduce the tag array area by sharing
tags amongst multiple cache blocks. The resulting
structure has fewer tags than cache blocks. This exploits
the same spatial locality as RegionTracker.   However,
since these techniques rely on a reduced number of tags, a
single cache miss could require the invalidation of
multiple cache blocks because their corresponding tag has
been evicted. This incurs not only an initial latency
penalty on such a miss, but also a possibly higher overall
miss rate which can indirectly impact overall power and
performance. RegionTracker does not affect L2 miss rate
and, as we report in Section 5.5, with straightforward
tuning it never hurts overall performance and hence
power. Finally, implementing these techniques requires
changing the L2 cache controller, something avoided by
the simple RegionTracker implementation.

Other techniques which address tag array power
include way prediction [12,14,28] and memoization [20],
as well as techniques which attempt to optimize tag
search energy using multi-stage tag lookup [8,9]. The
former techniques, as well as [4] and [25] apply mostly to
the L1 instruction cache, while the latter techniques were
demonstrated for the L1 data cache. It is not clear if these
techniques will scale well to larger L2 caches with higher
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associativities. Additional work has incorporated
compiler support for reducing cache power [1,2], and
much work has been done which relies on cache
partitioning, layout and circuit level techniques to realize
energy reduction in caches, including [11, 17, 18, 19, 33].

Bloom filters similar to the CRH have been previously
proposed for avoiding snoop-induced tag lookups [23] or
snoop broadcasts [24], for L1 hit/miss prediction [27],
load/store queue complexity reduction [30] and for miss
prediction [22]. Whereas the Bloom filters previously
proposed cannot track the locations of individual cache
blocks, RegionTracker overcomes this short-coming by
combining a bloom-like filter with a fine-grain tracking
structure which can track and service most L2 requests.
5  Evaluation

This section is organized as follows: In Section 5.1 we
describe our experimental methodology. In Section 5.2
we demonstrate the effectiveness of RegionTracker at
servicing lookup requests. In Section 5.3 we report
energy savings compared to a standalone, conventional
tag array. In Section 5.4, we compare RegionTracker with
tag set buffers. Finally, in Section 5.5 we summarize our
findings about overall power and performance.

5.1  Methodology
We used Simplescalar v3.0 [7] to simulate the

processor detailed in Table 2. Amongst several
modifications, we modified the macros for the NOP
instruction to not generate memory references (the NOP
is a load to register zero and the hardware is supposed to
ignore this load) and added support for modelling
contention in the memory system. We compiled the SPEC
CPU 2000 benchmarks for the Alpha 21264 architecture
using HP’s compilers and for the Digital Unix V4.0F
using the SPEC suggested default flags for peak
optimization. All benchmarks were run using a reference
input data set. It was not possible to simulate a few
benchmarks due to insufficient memory resources.
Table 3 presents a list of the benchmarks as well as their
memory footprints. Most of these footprints greatly
exceed the L2 capacity, thus a reasonable RegionTracker
cannot trivially track all blocks for an application.  

To obtain reasonable simulation times, samples were
taken for one billion committed instructions after
skipping the first 100 billion committed instructions. For
art and parser we only skipped 20 billion instructions
prior to collecting measurements. We experimented with
several other one billion instruction samples and with
longer samples of up to 40 billion instructions and
observed that results did not vary significantly for the
different samples. A continuous instruction sample is
important for our measurements as RegionTracker
structures have to be kept coherent throughout execution.
Unless otherwise noted we used timing simulation to

measure the overall performance and power impact of
RegionTracker. As shown in Table 2, the memory system
comprises split level one data and instruction caches, a
unified second level cache and a main memory. We
studied L2 caches in the range of 2Mbytes to 16Mbytes.
In the interest of space and clarity we use an A/B naming
scheme for RegionTracker configurations where A is the
number of CRH entries and B is the number of CBV
entries. In all experiments we use an 8Kbyte region size.
Section 5.3 describes the details of our power modeling
methodology.

5.2  Coverage with Practical RegionTrackers

We first report coverage results with RegionTracker.
Coverage is the percentage of cache accesses for which
RegionTracker provides precise location information,
indicating either that the block is not cached, or cached in
a specific cache way. We used functional simulation in
order to evaluate a wide range of RegionTracker
configurations. Figure 2 presents the results of timing
simulations for the most promising RegionTracker
configurations, showing the average coverage each
configuration. Each curve represents a separate
configuration, while the x-axis indicates the size of the
L2 cache. As expected, coverage increases with larger
RegionTrackers and for a fixed RegionTracker

Table 2. Base processor configuration
 Branch Predictor Fetch Unit

16k GShare +16K bi-modal 
16K selector

2 branches per cycle

Up to 6 instr. per cycle 
64-entry Fetch Buffer
Non-blocking I-Cache

Issue/Decode/Commit Scheduler
any 6 instr./cycle 128-entry/64-entry LSQ

FU Latencies Main Memory
same as MIPS R10000 Infinite, 300 cycles

L1D/L1I Geometry UL2 Geometry
32KBytes, 2-way set-associative 

with 64-byte blocks
2Mbytes to 16Mbytes, 8-way 
set-associative with 128-byte 

blocks
L1D/L1I/L2 Latencies Cache Replacement

3/3/16 cycles LRU

Table 3. Total simulated memory bytes allocated per 
application during our simulation interval.

