
Diana Marculescu, Carnegie−Mellon University

on Computer Architecture

June 5, 2005
Madison, Wisconsin

Complexity−Effective Design
Workshop on

Workshop Organizers:

Pradip Bose, IBM Corporation
Dave Albonesi, Cornell University

Prabhakar Kudva, IBM Corporation

Held in conjunction with the 32nd International Symposium

WCED Program

8:30-9:30AM Session I

• Effects of Pipeline Complexity on SMT/CMP Power-Performance Efficiency
B. Lee and D. Brooks (Harvard University)

• Early Performance Prediction
P. Kudva, B. Curran, S.K. Karandikar, M. Mayo, S. Carey (IBM), and S.S. Sapatnekar (University of
Minnesota)

• Wire Management for Coherence Traffic in Chip Multiprocessors
L. Cheng, N, Muralimanohar, K. Ramani, R. Balasubramonian, and J. Carter (University of Utah)

9:30-9:50AM Break
9:50-10:30AMSession II

• Reducing the Power and Complexity of Path-Based Neural Branch Prediction
G.H. Loh (Georgia Institute of Technology) and D.J. Jiménez (Rutgers University)

• A Break-Even Formulation For Evaluating Branch Predictor Energy Efficiency
M. Co, D.A.B Weikle, and K. Skadron (University of Virginia)

10:30-11:00AMBreak
11:00-11:40AMSession III

• Heuristics for Complexity-Effective Verification of a Cache Coherence Protocol Implementation
D. Abts (Cray), Y. Chen, and D.J. Lilja (University of Minnesota)

• The Design Complexity of Program Undo Support in a General-Purpose Processor
R. Teodorescu and J. Torrellas (University of Illinois at Urbana-Champaign)

11:40AM-12:30PMMetrics discussion led by J. Torrellas (University of Illinois at Urbana-Champaign)

Introduction

The quest for higher performance via deep pipelining (for high clock rate) and speculative,
out-of-order execution (for high IPC) has yielded processors with greater performance, but at the
expense of much greater design complexity. The costs of higher complexity are many-fold, in-
cluding increased verification time, higher power dissipation, and reduced scalability with process
shrinks/variations. The Workshop on Complexity-Effective Design (WCED) was founded with the
intention of bringing together microarchitects, circuit designers, performance modelers, compiler
developers, verification experts, and system designers to discuss and explore hardware/software
techniques and tools for creating future designs that are more complexity-effective.

A complexity-effective design feature or tool either (a) yields a significant performance and/or
power efficiency improvement relative to the increase in hardware/software complexity incurred;
or (b) significantly reduces complexity (design time and/or verification time and/or improved scal-
ability) with a tolerable performance/power impact. The papers in this year’s WCED program
address both of these themes.

We wish to thank Mikko Lipasti, the Workshops Chair, and the other ISCA organizers that al-
lowed us to offer the workshop, the WCED Program Committee (Todd Austin, R. Iris Bahar, David
Brooks, Alper Buyuktosunoglu, George Cai, Babak Falsafi, Keith Farkas, Antonio Gonzalez, Pe-
ter Hofstee, Gokhan Memik, Chuck Moore, and Subbarao Palacharla), all those who reviewed
papers, and all workshop authors and presenters. We welcome any and all feedback that will help
us improve WCED in future years.

Dave Albonesi
Pradip Bose
Prabhakar Kudva
Diana Marculescu

WCED Co-Chairs

Effects of Pipeline Complexity on SMT/CMP Power-Performance Efficiency

Benjamin Lee and David Brooks
Harvard University

Division of Engineering and Applied Sciences
Cambridge, Massachusetts, USA
{bclee, dbrooks}@eecs.harvard.edu

Abstract

We consider processor core complexity and its impli-
cations for the power-performance efficiency of SMT and
CMP architectures, exploring fundamental trade-offs be-
tween the efficiency of multi-core architectures and the com-
plexity of their cores from a power-performance perspec-
tive. Taking pipeline depth and width as proxies for core
complexity, we conduct power-performance simulations of
several SMT and CMP architectures employing cores of
varying complexity. Our analyses identify efficient pipeline
dimensions and outline the implications of using a power-
performance efficiency metric for core complexity.

Collectively, our results suggest SMT architectures en-
able efficient increases in pipeline dimensions and
core complexity. Furthermore, reducing pipeline di-
mensions in CMP cores is inefficient, assuming ideal
power-performance scaling from voltage/frequency scal-
ing and circuit re-tuning. Given these conclusions, we
formulate guidelines for complexity effective design.

1. Introduction

We present an analysis of processor core complexity,
quantified by pipeline depth and width, and its effects on
the power-performance efficiency of simultaneous multi-
threading (SMT) and chip multi-processing (CMP). We de-
fine efficiency in terms ofBIPS3/W , a voltage invariant
power-performance metric that captures the cubic relation-
ship between power and performance. Research in efficient
computer architectures has been motivated by significant in-
creases in power dissipation on high-performance systems.
Increasing power dissipation also complicates thermal man-
agement and current/voltage stability in a system. SMT and
CMP architectures are of particular interest as the micropro-
cessor industry moves towards such systems to meet perfor-
mance targets in mainstream computing [1, 2, 3].

SMT architectures amortize the cost of microarchitec-
tural structures over a greater number of instructions per cy-
cle drawn from multiple threads. Similarly, CMP architec-
tures increase thread-level parallelism by constructing mul-
tiple processor cores on a single die. Prior work has exam-
ined the power-performance efficiency of such architectures
for a particular core design [4, 5] or a particular class of
applications [6]. In contrast, we examine SMT/CMP effi-
ciency as a function of core complexity by taking pipeline
depth and width as a proxy for complexity.

We specify pipeline depth by the number of FO4 inverter
delays per pipeline stage1 and pipeline width by the maxi-
mum number of instructions decoded per cycle. Identifying
optimal pipeline parameters for SMT and CMP cores effec-
tively optimizes the balance between instruction-level and
thread-level parallelism to maximize efficiency.

Conducting simulations of several SMT and CMP sys-
tem configurations with varying pipeline parameters (Sec-
tion 2), we identify power-performance efficient pipeline di-
mensions and outline the implications of using an efficiency
metric for core complexity (Section 3, Section 4). Overall,
we draw the following conclusions:

1. SMT architectures enable power-performance efficient
increases in pipeline dimensions toward deeper, wider
pipelines (Section 3.3, Section 4.3).

2. Reducing pipeline dimensions in CMP architectures
is power-performance inefficient (Section 3.4, Section
4.4) relative to alternatives from hardware tuning.

Collectively, these results support the conventional wis-
dom that SMT architectures are more effective with deeper,
wider pipelines and refute the belief that CMP core com-
plexity should decrease relative to uni-processor complex-
ity. We employ these conclusions to formulate guidelines
for complexity effective SMT and CMP design (Section 5).

1 Fan-out-of-four (FO4) delay is defined as the delay of one inverter
driving four copies of an equally sized inverter. When logic and latch
overhead per pipeline stage is measured in terms of FO4 delay, deeper
pipelines have smaller FO4 delays.

2. Experimental Methodology

2.1. Performance Modeling

We employ Turandot, a cycle-based microproces-
sor performance simulator [7, 8], to obtain data for
varying pipeline designs in out-of-order superscalar proces-
sors. We evaluate the performance of a design in terms of its
achieved instruction throughput measured in billions of in-
structions per second (BIPS). We compute throughput
for n threads with Equation (1), whereInsti is the num-
ber of instructions committed by threadi, max(Cyi) is
the number of cycles required to complete the execu-
tion of all threads, andf is the clock frequency. We also
evaluate performance in terms of effective delay or in-
verse throughput (BIPS−1).

BIPS =
∑n

i=1 Insti
max(Cyi)

× f

106
(1)

2.2. Power Modeling

We employ PowerTimer, a Turandot based microar-
chitectural simulator with power modeling extensions, to
examine the power implications of varying pipeline de-
signs [9, 10]. The PowerTimer energy models are based on
circuit-level power analyses performed on microarchitec-
tural structures in a modern, high-performance PowerPC
[11]. Each structure or subunit is comprised of multiple in-
dividually analyzed macros. The circuit-level power anal-
yses determine each structure’s power dissipation as the
sum of hold power and switching power where switch-
ing power is a function of the structure’s input switch-
ing factor. The unconstrained hold and switching power
for each macro are combined to generate linear equa-
tions for each macro’s power. A linear combination of
power equations for the macros within a particular sub-
unit produces the subunit’s unconstrained power model
(Figure 1). PowerTimer uses microarchitectural activity in-
formation from Turandot to scale down each subunit’s
unconstrained hold and switching power under a vari-
ety of clock gating assumptions on a per-cycle basis to get
the final estimate of power.

Power dissipated by a processor consists of dynamic and
leakage components,P = Pdynamic + Pleakage. The dy-
namic component may be expressed as

Pdynamic = CV 2f(α + β)×CGF (2)

whereα is the true switching factor required for logic func-
tionality, β is the glitching factor that accounts for spu-
rious transitions resulting from differing delays between

Figure 1. PowerTimer Energy Models.

logic paths. Thus, (α + β) is the average number of ac-
tual transitions. The clock gating factor,CGF , is the frac-
tion of cycles during which microarchitectural structures are
not clock gated. The remaining variables are the effective
switching capacitance (C), the supply voltage (V), and the
clock frequency (f).

2.3. Power-Performance Efficiency

We use BIPS3

W as our power-performance efficiency
metric for comparing different pipeline designs. This metric
is derived from the cubic relationship between power dissi-
pation and the supply voltage, given a fixed logic/circuit de-
sign. SincePdynamic ≈ CV 2fα×CGF andV is roughly
proportional tof , Pdynamic ≈ CV 3α×CGF . Thus, power
is roughly proportional toV 3. This suggestsP×D3, where
P is power andD is delay, is an appropriate voltage invari-
ant power-performance metric for server-class microproces-
sors [9]. Lastly, note thatBIPS3

W ≡ (P×D3)−1.

2.4. Microarchitectural Modeling

The baseline configuration is a single-threaded pipeline
with 19 FO4 delays per stage capable of decoding four non-
branch instructions per cycle (Table 1). We also analyze sev-
eral SMT and CMP architectures (Table 2) with extended
versions of Turandot and PowerTimer[5]. The SMT cores
are modeled by increasing the sizes of shared and critical
resources (e.g.register file and issue queues) by 50 percent
and implementing round-robin thread scheduling. CMP ar-
chitectures are simulated as separate cores, tracking con-
flicts in the shared L2 cache and cache bus. Inter-thread syn-
chronization is not currently supported.

We refer to a particular design point as
[arch,depth,width], where arch is an architecture from
Table 2 anddepth, width refer to the pipeline dimen-
sions. Depth is quantified in terms of FO4 delays per
pipeline stage and width is quantified in terms of the num-
ber of non-branch instructions decoded per cycle. For
example, the baseline is denoted as [ST,19,4].

Processor Core

Decode Rate 4 non-branch instructions per cycle
Dispatch Rate 9 instructions per cycle
Reservation Stations FXU(40),FPU(10),LSU(36),BR(12)
Functional Units 2 FXU, 2 FPU, 2 LSU, 2 BR
Physical Registers 80 GPR, 72 FPR
Branch Predictor 16k 1-bit entry BHT

Memory Hierarchy

L1 DCache Size 32KB, 2-way, 128B blocks, 1-cy latency
L1 ICache Size 32KB, 1-way, 128B blocks, 1-cy latency
L2 Cache Size 2MB, 4-way, 128B blocks, 9-cy latency
Memory 77-cy latency

Pipeline Dimensions

Pipeline Depth 19 FO4 delays per stage
Pipeline Width 4-decode

Table 1. Baseline Microarchitectural Parameters.

Architecture Description

ST Single-threaded baseline (Table 1)
SMT1c1t SMT-expanded core running 1 thread
SMT1c2t SMT-expanded core running 2 threads
CMP2c1t CMP with 2 SMT-expanded cores, each running 1 thread
CMP2c2t CMP with 2 SMT-expanded cores, each running 2 threads

Table 2. SMT,CMP Architectures.

2.5. Benchmarks

We report experimental results from a suite of 21 traces
from the SPEC2000 benchmarks in Table 3. The traces were
generated with the tracing facilityAria [8] using the full ref-
erence input set. However, sampling reduced the total trace
length to 100 million instructions per benchmark program.
The sampled traces were validated against the full traces be-
fore finalizing the traces [12].

We present power and performance data as an average
of the SPEC2000 benchmarks. The single-threaded core
configurations (i.e., ST and SMT1c1t) were run with ev-
ery benchmark in the suite. The multi-threaded core config-
urations (i.e., SMT1c2t and CMP*c*t) were run with mul-
tiple copies of the same benchmark for every benchmark in
the suite. For example, we simulated CMP2c2t running four
copies ofammp. Identifying an interesting subset of hetero-
geneous benchmarks for parallel execution is future work.

3. Pipeline Depth Analysis

3.1. Depth: Performance Scaling

Models for architectures with varying pipeline depths are
derived from the reference 19 FO4 design by treating the
total number of logic levels as constant independent of the
number of pipeline stages. This is an abstraction for the pur-
pose of our analyses; increasing the pipeline depth could re-
quire logic design changes. The baseline latencies (Table 4)
are scaled to account for pipeline changes according to

Latencytarget =
⌊
Latencybase ×

FO4base

FO4target
+ 0.5

⌋
(3)

SPEC2000 Benchmarks

ammp applu apsi art
bzip2 crafty equake facerec
gap gcc gzip lucas
mcf mesa mgrid perl
sixtrack swim twolf vpr
wupwise

Table 3. SPEC2000 Benchmark Suite.

Fetch Decode

NFA Predictor 1 Multiple Decode 2
L2 I-Cache 11 Millicode Decode 2
L3 I-Load 8 Expand String 2
I-TLB Miss 10 Mispredict Cycles 3
L2 I-TLB Miss 50 Register Read 1

Execution Memory

Fix Execute 1 L1 D-Load 3
Float Execute 4 L2 D-Load 9
Branch Execute 1 L3 D-Load 77
Float Divide 12 Float Load 2
Integer Multiply 7 D-TLB Miss 7
Integer Divide 35 L2 D-TLB Miss 50
Retire Delay 2 StoreQ Forward 4

Table 4. [ST,19,4] Latencies (cy).

All latencies have a minimum of one cycle. This is con-
sistent with prior work in pipeline depth simulation and
analysis for a single-threaded core [14].

3.2. Depth: Power Scaling

Each factor in Equation (2) scales with pipeline depth.
The clock frequencyf increases linearly with depth as the
delay for each pipeline stage decreases. The clock gating
factor CGF decreases by a workload dependent factor as
pipeline depth increases due to the increased number of cy-
cles in which the shorter pipeline stages are stalled. As the
true switching factorα is independent of the pipeline depth
and the glitching factorβ decreases with pipeline depth
due to shorter distances between latches, switching power
dissipation decreases with pipeline depth. The latch count,
and consequently hold power dissipation, increases linearly
with pipeline depth. We take leakage power as 30 percent
of dynamic power dissipation. We refer the reader to prior
work for a detailed treatment of these scaling models.

3.3. Depth: Power-Performance Evaluation

Figure 2 presents the power and performance trends as
the pipeline depth increases for [SMT1c1t,*,4] as an av-
erage of the 21 benchmarks in our suite (Table 3).2 Note
that pipeline depth is quantified in FO4 delays per stage and
smaller FO4 delays are equivalent to deeper pipelines.

The performance maximizing pipeline depth is the 10
FO4 design point, where performance is measured in BIPS.

2 [ST,*,4] and [SMT1c1t,*,4] have similar trends despite differences in
resource sizing. The CMP architectures, [CMP2c*t,*,4], effectively
double the power and throughput of their SMT counterparts and are
not evident in relative trends.

Figure 2. [SMT1c1t,*,4] Power-Performance Metrics.

Figure 3. [SMT1c2t,*,4] Power-Performance Metrics.

Since power increases superlinearly and performance in-
creases sublinearly with pipeline depth, the performance to
power ratioBIPS

W decreases with depth. In contrast, the 18
FO4 design point is power-performance efficient, maximiz-
ing the BIPS3

W metric. NoteBIPS3

W decreases significantly
as the number of pipeline stages increases beyond this de-
sign point. In particular, the performance maximizing 10
FO4 design point is 40 percent less efficient than the power-
performance optimal 18 FO4 design point.

Figure 3 performs a similar power-performance analy-
sis for the same architecture simultaneously executing two
threads, [SMT1c2t,*,4]. Relative to the [SMT1c1t,*,4] re-
sults from Figure 2, we find executing a second thread
mitigates the efficiency penalties associated with deeper
pipelines. Although SMT1c1t and SMT1c2t share the same
optimal pipeline depth of 18 FO4 delays per stage, deeper
SMT1c2t pipelines up to the 14 FO4 design point achieve

BIPS3

W within 5 percent of the optimal. In contrast, increas-
ing SMT1c1t pipeline depth to 14 FO4 delays per stage re-
ducesBIPS3

W by more than 10 percent. If performance were
the only objective and the 8 FO4 design point were cho-
sen, the 52 percent loss in efficiency for SMT1c2t is signif-
icantly smaller than the 64 percent loss for SMT1c1t.

Overall, these results are consistent with the conven-
tional wisdom that SMT architectures perform better in
deeper pipelines. The larger number of pipeline stages al-
lows interleaving multiple simultaneous threads at a finer
granularity than those afforded by shallower pipelines. Al-
though SMT enables power-performance efficient increases
in pipeline depth, voltage/frequency scaling and circuit re-
tuning may provide many of the same benefits for signifi-
cantly less engineering effort.

3.4. Depth: Complexity Implications

Figure 4 depictsmicroarchitectural tuning curvesfor
each architecture[14]. The average effective delay (or in-
verse throughput3) of the traces in our benchmark suite
is plotted on the x-axis in units relative to the baseline
[ST,19,4]. The average power dissipation is similarly plot-
ted on the y-axis. The scatter plots indicate the location of
each design point in this power-performance space, captur-
ing trends in power-performance trade-offs at each point for
a fixed supply voltage. The deeper pipelines are positioned
in the high-power, low-delay region of the tuning space.

The downward sloping plots arehardware tuning curves
representing the power-performance trade-offs achievable
from varying the supply voltage and tuning the circuits
to meet the frequency target. These curves are an abstrac-
tion of the techniques employed and design decisions made
at various stages in the microprocessor design (e.g. volt-
age/frequency scaling, transistor sizing, and circuit styles).
As the delay budget tightens, greater gate-level parallelism
and transistor sizes are needed and more power is dissi-
pated. Hardware intensity,η, quantifies these power and
performance trade-offs by specifying the percentage change
in energy required to achieve a 1 percent improvement in
the critical path delay by restructing the logic and re-tuning
the circuits for a given power supply [13]. Mathematically,
η = −%E

%D . Assuming a typical hardware intensity of two,
these curves represent a 1 percent reduction in effective de-
lay by changing the power supply and tuning the hardware,
at a cost of 3 percent in power. This is consistent with the
cubic relationship between power and performance.

The efficient 18 FO4 design point from Section 3.3 is
also the point on the microarchitectural tuning curve where
a 1 percent performance gain from increasing the pipeline

3 Zyuban et al. originally tracked delay on this axis, but inverse through-
put (BIPS−1) is a more accurate description of this metric when
considering multiple thread contexts.

Figure 4. [*,*,4] Micro Tuning Curves.

depth requires a 3 percent increase in power dissipation.
Graphically, this implies the point of tangency between the
microarchitectural and hardware tuning curves is the effi-
cient design point that delivers a given level of performance
while minimizing power.

Let the power budget be the relative power dissipa-
tion of the original design [ST,19,4]. Alternative de-
signs that meet this power budget include [SMT1c1t,20,4],
[SMT1c2t,21,4], [CMP2c1t,30,4] and [CMP2c2t,31,4].
Note that each of these designs incorporate fewer pipeline
stages while reducing effective delay. In particular, choos-
ing [CMP2c2t,31,4] over [ST,19,4] reduces the number
of pipeline stages by approximately two-thirds and de-
creases effective delay by approximately 35 percent.

[CMP2c2t,31,4] is inefficient because it is possible to
achieve a greater reduction in delay for the same power dis-
sipated, as illustrated in Figure 4. First, increase the pipeline
depth to the 18 FO4 design point, the power-performance
optimal for this architecture. This corresponds to mov-
ing up the CMP2c2t tuning curve from [CMP2c2t,31,4] to
[CMP2c2t,18,4]. Second, tune the hardware until the power
budget is met. This corresponds to moving down the hard-
ware tuning curve until relative power dissipation is one. At
this new, efficient design point, the power budget is met and
effective delay is reduced by approximately 40 percent rel-
ative to [ST,19,4] and 8 percent relative to [CMP2c2t,31,4].
Thus, reducing core complexity in multi-core architectures
are not power-performance efficient since hardware tun-
ing more complex cores yields greater performance for the
same power budget.

8D 4D 2D 1D

Functional Units

FXU 4 2 1 1
MEM 4 2 1 1
FXU 4 2 1 1
BR 4 2 1 1
CR 2 1 1 1

Pipeline Stage Widths

FETCH 16 8 4 2
DECODE 8 4 2 1
RENAME 8 4 2 1
DISPATCH 8 4 2 1
RETIRE 8 4 2 1

Table 5. [ST,19,*] Width Resource Scaling.

Structure Energy Growth Factor

Register Rename 1.1
Instruction Issue 1.9
Memory Unit 1.5
Multi-ported Register File 1.8
Data Bypass 1.6
Functional Units 1.0

Table 6. Energy Growth Parameters.

4. Pipeline Width Analysis

4.1. Width: Performance Scaling

Performance data for architectures with varying pipeline
widths are obtained from the reference 4-decode (4D) de-
sign by a linear scaling of the number of functional units and
the number of non-branch instructions fetched, decoded,
renamed, dispatched, and retired per cycle (Table 5). All
pipelines have at least one instance of each functional unit.
As pipeline width decreases, the number of instances of
each functional unit is quickly minimized to one. Thus, the
decode width becomes the constraining parameter for in-
struction throughput for the narrower pipelines we consider
(i.e.2D and 1D).

4.2. Width: Power Scaling

A relatively optimistic power scaling technique assumes
unconstrained hold and switching power increases linearly
with the number of functional units, access ports, and any
other parameter that must change as width varies. We ex-
pect linear power scaling to effectively estimate changes
in power dissipation for functional units since we employ
a clustered architecture. Superlinear power scaling effec-
tively reduces to an approximate linear scaling for clustered
structures[15, 16, 17]. Furthermore, cache port scaling by
replicating a 1-read, 1-write port cache to obtain a 2-read,
1-write port cache for the Power-4 architecture, modeled by
[ST,19,4], also suggests linear power scaling is applicable
for this microarchitectural structure [18, 19].

In certain cases, however, linear power scaling is an op-
timistic first-order approximation and, for example, does
not capture non-linear relationships between power and the
number of register file access ports since it does not ac-

count for the additional circuitry required in a multi-ported
SRAM cell. For this reason, we formulate a relatively pes-
simistic estimate of power dissipation trends as pipeline
width varies by applying superlinear power scaling with ex-
ponents (Table 6) drawn from Zyuban’s work in estimating
energy growth parameters [15]. These parameters form a
pessimistic power estimate since the values are experimen-
tally derived from non-clustered architectures and tend to
overestimate energy growth for clustered architectures.

4.3. Width: Power-Performance Evaluation

As in the pipeline analysis, Figures 5–6 depict microar-
chitectural tuning curves with linear and superlinear power
scaling, respectively. These figures demonstrate the effects
of tuning pipeline width for each architecture given a fixed
pipeline depth. Note that pipeline width is quantified by the
number of non-branch instructions decoded per cycle and
faster decode rates correspond to wider pipelines.

Hardware tuning curves are drawn through power-
performance efficient design points. Under linear power
scaling, a pipeline width of 8D is found to maximize
BIPS3

W for all architectures except the ST baseline; the ef-
ficient ST width is 4D. As in the depth analysis, the op-
timality of these design points can be demonstrated by
considering an alternative design point and showing it can-
not achieve lower delay for the same power budget.

Comparing the architectures executing one thread per
core (i.e. ST, SMT1c1t, CMP2c1t) and those execut-
ing multiple simultaneous threads per core (i.e. SMT1c2t,
CMP2c2t) with linear power scaling, we find execut-
ing a second thread motivates increasing pipeline width to
improve efficiency. In particular, we find the 4D and 8D de-
sign points offer comparable efficiency when executing
one thread, but choosing the wider 8D pipeline for archi-
tectures executing multiple threads can reduce effective
delay by approximately 6 to 8 percent after hardware tun-
ing to meet power constraints imposed by their respec-
tive original 4D design points. This observation may be
drawn from Figure 5 by noting that microarchitectural tun-
ing curves for single-threaded workloads track the hard-
ware tuning curves more closely than their multi-threaded
counterparts around the 4D and 8D design points.

As expected, superlinear power scaling decreases the
power-performance optimal width to 4D for architectures
executing a single thread per core and reduces the bene-
fits of using the wider 8D design for architectures execut-
ing multiple threads per core. The hardware tuning curves
in Figure 6 track the microarchitectural tuning curves more
closely from 4D to 8D compared to those in Figure 5. This
implies smaller efficiency penalties for choosing the 4D de-
sign over the 8D design.

Figure 5. [*,19,*] Micro Tuning Curves - Linear.

Figure 6. [*,19,*] Micro Tuning Curves - Superlinear.

Overall, these results are consistent with the conven-
tional wisdom that SMT architectures perform better in
wider pipelines. Conceptually, the larger number of instruc-
tions capable of entering a wider pipeline is better ex-
ploited when multiple thread contexts are executing simul-
taneously.