Benchmark Memory Footprint Benchmark Memory Footprint
ammp 27M gcc 133M
applu 186M gzip 185M
apsi 196M lucas 189M
art 89M mcf 186M

bzip2 188M mesa 10M
crafty 2M mgrid 57M
eon 2M parser 62M

equake 50M swim 196M
facerec 17M twolf 3M
fma3d 107M vortex 70M
galgel 45M vpr 51M
gap 193 wupwise 181M
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configuration coverage decreases with L2 size. This
result implies that on the average RegionTracker is well
behaved and can be easily tuned to each cache
configuration. Overall coverage varies from as high as
61% to as low as 15%. The results also demonstrate that
if the size of the RegionTracker relative to the L2 cache is
kept constant, then coverage remains roughly constant as
the cache size increases. Consider, for example, a 2K/64
RegionTracker with a 4MB L2 cache, which achieves
45% coverage. Doubling the size of the cache and
RegionTracker results in 46% coverage for the 4K/128
RegionTracker with the 8MB cache.

We next demonstrate that although RegionTracker
coverage varies significantly across programs, it is high
for most. Figure 3 presents the coverage for a 4K/128
RegionTracker for each benchmark with a 4MByte L2
cache. On average, this configuration achieves 55%
coverage, with a minimum of 9.5% coverage for vortex
and a maximum of 97.6% coverage for gzip.   Those
programs with low coverage generally access a large
number of regions and require larger CBVs to obtain
better coverage. 

5.3  Energy Savings Compared to Conventional Tags
This section demonstrates that significant energy

savings are possible with practical RegionTrackers for

various L2 caches. We used CACTI 3.2 [29] to model the
energy used by the L2 tag arrays and the RegionTracker
structures. All structures were modeled in a 65nm
technology. We modeled L2 caches from 2MB to 16MB
in size. We selected a sub-bank size of 512KB1, and each
cache was divided into the appropriate number of sub-
banks. The tag energy was computed as the sum of the tag
decode, wordline, bitline, sense amp, and compare energy
as reported by CACTI. For the RegionTracker
configurations, the CRH was modeled as a direct mapped
cache, but the contribution of the tag array energy was
ignored as the CRH is an un-tagged structure. The CBV
was modeled as a combination of a direct mapped cache
and a fully associative CAM structure.

In modelling the various structures, we observed that
the sense amps were contributing a significant portion of
the energy, especially for the cache tag arrays. Previous
work suggests that a power optimized sense amplifier
would use about one third of the power used by the sense
amplifier modeled by CACTI [21]. We thus scaled sense
amp power accordingly. Note that this adjustment reduces
the benefits of RegionTracker.

The energy savings were calculated based on the
following assumptions:
• It is possible to access a single way in the tag array.
• On an L2 miss, only a single tag way is accessed to

write the updated tag information.
• An L2 hit requires a full tag array lookup, and an L2

miss requires (1+1/A) tag array lookups, where A is
the L2 associativity (i.e., initial access + single way
access to update info).

• Each L2 hit caught by RegionTracker avoids a tag
lookup.

• Each L2 miss caught by RegionTracker avoids the
initial full tag set access and replaces it with a single
tag way access (i.e., 2/A accesses are now required
instead of (1+1/A))

• Each L2 access reads both the CRH and CBV.
• Each L2 miss causes a write to the CRH.
• Each L2 miss caught by RegionTracker also writes to

the CBV.
These assumptions were used in combination with

statistics from the simulations to calculate the lookup
energy saved, as a percentage of the lookup energy
consumed by a conventional L2 tag array.

Figure 4 reports average energy savings for different
RegionTracker configurations (with a CRH with between
512 and 4k entries, and either 64 or 128 CBV entries),
represented by different curves, and for L2 cache sizes
from 2MB to 16MB, varied along the x-axis. The highest

Figure 2: Average coverage achieved by various RegionTracker 
configurations (different curves) for various L2 cache sizes (x-axis).

Figure 3: Per benchmark coverage for a 4K/128 RegionTracker 
with a 4MB L2 cache.
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1 We evaluated various sub-bank sizes using CACTI and found that
512KB sub-banks minimized the energy-delay product.
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savings of 44% is observed for the 4K/128 RegionTracker
and the 2Mbyte L2 cache. This RegionTracker produces
savings of 38%, 29% and 16% for the 4Mbyte, 8Mbyte
and 16Mbyte caches respectively. 

Since cache sub-bank size remains constant for all
cache sizes, the tag energy remains almost constant; thus,
the energy savings are reduced for larger caches
according to the reduction in coverage shown in Figure 2.
However, as the L2 cache size increases we can also
increase the RegionTracker size to maintain the coverage
and energy savings. It should be emphasized that as cache
capacity increases, larger RegionTrackers become
practical as their storage requirements become a smaller
fraction of the L2 tag arrays.  

Figure 5 indicates that while RegionTracker is robust
and provides significant energy reductions for most
programs, there are a few programs which exhibit an
increase in energy consumption. This figure reports per

program energy changes for a 4K/128 RegionTracker
with a 4MB L2 cache. For a few programs,
RegionTracker increases the lookup energy slightly, with
the largest increase of 5% being observed for vortex and
vpr. This compares with an average reduction of 38% and
a maximum savings of 82% for gzip.

5.4  Comparing with Conventional Tag Set Caching
As we discussed in Section 4, a number of existing

proposals for reducing L2 tag power rely either on
efficient encoding or on keeping a small cache of recently
accessed tags. In this section, we compare RegionTracker
with tag set buffers (TSBs), or line buffers as they are
often referred to, which have sizes less than or
approximately equal to the size of the RegionTracker
structure. We compare the two approaches using two
metrics, coverage and energy savings. As we explain,
TSB coverage rivals that of RegionTracker, however,
energy savings does not.

A TSB is a small cache of recently accessed tag sets.
For example, for an 8-way set-associative cache, each tag
set entry will hold eight tags. Entries are allocated on
demand as accesses probe the conventional tag array.
Each access first probes the TSB, and if the set it maps to
is found in the TSB, then there is no need to access the
tags. If the set is not found in the TSB, then it is brought
into the TSB after being read from the tag array. 

Figure 6 reports average coverage for various fully-
associative TSBs (range of two to 128 entries),
standalone 1K/64 and 1K/128 8-way set-associative
RegionTrackers and combinations of the aforementioned
TSBs and RegionTrackers. All results in Figure 6 are for
a 4MB L2 cache. The grey bars report coverage for TSBs
of the corresponding size (listed along the x-axis). The
white bars report coverage for hybrid RegionTracker and

Figure 4: Average energy savings expressed as fraction over the 
energy of a conventional L2 tag array. Shown are RegionTrackers 

with various CRH entry counts and a 64 or 128-entry CBVs. Results 
are shown for L2 caches of 2Mbytes to up to 16Mbytes (x-axis). 
Each curve corresponds to a different RegionTracker, labeled 

CRH/CBV. All RegionTrackers are 8-way set-associative.

Figure 5: Per program relative energy savings with a 4K/128 
RegionTracker and a 4MB L2 cache, expressed as a fraction over 

the conventional L2 tag array power. 
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TSB organizations. The TSB entry count is listed along
the x-axis. The first four are for the 1K/64 RegionTracker
and the next four white bars are for the 1K/128
RegionTracker. Finally, the two black bars report
coverage with just the 1K/64 (left) and the 1K/128 (right)
RegionTrackers. Table 4 reports the storage requirements
in bits of the TSBs and the two RegionTrackers as a
fraction of the L2 tags. While it appears that a tag buffer
can achieve coverage comparable to, or better than, a
similarly sized RegionTracker, Section 5.4.1 shows that
RegionTracker obtains better energy reduction.  

5.4.1  Tag Set Buffer vs. RegionTracker trade-offs
A number of factors suggest that RegionTracker might

offer a number of advantages over TSB.  The designs of
RegionTracker and TSBs are drasctically different. We
used CACTI to model various TSBs, and while TSB may
be conceptually simpler, each TSB access utilizes more
energy than each RegionTracker access.  Thus, a TSB
with a given coverage will likely use more energy than a
RegionTracker configuration that acheives similar
coverage.

Figure 7 shows the average energy reduction for tag set
buffers with 16, 32, 64 and 128 sets (different curves) for
L2 caches of various sizes (x-axis). Only two
configurations actually reduce energy on average, and the
maximum reduction is only 3% for a 128 set TSB with a
16MB cache. Contrary to RegionTracker, TSB energy
savings generally increase with cache size as the number
of tag bits decreases for larger caches, and TSB coverage
remains roughly constant as the cache size increases.