4.4. Width: Complexity Implications

Since no other design point improves performance while
meeting the power constraints imposed by [ST,19,4] with
linear power scaling in Figure 5, we instead consider a
power budget of 1.7 defined by the relative power dissi-
pation of [SMT1c1t,19,8]. Alternative designs that meet
this power budget are [SMT1c2t,19,4 < w < 8] and
[CMP2c1t,19,2 < w < 4].4 Note each of these designs em-

ploy cores with narrower pipelines while reducing delay.
As in the pipeline analysis, these alternative designs

with less complex cores may not be power-performance
efficient. [CMP2c1t,19,2 < w < 4] is inefficient since
it is possible to achieve higher performance for the same
power dissipated by increasing the pipeline width to 4D
or 8D and tuning the hardware to meet power constraints.
This corresponds to moving up the CMP2c1t tuning curve
from [CMP2c1t,19,2 < w < 4] to [CMP2c1t,19,4] or
[CMP2c1t,19,8], then moving down the hardware tuning
curve until the relative power dissipation is 1.7. At this new,
efficient design point, the power constraints are satisfied and
delay is reduced by approximately 33 percent relative to
[SMT1c1t,19,8], compared to an approximately 12 percent
reduction achieved from [CMP2c1t,19,2 < w < 4].

With the relatively pessimistic superlinear power scal-
ing in Figure 6, however, the efficiency differences between
the 8D and 4D designs are negligible for both SMT and
CMP architectures. In these cases, the 4D design is pre-
ferrable since it is likely much less complex than the 8D
design point.

Note the analysis thus far has emphasized the relative ef-
ficiency of the 8D and 4D design points. In no case, how-
ever, does the data support moving to cores narrower than
the baseline 4D design. The [CMP2c2t,19,8] design point
reduces effective delay by 45 percent over the baseline
[ST,19,4] after hardware tuning with linear power scaling.
In contrast, the [CMP2c2t,19,2] design point only achieved
a 30 percent reduction in delay without hardware tuning.
Tuning the hardware for the 2D design would only further
reduce performance gains. Thus, these analyses suggest re-
ducing core complexity in multi-core architectures by em-
ploying narrower pipelines are not power-performance effi-
cient. As with pipeline depth, hardware tuning more com-
plex cores with wider pipelines to meet power budgets may
be more efficient.

5. Complexity Effective Design

The preceding analyses suggest limited opportunities for
efficiently reducing core complexity in CMP architectures.
In particular, we draw the following conclusions:

1. Employing cores with shallower or narrower pipelines
is power-performance inefficient since hardware tun-
ing an efficient design achieves higher performance for
the same power dissipation.

2. In the cases where multiple design points are efficient,
designers are able to choose a complexity effective de-
sign among these efficient alternatives.

4 We employ this interval notation due to limited granularity in our de-
sign exploration space.

3. Given a need to reduce complexity, the efficiency
penalties for shallower pipelines are less than those
for narrower pipelines.

The analyses from Section 3 and Section 4 find simply
reducing pipeline depth or width is inefficient. Superior al-
ternatives, from the perspective of power and performance,
employ an efficient core in a multi-core architecture and
tune the hardware to meet power constraints. Thus, design-
ers should not rely on trends toward a larger number of less
complex cores to meet power or performance targets, be-
cause such trends are likely to be inefficient. Overall, this
conclusion implies microprocessor core design continues to
play a significant role in CMP architectural development.

Multiple efficient design points exist in both depth and
width analyses. In particular, designs ranging from 14 to
24 FO4 track the 3 percent, 1 percent power-performance
trade-off of the hardware tuning curves, suggesting these
designs are approximately equivalent from an efficiency
perspective. Similarly, the 4D and 8D designs offer approx-
imately the same efficiency. Choosing less complex designs
from these efficient choices, enables designers to manage
complexity among efficient alternatives.

The analyses in this paper seeks to maximize per-
formance for a given power budget or minimize power
for a given performance target. In the case where com-
plexity constraints must also be met at the expense of
power-performance efficiency, decreasing pipeline depth
incurs less of an efficiency penalty relative to penal-
ties incurred from decreasing pipeline width. For example,
[CMP2c2t,36,4] incurs a 12 percent performance penalty
relative to the hardware tuned [CMP2c2t,18,4]. In con-
trast, [CMP2c2t,19,2] incurs a 25 percent performance
penalty relative to the hardware tuned [CMP2c2t,19,4].
Thus, designers seeking to reduce complexity should fo-
cus on pipeline depth to minimize the impact on effi-
ciency.

Although we only consider two cores per chip, the com-
plexity, power, and area of interconnect between cores in
a CMP architecture becomes increasingly relevant as the
number of cores increase [16, 28]. This suggests a funda-
mental trade-off between core and interconnect complex-
ity. Employing many low complexity cores necessarily im-
plies a more complex interconnect network. Conversely, as
core complexity increases, fewer cores per chip are needed
to achieve the same performance targets and a less complex
interconnect network is required. Thus, complexity is effec-
tively transferred from the interconnect to the CMP cores.
Understanding this complexity trade-off is future work.

This work also neglects area effects which may become
increasingly significant as the number of cores increase.
Reducing core complexity while increasing the number of
cores per chip may produce a net increase in throughput per

unit area, a metric not considered in this paper. Account-
ing for these effects is future work.

6. Related Work

The experimental work in this paper combines prior
research in optimizing pipeline depths and power-
performance analyses for SMT and CMP architectures.

6.1. Optimizing Pipeline Depth

Zyuban,et al., [14] found 18 FO4 delays to be the power-
performance optimal pipeline design point for a single-
threaded microprocessor. The authors also introduced the
microarchitectural tuning curves for graphically analyzing
a design’s relative position in the power-performance space.

Most prior work in optimizing pipeline depth focused ex-
clusively on improving performance. Kunkel,et al., [20]
demonstrated that vector code performance is optimized
on deeper pipelines while scalar codes perform better on
shallower pipelines. Dubey,et al., [21] developed a more
general analytical pipeline model to show that the optimal
pipeline depth decreases with increasing overhead from par-
titioning logic between pipeline stages.

More recent research includes finding optimal pipeline
designs from simulation. In particular, Hartstein,et al.,
[22] performed detailed simulations of a four-way super-
scalar, out-of-order microprocessor with a memory exe-
cute pipeline to identify a 10.7 FO4 performance optimal
pipeline design for the SPEC2000 benchmarks. Similarly,
Hrishkesh,et al., [23] performed simulations for an Alpha
21264-like machine to identify 8 FO4 as a performance op-
timal design running the SPEC2000 benchmarks.

6.2. SMT, CMP Power-Performance Analyses

Li, et al., [5] performed a comparative performance,
power, and temperature analysis on SMT and CMP archi-
tectures. The authors found CMP architectures to be more
power-performance efficient for CPU bound benchmarks
and SMT architectures to be more efficient for memory
bound benchmarks. The latter conclusion follows from the
fact that SMT architectures are able to have larger L2 caches
given a fixed area budget.

Other related work has examined the power-performance
efficiency of SMT architectures. Li,et al., [4] studied the ef-
ficiency of a POWER4-like architecture while Seng,et al.,
[24] studied power optimizations for a multi-threaded Al-
pha processor. Sasanka,et al., [6] and Kaxiras,et al., [25]
compare the relative efficiencies of SMT and CMP archi-
tectures for multimedia and signal processing workloads,
respectively. Similarly, work by Kumar,et al., [26] with

heterogeneous CMP cores demonstrates these architectures
produce a net increase in efficiency.

Prior studies have also considered hybrids of SMT and
CMP designs (e.g. two CMP cores, each supporting two-
way SMT), concluding that hybrid organizations with N
thread contexts are generally inferior to pure CMP architec-
tures with N full cores [6, 26, 27]. This conclusion is also
supported in our work (SMT1c2t versus CMP2c1t).

The complexity, power dissipation, and area of intercon-
nect between cores in a CMP architecture become increas-
ing relevant as the number of cores increase [16, 28]. These
considerations do not significantly impact the work pre-
sented in this paper since we consider CMP architectures
with only two cores.

7. Conclusions and Future Directions

SMT architectures offer opportunities to efficiently in-
crease pipeline dimensions and, consequently, core com-
plexity. In contrast, reducing pipeline dimensions in CMP
cores is potentially power-performance inefficient, assum-
ing ideal power-performance scaling from hardware tuning.

We will continue to develop power scaling techniques for
pipeline analysis. Preliminary work in dividing microarchi-
tectural structures into primitive building blocks and per-
forming circuit-level power analyses on these blocks may
improve existing analytical power models. We expect this
hierarchical modeling scheme will enable faster and more
accurate characterization of power scaling trends.

We also intend to consider heterogeneous trace pairs
for simultaneous execution in our continuing work. Pairing
CPU bound traces with memory bound traces might bet-
ter utilize architectural resources and demonstrate higher
power-performance efficiency.

We take power and performance to be the primary met-
rics in this study, but area and interconnect effects will be-
come significant as we continue our work in CMP archi-
tectures for a larger number of cores. Accounting for these
other design parameters and metrics is future work.

We intend to integrate the pipeline depth and width anal-
yses for a more comprehensive understanding of the design
space. This is a first step towards developing statistical re-
gression models that will enable architectural designers and
researchers to interpolate the power-performance effects of
varying a pipeline design parameter without a large num-
ber of simulations.

References

[1] R. Kalla, B. Sinharoy, J. Tendler. Power5: IBM’s Next Gen-
eration Power Microprocessor. InProc. 15th Hot Chips Sym-
posium, Aug 2003.

[2] D.T. Mar, F. Bins, D.L. Hill, G. Hinton, D.A. Koufaty,
J.A. Miller, M. Upton. Hyper-Threading Technology Ar-
chitecture and Microarchitecture.Intel Technology Journal,
6(1), Feb 2002.

[3] K. Krewell. UltraSPARC IV Mirrors Predecessor: Sun
Builds Dual-Core Chip in 130nm.Microprocessor Report,
Nov 2003.

[4] Y. Li, D. Brooks, Z. Hu, K. Skadron, P. Bose. Understand-
ing the Energy Efficiency of Simultaneous Multithreading.
In Proc. ISLPED, Aug 2004.

[5] Y. Li, D. Brooks, Z. Hu, K. Skadron. Performance, Energy,
and Thermal Considerations for SMT and CMP Architec-
tures. InProc. HPCA, Feb 2005.

[6] R. Sasanka, S.V. Adve, Y.K. Chen, E. Debes. The Energy
Efficiency of CMP vs SMT for Multimedia Workloads. In
Proc. ICCD, Sep 2000.

[7] M. Moudgill, P. Bose, J. Moreno. Validation of Turandot,
a Fast Processor Model for Microarchitecture Exploration.
In Proc. IEEE International Performance, Computing, and
Communications Conference, Feb 1999.

[8] M. Moudgill, J. Wellman, J. Moreno. Environment for Pow-
erPC Microarchitecture Exploration.IEEE Micro, May/Jun
1999.

[9] D. Brooks, P. Bose, S. Schuster, H. Jacobson, P. Kudva,
A. Buyuktosunoglu, J. Wellman, V. Zyuban, M. Gupta,
P. Cook. Power-Aware Microarchitecture: Design and
Modeling Challenges for Next-Generation Microprocessors.
IEEE Micro, Nov/Dec 2000.

[10] D. Brooks, P. Bose, V. Srinivasan, M. Gschwind, P. Emma,
M. Rosenfield. Microarchitecture-Level Power-Performance
Analysis: The PowerTimer Approach.IBM J. Research and
Development, vol. 47, nos. 5/6, 2003.

[11] J.S. Neely, H.H Chen, S.G. Walker, J. Venuto, T. Bucelot.
CPAM: A Common Power Analysis Methodology for High-
Performance VLSI Design. InProc. Ninth Topical Meeting
Electrical Performance of Electronic Packaging, 2000.

[12] V. Iyengar, L.H. Trevillyan, P. Bose. Representative Traces
for Processor Models with Infinite Cache. InProc. HPCA-2,
Feb 1996.

[13] V. Zyuban, P. Strenski. Balancing Hardware Intensity in Mi-
croprocessor Pipelines.IBM J. Research and Development,
vol. 47, nos. 5/6, 2003.

[14] V. Zyuban, D. Brooks, V. Srinivasan, M. Gschwind, P. Bose,
P. Strenski, P. Emma. Integrated Analysis of Power and Per-
formance for Pipelined Microprocessors.IEEE Transactions
on Computers, Aug 2004.

[15] V. Zyuban. Inherently Lower-Power High-Perfomrance Su-
perscalar Architectures. Ph.D. Thesis, University of Notre
Dame, Mar 2000.

[16] K. Ramani, N. Muralimanohar, R. Balasubramonian. Mi-
croarchitectural Techniques to Reduce Interconnect Power in
Clustered Processors.5th Workshop on Complexity-Effective
Design (WCED), in conjunction with ISCA-31, Jun 2004.

[17] P. Chaparro, J. Gonzlez and A. Gonzlez. Thermal-Aware
Clustered Microarchitectures.Proc. of the IEEE Interna-
tional Conference on Computer Design, Oct 2004.

[18] J.M. Tendler, J.S. Dodson, J.S. Fields,Jr., H. Le, and B. Sin-
haroy. POWER4 System Microarchitecture.IBM J. of Re-
search and Development, vol. 46, no. 1, 2002.

[19] J.D. Warnock, J.M. Keaty, J. Petrovick, J.G. Clabes,
C.J. Kircher, B.L. Krauter, P.J. Restle, B.A. Zoric, and
C.J. Anderson. newblock The Circuit and Physical Design
of the POWER4 Microprocessor. newblockIBM J. of Re-
search and Development, vol. 46, no. 1, 2002.

[20] S.R. Kunkel, J.E. Smith. Optimal Pipelining in Supercom-
puters. InProc. ISCA-13, Jun 1986.

[21] P. Dubey, M. Flynn. Optimal Pipelining. InJ. Parallel and
Distributed Computing, 1990.

[22] A. Hartstein, T.R. Puzak. The Optimum Pipeline Depth for
a Microprocessor. InProc. ISCA-29, May 2002.

[23] M.S. Hrishikesh, K. Farkas, N.P. Jouppi, D.C. Burger,
S.W. Keckler, P. Sivakumar. The Optimal Logic Depth per
Pipeline Stage is 6 to 8 FO4 Inverter Delays. InProc. ISCA-
29, May 2002.

[24] J. Seng, D. Tullsen, G. Cai. Power-Sensitive Multi-threaded
Architecture. InProc. ICCD 2000, 2000.

[25] S. Kaxiras, G. Narlikar, A.D. Berenbaum, Z. Hu. Compar-
ing Power Consumption of SMT DSPs and CMP DSPS for
Mobile Phone Workloads. InInternational Conference on
Compilers, Architectures, and Synthesis for Embedded Sys-
tems, Nov 2001.

[26] R. Kumar, K.I. Farkas, N.P. Jouppi, P. Ranganathan,
D.M. Tullsen. Single-ISA Heterogeneous Multi-core Archi-
tectures: The Potential for Processor Power Reduction. In
Proc. ISCA-31, Jun 2004.

[27] J. Burns, J.L. Gaudiot. Area and System Clock Effects on
SMT/CMP Processors. InProc. PACT 2001, Sep 2001.

[28] R. Kumar, V. Zyuban, D. Tullsen. Interconnections in Multi-
Core Architectures: Understanding Mechanisms, Overheads
and Scaling. InProc. ISCA-32, Jun 2005.

Early Performance Prediction

P. Kudva
IBM T.J.Watson Research Center

Yorktown Heights, NY

B. Curran
IBM Server and Technology Group

Poughkeepsie, NY

S. K. Karandikar
IBM Austin Research Lab

Austin, TX

M. Mayo
IBM Server and Technology Group

Poughkeepsie, NY

S. Carey
IBM Server and Technology Group

Poughkeepsie, NY

S. S. Sapatnekar
University of Minnesota

Minneapolis, MN

ABSTRACT
Critical paths and delays of high performance circuits can be ac-
curately identified only in later stages of the design cycle. If the
specified clock period is not achievable, changes at the RTL-level
may be necessary, leading to re-synthesis and re-validation of the
entire design. This, in turn, can cause schedule overruns in the
time to market and hence competitiveness of the design. Designers
therefore need performance predictors that can identify potential
problem areas early in the design flow. In this work, we identify
the main characteristics of a design that affect the clock period,
and propose models for estimating it at early stages of the design
process. Techniques similar to the ones presented in this paper
have been evaluated and incorporated into a microprocessor design
methodology.

1. INTRODUCTION
Microprocessor designs are complex enough to require a few

years from specification to tape-out. Market pressures dictate tight
schedules, and overruns in these schedules can be costly not only
in monetary terms, but also in the competitiveness of the design. A
frequent cause of schedule breakdowns is due to final implemen-
tation parameters such as area, power and clock period (and hence
frequency) not meeting the original specifications.

In order to evaluate the performance of a design in the early
stages of the flow, designers typically use system and microarchi-
tectural models. These can be enhanced to include physical infor-
mation, such as the effects of long wires between microarchitec-
tural blocks [1, 2]. However, these improvements do not capture
the effects of the logic functionality of the design. Arguably, the
complexity of the logic being implemented has a big effect on the
performance of the design – very complex architectures increase
design complexity, thereby adding to cycle time pressures, power
consumption as well as verification and validation challenges. Ad-
ditionally, changes to complex microarchitecture require significant
redesign effort, and can cause schedule slips.

It is therefore imperative to have a methodology to evaluate the
hardware complexity of early microarchitectures, to allow for ade-
quate exploration of the system space. Further, as the microarchi-
tecture is implemented in an HDL, these early estimations should
become more accurate. Determining complexity from microarchi-
tectural models themselves is an objective of ongoing and future
research. In this paper, we focus on early RTL models derived in
the process of converting microarchitectural models to RTL specifi-
cations. In the early stages of this step, RTL specifications are crude
and incomplete. Additionally, technology rules for gates/wires may
not be available, and have to be extrapolated from past technolo-
gies. As implementation progresses, the RTL is further refined

and more technology specific information is available. Such in-
complete specifications cannot be synthesized, and it is therefore
difficult to use well known synthesis-based early estimation tech-
niques [3–5, 7] to estimate design complexity. Estimating the per-
formance of such incomplete designs is still necessary to provide
early feedback to microarchitects.

In this scenario, if designers were to be provided a metric for
estimating design performance early in the design flow, they would
be able to better identify potential problem areas, and would be able
to use this information to guide their design process. In this work,
we address the clock period of the design, which is possibly the
most visible parameter of the final product.

In order to avoid costly iterations of the design cycle, we pro-
pose models that allow a designer to quickly determine which sig-
nal paths are critical, and focus his or her efforts on these areas.
Feedback is also provided to microarchitects regarding extremely
challenging paths in order to consider changes. Since this informa-
tion is made available early in the design process, we hope to avoid
expensive redesign, resynthesis and revalidation. The models pro-
vide information that both the logic designers and microarchitects
can use to make intelligent choices between different available im-
plementations. Additionally, we can also identify paths that are
non-critical; these can then be targeted for aggressive pipeline re-
balancing, area or power optimization.

We have analyzed a number of macros in the various units of
a latest-generation microprocessor. In the following sections we
present the results of this analysis, and propose a number of models
that can be used at different stages of the design flow to estimate the
delay of an implementation. As the design is successively refined,
more data becomes available, and our proposed models can use this
data to provide more accurate data. We have tried to abstract out
technology dependent parameters from our models, so that they can
be used for different technology generations. Rather than absolute
accuracy, our goal is to be able to predict which parts of the circuit
could prove to be problematic, and therefore need more attention
from designers.

We first put our contributions in context by describing the typical
microprocessor design flow. We then present the data accumulated
and our analysis of this data, followed by various predictive models.
We conclude with a discussion of additional approaches and future
research directions

2. DESIGN FLOW
Figure 1 shows a typical, albeit simplified design flow of a high

performance, complex microprocessor. At the initial stages, only
system models are available. These define stages in the pipeline,
the flow of data and interactions between these stages, along with

PSfrag replacements

System Models

RTL

restruct

tech map

corr viol

optimize

Timing

Closure

Placement Driven Synthesis

Routing and Layout

Support Set

PI Branching

Logical Effort

Critical Path Branches

Dominator Distance

Fanin Cone Size

Number of Levels

Synthesis

Y

N

Figure 1: Typical Design Flow

cycle accurate models. Logic designers use these models to imple-
ment control logic in a HDL. This is the stage where the design
starts assuming a concrete form. Signals are initially defined in
terms of boolean equations, and as RTL is developed and synthe-
sized, we obtain a logic gate level netlist. At each stage of synthe-
sis, the design is successively refined. Initial technology indepen-
dent optimizations such as kernel factoring, literal minimization,
etc. (performed at the step labelled restruct), are followed by tech-
nology mapping (tech map), where the design is mapped to a spe-
cific technology library. This is followed by a number of technol-
ogy dependent transformations for correcting violations (corr viol)
and further design optimizations (optimize), which use gate and
wire sizing, buffer insertion, etc. Not surprisingly, the delay of
the design can vary wildly during synthesis. As an example of how
much the design changes, Figure 2 presents the delays of critical
paths in a number of industrial circuits at different points during
synthesis, normalized to the delay at the RTL stage. Not only do
the values of critical path delays change, but the actual critical paths
themselves can vary quite widely from pre-RTL to the final circuit.
In some cases, the final delays after synthesis are close to the ini-
tial delays, while in others they are twice as large. As is obvious,
these delay values fluctuate in a wide range during the synthesis
transforms, being smaller than the initial values in some cases, and
larger in others.

Figure 1 also shows a few parameters that are defined and an-
alyzed in the following section. We point out here that these pa-
rameters are available at different stages of the design flow; intially
only structural parameters such as the support set and PI Branching
(which will be defined shortly) can be calculated, while parameters
such as logical effort, size of fanin cone, etc. are determined as the
design is implemented and synthesized.

Once a mapped, optimized circuit is obtained, its delay can be

�

�

�

����� �
	��� ������ �	���� ����� ������� ��� ��� �
�� � ��� �	

!#"%$�&�' �!#"%$�&�' �!#"%$�&�' �!#"%$�&�')(!#"%$�&�'�*!#"%$�&�'�+!#"%$�&�'#,!#"%$�&�'�-

Figure 2: Delay Variation During Synthesis

accurately measured. If the implemented circuit meets the original
specifications, the design continues to the next stages of placement,
layout and routing, and can go on to silicon fabrication. However, if
the delay of the circuit at this stage does not meet the original spec-
ification, the designer has to return to preceding stages in the de-
sign process and attempt to fix these violations. Depending on how
much difference there is in the implementation versus the specifica-
tion, changes have to be made at different stages of the design flow.
All changes require re-synthesis, which can be expensive. In addi-
tion, validation, which usually runs concurrent with synthesis, and
which has its own cost, has to be repeated. Even small changes, if
made at the RTL (or earlier) stages can be expensive, if they affect
a large portion of the design. Thus, any loops in the design flow
caused by timing closure issues can cause schedule slips, which in
turn affect the time that a design can be brought to market.

Prediction, at an early stage, need not be very accurate – even
separating the circuit into high, medium and low delay critical por-
tions provides more information than currently available. There
is greater freedom to make changes in the design at early stages,
and the effect of changes made early in the design flow is greater.
Hence, the earlier a designer has an estimate of the performance
of the design, the greater the benefit of any predictor. We develop
models that can estimate delays as the designer is starting to im-
plement RTL. The accuracy of these models is limited due to the
limited design properties available at this stage. As the design ma-
tures, our predictors provide successively accurate delay models.

3. PARAMETERS AFFECTING DELAY

3.1 Preliminaries
A combinational path is a path without any latches. The clock

period of a design is defined by the length(delay) of the longest
combinational path. This critical path may be from primary inputs
or latches to primary outputs or latches. We only consider paths
between latches, since a path containing a primary input (output)
of a macro may be part of a larger combinational path that crosses
macro boundaries.

Referring once again to Figure 1, different design properties are
available at different stages. The first stage in the design devel-
opment is the RTL description of the circuit. At this point, the
only information available for each primary output is the size of
its support set. After restruct, which applies technology indepen-
dent optimizations to the circuit, coarse information on the number
of levels and branching is available, but these can change signifi-
cantly in the following steps. The following step, labelled tech map
is the technology mapping step, where cells are mapped to actual
library elements. At this stage, we can take all the data available
into consideration. However, we note once again that this is sub-

ject to further refinement by following optimizations. The last step
in the physical synthesis process is optimize, where optimizations
such as gate sizing are applied. At this point, the entire spectrum
of data is available, since this is at a point very close to the final
circuit.

This availability of design properties is also presented in Fig-
ure 1. Parameters such as support set and PI branching are available
early in the design process. These have some bearing on the delay
of a design. Parameters that have a much larger effect on the delay,
such as logical effort and branching, on the other hand, are avail-
able only after the design is completed. However, a designer can
make an educated guess as to the values of these parameters early
in the design cycle, and we can potentially use these values when
building predictors. Note that even after a design has been final-
ized and is passed on the the next steps, placement and routing can
introduce long wires into the design. At today’s circuit geometries,
wire delays are of the same order as device delays and cannot be
ignored. Long wires have to be buffered, and this can significantly
change the number of levels.

3.2 Discussion of Parameters
We now present the design properties under consideration and

hypothesize as to their effect on actual delay. Section 4 describes
how this data is used in building prediction models that can be used
in microprocessor design methodologies.

1. Support Set (Figure 3): The support set is the number of
primary inputs driving the fanin cone of a primary output.
It is an invariant that does not change during synthesis. A
larger support set implies more complicated logic, and hence
greater delay. Even if the logic is simple, combining a large
support set requires that the signals pass through more levels
of logic, hence increasing the delay. The logarithm of the
support set can give us a lower bound on the number of levels
of logic in the design, and we hypothesize that the delay of
the design depends directly on this value.

Figure 3 is a plot of the delay (after synthesis) versus the
support set of a number of combinational logic paths. As in-
dicated by the upper right region, outputs with large support
sets have large delays. For outputs with small support sets
(the points to the left of the plot), we observe a larger vari-
ation in delay. This effect is due to the synthesis process –
since these paths are not critical, delay is traded off for area.
However, a clearly defined lower bound on the delay, as a
function of the size of the support set can be observed. This
indicates that a design with a large support set will have large
delays, but when the size of the support set is smaller, other
parameters have a greater influence on the delay. Thus, a
good delay estimator will have to include a combination of
different parameters.