RegionTracker has an additional set of potential
advantages over tag set buffers. These include the
increased flexibility of RegionTracker implementations.
Most accesses to RegionTracker involve a very small
number of bits compared to the 180 or so tag bits
involved in a TSB access. This leads to a flexibility in
how the RegionTracker structures can be implemented,
and where they are located. Also, RegionTracker would
be relatively easy to port to novel or unconventional
cache architectures such as NuRapid [10] or skewed

associative caches [31]. An investigation of these issues
is beyond the scope of this paper. The few results
presented indicate that while both TSBs and
RegionTracker can achieve comparable coverage,
RegionTracker provides a much larger energy reduction
than TSBs.
5.5  Performance and Overall Power

As mentioned above, RegionTracker affects L2 latency,
and thus impacts both overall performance and power.
We have measured the overall performance impact of
RegionTracker configurations with 64 or 128 CBV
entries and 512, 1K, 2K, and 4K CRH entries, assuming
that it decreases L2 access latency by two cycles on a
RegionTracker hit while it increases it by one cycle for a
RegionTracker miss. These assumption were validated
using an analytical latency model based on CACTI [29].
We studied caches of 2Mbytes and 4Mbytes. On average,
overall performance increased less than 1% with
RegionTracker. In the best case of twolf, performance
increased by 2% with a 128/4k RegionTracker and a 2MB
cache. Only a few benchmarks suffered from decreased
performance, with the worst case being fma3d which had
a slowdown of 0.02% with a 128/512 RegionTracker and
a 4MB L2 cache. Correspondingly, overall processor
power decreased slightly on average with the
RegionTracker configurations we studied, although a few
benchmarks saw increases of less than 0.1% for some
configurations.
6  Summary

We proposed RegionTracker as an area, power and
latency efficient implementation of memory hierarchy
lookup structures aimed primarily at higher-level,
relatively large, on-chip caches.

RegionTracker implements the concept of dual-grain
tracking, using a simple Bloom-like filter (CRH) to track
coarse-grain regions, combined with a small table of fine-
grained region tracking entries (CBV). A key result was
the demonstration that using a dual-grain tracking

Table 4. Comparing the storage requirements of tag buffers and 
RegionTrackers. Storage requirements are measured in bits 

and reported as a fraction over that of a conventional tag array 
for a 2Mbyte cache.

Tag Set Buffer Storage Requirements (bits)
2 < 1%
4 < 1%
8 < 1%

16 < 1%
32 1.6%
64 3.3%

128 6.5%
CBV 64 + 1K CRH 6.6%

CBV 128 + 1K CRH 10.9%

Figure 7: L2 lookup power reduction (increase) with tag buffers of 
various sizes. 
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approach provides significantly more potential than
simple, demand-based allocation of fine-grained tracking
resources. We demonstrated the utility of RegionTracker
for reducing power and latency for L2 tag lookups. A
2k/128 RegionTracker saves 35% of the tag lookup power
for a 4Mbyte L2 cache, while requiring less than 7% of
the resources required for the conventional tag array.
RegionTracker can be complemented by adding a tiny tag
set buffer to achieve better coverage than either
RegionTracker or tag set buffers can provide on their
own. Other potential applications of RegionTracker
include increased tag lookup bandwidth for aggressive
prefetching, or increasing L1 tag port bandwidth and
lookup latency, although the latter application would
involve complex scheduling and latency issues.
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Appendix A  RegionTracker Relative Storage 
Requirements

Since RegionTracker acts to supplement a conventional
tag array to reduce energy, it should require minimal
overhead in terms of on-chip area. Tables 5 and 6 report
the storage requirements (total bit count) of various CRH
and CBV structures respectively, demonstrating that
reasonably sized RegionTracker structures are much
smaller than conventional tag arrays. The storage
requirement of each structure is expressed as a fraction of
the storage requirement of the tag array of a 2Mbyte L2
cache. This provides a first-order approximation of the
area cost. The overall bit requirement is meaningful as an
area estimate as it remains constant regardless of
implementation details, such as partitioning into separate
banks or sub-arrays.

Table 5 shows CRH requirements for entry counts of
512 through 4K. The size of each CRH entry depends on
the cache configuration and region size. In general, each
block in the cache could map to the same CRH entry as a
result of aliasing. However, with the simple indexing
function used in this work, only a fixed number of cache
sets will can map to any CRH entry. Thus the number of

bits required for each entry is only N x lg(L2 Associativity
x (Region size / block size)), where N is the number of
CRH entries.   

The CBV storage requirements are primarily
proportional to the number of CBV entries, the number of
blocks within the region and the number of L2 ways.
Larger regions or smaller blocks results in more block
information fields in each CBV, and the L2 associativity
determines the size of each field. The size of the region
tags has only a small effect on the total CBV size. As
shown in Table 6, a 128-entry CBV with 8Kbyte regions
requires less than 9% of the bits needed by the
conventional tag array. The percentages shown in Table 6
can also be used to estimate the relative cost of
RegionTracker for larger caches since CBV requirements
are not directly affected by cache size. For example, as
the cache size doubles, the tag array approximately
doubles in size as well, thus halving the relative storage
requirements of the CBV. This work considers caches in
the range of 2MB to 16MB, so while a 512 entry CBV
requires 125% of the storage of a 2MB L2 tag array, it
requires only 4.76% of the bits required by a conventional
tag array for a 16MB cache.