2. PI Branching (Figure 4): We count the number of primary
outputs driven by each primary input, and then for a primary
output, we calculate the accumulation (the sum or the prod-
uct) of the number of primary outputs driven by all inputs
in the support set of this primary output. This parameter is
called the PI Branching of an output. This parameter indi-
cates how “self-contained” the fan-in cone of an output is.
A low value corresponds to an independent cone of logic,
while a larger value implies divided loyalties – the logic is
driving multiple outputs. A primary input driving more than
one primary output will have divergent paths somewhere in
the circuit. This divergence implies that a larger electrical

0

100

200

300

400

500

600

700

0 10 20 30 40 50 60 70

PSfrag replacements

R
eg

is
te

r-
R

eg
is

te
rD

el
ay

Size of Support Set

Figure 3: Delay Vs. Size of Support Set

0

100

200

300

400

500

600

700

1 1e+20 1e+40 1e+60 1e+80 1e+100 1e+120 1e+140
pPI Branching

PSfrag replacements
R

eg
is

te
r-

R
eg

is
te

rD
el

ay

PI Branching 0

100

200

300

400

500

600

700

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
pPI Branching

PSfrag replacements

R
eg

is
te

r-
R

eg
is

te
rD

el
ay

PI Branching

Figure 4: Delay Vs. PI Branching

load that has to be driven, which directly leads to a larger de-
lay. PI Branching captures this effect at the output of a cone
of logic.

In Figure 4, the first plot presents the delay versus product
and the second figure plots the delay versus the sum of the
number of primary outputs driven by each input in the sup-
port set. These plots seems to indicate that there is a weak
correlation between the delay and PI Branching, but our mod-
els show a surprisingly strong effect on the estimating func-
tion, as shown in the following section.

3. Size of Fan-in Cone (Figure 5): The size of the fanin-in cone
is the number of gates in the fan-in cone of the primary out-
put under consideration. This naturally changes as synthesis
proceeds, and can only be determined at later stages of the
design. Intuitively, the more logic driving a given output, the
slower it will be. This can be seen by the plot.

Note that this parameter has to be used with care, since the
same functionality can be implemented with either one com-
plex gate or a number of simple gates. The choice of which
solution is selected depends on a number of factors, but the
effect on the size of the fan-in cone can be at odds with the
effect on delay.

4. Branching (Figure 6): We calculate the accumulated prod-
uct of the fanouts of each gate on the path under consider-
ation. In general, the larger the branching, the greater the
load that has to be driven, which increases the delay of that
path. We present the branching on the critical path as well as
the average branching over all paths, normalized by the path
length.

0

100

200

300

400

500

600

700

0 50 100 150 200 250 300

PSfrag replacements

R
eg

is
te

r-
R

eg
is

te
rD

el
ay

Size of Fanin Cone

Figure 5: Delay Vs.Size of Fan-in Cone

0

100

200

300

400

500

600

700

1 10 100 1000 10000 100000 1e+06

PSfrag replacements

R
eg

is
te

r-
R

eg
is

te
rD

el
ay

Branches on Critical Path

Average # Branches on Path 0

100

200

300

400

500

600

700

0.5 1 1.5 2 2.5 3 3.5 4 4.5

PSfrag replacements

R
eg

is
te

r-
R

eg
is

te
rD

el
ay

Branches on Critical Path

Average # Branches on Path

Figure 6: Delay Vs. Path Branching(Critical Path and Average)

5. Logical Effort (Figure 7): Logical effort measures the com-
plexity of the gates that implement the required functionality.
The logical effort along a path is the product over the gates on
the path. Figure 7(b) is the average logical effort in the fanin
cone of the output under consideration. Naturally, these val-
ues are available only after after some synthesis effort such
as restructuring, and while they can be used at this stage, they
can and do change during subsequent optimizations.

6. Number of Levels (Figure 8): This is simply the number of
levels of logic that a signal traverses from input to output. In-
tuitively, delay is directly proportionally to this value. How-
ever, this depends on the load being driven: it can be shown
that deeper paths can better drive large loads [6]. The number
of levels converges after technology mapping and buffering,
and can be reliably used only at the final stage.

4. MODELS FOR DELAY PREDICTION

0

100

200

300

400

500

600

700

1 100 10000 1e+06 1e+08 1e+10 1e+12 1e+14

PSfrag replacements

R
eg

is
te

r-
R

eg
is

te
rD

el
ay

Critical Path Logical Effort

Average Path Logical Effort 0

100

200

300

400

500

600

700

0 5 10 15 20 25

PSfrag replacements

R
eg

is
te

r-
R

eg
is

te
rD

el
ay

Critical Path Logical Effort

Average Path Logical Effort

Figure 7: Delay Vs. Path Logical Effort (Critical Path and Av-
erage)

0

100

200

300

400

500

600

700

0 2 4 6 8 10 12 14 16

PSfrag replacements

R
eg

is
te

r-
R

eg
is

te
rD

el
ay

Levels on Critical Path

Average # Levels in Fanin Cone 0

100

200

300

400

500

600

700

0 2 4 6 8 10 12 14 16

PSfrag replacements

R
eg

is
te

r-
R

eg
is

te
rD

el
ay

Levels on Critical Path

Average # Levels in Fanin Cone

Figure 8: Delay Vs. Number of Levels (Critical Path and Aver-
age)

A direct correlation between delay and the parameters presented
in the previous section seems logical – the larger the support set,
number of levels and fan-in cone size, the greater the expected de-
lay. However, this is not true for smaller values of these parameters.
As mentioned before, this can be due to a number of different fac-
tors, such as synthesis optimizing for area or power (and therefore
increasing delay) in non-critical portions of the design. Sometimes
the discrepancies are due to the nature of the parameters themselves
– the logical effort of a long chain of buffers is low, but the delay
of such a chain can be large.

The above data therefore provides us with a lower bound on the
delay; given a value of support set, say, we can be relatively sure of
the minimum achievable delay. The data presented in the previous
section shows this general trend to varying degrees. With this data
in hand, we now attempt to determine which parameters can be
used to predict delay, how these parameters can be combined, and
reason why the parameters play the role that they do.

0

100

200

300

400

500

600

700

1 100 10000 1e+06 1e+08 1e+10 1e+12 1e+14 1e+16 1e+18 1e+20
max [logical effort x piBranching]

PSfrag replacements R
eg

is
te

r-
R

eg
is

te
rA

ct
ua

lD
el

ay

max [logical effort x PI Branching]

Figure 9: Delay Vs. max (Logical Effort . PI Branching)

Consider the previous example of a long chain of buffers, which
have a low value of logical effort, but high delay. The single pa-
rameter of logical effort, by itself, does not predict the large delay.
However, a parameter such as the number of levels would indicate
that the delay of such a chain will be high. Thus, while we cannot
estimate delay as a function of a single parameter, combinations
of different parameters can potentially serve as better delay esti-
mators. The reasoning is that each parameter captures one aspect
of the design, and the correct combination of these will be able to
capture the overall nature of the design.

As another example of the correlation between a combination of
the above parameters and delay, refer to Figure 9. For every cone
of logic, we obtain the maximum value of the product of the logi-

0

100

200

300

400

500

600

0 100 200 300 400 500 600

PSfrag replacements

Es
tim

at
ed

D
el

ay
:u

si
ng

Fu
nc

tio
n

1

Estimated Delay: using Function 2

Estimated Delay: using Function 3

Register-Register Actual Delay

0

100

200

300

400

500

600

0 100 200 300 400 500 600

PSfrag replacements
Estimated Delay: using Function 1

Es
tim

at
ed

D
el

ay
:u

si
ng

Fu
nc

tio
n

2

Estimated Delay: using Function 3

Register-Register Actual Delay

0

100

200

300

400

500

600

0 100 200 300 400 500 600

PSfrag replacements
Estimated Delay: using Function 1

Estimated Delay: using Function 2

Es
tim

at
ed

D
el

ay
:u

si
ng

Fu
nc

tio
n

3

Register-Register Actual Delay

Figure 10: Estimated Vs. Actual Delay (Functions 1-3)

cal effort and the PI Branching, analogous to the product of logical
effort and electrical effort when calculating the gain of individual
gates in the method of logical effort [6]. The improvement as com-
pared to previous data is immediately apparent – the lower bound
seen before is maintained, while a rough upper bound can be dis-
cerned.

An interesting point to note is that all the parameters that we
have presented are dimensionless. In order to determine the best
models for predicting delay, we are therefore free to determine the
delay dependency – be it a linear, quadratic, exponential or some
other function of a selected parameter. In the rest of this section, we
hypothesize on the relation between delay and different parameters,
and test these hypotheses by comparing the difference in actual and
estimated delay.

The parameters are used in the order they are available to the
designer, as shown in Figure 1. We start with the support set and
PI Branching, and then expand the models to include the remaining
parameters.

Function 1
At the initial stages of the design, the only parameters avail-
able are the support set (ss) and PI Branching. Our first at-
tempt is based on the assumption that delay is possibly a
linear function of the log of two parameters, i.e. delay α
log ss / logPI Branching. The intuition behind this assump-
tion is as follows. We have observed in the previous sec-
tion that the support set gives a reasonable lower bound on
the delay (Figure 3). However, for logic that has small sup-
port sets but higher delay, this parameter by itself is insuf-
ficient. The second parameter available to us at this stage is
PI Branching, which is included to account for these circuits.
However, this model had significantly large errors, which can
be reduced by introducing a combination of support set and
PI Branching:

delay 0 k1 1 log ss / k2 1 logPI Branching

/ k3 1 log ss . logPI Branching (1)

We then perform regression analysis using Equation 1 and
available data in order to determine the the values of coeffi-
cients k1 2 k2 and k3 so that the difference between the actual
delay and the function in Equation 1 is minimized. The val-
ues of these coefficients also indicate the relative importance
of the corresponding term.
The average error is 23%, with a standard deviation of 57
ps. Figure 10(a) plots the estimated delay using this function
versus the actual delay. As mentioned previously, these co-
efficients are specific to the technology that this circuit will

be implemented in. However, they do indicate the relative
importance of each parameter, and therefore such a weighted
function of support set and PI Branching can be used in other
technology generations as well.

Function 2

We next add quadratic functions of support set and PI Branching,

delay 0 k1 1 log ss

/ k2 1 logPI Branching

/ k3 1 3 logss 4 2
/ k4 1 3 logPI Branching 4 2
/ k5 1 log ss . logPI Branching (2)

obtaining an average error of 25% with a standard deviation
of 58 ps. Figure 10(b) plots the estimated delay using this
function Vs the actual delay.

As in the previous model, the relative weights of the ss and
PI Branching parameters are similar multiples of the com-
bined ss and PI Branching parameter. The coefficients of the
quadratic versions of these parameters are attenuated, in fact
these do not contribute to accurate delay estimation at all,
only increasing the error. This indicates that the quadratic
terms are not needed when estimating delay.

Function 3

In this model, we include the average logical effort of the
cone of logic under consideration. Though the exact value
is not available at early stages, designers can make an edu-
cated guess based on the complexity of the logic to be imple-
mented.

delay 0 k1 1 log ss

/ k2 1 logPI Branching

/ k3 1 3 logss 4 2
/ k4 1 3 logPI Branching 4 2
/ k5 1 logss . logPI Branching

/ k6 1 leAvg

/ k7 1 logss . leAvg

/ k8 1 logPI Branching . leAvg (3)

The estimated delay using this function, plotted against the
actual delay in Figure 10(c) has an average error of 26% and
a standard deviation of 56 ps. Note that the regressions also

indicate the relative effect of each term on the delay, by pro-
portionately increasing / decreasing the coefficients. This can
guide us towards better models. For example, the dominant
term in this model is the average logical effort. We will pos-
sibly get better results by removing the quadratic terms, this
is currently under investigation.

Function 4
Finally, we use the product of PI Branching and logical ef-
fort. The intuition for the delay dependence on these param-
eters in this model is as follows. The first term, log ss, ac-
counts for the inherent delay of an implementation – no mat-
ter what the actual logic being implemented, all the signals
in the support set have to be combined at the output. The sec-
ond term – PI Branching . LE is analogous to an RC delay –
the logical effort estimates the complexity of the logic, while
PI Branching accounts for the different loads being driven
by that logic. This is the simplest and most accurate model:

delay 0 k1 . log ss

/ k2 . log
3
max

3
PI Branching . LE 454 (4)

This has an the best average error and standard deviation
among all the functions, of 20% and 47 ps respectively.

We build our models based on the assumption that the above pa-
rameters capture information that can be used to predict the delay
of a cone of logic. Combinations of parameters obviously provide
a better estimate than parameters taken singly. Unfortunately, there
are an exponentially large number of ways in which these param-
eters can be combined to generate delay estimates. The functions
presented above are a first cut, and only examine a fraction of all
possibilities.

5. APPLICATION METHODOLOGY
The estimators presented in this paper were evaluated within a

microprocessor design methodology in a number of different sce-
narios. Firstly, based on the maturity of the design, the appropriate
function is selected. At early stages of the design process, since
only limited data is available, Function 1 can be used to estimate
delay. During intermediate stages, one of the other functions are
selected. As the designer gets a better estimate of the complexity
of the design being implemented, Function 4, which uses parame-
ters that were unknown before, can be used to estimate the delay
of different portions of the circuit. Thus, as the design progresses,
more parameters are determined, which are subsequently used in
increasingly accurate estimating functions.

As a high level design is evaluated, the architectural performance
models are also converted into early VHDL representations for
analysis purposes. At this stage, the VHDL models are not intended
for synthesis but for quick estimation to evaluate complexity of the
designs. Cycle time delays are estimated for different parts of the
processor pipeline datapath and controller and a determination is
made regarding whether the high level design is able to meet cycle
time. If the early estimations show that architectural assumptions
were impractical from a logic design point of view, this information
is fed back to the architect for a change in the high level architec-
tural design.

If on the other hand, the timing is challenging but not impracti-
cal, then the logic design for that partition is identified and addi-
tional resources would be assigned to them. In addition, they are
meant to guide the logic designer in writing the VHDL description
that will improve the timing critical sections. Note, once again, that

these models are not intended to estimate the actual delays, rather
they help the designer divide the circuit into parts that have high
delay, and hence are critical, and the remainder, which are not, thus
helping them focus their attention where required. At each stage,
optimizations can be applied only when required, and the target of
these optimizations (delay, area, power) can be determined based
on how critical that circuit is. Aggressive optimizers take more
time to run, and the above models can be used to determine the
required degree of optimization.

Our estimators are also used to determine the effect of floorplan-
ning changes, which are made all throughout the design process. In
early stages of the design cycle, it is necessary to know the effect of
floorplan changes on the timing of the design. On the other hand, at
these stages, the RTL descriptions are not complete or only partially
available. When critical paths cross partition/macro boundaries, it
is necessary to evaluate whether the floorplan can meet the timing
requirement. Fast estimation of timing during the floorplanning
process is essential. Estimates for each partition are recalculated
throughout as the design floorplan begins to converge as well as
when the contents of the partitions begin to stabiliize. The timing
estimates for the macros are combined with timing estimation at
the chip level including interconnect estimation to derive the over-
all cycle time, thus allowing the designers to monitor the cycle time
as the floorplan changes and the design evolves.

The results of such early analysis methodology is fed back as
well as forward to microarchitects, logic designers, physical de-
signers and floorplanners. These estimates prove invaluable in mak-
ing early changes to the design point from all these different design
considerations.

6. CONCLUSION AND FUTURE WORK
In this paper, we present a methodology at predicting cycle time

of a proposed design early in a microprocessor design flow. Though
the error in the predicted values may seem significant in absolute
terms, it is important to note that these predictions are based on
extremely coarse data and provide more information to designers
than currently available. Also, we have a high level of fidelity with
actual delays, which, at early stages of the design is more important
than accuracy. An extended version of the work presented in this
paper has been implemented in a microprocessor design method-
ology. In the methodology, the estimates are used both to provide
feedback to the architects in selecting optimal high level designs as
well as to the logic designers, floorplanners and physical designers
to aid them in meeting challenging cycle time objectives.

The estimation approach presented in this paper continues to be
refined to be able to capture methodology issues much earlier in
the design process [8]. Methods for generating estimates even ear-
lier in the design flow can be implemented by directly taking into
account microarchitectural parameters (pipeline depth, branch pre-
diction algorithm complexity, renaming algorithms etc) along with
logic design parameters (wiring, cycle time, area, power). These
models are currently being evaluated as part of current and future
directions for this research.

7. REFERENCES
[1] CONG, J., JAGANNATHAN, A., REINMAN, G., AND

ROMESIS, M. Microarchitecture evaluation with physical
planning. In Proc. ACM/IEEE Design Automation Conference
(2003), pp. 32–36.

[2] EMER, J., BINKERT, N., ESPASA, R., JUAN, T., AHUJA, P.,
BORCH, E., KLAUSER, A., LUK, C.-K., MANNE, S.,
MUKHERJEE, S. S., PATIL, H., AND WALLACE, S. Asim: A

performance model framework. IEEE Computer 35, 2 (2002),
68–76.

[3] NEMANI, M., AND NAJM, F. Delay estimation of VLSI
circuits from a high level view. In Proc. ACM/IEEE Design
Automation Conference (1998), pp. 591–594.

[4] OHM, S. Y., KURDAHI, F. J., DUTT, N., AND XU, M. A
comprehensive estimation technique for high level synthesis.
In International Symposium on System Synthesis (1995),
pp. 122–127.

[5] RAGHUNATHAN, A., DEY, S., AND JHA, N. High level
macro-modeling and estimation techniques for switching
activity and power consumption. IEEE Transactions on VLSI

Systems 11, 4 (2003), 538–557.
[6] SUTHERLAND, I., HARRIS, D., AND SPROULL, R. Logical

Effort: Designing Fast CMOS Circuits. Morgan Kauffman,
San Fransisco, CA, 1999.

[7] WALLACE, D., AND CHANDRASHEKAR, M. High level
delay estimation for technology independent logic equations.
In Proc. International Conf. Computer-Aided Design (1990),
pp. 188–191.

[8] ZYUBAN, V., AND STRENSKI, P. N. Balancing hardware
intensity in microprocessor pipelines. IBM Journal of
Research and Development 47, 5 (2003), 585–598.

Wire Management for Coherence Traffic in Chip Multiprocessors

Liqun Cheng, Naveen Muralimanohar, Karthik Ramani, Rajeev Balasubramonian, John Carter
School of Computing, University of Utah ∗

Abstract

Improvements in semiconductor technology have
made it possible to include multiple processor cores
on a single die. Chip Multi-Processors (CMP) are an
attractive choice for future billion transistor architec-
tures due to their low design complexity, high clock
frequency, and high throughput. In a typical CMP ar-
chitecture, the L2 cache is shared by multiple cores
and data coherence is maintained among private L1s.
Coherence operations entail frequent communication
over global on-chip wires. In future technologies, com-
munication between different L1s will have a signif-
icant impact on overall processor performance and
power consumption.

On-chip wires can be designed to have different
latency, bandwidth, and energy properties. Like-
wise, coherence protocol messages have different la-
tency and bandwidth needs. We propose an intercon-
nect comprised of wires with varying latency, band-
width, and energy characteristics, and advocate intel-
ligently mapping coherence operations to the appro-
priate wires. In this paper, we present a comprehen-
sive list of techniques that allow coherence protocols
to exploit a heterogeneous interconnect and present
preliminary data that indicates the potential of these
techniques to significantly improve performance and
reduce power consumption. We further demonstrate
that most of these techniques can be implemented at a
minimum complexity overhead.

1. Introduction

Advances in process technology have led to the
emergence of new bottlenecks in future micropro-
cessors. One of the chief bottlenecks to perfor-

∗This work was supported in part by NSF grant CCF-0430063
and by Silicon Graphics Inc.

mance is the high cost of on-chip communication
through global wires [19]. Power consumption has
also emerged as a first order design metric and wires
contribute up to 50% of total chip power in some
processors [28]. Future microprocessors are likely to
exploit huge transistor budgets by employing a chip
multi-processor (CMP) architecture [30, 32]. Multi-
threaded workloads that execute on such processors
will experience high on-chip communication latencies
and will dissipate significant power in interconnects.
In the past, the design of interconnects was primarily
left up to VLSI and circuit designers. However, with
communication emerging as a larger power and per-
formance constraint than computation, architects may
wish to consider different wire implementations and
identify creative ways to exploit them [6]. This paper
presents a number of creative ways in which coherence
communication in a CMP can be mapped to different
wire implementations with minor increases in com-
plexity. We present preliminary results that demon-
strate that such an approach can both improve perfor-
mance and reduce power dissipation.

In a typical CMP, the L2 cache and lower lev-
els of the memory hierarchy are shared by multiple
cores [22, 32]. Sharing the L2 cache allows high cache
utilization and avoids duplicating cache hardware re-
sources. L1 caches are typically not shared as such
an organization entails high communication latencies
for every load and store. Maintaining coherence be-
tween the individual L1s is a challenge in CMP sys-
tems. There are two major mechanisms used to en-
sure coherence among L1s in a chip multiprocessor.
The first option employs a bus connecting all of the
L1s and a snoopy bus-based coherence protocol. In
this design, every L1 cache miss results in a coherence
message being broadcast on the global coherence bus.
Individual L1 caches perform coherence operations on
their local data in accordance with these coherence

messages. The second approach employs a central-
ized directory in the L2 cache that tracks sharing in-
formation for all cache lines in the L2 and implements
a directory-based coherence protocol. In this design,
every L1 cache miss is sent to the L2 cache, where
further actions are taken based on directory state. Nu-
merous studies [1, 10, 20, 23, 27] have characterized
the high frequency of cache misses in parallel work-
loads and the high impact these misses have on total
execution time. On a cache miss, a variety of protocol
actions are initiated, such as request messages, inval-
idation messages, intervention messages, data block
writebacks, data block transfers, etc. Each of these
messages involves on-chip communication with laten-
cies that are projected to grow to tens of cycles in fu-
ture billion transistor architectures [2].

VLSI techniques enable a variety of different wire
implementations that are typically not exploited at the
microarchitecture level. For example, by tuning wire
width and spacing, we can design wires with varying
latency and bandwidth properties. Similarly, by tun-
ing repeater size and spacing, we can design wires
with varying latency and energy properties. To take
advantage of VLSI techniques and better match the
interconnect design to communication requirements,
heterogeneous interconnects have been proposed [6],
where every link consists of wires that are optimized
for either latency, energy, or bandwidth. In this study,
we explore optimizations that are enabled when such a
heterogeneous interconnect is employed for coherence
traffic. For example, on a cache write miss, the re-
questing processor may have to wait for data from the
home node (a two hop transaction) and for acknowl-
edgments from other sharers of the block (a three hop
transaction). Since the acknowledgments are on the
critical path and have low bandwidth needs, they can
be mapped to wires optimized for delay, while the data
block transfer is not on the critical path and can be
mapped to wires that are optimized for low power.

The paper is organized as follows. Section 2 re-
views techniques that enable different wire implemen-
tations and the design of a heterogeneous interconnect.
Section 3 describes the proposed innovations that map
coherence messages to different on-chip wires. Sec-
tion 4 presents preliminary results that indicate the po-
tential of our proposed techniques. Section 5 discusses
related work and we conclude in Section 6.

2. Wire Implementations

We begin with a quick review of factors that influ-
ence wire properties. It is well-known that the delay
of a wire is a function of its RC time constant (R is
resistance and C is capacitance). Resistance per unit
length is (approximately) inversely proportional to the
width of the wire [19]. Likewise, a fraction of the ca-
pacitance per unit length is inversely proportional to
the spacing between wires, and a fraction is directly
proportional to wire width. These wire properties pro-
vide an opportunity to design wires that trade off band-
width and latency. By allocating more metal area per
wire and increasing wire width and spacing, the net ef-
fect is a reduction in the RC time constant. This leads
to a wire design that has favorable latency properties,
but poor bandwidth properties (as fewer wires can be
accommodated in a fixed metal area). Our analysis [6]
shows that in certain cases, nearly a three-fold reduc-
tion in wire latency can be achieved, at the expense of a
four-fold reduction in bandwidth. Further, researchers
are actively pursuing transmission line implementa-
tions that enable extremely low communication laten-
cies [12, 16]. However, transmission lines also entail
significant metal area overheads in addition to logic
overheads for sending and receiving [8, 12]. If trans-
mission line implementations become cost-effective at
future technologies, they represent another attractive
wire design point that can trade off bandwidth for low
latency.

Similar trade-offs can be made between latency and
power consumed by wires. Global wires are usually
composed of multiple smaller segments that are con-
nected with repeaters [5]. The size and spacing of re-
peaters influences wire delay and power consumed by
the wire. When smaller and fewer repeaters are em-
ployed, wire delay increases, but power consumption
is reduced. The repeater configuration that minimizes
delay is typically very different from the repeater con-
figuration that minimizes power consumption. Baner-
jee et al. [7] show that at 50nm technology, a five-fold
reduction in power can be achieved at the expense of a
two-fold increase in latency.

Thus, by varying properties such as wire
width/spacing and repeater size/spacing, we can
implement wires with different latency, bandwidth,
and power properties. If a data packet has 64 bits,
global interconnects are typically designed to min-

2

Delay Optimized Bandwidth Optimized Power Optimized Power and Bandwidth Optimized

Figure 1. Examples of different wire implementations. Power optimized wires have fewer and smaller
repeaters, while bandwidth optimized wires have narrow widths and spacing.

imize delay for the transfer of 64-bit data, while
not exceeding the allocated metal area. We refer
to these wires as B-Wires. In addition to this base
64-bit interconnect, there are at least three other wire
implementations that are potentially beneficial:

• P-Wires: Wires that are power-optimal. The
wires have longer delays as they employ small re-
peater size and wide repeater spacing.

• W-Wires: Wires that are bandwidth-optimal. The
wires have minimum width and spacing and have
longer delays.

• L-Wires: Wires that are latency-optimal. These
wires employ very wide wires and have low band-
width.

To limit the range of possibilities, P-Wires and W-
Wires can be combined to form a single wire imple-
mentation PW-Wires, that have poor delay characteris-
tics, but allow low power and high bandwidth. While a
traditional architecture would employ the entire avail-
able metal area for B-Wires, we propose the design of
a heterogeneous interconnect, where part of the avail-
able metal area is employed for B-Wires, part for L-
Wires, and part for PW-Wires. Thus, any data transfer
has the option of using one of three sets of wires to
effect the communication. Figure 1 demonstrates the
differences between the wire implementations. In the
next section, we will demonstrate how these options
can be exploited to improve performance and reduce
power consumption. If the mapping of data to a set of
wires is straightforward, the logic overhead for the de-
cision process is likely to be minimal. This issue will
be treated in more detail in subsequent sections.

3. Optimizing Coherence Traffic

The previous section outlines wire implementation
options available to an architect. For each cache coher-
ence protocol, there exist myriad coherence operations
with varying bandwidth and latency needs. Because of
this diversity, there are numerous opportunities to im-
prove performance and power characteristics by em-
ploying a heterogeneous interconnect. The goal of this
section is to present a comprehensive listing of such
opportunities. In Section 3.1 we focus on protocol-
specific optimizations. We then discuss a variety of
protocol-independent techniques in Section 3.2. Fi-
nally, we discuss the implementation complexity of the
various techniques in Section 3.3.

3.1. Protocol-dependent Techniques

We begin by examining the characteristics of coher-
ence operations in both directory-based and snooping
bus-based coherence protocols. We then describe how
these coherence operations can be mapped to the ap-
propriate set of wires. In a bus-based design, the abil-
ity of a cache to directly respond to another cache’s
request leads to low L1 cache-to-cache miss latencies.
L2 cache latencies are relatively higher as a proces-
sor core has to acquire the bus before sending the re-
quest to L2. It is difficult to support a large number
of processor cores with a single bus due to the band-
width and electrical limits of a centralized bus [11].
In a directory-based design [14, 25], each L1 connects
to the L2 cache through a point-to-point link. This de-
sign has low L2 hit latency and scales better. However,
each L1 cache-to-cache miss must be forwarded by the
L2 cache, which implies high L1 cache-to-cache laten-
cies. The performance comparison between these two
design choices depends on the cache size, miss rate,

3

number of outstanding memory requests, working-set
size, sharing behavior of the targeted benchmarks, etc.
Since either option may be attractive to chip manufac-
turers, we will consider both forms of coherence pro-
tocols in our study.
Write-Invalidate Directory-based Protocol

Write-invalidate directory-based protocols have
been implemented in existing dual-core CMPs [32]
and will likely be used in larger scale CMPs as well.
In a directory-based protocol, every cache line has a
directory where the states of the block in all L1s are
stored. Whenever a request misses in an L1 cache, a
coherence message is sent to the directory at the L2 to
check the cache line’s global state. If there is a clean
copy in the L2 and the request is a READ, it is served
by the L2 cache. Otherwise, another L1 must hold an
exclusive copy and the READ request is forwarded to
the exclusive owner, which supplies the data. For a
WRITE request, if any other L1 caches hold a copy of
the cache line, coherence messages are sent to each
of them requesting that they invalidate their copies.
When each of these invalidation requests is acknowl-
edged, the L2 cache can supply an exclusive copy of
the cache line to the requesting L1 cache.

Hop imbalance is quite common in a directory-
based protocol. To exploit this imbalance, we can send
critical messages on fast wires to increase performance
and send non-critical messages on slow wires to save
power. For the sake of this discussion, we assume that
the hop latencies of different wires are in the following
ratio: L-wire : B-wire : PW-wire :: 1 : 2 : 3

Proposal I: Read exclusive request for block in
shared state
In this case, the L2 cache’s copy is clean, so it pro-
vides the data to the requesting L1 and invalidates all
shared copies. When the requesting L1 receives the
reply message from the L2, it collects invalidation ac-
knowledgment messages from the other L1s before re-
turning the data to the processor core1. Figure 2 de-
picts all generated messages.

The reply message from the L2 takes only one hop,
while the invalidation acknowledgment messages take
two hops – an example of hop imbalance. Since there
is no benefit to receiving the cache line early, latencies
for each hop can be chosen that equalize communica-

1Some coherence protocols may not impose all of these con-
straints, thereby deviating from a sequentially consistent memory
model.

P H

 C1 C2

1) Read Exclusive

2)
 I

nv

2) Spec reply

2) I
nv

3) Inv Ack

3)
 I

nv
 A

ck

Figure 2. Read exclusive request for a block
in shared state

tion latency for the cache line and the acknowledgment
messages. Acknowledgment messages include iden-
tifiers so they can be matched against the outstand-
ing request in the L1’s MSHR. Since there are only
a few outstanding requests in the system, the identi-
fier requires few bits, allowing the acknowledgment to
be transferred on low-bandwidth low-latency L-Wires.
Simultaneously, the data block transmission from the
L2 can happen on low-power PW-Wires and still finish
before the arrival of the acknowledgments. This strat-
egy improves performance (because acknowledgments
are often on the critical path) and reduces power con-
sumption (because the data block is now transferred on
power-efficient wires). While circuit designers have
frequently employed different types of wires within a
circuit to reduce power dissipation without extending
the critical path, the proposals in this paper represent
some of the first attempts to exploit wire properties at
the architectural level.

Proposal II: Read request for block in exclusive
state
In this case, the value in the L2 is likely to be stale and
the following protocol actions are taken. The L2 cache
sends a speculative data reply to the requesting L1 and
forwards the read request as an intervention message to
the exclusive owner. If the cache copy in the exclusive
owner is clean, an acknowledgment message is sent to
the requesting L1, indicating that the speculative data
reply from the L2 is valid. If the cache copy is dirty,
a response message with the latest data is sent to the

4

requesting L1 and a write-back message is sent to the
L2. Since the requesting L1 cannot proceed until it re-
ceives a message from the exclusive owner, the specu-
lative data reply from the L2 (a single hop transfer) can
be sent on slower PW-Wires. The forwarded request
to the exclusive owner is on the critical path, but in-
cludes the block address. It is therefore not eligible for
transfer on L-Wires. If the owner’s copy is in the ex-
clusive clean state, a low-bandwidth acknowledgment
to the requestor can be sent on L-Wires. If the owner’s
copy is dirty, the cache block can be sent over B-Wires,
while the low priority writeback to the L2 can happen
on PW-Wires. With the above mapping, we acceler-
ate the critical path by using faster L-Wires, while also
lowering power consumption by sending non-critical
data on PW-Wires. The above protocol actions apply
even in the case when a read-exclusive request is made
for a block in the exclusive state.

Proposal III: NACK messages
When the directory state is busy, incoming requests are
often NACKed by the home directory, i.e., a negative
acknowledgment is sent to the requester rather than
buffering the request. Typically the requesting cache
controller reissues the request and the request is seri-
alized in the order in which it is actually accepted by
the directory. A NACK message can be matched by
comparing the request id (MSHR index) rather than
the full address, so a NACK is eligible for transfer
on low-bandwidth L-Wires. When network contention
is low, the home node should be able to serve the re-
quest when it arrives again, in which case sending the
NACK on fast L-Wires can improve performance. In
contrast, when network contention is high, frequent
backoff-and-retry cycles are experienced. In this case,
fast NACKs only increase traffic levels without provid-
ing any performance benefit. In order to save power,
NACKs can be sent on PW-Wires.

Write-Invalidate Bus-Based Protocol
We next examine techniques that apply to bus-based
snooping protocols. The role of the L1s and the L2
in a bus-based CMP system are very similar to that of
the L2s and memory in a bus-based SMP (symmetric
multiprocessor) system.

Proposal IV: Signal wires
Three wired-OR signals are typically used to avoid in-
volving the lower/slower memory hierarchy [15]. Two
of these signals are responsible for reporting the state
of snoop results and the third indicates that the snoop

result is valid. The first signal is asserted when any L1
cache, besides the requester, has a copy of the block.
The second signal is asserted if any cache has the block
in the exclusive state. The third signal is an inhibit
signal, asserted until all caches have completed their
snoop operations. When the third signal is asserted,
the requesting L1 and the L2 can safely examine the
other two signals. Since all of these signals are on the
critical path, implementing them using low-latency L-
Wires can improve performance.

Proposal V: Voting wires
Another design choice is whether to use cache-to-
cache transfers if the data is in the shared state in a
cache. The Silicon Graphics Challenge [17] and the
Sun Enterprise use cache-to-cache transfers only for
data in the modified state, in which case there is a
single supplier. On the other hand, in the full Illinois
MESI protocol, a block can be preferentially retrieved
from another cache rather than from memory. How-
ever, when multiple caches share a copy, a “voting”
mechanism is required to decide which cache will sup-
ply the data, and this voting mechanism can benefit
from the use of low latency wires.

3.2. Protocol-independent Techniques

Proposal VI: Narrow Bit-Width Operands for Syn-
chronization Variables
Synchronization is one of the most important factors
in the performance of a parallel application. Synchro-
nization is not only often on the critical path, but it
also contributes a large percentage (up to 40%) of co-
herence misses [27]. Locks and barriers are the two
most widely used synchronization constructs. Both of
them use small integers to implement mutual exclu-
sion. Locks often toggle the synchronization variable
between zero and one, while barriers often linearly in-
crease a barrier variable from zero to the number of
processors taking part in the barrier operation. Such
data transfers have limited bandwidth needs and can
benefit from using L-Wires.

This optimization can be further extended by exam-
ining the general problem of cache line compaction.
For example, if a cache line is comprised mostly of
0 bits, trivial data compaction algorithms may reduce
the bandwidth needs of the cache line, allowing it to be
transferred on L-Wires instead of B-Wires. If the wire
latency difference between the two wire implementa-
tions is greater than the delay of the compaction/de-

5

compaction algorithm, performance improvements are
possible.

Proposal VII: Assigning Writeback Data to PW-
Wires
Writeback data transfers result from cache replace-
ments or external request/intervention messages.
Since writeback messages are rarely on the critical
path, assigning them to PW-Wires can save power
without incurring significant performance penalties.

Proposal VIII: Assigning Narrow Messages to L-
Wires
Coherence messages that include the data block ad-
dress or the data block itself are many bytes wide.
However, many other messages, such as acknowl-
edgments and NACKs, do not include the address
or data block and only contain control information
(source/destination, message type, MSHR id, etc.).
Such narrow messages can be assigned to low latency
L-Wires.

3.3. Implementation Complexity

In a conventional multiprocessor interconnect, a
subset of wires are employed for addresses, a subset
for data, and a subset for control signals. Every bit
of communication is mapped to a unique wire. When
employing a heterogeneous interconnect, a communi-
cation bit can map to multiple wires. For example,
data returned by the L2 in respose to a read-exclusive
request may map to B-Wires or PW-Wires depending
on whether there are other sharers for that block (Pro-
posal I). Thus, every wire must be associated with a
multiplexor and de-multiplexor.

The decision process in selecting the right set of
wires is minimal. For example, in Proposal I, an OR
function on the directory state for that block is enough
to select either B- or PW-Wires. In Proposal II, the
decision process involves a check to determine if the
block is in the exclusive state. To support Proposal
III, we need a mechanism that tracks the level of con-
gestion in the network (for example, the number of
buffered outstanding messages). There is no decision
process involved for Proposals IV, V, and VII. Pro-
posals VI and VIII require logic to compute the width
of an operand, similar to logic used in the PowerPC
603 [18] to determine the latency of integer multiply.

Cache coherence protocols are already designed to
be robust in the face of variable delays for different
messages. In all proposed innovations, a data packet

is not distributed across different sets of wires. There-
fore, different components of an entity do not arrive at
different periods of time, thereby eliminating any tim-
ing problems. It may be worth considering sending the
critical word of a cache line on L-Wires and the rest of
the cache line on PW-Wires. Such a proposal may en-
tail non-trivial complexity to handle corner cases and
is not discussed further in this paper.

In a snooping bus-based coherence protocol, trans-
actions are serialized by the order in which addresses
appear on the bus. None of our proposed innovations
for snooping protocols affect the transmission of ad-
dress bits (address bits are always transmitted on B-
Wires), so the transaction serialization model is pre-
served.

The use of heterogeneous interconnects does not
imply an increase in metal area. Rather, we advocate
that the available metal area be partitioned among dif-
ferent wire implementations.

4. Results

4.1. Methodology

The evaluation is performed with a detailed CMP
architecture simulator based on UVSIM [34], a cycle-
accurate execution-driven simulator. The CMP cores
are out-of-order superscalar processors with private L1
caches, shared L2 cache and all lower level memory
hierarchy components. Contention for memory hier-
archy resources (ports, banks, buffers, etc.) are mod-
eled in detail. In order to model an aggressive future
generation CMP, we assume 16 processor cores, con-
nected by a two-level tree interconnect. The simulated
on-chip interconnect is based on SGI’s NUMALink-4.
A set of four processor cores is connected through a
crossbar router, allowing low-latency communication
to neighboring cores. As shown in Figure 3, the cross-
bar routers are connected to the root router, where the
centralized L2 lies. We do not model contention within
the routers, but do model port contention on the net-
work interfaces. Each cache line in the L2 cache has a
directory which saves sharing information for the pro-
cessor cores. Every L1 cache miss is sent to the L2
cache, where further actions are taken based on the
directory state. We model the directory-based cache
coherence protocol that is employed in the SGI Origin
3000 [31]. It is an MESI write-invalidate protocol with

6

Parameter Value

Processor 4-issue, 48-entry active list, 2GHz
L1 I-cache 2-way, 64KB, 64B lines, 1-cycle lat.
L1 D-cache 2-way, 64KB, 64B lines, 2-cycle lat.
On-chip Network 10 processor cycles per hop
L2 cache 4-way, 8MB, 64B lines, 4-cycle bank-lat.
MSHR per CPU 16
DRAM 16 16-bit-data DDR channels

Table 1. System configuration.

Processor

L2 Cache

Figure 3. Interconnect Topology

migratory optimization. The migratory optimization
causes a read (shared) request to return exclusive own-
ership if the requested cache line is in the UNOWN
state. Important simulation parameters are listed in Ta-
ble 1.

To test our ideas, we employ a workload consisting
of all programs from the SPLASH-2 [33] and NAS
parallel benchmark [4] suites that were compatible
with our simulator. The programs were run to com-
pletion, but all experimental results reported in this pa-
per are for the parallel phase of these applications and
employ the default input sets for SPLASH-2 and the
S-class for NAS.

4.2. Preliminary Results

While Section 3 provides a comprehensive list of
potential optimizations, our preliminary study only ex-
amines the effect of one class of optimizations on a
directory-based cache coherence protocol. Our base
model assumes a fat-tree structure with four children
on each non-leaf node. Processor cores are on the leaf
node, and four neighboring cores are grouped into a
sub-tree. We define the hop number as the number of
routers used to transfer a network message between

two processor cores. As illustrated in Figure 3, it takes
one network hop to transfer a message between two
processors in the same domain (sub-tree), and three
network hops to transfer a message between any two
processors which belong to different domains (sub-
trees). The latencies on the interconnects would de-
pend greatly on the technology, processor layout, and
available metal area. The estimation of some of these
parameters is beyond the scope of this study. For the
base case, we assume the metal layer is comprised en-
tirely of B-Wires, and one hop latency is 10 processor
cycles. This assumption is based on projections [2, 3]
that claim on-chip wire delays of the order of tens of
cycles.

In the base case, each processor can issue a sin-
gle 64-bit packet every cycle that is transmitted on B-
Wires. In our proposed heterogeneous interconnect,
we again assume that each processor can issue a single
packet every cycle, but that packet can be transmitted
on one of three possible sets of wires. The transmis-
sion can either happen on a set of 64 B-Wires, a set of
64 PW-Wires, or a set of 16 L-Wires. While we have
kept the packet throughput per processor constant in
the base and proposed cases, the metal area cost of the
heterogeneous interconnect is higher than that of the
base case. The comparison of designs that consume
equal metal area is part of future work. The experi-
ments in this paper are intended to provide preliminary
best-case estimates of the potential of a heterogeneous
interconnect. Relative energy and delay estimates of
wires have been derived in [6]. L-Wires (latency-
optimal) have a latency of five cycles for each network
hop and consume about 45% more dynamic energy
than B-Wires. PW-Wires (low power and high band-
width) have a latency of 15 cycles per hop and con-
sume about half the dynamic energy of B-Wires. We
assume that every interconnect is perfectly pipelined.
It must be noted that L-Wires can yield lower latency
than B-Wires even when sending messages larger than
16 bits (and lower than 112 bits). However, send-
ing large messages through L-Wires will increase wait
time for other messages, resulting in overall lower per-
formance.

We will consider only the simplest subset of tech-
niques proposed in Section 3, that entail the least com-
plexity in mapping critical data transfers to L-Wires
and non-critical data transfers to PW-Wires. Firstly,
not all critical messages are eligible for transfer on L-

7

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

W
ATE

Rns
q

W
ATE

Rsp
a

FFT

RADIX CG
M

G
EM

3D RAY

LU
co

nt

LU
no

nc
on

VO
L

OCEAN

Ave
ra

ge

PW-Wires

L-Wires

B-Wires

Figure 4. Percentage of critical and non-
critical messages

Wires. Since we assume 16 L-Wires and 64-bit ad-
dresses, a message that includes the full address is
always sent on B-Wires or PW-Wires. To identify
what messages can be sent through B-Wires and PW-
Wires, we classify all coherence messages into six cat-
egories: REQUEST, WRITE, PROBE, REPLY2MD,
RESPONSE, and REPLY2PI.

Every memory transaction that misses in the local
L1 cache will send out a REQUEST message to the
L2 cache. A REQUEST message includes request type
(READ, RDEXC, UPGRADE, etc.), source id, MSHR
id, and data address. Although REQUEST messages
are mostly on the critical path, they are too wide to
benefit from L-Wires. Therefore, REQUEST mes-
sages are always transmitted on B-Wires.

WRITE messages result from L1 cache replace-
ment. WRITE messages are often not on the critical
path and they can be always sent on PW-Wires with-
out degrading performance.

PROBE messages happen in cache-to-cache misses
and can be further classified as INTERVENTION mes-
sages and INVALIDATE messages. An INTERVEN-
TION request retrieves the most recent data for a line
from an exclusive copy that may exist within a remote
cache. An INVALIDATE request removes copies of a
cache line that may exist in remote caches. Both IN-
TERVENTION and INVALIDATE messages include
request type, source id, address, and the MSHR id
of the REQUEST message that generated the PROBE
message. PROBE messages are usually critical, but
can only be sent through B-Wires due to the bandwidth

0

0.2

0.4

0.6

0.8

1

1.2

1.4

W
ATERns

q

W
ATERsp

a
FFT

RADIX CG M
G

EM
3D RAY

LU
co

nt

LU
no

nc
on

VOL

OCEAN

Ave
ra

ge

S
p

ee
d

u
p

base case

Heter-Interconnect

Figure 5. Performance improvements

limitation of L-Wires.
When a processor receives a PROBE message, it

sends a REPLY2MD message to the home directory (if
it has a dirty copy of the cache line) and a RESPONSE
message to the processor that generated the REQUEST
message. Response messages can have data, in which
case, they must be sent on B-Wires. In most cases, the
message is simply an acknowledgment that only needs
reply type (4 bits), source id (4 bits in 16-core CMP),
and MSHR id (4 bits), and can be sent on L-Wires.
REPLY2MD is often off the critical path and can be
sent on PW-Wires.

REPLY2PI messages are the messages sent from
the home directory to the requester. Some REPLY2PI
messages include data, while others only include con-
trol bits (such as NACK or the reply for an UPGRADE
request). REPLY2PI messages not only have variable
bandwidth needs, but also have variable criticality, as
discussed in Section 3. For example, in cache-to-cache
misses, REPLY2PI messages tend to arrive at the re-
quester faster than the PROBE/RESPONSE messages
and are therefore off the critical path.

In order to simplify the decision process in map-
ping data to wires, we adopt the following policy: (i)
WRITE and REPLY2MD messages are always sent on
PW-Wires, (ii) all other messages that are narrower
than 16 bits are sent on L-Wires, and (iii) all other
messages that are wider than 16 bits are sent on B-
Wires. Thus, we are only incorporating Proposal VII,
Proposal VIII, and parts of Proposal III in our sim-
ulation model. Detailed evaluations of other proposals
are left for future work.

Figure 4 shows the percentage of messages sent

8

through different sets of wires, while assuming the al-
location policy described above. It must be noted that a
significant fraction of all messages are narrow enough
that they can be sent on L-Wires. Messages sent on
B- and PW-Wires are wider than messages sent on L-
Wires. As a result, the fraction of bits transmitted on
L-Wires is lower than that indicated in Figure 4. If we
assume that dynamic energy consumed by transmis-
sions on B, L, and PW-Wires are in the ratio 1: 1.45:
0.52 (as estimated in a prior study [6]), interconnect
dynamic energy in the proposed design is reduced by
40%. Further, this reduction in interconnect energy is
accompanied by improvements in performance. Fig-
ure 5 shows the performance speedup achieved by the
transmission of some signals on low-latency L-Wires.
The overall average improvement across the bench-
mark set is 13.3%.

5. Related Work

Beckmann et al. [9] address the problem of long
L2 cache access times in a chip multiprocessor by em-
ploying low latency, low bandwidth transmission lines.
They utilize transmission lines to send data from the
center of the L2 cache to different banks. Kim et al.
[21] proposed a dynamic non-uniform cache access
(DNUCA) mechanism to accelerate cache access. Our
proposal is orthogonal to the above technique and can
be combined with non-uniform cache access mecha-
nisms to improve performance.

A recent study by Citron et al. [13] examines en-
tropy within data being transmitted on wires and iden-
tifies opportunities for compression. Unlike the pro-
posed technique, they employ a single interconnect to
transfer all data. Balasubramonian et al. [6] utilize
heterogeneous interconnects for the transmission of
register and load/store values to improve energy-delay
characteristics in a partitioned microarchitecture.

Recent studies [20, 24, 26, 29] have proposed sev-
eral protocol optimizations that can benefit from het-
erogeneous interconnects. For example, in the Dy-
namic Self Invalidation scheme proposed by Lebeck
et al. [26], the self-invalidate [24, 26] messages can
be effected through power-efficient PW-Wires. In a
processor model implementing token coherence, the
low-bandwidth token messages [29] are often on the
critical path and thus, can be effected on L-Wires. A
recent study by Huh et al. [20] reduces the frequency

of false sharing by employing incoherent data. For
cache lines suffering from false sharing, only the shar-
ing states need to be propagated and such messages are
a good match for low-bandwidth L-Wires.

6. Conclusions and Future Work

Coherence traffic in a chip multiprocessor has di-
verse needs. Some messages can tolerate long laten-
cies, while others are on the program critical path. Fur-
ther, messages have varied bandwidth demands. On-
chip global wires can be designed to optimize latency,
bandwidth, or power. We advocate partitioning avail-
able metal area across different wire implementations
and intelligently mapping data to the set of wires best
suited for its communication. This paper presents nu-
merous novel techniques that can exploit a heteroge-
neous interconnect to simultaneously improve perfor-
mance and reduce power consumption.

Our preliminary evaluation of a subset of the pro-
posed techniques shows that a large fraction of mes-
sages have low bandwidth needs and can be trans-
mitted on low latency wires, thereby yielding a per-
formance improvement of 13%. At the same time,
a 40% reduction in interconnect dynamic energy is
observed by transmitting non-critical data on power-
efficient wires. These improvements are achieved at a
marginal complexity cost as the mapping of messages
to wires is extremely straightforward.

For future work, we plan to strengthen our evalua-
tions by comparing processor models with equal metal
area. We will carry out a sensitivity analysis with re-
spect to important processor parameters such as laten-
cies, interconnect topologies, etc. We will also evalu-
ate the potential of other techniques listed in this paper.

References

[1] M. E. Acacio, J. Gonzalez, J. M. Garcia, and J. Du-
ato. The Use of Prediction for Accelerating Upgrade
Misses in CC-NUMA Multiprocessors. In Proceed-
ings of PACT-11, 2002.

[2] V. Agarwal, M. Hrishikesh, S. Keckler, and D. Burger.
Clock Rate versus IPC: The End of the Road for
Conventional Microarchitectures. In Proceedings of
ISCA-27, pages 248–259, June 2000.

[3] S. I. Association. International Technol-
ogy Roadmap for Semiconductors 2003.
http://public.itrs.net/Files/2003ITRS/Home2003.htm.

9

[4] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning,
R. L. Carter, D. Dagum, R. A. Fatoohi, P. O. Freder-
ickson, T. A. Lasinski, R. S. Schreiber, H. D. Simon,
V. Venkatakrishnan, and S. K. Weeratunga. The NAS
Parallel Benchmarks. The International Journal of
Supercomputer Applications, 5(3):63–73, Fall 1994.

[5] H. Bakoglu. Circuits, Interconnections, and Packag-
ing for VLSI. Addison-Wesley, 1990.

[6] R. Balasubramonian, N. Muralimanohar, K. Ramani,
and V. Venkatachalapathy. Microarchitectural Wire
Management for Performance and Power in Parti-
tioned Architectures. In Proceedings of HPCA-11,
February 2005.

[7] K. Banerjee and A. Mehrotra. A Power-optimal Re-
peater Insertion Methodology for Global Intercon-
nects in Nanometer Designs. IEEE Transactions
on Electron Devices, 49(11):2001–2007, November
2002.

[8] B. Beckmann and D. Wood. TLC: Transmission Line
Caches. In Proceedings of MICRO-36, December
2003.

[9] B. Beckmann and D. Wood. Managing Wire Delay in
Large Chip-Multiprocessor Caches. In Proceedings
of MICRO-37, December 2004.

[10] E. E. Bilir, R. M. Dickson, Y. Hu, M. Plakal, D. J.
Sorin, M. D. Hill, and D. A. Wood. Multicast Snoop-
ing: A New Coherence Method using a Multicast
Address Network. SIGARCH Comput. Archit. News,
pages 294–304, 1999.

[11] F. A. Briggs, M. Cekleov, K. Creta, M. Khare,
S. Kulick, A. Kumar, L. P. Looi, C. Natarajan, S. Rad-
hakrishnan, and L. Rankin. Intel 870: A building
block for cost-effective, scalable servers. IEEE Mi-
cro, 22(2):36–47, 2002.

[12] R. Chang, N. Talwalkar, C. Yue, and S. Wong. Near
Speed-of-Light Signaling Over On-Chip Electrical
Interconnects. IEEE Journal of Solid-State Circuits,
38(5):834–838, May 2003.

[13] D. Citron. Exploiting Low Entropy to Reduce Wire
Delay. IEEE Computer Architecture Letters, vol.2,
January 2004.

[14] Corporate Institute of Electrical and Electronics Engi-
neers, Inc. Staff. IEEE Standard for Scalable Coher-
ent Interface, Science: IEEE Std. 1596-1992. 1993.