Table 5. CRH storage requirements as a fraction of the bits 
required by the tag array of a 2Mbyte 8-way set-associative L2 

cache with 128-byte blocks
CRH entries Storage

512 1.2%
1K 2.4%
2K 4.8%
4K 9.6%

Table 6. Eight-way set-associative CBV storage requirements as 
a fraction of the bits required by the tag array of a 2Mbyte, 8-
way set-associative L2 cache with 128-byte blocks. Ratios are 
shown for different CBV entry counts and region sizes. We 
assume 42-bit physical addresses and two status bits per tag 

entry (fractions will improve if additional status bits were used). 
CBV Entries Region Size in Bytes

512 1K 2K 4K 8K 16K 32K
16 <1% <1% <1% <1% 1.1% 2.0% 3.9%
32 <1% <1% <1% 1.2% 2.1% 4.0% 7.9%
64 <1% 1.0% 1.4% 2.3% 4.3% 8.1% 15.8%

128 1.4% 1.8% 2.7% 4.6% 8.4% 16.1% 31.5%
256 2.6% 3.5% 5.4% 9.2% 16.8% 32.2% 62.8%
512 5.2% 7.0% 10.7% 18.3% 33.5% 64.2% 125.6%
— 10 —



 Abstract
Branch prediction is essential in modern high-perfor-
mance processors. Unfortunately, mispredictions are
inevitable and cost energy. 
We study branch mispredictions and show that there are a
few high-cost mispredictions that account for most of the
cost. We show that a low-cost branch instruction tends to
remain low-cost in future reappearances. We exploit this
predictability and introduce a simple yet efficient cost pre-
dictor that identifies low-cost branch instructions with an
accuracy above 95%. 
We use our findings and introduce cost-aware branch
prediction. In cost-aware branch prediction we exploit a
simple predictor for low-cost branch instructions and
leave the full-blown predictor for branch instructions with
higher costs. On average, we reduce branch predictor
access frequency up to 50% with a maximum perfor-
mance loss of 0.1%. This results in up to 22% branch pre-
dictor energy reduction. 

1. INTRODUCTION 
 Speculation is an essential part of high-performance

processors. Modern processors rely on branch outcome
speculation to keep the pipeline full and to enhance perfor-
mance. To achieve this, previous work has extensively
studied branch instruction behavior and has suggested a
variety of techniques to predict branch outcome. Despite
steady progress in developing more accurate predictors,
predictors still make (and are expected to continue making)
mispredictions. While they are well-known mechanisms to
recover from such mispredictions and to discard the mistak-
enly executed instructions, the associated energy cost is
inevitable. 

Reducing this cost has been the goal of several previous
studies. Such efforts have focused on either exploiting more
accurate branch predictors, effectively reducing the mispre-
diction frequency (e.g., [3,5]), or reducing the cost associ-
ated with the occurring mispredictions(e.g.,[2,11]).
However, although some mispredictions waste more energy
compared to others, such techniques favour uniformity, i.e.,

they assume that all mispredictions are equally costly, per-
forming the same actions per misprediction. 

In this work we show that mispredictions are not equally
important. In fact, a few (about 30%) of mispredictions
account for the major part (more than half) of the mispre-
diction cost. 

We also investigate whether misspeculation cost can be
estimated in advance and show that the speculation cost
associated with a branch instruction can be predicted with
high accuracy. In other words, low-cost branch instructions
tend to remain low-cost. We identify low-cost branch
instructions with an accuracy above 95% by using a simple
cost-predictor. 

We exploit misprediction cost variation and predictabil-
ity and introduce cost-aware branch prediction. Conven-
tional branch predictors access several power hungry
structures to predict branch instruction outcome. This
would be efficient (from the energy point of view) only if
the energy overhead associated with such predictions does
not exceed the energy cost of a misprediction. Accordingly,
in cost-aware branch prediction we use a full-blow, energy
hungry branch predictor for branch instructions with high
mispredictions costs. For low-cost branch instructions, we
use a small, simple and energy efficient branch predictor. 

 Speculation cost prediction can have other potential
applications in areas such as checkpointing (e.g., saving
energy by selectively allocating checkpoints for high-cost
branch instructions) or in multithreaded cores (e.g.,
improving performance by giving higher priority to fetch-
ing instructions from threads with less high-cost branches).
However, due to space limitations, in this work we do not
consider these applications.

We make the following contributions:
•  We show that speculation cost a) is not uniformly dis-

tributed among mispredictions and b) is predictable using
a low-overhead, simple and effective cost predictor.

•  We introduce cost-aware branch prediction to reduce
power dissipation in the branch predictor. We do so by
avoiding using a full-blown predictor for low-cost branch
instructions. 

Using Speculation Cost Predictability in Low-Power
 Cost-Aware Branch Prediction

Ehsan Atoofian, Amirali Baniasadi, and Farzad Khosrow-Khavar
Electrical and Computer Engineering Department
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Branch mispredictions result in wasted energy (con-
sumed by flushed instructions) and time (cycles spent on
executing mispredicted instructions). In this work we use
the number of mispredicted (and therefore flushed) instruc-
tions to estimate cost. Our study shows that similar conclu-
sions can be reached if the number of cycles spent on
mispredicted instructions is used to estimate cost. 