[15] D. E. Culler and J. P. Singh. Parallel Computer Ar-
chitecture: a Hardware/software Approach. Morgan
Kaufmann Publishers, Inc, 1999.

[16] W. Dally and J. Poulton. Digital System Engineering.
Cambridge University Press, Cambridge, UK, 1998.

[17] M. Galles and E. Williams. Performance Optimiza-
tions, Implementation, and Verification of the SGI
Challenge Multiprocessor. In HICSS (1), pages 134–
143, 1994.

[18] G. Gerosa and et al. A 2.2 W, 80 MHz Superscalar
RISC Microprocessor. IEEE Journal of Solid-State
Circuits, 29(12):1440–1454, December 1994.

[19] R. Ho, K. Mai, and M. Horowitz. The Future of
Wires. Proceedings of the IEEE, Vol.89, No.4, April
2001.

[20] J. Huh, J. Chang, D. Burger, and G. S. Sohi. Co-
herence Decoupling: Making Use of Incoherence. In
Proceedings of ASPLOS-XI, pages 97–106, 2004.

[21] J. Kim, M. Taylor, J. Miller, and D. Wentzlaff. En-
ergy Characterization of a Tiled Architecture Pro-
cessor with On-Chip Networks. In Proceedings of
ISLPED, pages 424–427, 2003.

[22] K. Krewell. UltraSPARC IV Mirrors Predecessor:
Sun Builds Dualcore Chip in 130nm. Microproces-
sor Report, pages 1,5–6, Nov. 2003.

[23] A.-C. Lai and B. Falsafi. Memory Sharing Predictor:
The Key to a Speculative Coherent DSM. In Proceed-
ings of ISCA-26, 1999.

[24] A.-C. Lai and B. Falsafi. Selective, Accurate, and
Timely Self-Invalidation Using Last-Touch Predic-
tion. In Proceedings of ISCA-27, pages 139–148,
2000.

[25] J. Laudon and D. Lenoski. The SGI Origin: A cc-
NUMA Highly Scalable Server. In Proceedings of
ISCA-24, pages 241–251, June 1997.

[26] A. R. Lebeck and D. A. Wood. Dynamic Self-
Invalidation: Reducing Coherence Overhead in
Shared-Memory Multiprocessors. In Proceedings of
ISCA-22, pages 48–59, 1995.

[27] K. M. Lepak and M. H. Lipasti. Temporally Silent
Stores. In Proceedings of ASPLOS-X, pages 30–41,
2002.

[28] N. Magen, A. Kolodny, U. Weiser, and N. Shamir. In-
terconnect Power Dissipation in a Microprocessor. In
Proceedings of System Level Interconnect Prediction,
February 2004.

[29] M. M. K. Martin, M. D. Hill, and D. A. Wood. To-
ken Coherence: Decoupling Performance and Cor-
rectness. In Proceedings of ISCA-30, 2003.

[30] K. Olukotun, B. Nayfeh, L. Hammond, K. Wilson,
and K.-Y. Chang. The Case for a Single-Chip Mul-
tiprocessor. In Proceedings of ASPLOS-VII, October
1996.

[31] Silicon Graphics, Inc. SGITMOriginTM3000 Series
Technical Report, Jan 2001.

[32] J. Tendler, S. Dodson, S. Fields, H. Le, and B. Sin-
haroy. POWER4 System Microarchitecture. Tech-
nical report, IBM Server Group Whitepaper, October
2001.

[33] S. Woo, M. Ohara, E. Torrie, J. Singh, and A. Gupta.
The SPLASH-2 Programs: Characterization and
Methodological Considerations. In Proceedings of
ISCA-22, pages 24–36, June 1995.

[34] L. Zhang. UVSIM Reference Manual. Technical Re-
port UUCS-03-011, University of Utah, May 2003.

10

Reducing the Power and Complexity of Path-Based Neural Branch
Prediction

Gabriel H. Loh Daniel A. Jiḿenez
College of Computing Department of Computer Science

Georgia Institute of Technology Rutgers University
loh@cc.gatech.edu djimenez@cs.rutgers.edu

Abstract

A conventional path-based neural predictor (PBNP)
achieves very high prediction accuracy, but its very deeply
pipelined implementation makes it both a complex and
power-intensive component. One of the major reasons
for the large complexity and power is that for a history
length of h, the PBNP must useh separately indexed
SRAM arrays (or suffer from a very long update latency)
organized in anh-stage predictor pipeline. Each pipeline
stage requires a separate row-decoder for the correspond-
ing SRAM array, inter-stage latches, control logic, and
checkpointing support. All of these add power and com-
plexity to the predictor.

We propose two techniques to address this problem.
The first is modulo path-historywhich decouples the
branch outcome history length from the path history
length allowing for a shorter path history (and there-
fore fewer predictor pipeline stages) while simultaneously
making use of a traditional long branch outcome history.
The pipeline length reduction results in decreased power
and implementation complexity. The second technique is
bias-based filtering(BBF) which takes advantage of the
fact that neural predictors already have a way to track
strongly biased branches. BBF uses the bias weights to
filter out mostly always taken or mostly always not-taken
branches and avoids consuming update power for such
branches.

Our proposal is complexity effective because it de-
creases the power and complexity of the PBNP without
negatively impacting performance. The combination of
modulo path-history and BBF results in a slight improve-
ment in predictor accuracy of 1% for 32KB and 64KB pre-
dictors, but more importantly the techniques reduce power
and complexity by reducing the number of SRAM arrays
from 30+ down to only 4-6 tables, and reducing predictor
update activity by 4-5%.

1. Introduction

After decades of academic and industrial research ef-
forts focused on the branch prediction problem, pipeline
flushes due to control flow mispredictions remain one
of the primary bottlenecks in the performance of mod-
ern processors. A large amount of recent branch predic-
tion research has centered around techniques inspired and
derived from machine learning theory, with a particular
emphasis on theperceptronalgorithm [3, 4, 7–10, 14, 18].
These neural-based algorithms have been very successful
in pushing the envelope of branch predictor accuracy.

Researchers have made a conscious effort to propose
branch predictors that are highly amenable to pipelined
and ahead-pipelined organizations to minimize the im-
pact of predictor latency on performance. There has been
considerably less effort on addressing power consumption
and implementation complexity of the neural predictors.
Reducing branch predictor power is not an easy problem
because any reduction in the branch prediction accuracy
can result in an overall increase in thesystempower con-
sumption due to a corresponding increase in wrong-path
instructions. On the other hand, peak power consump-
tion, which limits the processor performance, and aver-
age power consumption, which impacts battery lifetime
for mobile processors, are important design concerns for
future processors [5]. Furthermore, it has been shown that
the branch predictor, and the fetch engine in general, is a
thermal hot-spot that can potentially limit the maximum
clock frequency and operating voltage of the CPU, which
in turn limits performance [16].

This paper focuses on thepath-based neural predictor
which is one of the proposed implementations of neu-
ral branch prediction [7]. In particular, this algorithm is
highly accurate and pipelined for low effective access la-
tency. We explain the organization of the predictor and the
major sources of power consumption and implementation
complexity. We propose a new technique for managing
branch path-history information that greatly reduces the

number of tables, the pipeline depth, and the checkpoint-
ing overhead required for path-based neural prediction.
We also propose a simple bias-based filtering mechanism
to further reduce branch prediction power. While this pa-
per specifically discusses the original path-based neural
predictor [7], the techniques are general and can be easily
applied to other neural predictors that use path history.

The rest of this paper is organized as follows. Section 2
provides an overview of the path-based neural predictor
and discusses its power and complexity. Section 3 ex-
plains our proposed techniques for reducing the power
consumption and implementation complexity. Section 4
presents the simulation-based results of our optimized
path-based neural predictor in terms of the impact on pre-
diction accuracy and power reduction. Section 5 con-
cludes the paper.

2. Path-Based Neural Prediction

This section describes the original path-based neural pre-
dictor (PBNP), and then details the power and complexity
issues associated with the PBNP.

2.1. Predictor Organization

The path-based neural predictor (PBNP) derives from the
originalperceptronbranch predictor [9]. We define a vec-
tor−→x = 〈1, x1, x2, ..., xh〉 wherexi is theith most recent
branch history outcome represented as -1 for a not taken
branch and 1 for a taken branch. The branch history is
the collection of taken/not-taken results for theh most re-
cent conditional branches. The perceptron uses the branch
address to select a set of weights−→w = 〈w0, w1, ..., wh〉
that represent the observed correlation between branch
history bits and past branch outcomes. The sign of the
dot-product of−→w · −→x provides the final prediction where
a positive value indicates a taken-branch prediction. Fig-
ure 1a shows a block diagram of the lookup logic for the
perceptron predictor.

At a high-level, the PBNP is very similar to the percep-
tron in that it computes a dot-product between a vector of
weights and the branch history. The primary difference
is that the PBNP uses a different branch address for each
of the weights of−→w . Let PC0 be the current branch ad-
dress, andPCi be theith most recent branch address in
thepath history. For the perceptron, each weight is cho-
sen with the same index based onPC0. For the PBNP,
each weightwi is chosen based on an index derived from
PCi. This provides path history information that can im-
prove prediction accuracy, and spreading out the weights

in different entries also helps to reduce the impact of inter-
branch aliasing.

To implement the PBNP, the lookup phase is actually
pipelined over many stages based on the overall path-
/branch-history length. Figure 1b illustrates the hardware
organization of the PBNP. For a branch at cyclet, the
PBNP starts the prediction at cyclet− h usingPCh. For
each cycle aftert − h, the PBNP computes partial sums
of the dot-product of−→w · −→x . Pipeline stagei contains the
partial sum for the branch prediction that will be needed
in i cycles. At the very end of the pipeline, the critical
lookup latency consists of looking up the final weight and
performing the final addition.

2.2. Power and Complexity

During the lookup phase of the PBNP, each pipeline stage
reads a weight corresponding to the exact same PC. This
is due to the fact that the currentPC0 will be next cycle’s
PC1 and next-next cycle’sPC2 and so on. This allows
an implementation where the weights are read in a single
access using a single large SRAM row that contains all
of the weights. During the update phase however, a sin-
gle large access would force the update process to use a
pipelined implementation as well. While at first glance
this may seem desirable, this introduces considerable de-
lay between update and lookup. For example a 30-stage
update pipeline implies that even after a branch outcome
has been determined, another 30 cycles must elapse be-
fore the PBNP has been fully updated to reflect this new
information. This update delay can create a decrease in
predictor accuracy. There are also some timing effects due
to the fact that some weights of a branch will be updated
before others.

An alternative organization usesh tables in parallel,
one for each pipeline stage/history-bit position [7], as il-
lustrated in Figure 1b. This organization allows for a
much faster update and better resulting accuracy and per-
formance. The disadvantage of this organization is that
there is now a considerable amount of area and power
overhead to implement the row decoders for theh sep-
arate SRAM arrays. Furthermore, to support concurrent
lookup and update of the predictor, each of these SRAM
arrays needs to be dual-ported (one read port/one write
port) which further increases the area and power overhead
of the SRAM row decoders. To use the PBNP, the branch
predictor designer must choose between an increase in
power and area or a decrease in prediction accuracy.

On a branch misprediction, the PBNP pipeline must
be reset to the state that corresponded to the mispredict-
ing branch being the most recent branch in the branch

2

D
ec

od
er

D
ec

od
er

D
ec

od
er

D
ec

od
er

D
ec

od
er

BHR
...

ADD

Prediction

... ...

BHR
...

Prediction

(b)(a)

P
C

h

P
C

h
−

1

P
C

h
−

2

P
C

0...
P

C
0

× ×× × × × ××

+ + + +

Figure 1: (a) Organization of the lookup logic for the perceptron branch predictor. (b) Lookup logic for the
pipelined path-based neural branch predictor.

and path history. To support this predictor state recov-
ery, each branch must checkpoint all of the partial sums in
the PBNP pipeline. On a branch misprediction, the PBNP
restores all of the partial sums in the pipeline using this
checkpointed state. Forb-bit weights and a history length
of h, a PBNP checkpoint requires approximatelybh bits
of storage. The total number of bits is slightly greater be-
cause the number of bits required to store a partial sum
increases as the sum accumulates more weights. The to-
tal storage for all checkpoints corresponds to the maxi-
mum number of in-flight branches permitted in the pro-
cessor. For example, assuming one branch occurs every
five instructions, then a 128-entry ROB would on average
have 25 branches in flight. This means the PBNP check-
point table must have about 25 entries to support the av-
erage number of branches. To avoid stalls due to a burst
of branch instructions, the checkpoint table may need to
be substantially larger. For proposals of very-large effec-
tive instruction window processors such as CFP [17], the
checkpointing overhead further increases.

The checkpointing overhead represents additional area,
power, and state that is often unaccounted for in neu-
ral predictor studies. This overhead increases with the
history/path-length of the predictor since the PBNP must
store one partial sum per predictor stage. A further source
of complexity is the additional control logic required to
manage the deeply pipelined predictor.

3. Reducing Perceptron Power and
Complexity

In this section, we propose two techniques for reducing
the power and complexity of the path-based neural predic-
tor. Modulo-Path History is a new way to manage path-
history information which also provides a new degree of
freedom in the design of neural predictors. Bias-Based
Filtering is a technique similar to previously proposed fil-
tering mechanisms that takes advantage of the informa-
tion encoded in the neural weights to detect highly biased
branches.

3.1. Modulo-Path History

In the original PBNP, the path history length is always
equal to the branch history length. This is a result of
using PCi to compute the index for the weight ofxi.
As described in the previous section, the pipeline depth
directly increases the number of tables and the check-
pointing overhead required. On the other hand, support-
ing a long history length requires the PBNP to be deeply
pipelined.

We proposemodulo path-historywhere we decouple
the branch history length from the path history length.
We limit the path history to only theP < h most re-
cent branch addresses. Instead of usingPCi to compute
the index forwi, we usePCi mod P . In this fashion,
we can reduce the degree of pipelining down to onlyP
stages. Figure 2a shows the logical predictor organiza-

3

Ta
bl

e h

Ta
bl

e h
−

1

Ta
bl

e h
−

2

Ta
bl

e 5

Ta
bl

e 4

Ta
bl

e 3

P
C 1

P
C 2

P
C 0

Ta
bl

e 2

Ta
bl

e 1

Ta
bl

e 0

w0w1w2

w5

w8

...

w2

w3

w6

...

w0

w4

w7

...

w1

P
C 1

P
C 2

P
C 0

...

w3w4w5wh−2wh−1wh

(a)

Ta
bl

e 2

Ta
bl

e 0

Ta
bl

e 1

(b)

...

Figure 2: (a) Logical organization of a PBNP using modulo path-history. (b) Physical organization of a PBNP
using modulo path-history for P = 3.

tion of a PBNP using modulo path-history (forP = 3).
Since everyP th weight is indexed with the same branch
address, we can interleave the order of the weights in the
table such that onlyP tables are necessary. Figure 2b
shows how each table provides weights that correspond to
h/P branch history outcomes, where each branch history
outcome is separated byP bit positions.

By reducing the PBNP implementation to only useP
distinct tables, we address several of the main sources of
power and complexity as described in Section 2. Using
only P tables reduces the duplicated row-decoder over-
head. The reduction in the number of tables reduces the
overall pipeline depth of the predictor which reduces the
amount of state that must be checkpointed (i.e. there are
only P partial sums). With fewer stages, the control logic
for the predictor pipeline can also be reduced. The num-
ber of inter-stage latches and associated clocking over-
head is also correspondingly reduced.

Modulo path-history may also make the single-table
implementation feasible. The pipelined update still adds
latency to the update phase of the branch predictor, but the
update latency has been reduced fromO(h) cycles down
to O(P) cycles. For sufficiently small values ofP , the
substantial reduction in complexity and associated power
may justify the small increase in the update latency.

Modulo path-history is a unique way to manage the
branch path history information. A PBNP can now choose
between different lengths of branch and path history. Tar-

jan and Skadron proposed a comprehensive taxonomy of
neural branch predictor organizations that can describe a
very wide variety of neural predictor variations [18]. Nev-
ertheless, modulo path-history is a new addition that does
not fall into any of their categories.

3.2. Bias-Based Filtering

Earlier branch prediction studies have made the observa-
tion that there are a large number of branch instructions
whose outcomes are almost always in the same direc-
tion [2, 6]. Some of this research has proposed various
ways for detecting these strongly biased branches and re-
moving orfiltering them out to reduce the amount of in-
terference in the branch prediction tables. We make the
observation that from an energy and power perspective,
keeping track ofh distinct weights and performing an
expensive dot-product operation is an overkill for these
easy-to-predict branches. We also observe that the fam-
ily of neural predictors have built-in mechanisms for de-
tecting highly-biased branches. Combining these obser-
vations, we proposedBias-Based Filtering(BBF).

The BBF technique is simple in principal. We consider
a branch whose bias weight (w0) has saturated (equal to
maximum or minimum value) as a highly-biased branch.
When the predictor detects such a branch, the predic-
tion is determined only by the bias weight as opposed
to the entire dot-product. If this prediction turns out to

4

be correct, the predictor skips the update phase which
saves the associated power and energy. BBF does not re-
duce the lookup power because the pipelined organization
must start the dot-product computation before the predic-
tor knows whether the branch is highly biased. Besides
the power reduction, BBF has a slight accuracy benefit
because the act of filtering the strongly biased branches
reduces the interference among the remaining branches.

The relatively long history lengths of neural predictors
combined with the usage of multi-bit weights results in a
table that has relatively few entries or rows. This greatly
increases the amount of inter-branch aliasing in the tables
which potentially reduces the effectiveness of BBF. To
address this, we propose that the bias table uses a larger
number of entries than any of the other tables. This makes
sense since the bias table now has to keep track of all of
the strongly biased branches as well as provide the bias
weights for the regular branches.

To increase the number of strongly biased branches
covered by BBF, we modify the neural prediction lookup
slightly such that the bias weight (and only the bias
weight) is indexed in a gshare fashion (xor of branch
address and branch history). This improves the filtering
mechanism by allowing the bias table to detect branches
that are strongly biased but only under certain global
history contexts. We also reduce the width of the bias
weights to 5 bits which allows the bias weights to saturate
more quickly and start filtering strongly biased branches
sooner.

4. Performance and Power Results
In this section, we present the simulation results for an
optimized PBNP predictor that uses modulo path-history
and bias-based filtering.

4.1. Simulation Methodology

For our prediction accuracy results, we used the in-
order branch predictor simulator sim-bpred from the Sim-
pleScalar toolset [1]. We simulated all twelve SPECint
applications using the reference sets and single 100M in-
struction simulation points chosen by SimPoint 2.0 [13].
Our applications were compiled on an Alpha 21264 with
Compaqcc with full optimizations.

4.2. Impact of Modulo-Path History

To measure the impact of modulo-path history, we started
with the original PBNP where there areP = h tables
that each provide a single weight corresponding to a single

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

6.0%

1 2 3 4 5 6

Weights per Table

M
is

pr
ed

ic
tio

n
R

at
e

2KB
4KB
8KB
16KB
32KB
64KB

Figure 3: Average misprediction rates on SPECint
when using modulo path-history.

branch history position. We then increased the number of
weights provided by each table by settingP = h/2, h/3,
and so on. This reduces the length of the path-history
while maintaining a constant branch history length. Fig-
ure 3 shows the impact on prediction accuracy as we
vary the number of weights per lookup table over a range
of predictor sizes. For the smaller predictors (2KB and
4KB), there is an initial increase in the misprediction rate
when we add modulo path-history. For predictors 16KB
and larger, the increase in the misprediction rate is less
than 0.5% (8KB) and in some cases evenimprovepredic-
tion accuracy by a small amount (0.1% for 64KB).

As we increase the number of weights per table, the to-
tal number of tables decreases. This reduces the power
and energy cost per access due to a reduction in the num-
ber of row decoders in the entire predictor. The power
cost per table lookup increases with the number of weights
per table, but the number of tables decreases. The mod-
ulo path-history approach for managing path history in
the PBNP is overall performance-neutral while provid-
ing a power benefit by reducing the power consumed per
lookup. We have not quantified the exact power benefit
in Watts due to limitations of CACTI-like tools. We also
have not quantified in detail the reduction of the check-
pointing overhead or the impact of simplifying the control
logic for the reduced pipeline depth, but simply observe
that there will be some power and complexity benefit.

4.3. Impact of Bias-Based Filtering

For a fixed hardware budget, increasing the number of en-
tries in the bias table forces the remaining tables to be
decreased in size. We evaluated a range of table sizes.
Figure 4 shows the prediction accuracy impact of dedi-
cating some more weights to the bias table while reduc-

5

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

6.0%

PBNP 1/8 1/4 1/2 1

M
is

pr
ed

ic
tio

n
R

at
e

2KB
4KB
8KB
16KB
32KB
64KB

Figure 4: Average misprediction rates on SPECint
when using bias-based filtering.

ing the size of the other tables. These results include the
Bias-Based Filtering effects. The left-most set of points
in Figure 4 correspond to the baseline PBNP. The remain-
ing configurations use BBF where “1/n” indicates that
the bias table hasX/n entries, whereX is the number
of bytes in the table. For example, the 1/4 configuration
for an 8KB budget has a bias table with 8K/4 = 2K en-
tries (not 2KB worth of entries). Similar to the modulo
path-history results, BBF is less effective at the small-
est predictor sizes, and is relatively performance-neutral
at larger sizes. For predictors sized 16KB and greater,
BBF actually results in a slight (1-3%) decrease in mis-
predictions. The reason for this slight accuracy benefit
is that gating updates for highly-biased branches creates
an interference-reducing effect similar to a partial update
policy [12].

The primary purpose of BBF is to reduce the number
of weights written to the tables during the update phase.
Figure 5 shows the reduction in the number of weights
written as compared to the baseline PBNP. Overall, the
mid-sized to larger sized predictors achieve the greatest
benefit, with about a 10% reduction in the update activity.

4.4. Impact of Power-Reduced Path-Based
Neural Predictor

In the previous subsections, we have shown how the tech-
niques of modulo path-history and bias-based filtering
are relatively performance-neutral for mid-sized predic-
tors and performance-beneficial for larger predictors. Si-
multaneously, these techniques provide a reduction in the
predictor’s power consumption by reducing the power per
access and reducing the total number of accesses, and a
reduction in the implementation complexity by reducing

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2 4 8 16 32 64

Size (KB)

W
ei

gh
ts

 W
ri

tt
en

 (N
or

m
al

iz
ed

)

PBNP
1/8
1/4
1/2
1

Figure 5: Average reduction in update activity for a
PBNP using bias-based filtering.

Baseline PBNP With Mod. Path and BBF
Predictor History History Path Bias

Size Length Length Length Weights
2KB 17 17 4 1K
4KB 25 24 4 2K
8KB 31 29 4 4K
16KB 32 33 5 8K
32KB 42 42 3 16K
64KB 47 42 3 32K

Table 1: Parameters for the baseline PBNP and a PBNP
using both modulo path-history and bias-based filter-
ing.

the number of predictor pipeline stages. We now observe
the effects of combining the two techniques. Table 1 lists
the final configurations used for the PBNP with modulo
path-history and bias-based filtering, as well as the base-
line PBNP configurations.

Figure 6 shows the average misprediction rate for a
conventional PBNP and a PBNP augmented with modulo
path-history and bias-based filtering. Similar to the indi-
vidual results, our techniques are not recommended for
small predictor sizes. At 16KB the techniques do not help
or hurt accuracy, and at 32KB and 64KB they provide a
small accuracy benefit (about 1%).

As discussed earlier, the modulo path-history reduces
power by reducing the number of tables and the reduc-
ing the pipeline depth of the predictor. BBF reduces the
number of table updates. Figure 7 shows the relative de-
crease in update activity when compared to a conventional
PBNP. Note that for the 2KB predictor size, the activity
actually increases. This is due to the fact that for the
smaller predictor, the slight decrease in prediction accu-
racy causes the neural prediction algorithm to train more
frequently which causes more overall activity in the table

6

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

6.0%

2 4 8 16 32 64
Size (KB)

M
is

pr
ed

ic
tio

n
R

at
e

PBNP
+ModPath, +BBF

Figure 6: Average SPECint misprediction rate for the
baseline PBNP and a PBNP using both modulo path-
history and bias-based filtering.

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

2KB 4KB 8KB 16KB 32KB 64KB

Predictor Size

U
pd

at
e

A
ct

iv
ity

Figure 7: Change in the update activity of a PBNP
using modulo path-history and bias-based filtering as
compared to a conventional PBNP.

of weights. At the larger sizes, BBF reduces the frequency
of updates by 4-5%.

4.5. Overall Impact on Implementation
Complexity

The original goal of this research was to redesign a path-
based neural predictor to be less complex and hence eas-
ier to implement. Table 2 summarizes the overall bene-
fits in terms of key sources of implementation complex-
ity. Modulo-path history reduces the number of separate
SRAM arrays from 18-48 down to only 4-6. The reduc-
tion in the table count is directly correlated to the depth of
pipelining needed to implement a PBNP. This 72-92% re-
duction of the predictor pipeline length greatly simplifies
the control logic needed to control stalling, checkpointing
and recovering the predictor pipeline.

The extra storage needed for checkpointing the predic-

tor at every branch impacts the physical design of the pre-
dictor. Table 2 lists the number of bits required per check-
point for copying the partial sums. The bit counts are
slightly underestimated because we assumed that every
stage only needs an 8-bit value to simplify the arithmetic.
In practice the bit-width increases with the number of ac-
cumulated weights. The original PBNP needs 144-384
bits of information checkpointed on every branch, while
using modulo-path history reduces this to only 32-48 bits
per branch. The checkpointing overhead reduction not
only reduces the size of the SRAM needed to store the
checkpoints, but it also reduces the number of wires en-
tering and leaving the predictor for the checkpoints. To re-
duce the impact on the physical layout and latency of the
predictor, the checkpoint SRAM may be placed slightly
further away from the main predictor. This physical sepa-
ration requires longer wires (more capacitance) which re-
sults in increased power consumption for the communica-
tion between the predictor and the checkpoint SRAM.

Modulo path-history and BBF impact the power con-
sumed by the predictor itself and also the overall system-
wide power. In this study, we did not quantify the ex-
act power benefits because SRAM latency/power estima-
tion tools such as CACTI [15] and eCACTI [11] do not
handle the non-power-of-two SRAM sizes used in this
study. For the non-SRAM portions of the predictors such
as the adders, pipeline latches, control logic, and commu-
nication between the main predictor and the checkpoint
SRAM, we would need a detailed physical design and lay-
out to even begin to accurately estimate the overall power
impact. This level of analysis is beyond the scope of this
paper, but will be examined in future research.

5. Conclusions
We have introduced two new techniques for reducing the
complexity and power of path-based neural branch pre-
dictors. While this study has focused on the original
path-based neural predictor, our proposal can apply to any
of the similar neural prediction algorithms such as the
hashed perceptron [18] or the piecewise-linear branch pre-
dictor [8]. We have shown that the combination of modulo
path-history and bias-based filtering can reduce power by
decreasing the total number of tables used by the predic-
tor as well as reducing the activity factor of the update
phase of prediction. The modulo path-history technique
also reduces the implementation complexity of the path-
based neural predictor by reducing the predictor pipeline
depth to only 4-6 stages, as opposed to 18-48 stages for
the original predictor.

While this study has focused on a conventional path-

7

Predictor PBNP With Mod. Path and BBF %
Size Num SRAM Arrays Bits per Checkpoint Num SRAM Arrays Bits per Checkpoint Reduction
2KB 18 144 5 40 72.2
4KB 26 208 5 40 80.8
8KB 32 256 5 40 84.4
16KB 33 264 6 48 81.8
32KB 43 344 4 32 90.7
64KB 48 384 4 32 91.7

Table 2: Impact on predictor pipeline depth and checkpointing overhead. The number of SRAM arrays is equal
to the path length, plus one for the bias table. Checkpoint overhead estimates assume one 8-bit value per
predictor pipeline stage.

based neural predictor, other similar predictors could also
benefit from either or both modulo path-history and BBF.
The piecewise-linear neural branch predictor is a gener-
alization of the PBNP that computesm different PBNP
summations in parallel [8]. Thesem parallel computa-
tions increase the complexity of a deeper pipelined pre-
dictor, and modulo-path history may be very useful in
this context to keep that complexity under control. The
m computations also requirem times as many weights to
be updated, and bias-based filtering may also be very use-
ful to reduce the activity of the piecewise-linear predictor.
There are likely other predictors designs that can make
use of the ideas presented in this study.

Acknowledgements

Gabriel Loh is supported by funding and equipment from
Intel Corporation. Daniel Jiḿenez is supported by a
grant from NSF (CCR-0311091) as well as a grant from
the Spanish Ministry of Education and Science (SB2003-
0357).

References
[1] Todd Austin, Eric Larson, and Dan Ernst. SimpleScalar: An In-

frastructure for Computer System Modeling.IEEE Micro Maga-
zine, pages 59–67, February 2002.

[2] Po-Yung Chang, Marius Evers, and Yale N. Patt. Improving
Branch Prediction Accuracy by Reducing Pattern History Table
Interference. InProceedings of the International Conference on
Parallel Architectures and Compilation Techniques, pages 48–57,
1996.

[3] Veerle Desmet, Hans Vandierendonck, and Koen De Bosschere. A
2bcgskew Predictor Fused by a Redundant History Skewed Per-
ceptron Predictor. InProceedings of the 1st Championship Branch
Prediction Competition, pages 1–4, Portland, OR, USA, December
2004.

[4] Hongliang Gao and Huiyang Zhou. Adaptive Information Process-
ing: An Effective Way to Improve Perceptron Predictors. InPro-
ceedings of the 1st Championship Branch Prediction Competition,
pages 1–4, Portland, OR, USA, December 2004.

[5] Simcha Gochman, Ronny Ronen, Ittai Anati, Ariel Berkovitz,
Tsvika Kurts, Alon Naveh, Ali Saeed, Zeev Sperber, and Robert C.

Valentine. The Intel Pentium M Processor: Microarchitecture and
Performance.Intel Technology Journal, 7(2), May 2003.

[6] Dirk Grunwald, Donald Lindsay, and Benjamin Zorn. Static Meth-
ods in Hybrid Branch Prediction. InProceedings of the Interna-
tional Conference on Parallel Architectures and Compilation Tech-
niques, pages 222–229, Paris, France, October 1998.

[7] Daniel A. Jiḿenez. Fast Path-Based Neural Branch Prediction. In
Proceedings of the 36th International Symposium on Microarchi-
tecture, pages 243–252, San Diego, CA, USA, December 2003.

[8] Daniel A. Jiḿenez. Piecewise Linear Branch Prediction. InPro-
ceedings of the 32nd International Symposium on Computer Ar-
chitecture, 2005.

[9] Daniel A. Jiḿenez and Calvin Lin. Neural Methods for Dy-
namic Branch Prediction.ACM Transactions on Computer Sys-
tems, 20(4):369–397, November 2002.

[10] Gabriel H. Loh. The Frankenpredictor. InProceedings of the 1st
Championship Branch Prediction Competition, pages 1–4, Port-
land, OR, USA, December 2004.

[11] Manhesh Mamidipaka and Nikil Dutt. eCACTI: An Enhanced
Power Estimation Model for On-Chip Caches. TR 04-28, Uni-
versity of California, Irvine, Center for Embedded Computer Sys-
tems, September 2004.

[12] Pierre Michaud, Andre Seznec, and Richard Uhlig. Trading Con-
flict and Capacity Aliasing in Conditional Branch Predictors. In
Proceedings of the 24th International Symposium on Computer Ar-
chitecture, pages 292–303, Boulder, CO, USA, June 1997.

[13] Erez Perelman, Greg Hamerly, and Brad Calder. Picking Sta-
tistically Valid and Early Simulation Points. InProceedings of
the 2003 International Conference on Parallel Architectures and
Compilation Techniques, pages 244–255, New Orleans, LA, USA,
September 2004.

[14] Andrè Seznec. Revisiting the Perceptron Predictor. PI 1620, In-
stitut de Recherche en Informatique et Systèmes Aĺeatoires, May
2004.

[15] Premkishore Shivakumar and Norman P. Jouppi. CACTI 3.0: An
Integrated Timing, Power, and Area Model. TR 2001/2, Com-
paq Computer Corporation Western Research Laboratory, August
2001.

[16] Kevin Skadron, Mircea R. Stan, Karthik Sankaranarayanan, Wei
Huang, Sivakumar Velusamy, and David Tarjan. Temperature-
Aware Microarchitecture: Modeling and Implementation.Trans-
actions on Architecture and Code Optimization, 1(1):94–125,
March 2004.

[17] Srikanth T. Srinivasan, Ravi Rajwar, Haitham Akkary, Amit
Gandhi, and Mike Upton. Continual Flow Pipelines. InProceed-
ings of the 11th Symposium on Architectural Support for Program-
ming Languages and Operating Systems, pages 107–119, Boston,
MA, USA, October 2004.

[18] David Tarjan and Kevin Skadron. Merging Path and Gshare In-
dexing in Perceptron Branch Prediction. CS 2004-38, University
of Virginia, December 2004.

8

A Break-Even Formulation for Evaluating Branch Predictor Energy

Efficiency

Michele Co, Dee A.B. Weikle, and Kevin Skadron

Department of Computer Science

University of Virginia

Abstract

Recent work has demonstrated that a better branch pre-

dictor can increase the energy-efficiency of the system,

even if the new predictor consumes more energy. Conse-

quently, understanding the tradeoff between reduced mis-

speculation, execution time, and increased power spent

within a branch predictor is critical.

This paper proposes a simple, effective metric for eval-

uating the tradeoff between processor energy-efficiency

and branch predictor energy. By calculating a break-even

branch predictor energy budget for a given program and

an energy-efficiency target, we are able to evaluate the

energy-efficiency of several existing branch predictor de-

signs and provide a simple way to think about energy-

efficiency.

Furthermore, we develop a method for deriving a

branch predictor energy budget without requiring a power

model for the proposed branch predictor. We evaluate this

approach by comparing the budgets we calculate with re-

sults from simulation. Average error in our estimates is

less than 1.5% for all pipeline configurations with a confi-

dence of ±0.02 to ±0.06 Joules (1.7%-2.1%) for the inte-

ger benchmarks and ±0.01 to ±0.02 Joules (1.1%-1.7%)

for the floating point benchmarks for the evaluated con-

figurations.

1 Introduction

The computer engineering community has focused a

great deal of attention in recent years on energy-efficiency.

This is important for almost all new chip designs today.

Battery life is a concern for mobile devices, and even

for systems running off wall power, utility costs are a

concern–especially for large data centers.

Recent work by Parikh et al. [14] explored the energy-

efficiency of branch predictors, and generally concluded

that the better the predictor, the better the chip’s energy-

efficiency, since better prediction reduces mis-speculated

work and execution time, and hence reduces activity

throughout the CPU. This means that spending more

power in the predictor can still reduce power and improve

energy-efficiency. Parikh et al. [14] and other subsequent

work [1, 3] have looked at ways to reduce power in the

branch predictor.

We are not aware of any work that establishes a gen-

eral framework for when a new branch predictor design

is energy-efficient. Recent innovations in branch predic-

tion that consume more power per prediction, coupled

with continuing concerns about energy-efficiency, make

a break-even analysis valuable. This is especially impor-

tant for the very large predictors that have been proposed

in recent years. For example, the piecewise-linear branch

predictor proposed by Jimenez et al. [11] only confers

significant benefits above 32 KB, consuming from 1% -

11% of total chip power. A number of other recent pre-

dictors could consume non-trivial amounts of power as

well [9, 16, 19]. The contribution to total chip power of

a few predictor organizations for four different pipeline

configurations is categorized in Figure 1 (See Section 3

for details on processor configurations). These power es-

timates are based on Wattch [4] simulations.

This paper derives a simple metric for the break-even

energy efficiency of a branch predictor. It captures the

tradeoff between reduced mis-speculation and execution

time, and increased power in the branch predictor. The

metric is based on the ED2 metric [20] that has become

popular because it is voltage independent. This technique

gives the designer a way to predict how much energy is

available to spend on a new branch predictor design rel-

ative to an existing processor design for a given perfor-

mance of a particular program. This method for deriving

break-even branch predictor energy budget can be used

with or without a power model for the new design.

In this paper we:

• evaluate several existing branch predictor designs for

energy-efficiency using our technique (1KB bimodal

branch predictor as reference)

• observe that in general, for a single program, the

power of the remainder of the processor excluding

branch predictor is relatively constant regardless of

branch predictor used

• demonstrate how to determine a break-even budget

1

Figure 1: Branch predictor power as percent of total chip power in various processor configurations. (See Section 3.1

for configuration details.)

for a new design without a power model by estimat-

ing the new non-branch predictor energy and exam-

ine the validity of this estimation

• evaluate the independence of pipeline width, cache

size, and leakage on the energy-efficiency trends be-

tween existing branch predictor designs

• show an approximate bound on branch predictor en-

ergy budget and on benefit that can be obtained

through perfect branch prediction

This paper shows that pipeline width and cache size af-

fect the energy budget of a predictor, but do not affect the

relative performance of the branch predictors evaluated.

It also shows that many branch predictors, including path

perceptron and hybrid global/local predictors, use only

a fraction of the energy they could to maintain energy-

efficiency when compared to a 1 KB bimodal branch pre-

dictor reference. In some cases, the branch predictor uses

only 8.4% of its energy budget.

We believe that our technique is general enough to ap-

ply to other processor structures as long as the assumption

of constant energy per cycle for the remainder of the pro-

cessor is adjusted to accurately describe the relationship

of that structure’s behavior within the processor.

The rest of the paper is organized as follows: Section 2

presents an explanation of our energy-efficiency evalua-

tion technique, Section 3 presents experimental methodol-

ogy, Section 4 presents current experimental results, Sec-

tion 5 presents related work, and Section 6 presents con-

clusions and directions for future work.

2 Derivation of Break-Even Formula

This section describes the reasoning behind the tech-

nique for calculating the energy budget for a branch pre-

dictor design given a specific program, a reference proces-

sor configuration, and a reference branch predictor. The

goal is two-fold. First, we want to determine if a new

branch predictor is at least as successful as a previously

designed predictor in terms of speed and power consump-

tion. Second, we would like to determine an upper bound

on the the benefits of a new branch predictor - specifically

whether there is a sufficient benefit available to warrant

further work toward an even better predictor.

2.1 Derivation of Energy Budget Formula

Assume for a program P , that the total energy of a pro-

cessor (Etotal) can be described as the sum of the energy

of the branch predictor (Ebpred) plus the energy of the re-

mainder of the processor (Eremainder):

Etotal = Ebpred + Eremainder (1)

Given a reference processor configuration, Configref ,

and a new processor configuration, Confignew,1 we

would like to have the same or better ED2 for Confignew

1Confignew differs from Configref by only the branch predictor

design

2

when compared to Configref . We define this goal, the

break-even point, based on the ED2 metric to be:

Etotal new × D
2
total new = Etotal ref × D

2
total ref (2)

where Etotal new is the total energy for running pro-

gram P on Confignew and Dtotal new is the total new

delay (execution time). While Etotal ref is the total en-

ergy for running the same program P on Configref , and

Dtotal ref is the total reference delay (execution time).

Expanding and rearranging (2) using (1), we obtain:

(Eremainder new + Ebpred budget) × D
2
total new

(Eremainder ref + Ebpred ref) × D
2
total ref

= 1 (3)

Epredicted remainder new is the predicted energy that

Confignew will consume not including the branch pre-

dictor energy. Ebpred budget is the amount of energy

that the new branch predictor may consume and still

maintain the same ED2 as Configref . Ebpred ref and

Eremainder ref are the energy for the branch predic-

tor of Configref and the energy for the remainder of

Configref (not including branch predictor energy), re-

spectively. Dtotal ref is the delay or total execution time

(in seconds) of running program P on Configref .

We would like to know how much energy the new

branch predictor is allowed to consume given a particular

ED2. Therefore, we solve for Ebpred budget. Rearranging

the terms of (3) yields:

Ebpred budget =
(Eremainder ref +Ebpred ref)×D2

total ref

D2

total new

− Eremainder new

(4)

All of the energy and delay values for the reference

processor (Eremainder ref , Ebpred ref , and Dtotal ref)

can be obtained from cycle-accurate simulation, or if

available, from actual hardware measurement paired with

the use of performance counters. The total execution

time of Confignew, Dtotal new, is gathered from cycle-

accurate simulation. The energy for Confignew not in-

cluding the branch predictor, Eremainder new , may be ob-

tained from simulation results as described in Section 4.1

or may be estimated as described in Section 4.2. The

branch predictor energy budget, Ebpred budget, is calcu-

lated from Equation (4).

The intent behind the derivation of this formula is to

make explicit the tradeoffs designers make between per-

formance and power consumption involved in branch pre-

diction. This formula breaks the branch prediction budget

down into individual components that can be filled in with

the most accurate information the designer has on hand.

In some cases, it may allow quick calculations based on

simple simulations or even estimated prediction rates to

determine if a particular approach is worth pursuing fur-

ther.

3 Experimental Methodology

All experiments in this work use SimpleScalar [5] and

a modified Wattch [4] infrastructure with a power model

based on the 0.13µ Alpha 21364 [18]. The microarchitec-

ture model is summarized in Table 1.

To model leakage, when a port or unit is not in use,

a fixed ratio of maximum power dissipation is charged:

10% in most of our experiments.

3.1 Parameters

In our experiments, we evaluate variations of three fac-

tors in processor design:

• pipeline width: 4-wide issue (narrow) and 16-wide

issue (wide)

• L1 and D1 cache sizes: 16KB (small) and 256KB

(big)

• leakage ratio: 10% and 50%

We chose these parameters as a starting point for our

study. In terms of pipeline width, we chose a pipeline

that is 4-wide to consider today’s processors and a 16-

wide to look forward to more aggressive processor issue

widths. For caches, we chose a very small cache and a

cache more representative of what might be seen in cur-

rent processors. In addition, we modeled leakage ratios of

10% to reflect current technology and 50% leakage ratio

to look forward to the future process technology trends.

3.2 Branch Predictors Evaluated

The specific details of the branch predictor designs

evaluated are listed in Table 2. We evaluate variations

on path perceptron [19], gshare [13], hybrid [6, 12],

O-GEHL [15], and piecewise linear [10] predictors. The

same size BTB (2k-entry, 2-way set associative) and RAS

(32-entry) are used for all branch predictors. We use the

bimodal predictor as the reference model for all of the cal-

culations described in Section 2.

3.3 Benchmarks

We evaluate our results using the integer and floating

point benchmarks from the SPEC CPU2000 suite. The

benchmarks are compiled and statically linked for the Al-

pha instruction set using the Compaq Alpha compiler with

SPEC peak settings and include all linked libraries but no

operating-system or multiprogrammed behavior.

Simulations are fast-forwarded according to Sherwood

and Calder’s SimPoint numbers [17], then run in full-

detail cycle-accurate mode (without statistics-gathering)

3

Processor Core

Active List 128 entries

Physical registers 80

LSQ 128 entries

Issue width wide: 16 instructions per cycle

narrow: 4 instructions per cycle

Functional Units wide: 16 IntALU,4 IntMult/Div, 8 FPALU,4 FPMult/Div, 2 mem ports

narrow: 4 IntALU,1 IntMult/Div, 2 FPALU,1 FPMult/Div, 2 mem

ports

Memory Hierarchy

IL1 & DL1 small: 16KB, 64-byte line, 2-way set associative, LRU

big: 256KB, 64-byte line, 2-way set associative, LRU

L2 Unified Cache, 4 MB, 8-way LRU,

128B blocks, 12-cycle latency, writeback

Memory 225 cycles (75ns)

TLB Size 128-entry, fully assoc.,

30-cycle miss penalty

Branch Predictor

BTB 2 K-entry, 2-way

RAS 32-entry

Table 1: Simulated processor microarchitecture.

Name Area Description

bimodal 1KB 4k-entry, 2-bit counters

path perceptron 10KB 64-bit global history register

10 1KB tables

10 bits of history per table

gshare 2KB 13-bit history, 8k-entry

gshare 4KB 14-bit history, 16k-entry

gshare 8KB 15-bit history, 32k-entry

hybrid 2KB 2k-entry meta, 2k-entry bimodal, 4k-entry 2lev

hybrid 4KB 4k-entry meta, 4k-entry bimodal, 8k-entry 2lev

hybrid 8KB 8k-entry meta, 8k-entry bimodal, 16k-entry 2lev

O-GEHL 8KB 6, 2k-entry, 4-bit tables

1k-entry, 5-bit counter table

2k-entry, 5-bit counter table

1k-entry, 1-bit tag table

48-bit global history register

48-entry, 8-bit global address register

piecewise linear 8KB weight table: 8590-entry 7-bit counters

bias table: 599-entry 7-bit counters

global path history: 48 8-bit addresses

48-bit global history register

local history table: 55 16-bit shift registers

piecewise linear 32KB weight table: 34360-entry 7-bit counters

bias table: 3496-entry 7-bit counters

global path history: 26 8-bit addresses

26-bit global history register

local history table: 220 16-bit shift registers

Table 2: Branch predictors evaluated

4

for 300 million instructions to train the processor struc-

tures –including the L2 cache—and the branch predictor

before statistics gathering is started. This interval was

found to be sufficient to yield representative results [8].

4 Results

The following sections describe the results of com-

paring the break-even branch predictor budgets of sev-

eral current branch predictor designs with their actual

energy consumption. Section 4.1 shows how budgets

are calculated using cycle-accurate simulated values for

Eremainder new . Section 4.2 then explains how to esti-

mate Eremainder new and validates this estimate by com-

paring it to the simulated results. Section 4.3 describes an

upper bound for branch predictor budgets based on perfect

branch prediction. Section 4.4 then shows how changing

the leakage ratio to 50% affects the results.

4.1 Branch Predictor Budgets from Simulation

Ebpred budget can be calculated using Eremainder new

gathered from cycle-accurate simulation. Figure 2 shows

the calculated Ebpred budget values for each benchmark

for each processor configuration. The actual values of

the results differ based on processor configuration, but the

overall relationship between the branch predictors eval-

uated is the same. Both the path perceptron and the

O-GEHL predictor have a higher branch predictor energy

budget on average than the other branch predictors eval-

uated. This indicates that both the path perceptron’s and

O-GEHL’s prediction accuracy are much higher than the

other predictors evaluated and the increased prediction ac-

curacy boosts the energy budget available to be spent on

their implementation and still satisfy the break-even point.

For all the graphs, the gshare.2KB predictor often dis-

plays negative branch predictor energy budget values. A

negative budget on a particular benchmark indicates that

the branch predictor’s performance does not improve the

overall processor performance sufficiently to recoup the

energy expended in the predictor itself. In other words,

even if the branch predictor were to consume zero en-

ergy, the branch predictor would not be able to fulfill the

ED2 break-even point and the reference predictor would

be a better choice. On these specific benchmarks this is

because the 2KB area causes destructive aliasing which

cripples the gshare predictor’s accuracy.

Figure 3 shows the percent of the calculated branch

predictor energy budget consumed by the evaluated

branch predictors. Any predictor that uses less than

100% on a particular benchmark is worth considering

for that benchmark. Branch predictors which use less

than 100% of their energy budget are providing additional

energy-efficiency beyond the break-even point. On aver-

age the trends of the branch predictor energy consumption

amongst the benchmarks are the same. Several bench-

marks exhibit consumption in excess of the budget for

one or more predictors, some in excess of 300%. For all

these benchmarks, the particular branch predictor was un-

able to come close to the break-even ED2 point. More

specifically, branch predictors which exhibit greater than

300% energy budget consumption can not fulfill the en-

ergy break-even point, and often have negative branch

predictor budgets, which we represent in our graphs as in-

finitely large numbers above the 300% demarcation line.

The trend evident in the per benchmark graph of Fig-

ure 3 is still maintained when the average of the bench-

marks is calculated as in Figure 4 which summarizes the

overall results for both integer and floating point bench-

marks. Once the average is plotted per predictor, though,

it is clear that it is the gshare.2KB predictor that is not

a benefit to power consumption when all benchmarks are

considered. Note that on the floating point benchmarks

few examples exist of predictors exceeding their budget.

This is because the floating point benchmarks are very

predictable, enabling even simple predictors to obtain a

maximum benefit.

At this point one may ask why not just simulate the

entire configuration and determine which predictors de-

liver better performance with less energy consumption. In

the next section, we show an example of estimating one

of the simulated components of the equation. We believe

that this formula enables us to understand better and more

quickly not only the benefits of a particular predictor, but

the potential benefits of additional improvements as well.

4.2 Branch Predictor Energy Budgets without
an Existing Power Model

It is desirable to estimate Epredicted remainder new

when there is no pre-existing power model readily avail-

able for the candidate branch predictor.

If and only if it can be assumed that the average energy

per cycle used by the non-predictor portion of the refer-

ence design is equal to the average energy per cycle of the

non-predictor portion of the new design while running the

same program, then2:

Eremainder ref

Dtotal ref

=

Epredicted remainder new

Dtotal new

(5)

Solving for Epredicted remainder new :

Epredicted remainder new =

Eremainder ref × Dtotal new

Dtotal ref

(6)

Equation (6) will then allow a designer to solve for

Ebpred budget, which is the value of interest. Substitute

2The accuracy of this assumption is explored in Section 4.2

5

(a) (b)

(c) (d)

Figure 2: Calculated branch predictor energy budget (Ebpred budget) for processor configurations. Note that in some

cases that the energy budget is negative. This indicates that even at zero branch predictor energy consumption, the new

predictor’s performance is insufficient to recoup the energy (in excess of the reference predictor’s energy) expended in

the predictor itself.

(6) into (4):

Ebpred budget = Total energy budget for Confignew
︷ ︸︸ ︷

(Eremainder ref + Ebpred ref) × D2

total ref

D2

total new

−

Eremainder ref × Dtotal new

Dtotal ref
︸ ︷︷ ︸

Eremainder new

(7)

Note that Equation (7) is simply an expanded version

of Equation (1).

Figure 5 (a) shows the estimated

Epredicted remainder new for the SPECint2000

benchmarks run on a processor configuration with a

narrow pipeline and big caches. Figure 6 shows the

raw Epredicted remainder OGEHL.8KB and

Eactual remainder OGEHL.8KB results overlaid for the 8

KB O-GEHL predictor for both integer and floating point

benchmarks. Notice that there is little difference between

the remainder energy predicted when compared to the

remainder energy gathered from simulation data. We

display the 8 KB O-GEHL predictor results because our

technique exhibits the largest absolute difference on it of

all the branch predictors evaluated. Raw results for the

other processor configurations included in the study were

similar in trend, so are omitted due to space constraints.

Figure 7 shows the absolute percent difference between

Epredicted remainder new and Eactual remainder new for

the four main processor configurations evaluated. The

range of error is at most 11% and on average less than

1.5% for all benchmarks and for all processor configura-

tions. Figure 8 summarizes the average percent deviation

of Epredicted remainder new from Eactual remainder new

for each of the configurations and clearly shows that the

standard deviation from Eactual remainder new for both

integer and floating point benchmarks is very small. The

6

(a) (b)

Figure 3: Percent of branch predictor energy budget (Ebpred budget) actually consumed by branch predictor as mea-

sured by simulation for narrow pipeline with big caches processor configuration: (a) integer benchmarks, (b) float-

ing point benchmarks. Note that lower values indicate branch predictor energy consumption lower than (better)

Ebpred budget and higher values indicate energy consumption greater than Ebpred budget (worse). Note that branch

predictor energy budget percentages below 100% line perform better than the energy break-even point. Configurations

with negative branch predictor energy budgets are manually set to exceed the 300% threshold.

(a) (b)

Figure 4: Percent of aggregate Ebpred budget consumed by new branch predictor. This is the ratio between the total

Ebpred actual across the entire workload and the total Ebpred budget across the entire workload

error bars on the graph show ± 1 standard deviation.

The closeness of our estimated

Epredicted remainder new to Eactual remainder new

shows that the assumption made in Equation (5) is

relatively accurate. Since the expectation is that the same

amount of work is being performed in each case

(executing a particular benchmark or program), one

might think that the processor configuration with the

shorter execution time would use a greater energy per

cycle at the break-even point. The configuration with the

slower execution time is actually carrying out additional

work to recover from mis-speculation, rather than

performing useful work. Since this estimate of the

Eremainder new is fairly accurate, we believe it is

possible to determine a branch predictor energy budget

without actually having a power model for the branch

predictor. Section 4.4 shows that with increasing leakage

ratio, our estimate only becomes more accurate.