The rest of the paper is organized as follows. In Section
2 we study speculation cost. In Section 3 we introduce and
study cost prediction. In Section 4 we present cost-aware
branch prediction. In Section 5 we present our methodol-
ogy and evaluate cost-aware branch prediction.   In Section
6 we review related work, Finally, in Section 7 we offer
concluding remarks.

2.  SPECULATION COST
A previous study shows that a high percentage of

fetched instructions are flushed due to mispredictions [2].
The flushed instructions are referred to as extra work. Extra
work is not equally distributed among all mispredictions.
While some mispredictions result in flushing a large num-
ber of instructions, others do not flush that many. 

In Figure 1(a) we report misprediction cost distribution
for the subset of SPEC CPU 2000 benchmarks studied here
and the base processor presented in Table 1 (see Section 5
for the methodology). We classify mispredictions based on
their cost, i.e., how many instructions they flush. For exam-
ple, the 1_7 category represents the percentage of mispre-
dictions flushing less than 8 instructions. 

Individual program behavior varies. For most programs,
mispredictions with a cost of 32 or higher are relatively fre-
quent (e.g., 176.gcc) or the majority (e.g., 175.vpr). In other
programs most mispredictions have relatively small cost
(e.g., 253.perlbmk). On the average, about 67% of the
mispredictions have a cost of less than 32.

Figure 1(b) shows the contribution of each mispredic-
tion category to the overall cost. Whereas in Figure 1(a)
each misprediction counted the same independently of its
cost, here misprediction is weighted by its actual cost. For
most applications, more than half of the overall cost is the
result of mispredictions with a cost higher than 32 instruc-
tions. On the average, about 53% of the overall cost is the
result of such mispredictions.

We conclude from Figure 1 that mispredictions are not
equally costly: less frequent high-cost mispredictions
account for a large share of total cost, while more frequent
low-cost mispredictions, account for a lower share.

  

3. COST PREDICTION
Our study shows that a mispredicted branch flushing

low number of instructions is likely to flush low number of
instructions next time mispredicted too. We exploit this

behavior and suggest using branch cost history to estimate
possible future speculation cost. 

To speculate misprediction cost, we use a table of satu-
rating counters accessed by xoring the instruction PC and
the global branch instruction history. The saturating counter
records how frequently the branch has been low-cost in the
past.

To differentiate between a low-cost misprediction and
other mispredictions we use a pre-decided low-cost thresh-
old (LCT). 

Upon a low-cost misprediction (i.e., a misprediction
with a cost less than LCT), we increment the corresponding
table counter. On a high-cost misprediction we reset the
counter. At fetch we probe this table and mark a branch as
low-cost if the corresponding counter is saturated to the
maximum value.

In Figure 2 we report how accurately low-cost branch
instructions can be predicted by various cost predictors. We
study how changing design parameters impacts predictor
accuracy for a highly accurate and low-overhead cost pre-
dictor. We vary the LCT in part (a), the counter width in
part (b) and the number of entries in part (c).

In Figure 2(a) we report accuracy, i.e., how often a
branch instruction predicted to be low-cost turns out to be
one, for different LCTs and for a cost predictor equipped

Figure 1: Branch mispredictions cost class: a) frequency b)
share of total misprediction cost.
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with a 128-entry table of 3-bit counters. In general, accu-
racy improves as LCT increases. Average accuracy varies
between 96.7% and 98.8% for different LCTs. In Figure
2(b) we report accuracy for different counter sizes. We
assume a 128-entry table and an LCT of 16. Accuracy is
higher for larger counters. Average accuracy varies
between 97% and 98.6% for different counter sizes. In Fig-
ure 2(c) we report accuracy for different table sizes. We
assume 3-bit counters and an LCT of 16. In general, larger
tables show better accuracy. Average accuracy varies
between 97.6% and 98.4% for different table sizes.              

An accurate evaluation of the cost predictors studied
here would require measuring predictor coverage in addi-
tion to accuracy. Therefore, in Figure 3 we report coverage
(i.e., the percentage of low-cost branch instructions identi-
fied) for various cost predictors. Similar to Figure 2, we
vary the LCT in part (a), the counter width in part (b) and
the number of entries in part (c).

In Figure 3(a) we report coverage for different LCTs and
for a cost predictor equipped with a 128-entry table of 3-bit
counters. In general, coverage improves as LCT increases.
Average coverage varies between 74.7% and 95.2% for dif-
ferent LCTs. In Figure 3(b) we report coverage for different
counter sizes. We assume a 128-entry table and an LCT of
16. Coverage is lower for larger counters. Average cover-
age varies between 76.8% and 96.1% for different counter
sizes. In Figure 3(c) we report coverage for different table
sizes. We assume 3-bit counters and an LCT of 16. In gen-
eral, larger tables show better coverage. Average coverage
varies between 83.1% and 86.8% for different table sizes.