4.3 Estimating an Upper Bound for Branch Pre-
dictor Energy Budgets

It would be interesting to evaluate the limits of branch

predictor energy budgets. The best possible branch pre-

dictor energy budget comes from ideal or perfect branch

prediction. We performed an experiment using an ap-

7

(a) (b)

Figure 5: (a) predicted energy of remainder of Confignew, Epredicted remainder new and (b) actual/simulated energy

of remainder Eactual remainder new .

(a) (b)

Figure 6: OGEHL.8KB Eactual remainder vs. Epred remainder (a) integer and (b) floating point benchmarks.

proximated perfect branch prediction technique in which

branch mispredictions are detected in the decode stage

and then corrected. Misfetches are not avoidable with

this technique. However, this method gives us an idea of

where the upper bound of branch predictor energy budgets

lies.

Figure 11 shows the results of our experiment for both

integer and floating point benchmarks. Since the integer

benchmarks are less predictable, the Ebpred budget with

our pseudo-perfect technique is clearly greater (better)

than that of the other predictors in our evaluation, with

O-GEHL and piecewise linear branch predictors coming

very close on eon. For the floating point benchmarks, one

might be puzzled that the perfect prediction Ebpred budget

is not the highest budget number on average, but rather O-

GEHL and piecewise linear branch predictors have simi-

lar or higher budgets, especially for art. Both eon and art

are benchmarks in which our pseudo-perfect prediction

technique fails due to high numbers of instruction mis-

fetches. For example, on eon our pseudo-perfect branch

prediction technique misfetches 20 instructions per 1k in-

structions, and 8.6 instructions per 1k instructions for art.

This is much higher than both O-GEHL’s and piecewise

linear branch predictors’ misfetch rates which are effec-

tively zero (0.05-0.08 misfetches per 1k instructions).

The graph shows that there is still some benefit to be

gained by improving branch prediction accuracy and gives

us an approximate idea of where this upper bound lies.

4.4 Leakage Effects

All of the previous experiments were run using a value

of 10% for leakage. To see the effects of leakage values

more in line with future processor technology, we ran se-

lected experiments using a 50% leakage ratio.

Figure 9 shows that the general trend for the branch

8

(a) (b)

(c) (d)

Figure 7: Absolute Value of Percent Difference between Epredicted remainder new and Eactual remainder new for (a)

narrow pipeline with small caches, (b) narrow pipeline with big caches, (c) wide pipeline with small caches, (d) wide

pipeline with big caches.

(a) (b)

Figure 8: Average deviation of Epredicted remainder new from Eactual remainder new for 10% leakage ratio: (a)

integer and (b) floating point benchmarks. Error bars illustrate ± 1 standard deviation.

9

Figure 9: 50% Leakage Ratio: Ebpred budget new for narrow pipelines, big caches for integer benchmarks. Note that

although the magnitude of the graph is amplified, the general shape of the graph is very similar to the shape of the

graph in Figure 2(b).

(a) (b)

Figure 10: 50% Leakage Ratio: Average Epredicted remainder new and standard deviation from Eactual remainder new

for (a) integer and (b) floating point benchmarks. Note that although the predicted energy goes up compared to 10%

leakage results, the standard deviation does not increase proportionally.

predictor budget is the same between predictors and

amongst benchmarks. Results for other configurations

and for the floating point benchmarks were very similar

and are not included due to space constraints.

We also see from the results that our estimation of

Epred remainder new is still accurate as the leakage ra-

tio increases. In fact, the standard deviation does not in-

crease proportionally with the leakage ratio as shown in

Figure 10.3 This is due to the fact that the power differ-

ence between activity and inactivity in the structures is

less due to increased leakage. This demonstrates that our

technique is still useful as leakage begins to dominate.

3Piecewise linear 32 KB results not included.

5 Related Work

Parikh et al. [14] explored the energy-efficiency of

branch predictors. They concluded that better prediction

accuracy led to better processor energy-efficiency. They

also made the insight that spending additional power in

the predictor can still reduce overall power and improve

processor energy-efficiency. The work in this paper builds

on this insight and develops a metric for determining a

branch predictor energy budget for a new branch predic-

tor design.

Aragon et al. [1] analyze the reasons for performance

loss due to conditional branch mispredictions and develop

a simple technique for fetching, decoding, and renaming

along the alternate path for low confidence branches to re-

duce misprediction penalty and thus reduce overall energy

10

Figure 11: (Ebpred budget) for perfect branch prediction for narrow pipeline, big caches configuration.

consumption. Baniasadi and Moshovos [2] examined re-

ducing branch predictor power dissipation by selectively

turning off tables in a combined branch predictor design.

In additional work, Baniasadi and Moshovos exploit the

insight that branches in steady state do not need to up-

date the branch predictor to reduce the number of branch

predictor accesses and therefore reduce branch predic-

tor energy consumption. [3] Chaver et al. [7] proposed

a method for using profiling to characterize branch pre-

diction demand. They use this information to selectively

disable portions of a hybrid branch predictor and resize

the branch target buffer to reduce branch predictor en-

ergy consumption. Our work does not develop a specific

technique for reducing energy consumption, but rather

demonstrates a method for reasoning about the energy-

efficiency of branch predictor designs.

6 Conclusions

This paper describes a general, systematic method for

calculating the break-even energy budget for a branch pre-

dictor design. The method requires a cycle-accurate per-

formance and power/energy model for a reference pro-

cessor and a cycle-accurate simulation of the branch pre-

dictor design under consideration. An accurate esti-

mate of the energy budget can then be made without a

power/energy model for the candidate branch predictor.

The techniques presented in this paper allow the compar-

ison of the energy-efficiency of different branch predic-

tor designs without having to equalize branch predictor

area or branch prediction accuracy rates. It further gives a

branch predictor designer a technique with which to eas-

ily determine the energy available to achieve an energy-

efficient branch predictor, given the performance for a set

of programs and an upper bound on the energy available

for an ideal predictor.

This paper also evaluates the branch predictor energy

budgets for several existing branch predictor designs on

the SPECcpu2000 benchmarks and evaluates the energy-

efficiency of these designs. We also put forth the notion

that average energy per cycle consumption of the remain-

der of the pipeline varies little between different branch

predictor designs. We further find that the branch predic-

tor performance and energy trends are fairly independent

relative to pipeline width and cache size, thus reducing

the design space exploration needed during future branch

predictor research. Finally, these results were determined

to hold even when the leakage was increased to 50%.

Overall, our results suggest that even the very aggres-

sive branch predictors recently proposed in ISCA 2005 do

not yet violate energy efficiency bounds, at least not when

aggregating across SPEC overall as a workload. This in-

dicates that research on further improvements in branch

prediction is warranted.

7 Future Work

There are many directions in which this work may be

extended. The study could easily be expanded to include

all configurations of larger, more aggressive, and more

complex branch predictor designs as well as no-predictor

configurations. branch predictors, which are improved

versions of the designs presented in [10, 15].

An upper bound for branch predictor energy budget

can be demonstrated and used to estimate the bound on

benefit that can be obtained from achieving perfect branch

prediction.

This work also has the potential to lead to a technique

to estimate a branch predictor energy budget without re-

quiring either cycle-accurate simulator or power model

for the future branch predictor design. We envision that

in the future, given a functional simulator with which

to derive branch prediction accuracy on a particular pro-

gram, designers will be able to derive the branch predic-

tor break-even energy budget much earlier in the design

process, allowing them to narrow the design space search

11

much more quickly.

This technique could also be combined with program

phase detection techniques and adaptive hardware tech-

niques to develop a method to improve energy-efficiency

by adapting the branch predictor hardware based on pro-

gram characteristics and break-even energy information.

Another interesting factor to explore is the impact of

training time due to operating system context switches on

branch predictor energy budget.

We believe that the method described in this pa-

per can be refined to allow simpler estimates for the

power/performance tradeoffs associated with branch pre-

dictor design. In addition, the technique described in this

paper could be applied as presented to determine the en-

ergy budgets of other processor structures such as caches,

register files, buffers, etc.

This paper shows how these results are independent of

cache size, pipeline width, and leakage ratio. Future work

could determine the effect of register file size and buffers

as well.

Acknowledgments
This work is supported in part by the National Science

Foundation under grant nos. NSF CAREER award CCR-

0133634, and CNS-0340813, EIA-0224434, and a grant

from Intel MRL. We would also like to thank Jason D.

Hiser for his helpful input.

References
[1] J. L. Aragon, J. Gonzalez, A. Gonzalez, and J. E. Smith. Dual path

instruction processing. In Proceedings of the 2002 International

Conference on Supercomputing, pages 220–229, New York, NY,

USA, 2002. ACM Press.

[2] A. Baniasadi and A. Moshovos. Branch predictor prediction: A

power-aware branch predictor for high-performance processors. In

Proceedings of the 2002 International Conference on Computer

Design, pages 458–461, 2002.

[3] A. Baniasadi and A. Moshovos. Sepas: a highly accurate energy-

efficient branch predictor. In Proceedings of the 2004 International

Symposium on Low Power Eelctronics and Design, pages 38–43,

New York, NY, USA, 2004. ACM Press.

[4] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A framework for

architectural-level power analysis and optimizations. In Proceed-

ings of the 27th Annual International Symposium on Computer Ar-

chitecture, pages 83–94, June 2000.

[5] D. C. Burger and T. M. Austin. The SimpleScalar tool set, version

2.0. Computer Architecture News, 25(3):13–25, June 1997.

[6] P.-Y. Chang, E. Hao, T.-Y. Yeh, and Y. Patt. Branch classification:

a new mechanism for improving branch predictor performance. In

MICRO27, pages 22–31, New York, NY, USA, 1994. ACM Press.

[7] D. Chaver, L. Pi nuel, M. Prieto, F. Tirado, and M. C. Huang.

Branch prediction on demand: an energy-efficient solution. In

Proceedings of the 2003 International Symposium on Low Power

Eelctronics and Design, pages 390–395, New York, NY, USA,

2003. ACM Press.

[8] J. W. Haskins, Jr. and K. Skadron. Memory reference reuse la-

tency: Accelerated sampled microarchitecture simulation. In Pro-

ceedings of the 2003 IEEE International Symposium on Perfor-

mance Analysis of Syste ms and Software, pages 195–203, Mar.

2003.

[9] Q. Jacobson, E. Rotenberg, and J. E. Smith. Path-based next trace

prediction. In Proceedings of the 30th Annual International Sym-

posium on Microarchitecture, pages 14–23, 1997.

[10] D. Jimenez. Idealized piecewise linear branch prediction. In Pro-

ceedings of the First Workshop Championship Branch Prediction

in conjunction with MICRO-37, December 2004.

[11] D. A. Jiménez. Piecewise linear branch prediction. In Proceedings

of the 32nd Annual International Symposium on Computer Archi-

tecture, page TBD. IEEE Computer Society, 2005.

[12] S. McFarling. Combining Branch Predictors. Technical Report

TN-36, June 1993.

[13] S. McFarling and J. Hennesey. Reducing the cost of branches.

In Proceedings of the 13th Annual International Symposium on

Computer Architecture, pages 396–403, Los Alamitos, CA, USA,

1986. IEEE Computer Society Press.

[14] D. Parikh, K. Skadron, Y. Zhang, M. Barcella, and M. Stan. Power

issues related to branch prediction. In Proceedings of the Eighth

International Symposium on High-Performance Computer Archi-

tecture, pages 233–44, Feb. 2002.

[15] A. Seznec. The O-GEHL branch predictor. In Proceedings of the

First Workshop Championship Branch Prediction in conjunction

with MICRO-37, December 2004.

[16] A. Seznec. Analysis of the O-GEometric History Length branch

predictor. In Proceedings of the 32nd Annual International Sym-

posium on Computer Architecture, page TBD. IEEE Computer So-

ciety, 2005.

[17] T. Sherwood, E. Perelman, and B. Calder. Basic block distribution

analysis to find periodic behavior and simulation points in appli-

cations. In Proceedings of the 2001 International Conference on

Parallel Architectures and Compilation Techniques, Sept. 2001.

[18] K. Skadron, M. R. Stan, W. Huang, S. Velusamy, K. Sankara-

narayanan, and D. Tarjan. Temperature-aware microarchitecture.

In Proceedings of the 30th Annual International Symposium on

Computer Architecture, pages 2–13, June 2003.

[19] D. Tarjan, K. Skadron, and M. Stan. An ahead pipelined alloyed

perceptron with single cycle access time. In Proceedings of the 5th

Workshop on Complexity-Effective Design, 2004.

[20] V. Zyuban and P. Strenski. Unified methodology for resolving

power-performance tradeoffs at the microarchitectural and circuit

levels. In Proceedings of the 2002 International Symposium on

Low Power Eelctronics and Design, pages 166–171. ACM Press,

2002.

12

Heuristics for Complexity-Effective Verification

of a Cache Coherence Protocol Implementation

Dennis Abts∗ Ying Chen† David J. Lilja†

dabts@cray.com wildfire@ece.umn.edu lilja@ece.umn.edu

∗Cray Inc. †University of Minnesota
P.O. Box 5000 Electrical and Computer Engineering

Chippewa Falls, Wisconsin 54729 Minnesota Supercomputing Institute
Minneapolis, Minnesota 55455

Abstract

In this paper we investigate several search heuristics to
reduce the number of explored states required to discover
a cache coherence protocol error. We describe a novel
method for extracting traces called “witness strings” from
the formal verification process and executing these traces
on the cache coherence protocol implementation using a
logic simulator. A deeply ensconced hardware error may
require searching hundreds of thousands of states to ex-
pose the error. We describe a very efficient search heuris-
tic called min-max-predict that, for example, reduced the
number of states explored from 101423 to a mere 1787
states for an error embedded in the Cray X1 cache coher-
ence protocol. When executing the witness strings from
this optimized search we are able to find the error in about
three minutes of logic simulation versus about three hours
of logic simulation to execute the witness strings from the
non-optimized depth-first search. We show that the min-

max-predict search heuristic performs better than BFS and
DFS for all 12 protocol errors embedded in the Cray X1
and the Stanford DASH coherence protocols.

1 Introduction

Shared memory multiprocessors must enforce mutual
exclusive access over the shared main memory in order to
present a consistent view of the memory hierarchy to the
programmer. The memory consistency model (MCM)
described by the instruction set architecture (ISA) pro-
vides a set of rules that the programmer (and compiler)
must follow to ensure that a parallel program executes
correctly. The cache coherence protocol is a fundamen-
tal ingredient of the MCM responsible for propagating
writes. Showing that a cache coherence protocol is cor-
rect is nontrivial, as there are many aspects to “correct-
ness” and the protocol state space is very large. The
complexity of verifying memory coherence was shown by
Cantin [1] to be NP-hard. Furthermore, a simple cor-
rectness property, such as “a load from an address al-

ways returns the value of the last write,” specified at the
architectural level is often extremely difficult to verify
in the implementation. Moreover, discovering errors in
the pre-silicon stages of the development is paramount
to the both the budgetary and schedule success of the
project. Our approach is to formally model the protocol
using the Murϕ [2] verification system and prove that a
set of well-defined, fundamental properties hold over the
state space. Then, by capturing witness strings from a
depth-first search of the protocol state space and execut-
ing the traces on the Verilog RTL logic simulation we
show that the implementation matches the formal spec-
ification. While the witness strings approach has been
effective at uncovering errors in the Cray X1 cache co-
herence protocol [3] both in the high-level protocol speci-
fication and the RTL implementation, it does suffer from
computational complexity when executing the witness
string on the RTL logic simulator. For instance, the
model checker explores 214 million states in 208 hours
which averages to about 287 states per second. However,
the logic simulator is only capable of exploring about
10 states per second which would require weeks of com-
pute time. While it is tractable to execute all the witness
strings on the RTL logic simulator, it is not very practical
within the constraints of a project development schedule.

This research focuses on search heuristics that when
used to guide the depth-first search of the model checker
will produce witness strings that are better at uncover-
ing “hard to find” errors that are deeply ensconced in
the state space. To evaluate the efficacy of each heuris-
tic, we measure the distance of the error from the initial
state. That is, how many states were explored before the
error was discovered. We chose cache coherence protocol
from the Cray X1 and Stanford DASH multiprocessors
as an experimental substrate. This paper makes several
contributions:

• we evaluate several search heuristics to improve the
efficiency of a model checker at uncovering errors in a
cache coherence protocol — one such heuristic called

1

min-max-predict, for example, reduced the number of
states explored from 101423 to a mere 1787 states for
an error embedded in the Cray X1 cache coherence
protocol,

• we describe an approach to hierarchical verification
of the cache coherence protocol which uses the wit-
ness strings generated by the model checker to show
the implementation correctly implements the cache
coherence protocol, and

• finally we describe assume-guarantee rules to al-
low compositional techniques enabling a highly-
distributed cache coherence protocol to be decom-
posed into smaller sub-task constituents and verified
independently.

Section 2 gives a framework for the system model and
describes the hierarchical verification process. We eval-
uate three heuristics: hamming, cache-score and min-max-

predict which are discussed in Section 3. Then, in Section
4 we provide the experimental setup used for evaluating
the efficacy of each heuristic. The experimental results
are shown in Section 5, with related work in Section 6.
Finally we draw some conclusions in Section 7.

2 System Model
The design and verification process proceeds in a hi-

erarchical manner, where each successive stage has in-
creasing levels of detail. In general, the design process
has the following steps:

1. functional specification (Sf),
2. design specification (Sd),
3. implementation in register-transfer language (Irtl),
4. gate-level implementation (Igates), and
5. physical layout and fabrication (Iphys).

The functional specification stage, Sf , sets forth the
high-level description of the system in the form of a pro-
gramming model, instruction set architecture (ISA), and
so forth. It is in step 1 that a functional instruction set
simulator is written to provide a coarse-grain model of
the system. Continuing with the design specification, Sd,
in step 2 which provides more detail about the microar-
chitectural details such as the organization of the cache
memory system, size of buffers, pipeline design, etc. It
is in this step that a cycle accurate detailed performance
simulator would be used to make design trade-offs and
properly size hardware structures. The end result of the
Sd stage is a detailed engineering specification with de-
tails necessary to begin constructing the hardware de-
scription in step 3. Using a hardware description lan-
guage such as Verilog or VHDL, the system is described
using register-transfer language, Irtl. Then, after the Irtl

is completed a set of synthesis tools are used to compile
the RTL description into a gate-level technology depen-
dent implementation, Igates. Finally, in step 5 the phys-
ical design description, Iphys, accounts for transistor ge-
ometries and ensures that the physical design rules are

satisfied. The granularity of the design process is similar
to the differences between rocks, stones, gravel, pebbles,
and sand.

Similar to the design process, the verification process
admits a hierarchical approach to verification with the
following stages:

1. architectural verification (Varch),
2. implementation verification (Vrtl), and
3. gate-level verification (Vgate).

The verification flow occurs simultaneously with the de-
sign stages with obvious dependencies on availability of
the design stage being checked. Note, however, that
architectural verification is usually reserved for critical
system components responsible for guarantees made to
the user. For example, the memory consistency model
makes some formal guarantees about the order of mem-
ory events to different locations. To check if these guar-
antees are being satisfied it is useful to construct a high-
level model of the system and ensure that for all possible
states the properties of the memory consistency model
hold. We call this high-level verification model, Varch,
and is carried out early in the design process. Subsequent
verification steps will use the actual RTL description,
Vrtl, with its increasingly detailed description usually be-
ing checked using a discrete-event logic simulator. Lastly,
the final verification step is gate-level verification, which
usually requires checking that the structural description
(an ASIC gate-level netlist) is functionally equivalent to
the RTL description. In practice, this step is automated
by a formal equivalence check between the gate-level and
RTL descriptions. Unfortunately, no comparable check
exists to ensure that the RTL description is a correct
refinement of the more abstract functional specification.
This paper addresses this problem for a multiprocessor
cache coherence protocol, however, the ideas would apply
to other domains.

2.1 Hierarchical verification and refinement

While performing verification in a hierarchical fash-
ion, we must check proof obligations of the form P � Q,
where P and Q are system descriptions and � is a refine-
ment relation on the system descriptions. The assertion
P � Q holds if P describes the same system as Q, but
perhaps at a finer level of detail. Consider, for example,
the design of a microprocessor where P may be a Verilog
RTL description of the processor core (functional units,
pipelined datapath, etc), and Q may be the correspond-
ing instruction set architecture (ISA). The relationship
between P and Q can then be stated as “P implements
Q” or equivalently “P is a refinement of Q.”

At each level of the memory hierarchy the hardware is
controlled by a finite-state machine (FSM) that governs
the state transitions specified by the coherence protocol.
The different levels of the memory hierarchy exchange
data using micropackets which provide efficient and reli-

2

Figure 1: A collection of symbols form a word, w , in the
language L(Varch).

σ0

1σ
σ2

3σ
4σ

5σ
σ0

1σ
σ 2

3σ
4σ

5σ

{

}

,
,

,
,

,

w
=

σ0
1σ

σ 2
3σ

4σ
5σ

{

}

,
,

,
,

,

w
=

Q

Q

Q

(N1, P0, L1, PrReadσ0 , X)=
= , X)(N1, L1, L2,L1ReadReq1σ

(N1, L2, MD, L2ReadReqσ2 , X)=

(N1, L2, L1, L2ReadResp4σ , X)=

(N1, MD, L2, ReadExclResp3σ , X)=

(N1, L1, P0, ReadResp5σ , X)=

able point-to-point communication between the FSMs at
each level of the memory hierarchy.

We begin by formally defining an FSM by the 5-tuple:
FSM =(Q, Σ, δ, qo, F)

where Q is a finite set of states, Σ is a finite input alpha-
bet, qo ∈ Q is the initial state, F ⊆ Q is the set of final
states, and δ is the transition function mapping Q×Σ to
Q. The transition function, δ(q, x) takes as its argument
the current state, q ∈ Q, and an input symbol, x ∈ Σ,
to produce a new state Q. The transition function may
cause zero or more atomic actions based on the current
state q and the input message x.

The cache coherence protocol is specified as a set of
tables describing the operation of each FSM in the mem-
ory hierarchy. These cooperating FSMs encapsulate the
rules that govern the protocol. Each of the caches have
some state (Q) that describes their access permission at
any point in time. The protocol tables describe the ac-
tion in terms of the messages (i.e. micropackets) that
flow between the components in the memory hierarchy.
Each table is decomposed into a set of FSMs according
to which virtual communication channel is used. For
instance, incoming processor requests (e.g: PrRead and
PrWrite messages) flow on virtual channel 0 (vc0) and
L2 responses (e.g.: ReadResp and GrantExcl) flow on vir-
tual channel 1 (vc1). So, two concurrent FSMs are con-
structed: one to handle incoming processor requests on
vc0 and another to handle L2 responses on vc1. This de-
composition step is applied to the protocol specification
at each level of the memory hierarchy creating a set of
FSMs that interact in a producer-consumer fashion using
the virtual network as the communication medium.

2.2 Formal model of a cache coherence protocol

The formal specification of the cache coherence proto-
col is described as a set of rules in the Murϕ specification
language. The specification is compiled to produce the
protocol verifier. As the formal model executes it pro-
duces a trace tree (Figure 1), τ , where each node in τ is
a new configuration Ci where each edge represents a rule
firing. In Figure 1, the dotted arcs represent a rule firing
that does not produce a new (unique) state and is there-
fore not considered part of the trace tree. The symbols
σ1, σ2, . . . , σn label the rule firings, where Ci

σi→ Ci+1.
Formally, a word w = {σ : Ci

σ→ Cj}, where Ci and Cj

are quiescent configurations or Cj is a terminal configu-
ration (leaf node). The σ symbols are recorded on the
witness file as each rule is fired. The sequence of sym-
bols 〈σ0, σ1, . . . , σi〉 that traces a path from the starting
configuration C0 to a leaf node is called a witness string
for the execution of the formal model.

A quiescent configuration is one in which there are no
messages in-flight in the virtual network and the state at
each level of the memory hierarchy is not Pending. In-
tuitively, this means that all outstanding requests have
been satisfied and there are no messages in-flight on the
virtual network.

2.3 Language containment

Let Varch be an instance of a formal system specifi-
cation that describes the behavior of a cache coherence
protocol, and L(Varch) (the language of Varch) denote
the set of all sequences α accepted by Varch. The form
of each αi is consistent with the witness symbols σi. The
alphabet of Varch is the set of commands in the memory
system. Specifically, the alphabet is the set of messages
that are exchanged among the components of the cache
coherence protocol.

It is convenient to choose trace containment (also re-
ferred to as language containment) as a refinement re-
lation � on the system descriptions Vrtl � Varch. Intu-
itively, then every sequence of inputs and outputs that is
possible for Vrtl is also possible for Varch. Trace contain-
ment is defined globally for arbitrary length input-output
sequences, which makes it practically impossible to check
for trace containment except for small system descrip-
tions because the check is exponential in the number of
states in Varch. However, as Henzinger et al [4] point out,
the relation between Vrtl and Varch is often much tighter
where each implementation state of Vrtl corresponds to a
specification state of Varch. Instead, a much stronger re-
lation is captured by a simulation relation Vrtl �s Varch.
Formally, Varch is said to simulate Vrtl if starting from
the initial configuration C0 and continuing ad infinitum
every (input, output) pair can be checked against every
(input, output) pair in Varch. If Varch simulates Vrtl then
a verification certificate (or witness) can be produced in
the form of a relation between states of Vrtl and states of
Varch and the witness, α, can be efficiently (polynomial-
time) checked for correctness. It is useful to note, the

3

length of the witness |α| depends on the number of states
in the formal system model which is exponential on the
size of the system description Varch.