4. COST-AWARE BRANCH PREDICTION
Developing alternative power-aware branch predictors

for high-performance processors is important due to two
reasons. 

First, conventional high-performance designs access the
predictor aggressively and frequently. This requires using
multi-ported structures and can result in high temperatures
(possibly resulting in faults) and higher leakage power.

Second, the branch predictor is an energy hungry unit
and consumes a considerable share of the processor’s
energy budget [7]. 

In this study we use the combined predictor [3]. This
predictor accurately captures the behavior of many
branches. 

 Cost-aware branch prediction (CAP) exploits variations
in cost and predictability in order to reduce predictor
power. This is achieved by selectively using a simpler and
smaller predictor for branch instructions which are both
well behaved and low-cost. 

Accordingly, CAP uses a small filter, referred to as the
CAP-filter, to identify low-cost, high-confidence branch
instructions. This filter is an extension of the cost predictor
introduced earlier and includes information regarding cost
and confidence. We use this filter to guess the branch out-
come for low-cost branches. 

Figure 4 shows the organization of the CAP-filter struc-
ture. In this work we use a 128-entry direct-mapped CAP-
filter after testing several alternatives. We have observed
that storing 128 entries provides adequate information with
affordable overhead. While smaller filters tend to miss
energy saving opportunities for some applications, larger
filters results in unjustifiable overhead. 

Figure 2:  Prediction accuracy: a) for a cost predictor using 128-
entry of 3-bit counters for different LCTs (i.e., 4, 8, 16, 32) b) for
a 128-entry cost predictor for saturating counters with different
sizes (1, 2, 3, and 4-bit counters). LCT is 16. c) for different
predictor sizes (i.e., 16, 32, 64, 128, 256, 512, 1024 entries). LCT
is 16 and each entry has a 3-bit counter. 
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Every CAP-filter entry has 3 fields: tag, a 3-bit counter
to record cost, and valid. High confidence branch instruc-
tions are stored in the filter. Branches are known to be high
confidence if the corresponding saturating counters in the
bimodal and the gshare predictors are saturated to strong
taken. We focus on taken branches as our study shows that
they account for a larger share of high confidence branch
instructions. The 3-bit saturating counter records how fre-
quently the branch has been low-cost in the past. We incre-
ment the corresponding table counter for low-cost branches
and reset the counter for high-cost (flushing more than 16
instructions) ones. 

The last field, “valid”, is initially (i.e, when the branch
is stored in the filter) set to zero. An accurately predicted

branch sets the “valid” bit to one. If the “valid” bit associ-
ated with the branch is 0, the original predictor is accessed.
If a branch is mispredicted we reset the valid bit. We only
trust the CAP-filter if the valid bit is set. 

It is easier to reasons about CAP if we assume that for
each dynamic branch instruction, we access the CAP-filter
prior to the original predictor (we may access them in paral-
lel to avoid increasing latency). Accessing CAP-filter
allows us to decide if the branch is a low-cost branch
instruction. If so, we save power by not accessing the
branch predictor. If the branch is not present in the CAP-fil-
ter we access the original predictor. A branch is removed
from CAP-filter either because of limited space or because
it is mispredicted.

Provided that sufficient number of low-cost branches are
accurately identified, CAP can potentially reduce branch
prediction energy consumption. However, it introduces
energy overhead and can, in principle, increase overall
power dissipation if the necessary behavior is not there. We
take into account this overhead in our study and show that
for the programs we studied CAP is robust. 

5.  METHODOLOGY AND RESULTS
To evaluate CAP we report performance, predictor

access frequency and energy reduction. 
We use a 128-entry CAP-filter. Using Wattch [14] we

measured the power overhead of the CAP-filter. The energy
consumed by accessing the 128-entry predictors is less than
2% of that consumed by the 16k-entry combined predic-
tor.As for the timing overhead, even under the worst case
timing scenario, it should be possible to access the cost pre-
dictor and the CAP-filter in parallel to the branch predictor.
By using CACTI [15] we have estimated that under this
assumption we can abort a 16k-entry predictor access after
the decode. This saves the energy used by the wordlines,
bitlines, and sense amplifiers. This would maintain front-
end latency but will cut our savings by 40%. Therefore if
we must avoid increasing front-end latency at all costs, we

Figure 3: Prediction coverage: a) for a cost predictor using 128-
entry of 3-bit counters for different LCTs (i.e., 4, 8, 16, 32) b) for
a 128-entry cost predictor for saturating counters with different
sizes (1, 2, 3, and 4-bit counters). LCT is 16. c) for different
predictor sizes (i.e., 16, 32, 64, 128, 256, 512, 1024 entries). LCT
is 16 and each entry has a 3-bit counter.
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can still reduce power by terminating some accesses early
enough. 

We used integer programs from SPEC’2k compiled for
the MIPS-like architecture used by the Simplescalar v3.0
simulation tool set [6]. We run each simulation starting at
the “early single” SimPoint [13] and run for 500M instruc-
tions.We used GNU’s gcc compiler. The main architectural
parameters are shown in Table 1

.

5.1. Performance, Access frequency and Energy
In Figure 5(a) we report performance cost for CAP. Per-

formance slowdown is below 0.1% across all programs for
different LCTs. Average performance loss is below 0.04%
for the applications studied here. This is a significant result
as it shows that CAP maintains predictor accuracy and
therefore performance at a competitive level.

 In Figure 5(b) we report branch predictor access reduc-
tion. We report access reduction as it provides an imple-
mentation and technology independent measurement of
potential energy savings. Access reduction reaches a maxi-
mum of 50% (average:~27% for different LCTs). 

In Figure 5(c) we report branch predictor energy reduc-
tion as measured by wattch [14]. Energy reduction reaches
a maximum of 22% (average:~9% for different LCTs). 

Our study shows that by using CAP we also reduce pro-
cessor overall energy consumption up to a maximum of
1.7% (average:0.8%). Overall energy savings may not
appear considerable in absolute terms. However, when
weighted against the insignificant performance cost, the
savings are worthwhile and higher than that achieveable
using techniques such as dynamic voltage scaling. 

.

6. RELATED WORK 
Skadron et al. introduced a new taxonomy for branch

misprediction [12]. They show that wrong history mispre-
dictions are the main source of mispredictions. They intro-
duced alloyed predictors mixing both local and global
history to index the pattern history table (PHT). 

Parikh et al. explored the effects of branch predictors on
processor power dissipation. They also introduced banking
and prediction probe detector (PPD) to reduce predictor or
BTB energy consumption. Banking reduces the active por-
tion of the predictor. PPD identifies when a cache line has
no branches so that a lookup in the predictor buffer/BTB
can be avoided [7]. 

Baniasadi and Moshovos introduced Branch Predictor
Prediction (BPP) [10] and Selective Predictor Access
(SEPAS) [9] to reduce branch predictor energy consump-
tion. BPP stores information regarding the sub-predictors
accessed by the most recent branch instructions executed
and avoids accessing all three underlying structures.

Table 1: Base configuration details. 
Fetch/Issue/
Decode/Commit 

any 4 instructions 

Scheduler 128 entries, RUU-like
Load/Store Queue 64 entries, 4 loads/stores per cycle
L1 - I/D Caches 64K, 4-way SA, 32B blks, 3C hit latency
Unified L2 256K, 4-way SA, 64B blks, 16C hit latency
Branch Predictor 16K GShare, bi-modal, selector
FU. Latency MIPS R10000 
Memory Infinite,100 cycle

Figure 5: CAP: a) Performance slowdown b) Branch predictor
access reduction c) Branch predictor energy reduction. Bars
from left to right report for LCTs of 4, 8, 16 and 32 respectively. 
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SEPAS selectively accesses a small filter to avoid unneces-
sary lookups or updates to the branch predictor. 

Huang et al. used profiling to reduce power dissipation
in the branch predictors [8]. They disable tables that do not
improve accuracy and reduce BTB size for applications
with low number of static branches. 

Our work is different from all above studies as it relies
on speculating misprediction cost.

Several previous studies have suggested exploiting fil-
ters to reduce either branch predictor complexity and delay
or table interference and destructive aliasing [5,16,4]. Our
work’s main difference with these studies is that we look at
the power aspect of exploiting such filters. 

Chang et. al [5], suggested identifying easily predictable
branches and inhibiting the pattern history table for these
branches to reduce table interference. 

Eden et. al [4] introduced YAGS to reduce aliasing in
the pattern history table. 

Jimenez et. al [16] suggested using an overriding branch
predictor which provides two predictions, one faster and
one slower and less accurate consecutively, to reduce delay.   

Using saturating counters as branch confidence estima-
tors was first suggested by Smith [1]. We use saturating
counters to estimate branch misprediction cost. 

Manne et. al, [2] suggested the “Both Strong” estimation
method which marks a branch as high confidence if the sat-
urating counters for both gshare and bimodal are saturated
and have the same predicted direction. We also use “Both
Strong” to identify high-confidence branch instructions.
However, we focus on a subset (i.e., low-cost branches) of
high-confidence branch instructions in CAP.   

7.  CONCLUSION
 We studied misprediction cost from the energy point of

view. We showed that misprediction cost is a) not distrib-
uted uniformly across branch mispredictions and b) predict-
able using a small predictor. We also investigated how
changes in design parameters for the cost predictor impacts
accuracy. 

We used our findings and introduced cost-aware branch
prediction. In cost-aware branch prediction we exploit vari-
ations in cost and predictability and reduce predictor power
dissipation. We achieve this by selectively using a simpler
and smaller predictor for branch instructions which are both
well behaved and low-cost. By using the cost-aware branch
predictor we reduced power while maintaining perfor-
mance.
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