Because the simulation relation �s preorder is de-
fined locally by considering only individual (input, out-
put) pairs, we can apply an assume-guarantee princi-
ple [5][6][7] to exploit compositional techniques for di-
viding the verification task into subtasks V 1

rtl ‖V 2
rtl �s

V 1
arch ‖V 2

arch. Intuitively, assume-guarantee rules can be
thought of as properties (guarantees) and constraints (as-
sumptions) of the subtasks. We establish the properties
(i.e. guarantees) of the refinement relation V 1

rtl �s V 1
arch

subject to the constraints (i.e. assumptions) of V 2
arch

and denote the subtask refinement as V 1
rtl ‖V 2

arch �s

V 1
arch. In other words, V 1

rtl refines V 1
arch when con-

strained by an environment (i.e. witness) that behaves
like V 2

arch. Likewise, the refinement relation for the sub-
task V 2

rtl ‖V 1
arch �s V 2

arch also holds. As Henzinger et
al [4] show, the assume-guarantee principle allows the
compound witness Vrtl �s Varch to be constructed from
the witnesses of the subtasks V 1

rtl ‖V 2
arch �s V 1

arch and
V 2

rtl ‖V 1
arch �s V 2

arch.

2.4 Composition

Any large system design requires compositional [5]
techniques that deal with the sheer enormity of the sys-
tem state. For example, a memory controller may be di-
vided into multiple components. Each component being
responsible for implementing a portion of the memory hi-
erarchy, and the cache coherence protocol spans multiple
components. The system model, Varch, consists of sub-
tasks L2, and M , and we write Varch = L2 ‖M , where
L2 is the component which implements the secondary-
level cache, and M implements the memory directory.
Each σ symbol is a tuple describing the rule firing as:
σi = 〈n, src, dest, cmd, addr〉, where n is the node identi-
fier, src is the source component, dest is the destination
component, cmd is the command (message) type, and
addr is the address. We represent the address symbol-
ically so that, for instance, a three node system would
have three addresses: X, Y, and Z. An example of a
witness symbol is 〈N1, P, L2, PrRead, X〉 which is a re-
quest from the processor (P) to the L2 cache controller to
perform a PrRead of address X. A simple memory trans-
action will consist of several symbols that witness the
memory reference as it propagates through the memory
hierarchy. For example an allocating read request from
the processor results in the following:

〈N1, P, L2, PrRead, X〉
〈N1, L2,M, MRead, X〉

〈N1,M,L2, ReadExclResp, X〉
〈N1, L2, P, PResp, X〉

The witness symbols, σ, are instantiated with a phys-
ical address which is random but mapped to a given
memory directory for variables X, Y , and Z. In gen-
eral, a cache coherence protocol exhibits the property of

Table 1: A snippet from the Cray X1 L2 cache coherence
protocol specification.

Current Incoming Next
State Command State Action
Invalid PrRead Pending M(MRead)

Invalid ReadMod Pending M(MReadMod) ;

increment(wc)

Invalid PrReadNA Invalid M(MGet)

Invalid VWrite Pending M(MReadMod) ;

increment(wc)

Invalid VWriteNA Invalid NOP()

Invalid VWriteData Invalid M(MPut) ;

increment(wc)

Invalid ReadSharedResp err ERROR()

Invalid ReadExclResp err ERROR()

Invalid FlushReq Invalid M(MFlushAck)

...

data independence since the data values are merely be-
ing propagated by the protocol. The only constraint on
the variable selection is that the address remains fixed
for the entire length of a witness string. The function
M = Home(var) is used to resolve which memory direc-
tory (M) component the address belongs.

2.5 Composite witness strings

As the Murϕ verifier executes the formal system the
sequence of transitions that witnesses the verification is
captured into a witness string file. The witness strings
are enumerated in a depth-first manner from the initial
start state where each rule firing is delineated with a se-
quence of dashes. The atomic actions between the dashes
represents one or more witness symbols, σi. The example
in Figure 3 is a very simple sequence of events where a
processor is simply making a Read(Y) request. However,
this simple request has a total of six memory transactions
associated with it. Markers are inserted into the stimulus
when the memory system is quiescent, since this is often
a good point to make assertions about the state of the
memory system.

Transactions in the memory system can be categorized
as two types: sending a message to another component,
and receiving a message. Witness symbols σi generated
by Murϕ are of the form:

send: [P|E|M]n sending cmd(var) to [P|E|M]n on vc[0|1|2]

recv: [P|E|M]n(state) ← cmd(var) on vc[0|1|2] from [P|E|M]

where n is the node number associated with that compo-
nent, state is the cache or memory directory state, cmd
is the message type (e.g. Read, Write, Inval, etc), and
vc is the virtual channel which the message will travel
on within the virtual network. The Cray X1 uses three
virtual channels, vc0, vc1, and vc2, to avoid request-
response dependencies in the cache coherence protocol.

4

Since there is a one-to-one mapping of commands to vir-
tual channels, the vc is omitted from the witness symbol.
In other words, the vc is implied by the command and
is thus unnecessary to explicitly specify it in the witness
symbol.

2.6 Inverse abstraction and subtask witnesses

The composite witness strings are decomposed into
their subtask components and all unbound variables
are bound to concrete instantiations so that the result-
ing witness symbol can be encoded as a tuple σi =
〈n, src, dest, cmd, addr〉. At this time, the abstractions
that are exposed because of symmetry reductions [8]
in the formal system model are replaced by node num-
bers and variable names. To accomplish this, we must
choose which subtask to decompose. We developed a
program that takes the composite witness string as in-
put and produces a subtask witness as wL2 = ws(w,E)
or wM = ws(w,M). The resulting witness symbols, σi,
are enumerated so we have the length of the string |w|
(Figure 3).

2.7 Assume-guarantee rules for L2 and M subtasks

The Cray X1 cache coherence protocol spans multi-
ple components (chips). Compositional techniques are
used to divide this very large state into two smaller sub-
tasks, namely the L2 (E chip) and M (M chip) compo-
nents. The chip-level subtasks made a convenient choice
for several reasons. First, the chips have a well-defined
interface (pins) to the external environment and commu-
nicate by exchanging messages across a physical channel.
The channel is managed using a link-layer protocol (LLP)
which implements a sliding window go-back-N protocol
for reliable transmission. However, to make the simula-
tion more efficient, the LLP was replaced with a black
box which assumed the channel to be reliable. Second,

Figure 2: The RTL models are checked using the witness
strings from the formal model as assume-guarantee rules.

they represent what will actually be fabricated, so the
RTL specification of the chip is readily available.

The assume-guarantee rules must ensure that
L2rtl ‖March �s L2arch. That is, the L2 RTL when con-
strained by the memory directory (M) witness correctly
implements the L2 architectural specification (Figure 2).
Similarly, we must show that the memory directory (M)
RTL implementation when constrained by the L2 wit-
ness correctly implements the M architectural specifica-
tion, or concisely Mrtl ‖L2arch �s March. Intuitively,
the subtask witnesses specify assumptions under which
the RTL implementation is verified. Those assumptions
must be validated (guaranteed) during the correspond-
ing subtask verification. The Raven [9] transaction-level
verification framework provides very simple semantics
for making a concrete connection between the assume-
guarantee rule and Raven apply-verify functions. Specif-
ically, when verifying the L2 subtask, for instance, the
assumptions for the March subtask witness are converted
into apply(σi) and the guarantees being checked are rep-
resented as verify(σj), and vice versa. After checking each
word in the witness string we call check assertions which
performs a check of all the invariants specified by the for-
mal specification, Varch, are also satisfied in the imple-
mentation, Vrtl. Recall, that a word of the witness string
is defined between quiescent states, so we are assured
that there are no outstanding requests in the network.

3 Search Heuristics

We propose several search heuristics to optimize model
checking of a cache coherence protocol. In particular, the
heuristics seek to improve depth-first search by guiding
the search process toward a portion of the protocol state
space that is more likely to contain an error. Then, using
the optimized search from the model checker we are able
to produce witness strings that are more efficient, capa-
ble of finding errors in less time, than depth-first search.
In the presence of computational complexity, faced with
the daunting task of executing the voluminous numbers
of witness strings on the logic simulator, the witness
strings produced by the optimized model checker provide
a complexity-effective verification of the protocol imple-
mentation. We evaluate the search heuristics on the Cray
X1 and Stanford DASH.

3.1 Hamming distance

The hamming distance [10] between two states, s1 and
s2, is defined as the number of bits by which s1 and
s2 differ. Two heuristics max-hamming and min-hamming

select the rule with either the largest or smallest ham-
ming distance, respectively. Intuitively, the max-hamming

heuristic will choose the next state that is most different
from the current state, whereas the min-hamming heuris-
tic chooses the next state that is least different. In Murϕ
each state is stored as a large bit-vector. We simply
loop through the bit-vector and compare s1→bits[i] to

5

Figure 3: The output from ws-Murϕ is encoded into a format that is used by a Raven program as stimulus and expected
results for the logic simulator.

Quiescent
E1(X:ShClean)<---Read(Y) on vc0 from P1 [13]

E1 sending PInvalidate(X) to P1 [14]
E1 sending MDrop(X) to M1 [15]
E1 sending MRead(Y) to M2 [16]

E1(Y:PendingReq)<---ReadExclResp(Y) on vc1 from M2 [17]
E1 sending PReadResp(Y) to P1 [18]

Quiescent

s2→bits[i] incrementing a counter each time a difference
is detected. Thus the overhead in computing the ham-
ming distance is linear with respect to the size of each
state.

3.2 Cache Score

It is common case that a small number of control bits
can dominate the circuit functionality. For instance, the
cache state and tag bits dominate the functional behav-
ior for the L2 cache coherence controller. The cache-score
heuristic uses a subset of the state information to deter-
mine the best rule to fire. For the Cray X1 protocol, the
cache-score evaluation function inspects the internal state
variables of the ws-Murϕ verifier and returns a score, s
= [0:4]. For example, for each memory directory (MD)
component in the model, we score it according to the
following code.

int md_score(int n) { // n is the node number

int s=0;

if(Node[n].Directory.State != Noncached &&

Node[n].Directory.State != Shared &&

Node[n].Directory.State != Exclusive)

s = 1 ;

return s ;

}

A similar function e score() is used to score the L2 cache.
The md score() and e score() functions take the node
number as an argument. So, the aggregate score for each
state is as follows:
score = e score(1) + e score(2) + md score(1) + md score(2);

A rule which produces a next state with a higher score is
favored over a rule the produces a lower score. The score
gives a metric of the amount of concurrent coherence
traffic. Intuitively, a higher score means there are more
outstanding coherent memory references and therefore
more likely to produce an error.

3.3 Min-Max-Predict

Yang and Dill [11] used the minimum hamming dis-
tance as a search heuristic. It was their hope that states
with very few bits differing from the error state will re-
quire fewer cycles to reach the target. Yang’s position is
contrary to our reasoning that choosing the next state via
maximum hamming distance will move toward the error
state. As a compromise to these differing positions, we
arrived at our min-max-predict heuristic by combining the

min-hamming and max-hamming heuristics with the scoring
function from cache-score and a 3-bit saturating counter
to predict, based on the current state, whether we should
use the min-hamming or max-hamming heuristic. The se-
mantics of the 3-bit saturating counter is very similar to
the way a branch predictor predicts the next program
counter and captures the notion of hysteresis in a pro-
gram control flow.

The heuristic works by first determining a score for
the current state in the range [0:n]. If the score < n/2,
then we increment the count, otherwise we decrement
the count. We make sure the count never exceeds the
bounds of the 3-bit counter by first checking if count <8

before incrementing it, and checking if count > 0 before
decrementing the count. Then, after we fire a rule we
compute the hamming distance from the current state to
the new state. We then use the hamming distance to set
the min rule and max rule values that are used to evaluate
the min-hamming and max-hamming heuristcs, respectively.
The value from min rule or max rule is assigned to the vari-
able best rule depending on the current counter value. If
count <4 then best rule = max rule, otherwise best rule =

min rule. The up-down 3-bit saturating counter is used
to steer the search toward the target error.

4 Experimental setup

We chose the Cray X1 and Stanford DASH cache co-
herence protocols as an experimental substrate. We em-
bed errors into each protocol and use the model checker
to search for the known error. This process of hiding and
seeking memory coherence errors is repeated for six dif-
ferent errors on each protocol. While the X1 and DASH
protocols are both directory-based [12] coherence proto-
cols, they are largely dissimilar in other respects. For ex-
ample, the X1 protocol is a blocking protocol and DASH
uses NAKing (negative acknowledgments) to defer in-
coming requests to a pending cache line. The DASH
protocol is also the predecessor to the SGI Origin2000
[13] cache coherence protocol.

The Murϕ formal verification model of the DASH pro-
tocol has a total reachable state space of 10466 states
where the size of each state is 4912 bits. The Cray X1

6

cache coherence protocol has a much larger state space
with 214 million reachable states where the size of each
state is 1664 bits. Each error is listed below with the
invariant that failed.

4.1 Invariants

Model checking is a technique that exhaustively
searches the states space of a concurrent system to show
that certain properties hold. Safety properties are simple
invariants expressed in first-order logic that, in essence,
ensure that “something bad never happens.” The in-
variants we checked are common to all cache coherence
protocols and ensure such properties as exclusive write
permission to a cache line, and data consistency among
others. As an example, consider the “single writer” prop-
erty for the Cray X1 cache coherence protocol [3].

Two different caches, p and q, should never
have write access to the same address, a, at
the same time.

∀a ∀p ∀q IsDirty(a, p)∧ q 6= p ⇒ ¬ IsDirty(a, q)

The single writer property is written in Murϕ as:

Invariant "Single Writer."

Forall a : Address Do

Forall p : NodeID Do

Forall q : NodeID Do

(p != q) & IsDirty(a, p) -> !IsDirty(a, q)

End

End

End ;

The DASH protocol verifier has an equivalent safety
property that detects multiple caches with write permis-
sion. There are other invariants that check for data con-
sistency, unexpected messages, etc.

4.2 Model checking

We used the Murϕ verification system [2] to check our
formal model. Murϕ uses explicit state enumeration to
exhaustively search the reachable state space of a sys-
tem of interacting finite-state machines. In addition to
deadlock freedom, the verifier checks that a set of in-
variants are satisfied at each explored state. We did,
however, make small modifications to the original Murϕ
source code to allow us to capture witness strings from
the verifier. The new verifier, called ws-Murϕ, has mi-
nor modifications to several functions to capture witness
strings and allow the addition of search heuristics.

To capture the witness strings, we added two lines
of code to the original Murϕ function verify dfs in the
mu system.C file. The first modification prints a special
token before each rule is fired. The second modification
prints a message when the depth-first search backtracks.
Then, each cache controller rule prints out the witness
symbol as it executes, as shown in Figure 3. The wit-
ness symbols are converted into a Raven [9] diagnostic
program that can be compiled and run with the Synop-
sys VCS simulator. The ws-Murϕ verifier will generate

millions of lines of C++ code to run on the logic sim-
ulator. This process would benefit tremendously from
a search heuristic that yielded witness strings that are
better at discovering errors than those generated from a
depth-first search.

To implement search heuristics in ws-Murϕ we added
a new function AllNextStates BestNS which chooses the
rule to fire based on our heuristic, instead of the
SeqNextState function. We also modified functions
NextState, was present, and simple was present to include a
boolean flag indicating that we are searching a state that
is being evaluated by the heuristic and therefore should
not be added it to the hash table. For each state the
heuristic returns a score that is used as a metric to de-
termine the best rule to execute and produce the next
state. The search process is guided by the heuristic to-
ward a potential error.

4.3 Cray X1 embedded errors

Errors for the Cray X1 were chosen to provide a va-
riety of errors with different invariant failures. Error1
violates the single writer invariant, Errors2-4 generate
protocol errors, Error5 creates deadlock, and Error6 vi-
olates the data coherence invariant. Errors embedded in
the X1 protocol are roughly divided into two categories:
quiescent and transient state errors. That is, does the
error occur when the L2 cache or memory directory is in
a quiescent (not pending) or transient (pending) state.

Error1 L2(WaitForVData)←FwdRead

The L2 receives a FwdRead request while in a pend-
ing state waiting for vector write data. The Fw-

dRead causes a SupplyDirtyInv reply to be sent to the
requester and should transition to the Invalid state.
Instead, the L2 state remains in the WaitForVData

state.
Invariant violated: Single Writer

Error2 L2(ExClean)←FwdRead

The L2 receives a FwdRead request while in the Ex-

Clean state. The L2 responds with a SupplyDirtySh

but never transitions from ExClean, to a shared state,
ShClean.
Invariant violated: Protocol Error

Error3 L2(Pending)←Inval

The L2 cache receives an Inval message to invalidate
the cache line, and erroneously sends a FlushAck in-
stead of an InvalAck message.
Invariant violated: Protocol Error

Error4 MD(Shared)←Drop

The memory directory (MD) receives an L2 cache
eviction message, Drop. The MD erroneously transi-
tions to the Exclusive state instead of staying in the
Shared state.
Invariant violated: Protocol Error

7

Table 2: Results for X1 and DASH. The entries in the table are the number of states explored by ws-Murϕ.

Hamming Cache Score Min-Max

DFS BFS Min Max Min Max Predict

Error1 753 84915 23885 64 9218 265 35

Error2 483 88472 26 1704 2751 1784 93

Error3 1037 53808 2163 537 7293 693 751

Error4 101424 53815 223 30314 46910 109103 2118

Error5 101413 770162 268 78456 46910 109093 2180

Error6 101423 45320 223 30302 46901 109103 1787

(a) Results for the Cray X1. The min-max-predict heuristic performs better than DFS or BFS for all the
error cases. The largest improvement reduces the search states from 101423 to only 1787 states.

Hamming Cache Score Min-Max

DFS BFS Min Max Min Max Predict

Error1 4719 3742 9093 4958 932 8553 2411

Error2 421 715 25 437 54 409 124

Error3 609 1034 3794 745 955 399 584

Error4 533 418 10265 504 924 78 410

Error5 773 1062 3794 1096 955 582 584

Error6 274 465 120 199 62 339 199

(b) Results for the Stanford DASH. The min-max-predict heuristic performs better than DFS or BFS for all
the error cases. Although the improvement is not as drastic as the results for the Cray X1 protocol.

Error5 MD(Shared)←Read

The MD receives a Read request from the L2 cache,
but never adds the cache to its sharing vector so the
MD is not correctly tracking caches with a shared
copy.
Invariant violated: Deadlock

Error6 MD(PendDrop)←Drop

The MD has detected that an L2 cache has re-
requested a shared cache line and thus an L2 evic-
tion notice must be in-flight. However, the MD erro-
neously does not toggle the bit in the sharing vector
when it receives the Drop message.
Invariant violated: Data Coherence

4.4 Stanford DASH embedded errors

DASH has three types of requesters: the local or re-
mote cluster, and home cluster, as well as two classes
of memory references to local or remote memory. Errors
were implanted by inspecting state diagrams of the proto-
col given in [12] and embedding errors that vary the fail-
ing invariant. Error1 is an error that was re-discovered
with Murϕ after it was originally uncovered after sub-
stantial amounts of simulation.

Error1 Handle read exclusive request to home
No invalidation is sent to the master copy requesting
cluster, which has already invalidated the cache.
Invariant violated: Consistency of data

Error2 Send reply message instead of NAK
Instead of a negative acknowledgement (NAK) mes-
sage, an acknowledgement (ACK) message is sent in

reply.
Invariant violated: Writeback from non-dirty remote

Error3 Handle read request to remote cluster
Instead of changing the cache block in the remote
cluster to be locally shared after sending the data
block to the requesting remote cluster, the cache
block remains locally exclusive.
Invariant violated: Writeback from non-dirty remote

Error4 Handle read exclusive request to remote cluster
Instead of changing the cache block in the remote
cluster to be not locally cached, the cache block re-
mains locally exclusive.
Invariant violated: Only a single master copy

Error5 Handle DMA read request to remote cluster
The dirty cache block changes to be locally shared
instead of staying dirty after supplying the data.
Invariant violated: Writeback for non-dirty rmt DMA

Error6 Handle invalidate request to remote cluster
After collecting all the invalidation acknowledge-
ments, the request entry in the Remote Address
Cache (RAC) should transition to the invalid state.
Instead, request entry is preserved and the state re-
mains as waiting for a read reply.
Invariant violated: Condition for existence of master

copy

5 Results

A summary of our experimental results is given in
Table 2. Interestingly, for both protocols a depth-first

8

search (DFS) outperforms breadth-first search (BFS) on
eight of the twelve error cases. As Dill, et. al. [2] point
out, a BFS is generally used because it is believed to pro-
duce shorter error traces when an invariant fails. How-
ever, this is not consistent with our experience across a
broad range of protocol errors. Errors 4-6 for the Cray
X1, see Table 2(a), are quite deeply ensconced in the
state space, having to explore in excess of 100 thousand
states before the targeted error was discovered! These
three errors had one thing in common, the error affected
only the memory directory state or sharing vector and
not the L2 cache state or messages exchanged. Even
though the error occurs very early in the search process,
it’s discovery took much longer. On several of the errors
in both protocols, the min-hamming heuristic proved to
be very fruitful. However, it did significantly worse than
DFS on several cases. Interestingly, when min-hamming

performed poorly, the max-hamming heuristic always per-
formed well, usually significantly better than DFS. Taken
by themselves, the min-hamming and max-hamming heuris-
tics do not perform consistently across the broad set of
protocol errors.

The cache-score heuristic uses the cache state and mem-
ory directory state to guide the search. By favoring
states with more outstanding requests we hope to guide
the search toward states that are more likely to have
errors. Unfortunately, this heuristic does not perform
consistently because it biases the search toward states
that are pending without allowing the rules that would
resolve the pending state to be fired until much later in
the search. The state of a cache memory will waver be-
tween quiescent, pending, quiescent, pending, quiescent,
etc. This is because new requests that cause an eviction
will move the state from quiescent to pending, and like-
wise responses from the memory controller will move the
state from pending to quiescent again.

The min-max-predict heuristic chooses either the min-

hamming or max-hamming heuristic depending on a pre-
diction from a small saturating counter. It allows the
search to move from a region of the graph to another
and switch heuristics to best suit the more local search
criteria based on the scoring function from the cache-score

heuristic. In effect, it uses the cache state information
to make a locally informed search decision in hopes to
yield an effective global search result. Figure 4 shows
a graph of the counter value and score from the initial
state to the error state. From Table 2(a) and (b) we
see that min-max-predict is consistently vastly better than
BFS and DFS. This improvement is often several orders
of magnitude better for the Cray X1 protocol! Contrary
to the findings of Yang and Dill [11], we found that min-

hamming performed better on only two of the six errors
for the DASH protocol.

For the min-max-predict heuristic we experimented with
2-bit, 3-bit and 4-bit counters in the predictor. We found
that a 3-bit counter worked best for the Cray X1 protocol
and a 4-bit counter worked best for the DASH protocol.

Figure 4: A plot of counter and score values as the search
for the Cray X1 embedded Error1 progresses from the initial
state to error discovery.

Perhaps a small-valued counter in the range [0,12], for in-
stance, would yield a nice compromise for both protocols.
We believe the min-max-predict search heuristic would be
suitable for verifying most cache coherence protocols and
could be applied to other domains.

6 Related Work

Yang and Dill [11] examined the benefit of minimum
hamming distance to improve a bread-first search in the
hope that states with very few bits differeing from the
target will require very few steps to reach the error. They
use a technique called “target enlargement” to expand
the size of the error states to all states that are 1 search
step away from the error state. They concluded that
minimum hamming distance could reduce the number of
states explored, however, its performance was very in-
consistent across different designs. Yang and Dill also
studied a “guideposts” heuristic similar in concept to
our cache-score heuristic. They use target enlargement in
combination with guideposts to further reduce the states
searched. All the heuristics were compared to a baseline
BFS. In contrast, our study shows that most of the time
DFS performed better than BFS. Yang and Dill explore
only a single error on five designs: four from the memory
controller of the Stanford FLASH multiprocessor and one
from the link-layer communication protocol used by the
Sun S3.mp multiprocessor. Yang and Dill only explore
minimum hamming distance ignoring any possible value
of maximum hamming distance.

Yuan, et. al. [14] use retrograde analysis to com-
bine symbolic verification with simulation. They found
hamming distance to be a useful heuristic to reduce the
number of simulation trials needed to reach an enlarged
set of errors called the pre-image of the error. Our ap-
proach does not require computing the enlarged target
error states.

7 Conclusion

A detailed formal verification of a highly concur-
rent cache coherence protocol, such as that used by the

9

Cray X1, yields a state space with 214 million reachable
states. We constructed a formal verifier called ws-Murϕ
which can explore approximately 300 states per second,
whereas an RTL logic simulation of the coherence pro-
tocol running in Synopsys VCS can execute about 10
states per second. We evaluated several search heuristics
with the goal of reducing the number of explored states
compared to depth-first search (DFS) and breadth-first
search (BFS). Our min-max-predict consistently performs
better than DFS or BFS. We are most concerned with
improved performance compared to DFS since this will
produce witness strings that are executed with a “best-
first” policy. Being able to cull the “best” witness strings
from a voluminous protocol state space can reduce the
error discovery time in simulation by several hours. We
suspect the min-max-predict search heuristic would be suit-
able for verifying most cache coherence protocols and
could be applied to other domains.

References
[1] Jason F. Cantin, Mikko H. Lipasti, and James E. Smith. The

complexity of verifying memory coherence. In Proceedings of
the 15th annual ACM Symposium on Parallel Algorithms and
Architectures (SPAA’03), pages 254–255. ACM, ACM Press,
June 2003.

[2] D. L. Dill, A, J. Drexler, A. J. Hu, and C. H. Yang. Protocol
verification as a hardware design aid. In International Con-
ference on Computer Design, VLSI in Computers and Pro-
cessors, pages 522–525, Los Alamitos, Ca., USA, 1992. IEEE
Computer Society Press.

[3] Dennis Abts, Steve Scott, and David J. Lilja. So many states,
so little time: Verifying memory coherence in the Cray X1. In
Proceedings o fthe 17th International Parallel and Distributed
Processing Symposium (IPDPS03), April 2003.

[4] Thomas A. Henzinger, Shaz Qadeer, Sriram K. Rajamani,
and Serdar Tasiran. An assume-guarantee rule for checking
simulation. In ACM Transactions on Programming Languages
and Systems, pages 51–64. UC Berkeley, Jan 2002.

[5] M. Abadi and Leslie Lamport. Conjoining specifications.
ACM Trans. Program. Lang. Syst., 17(3):507–535, 1995.

[6] Kenneth L. McMillan. A compositional rule for hardware
design refinement. In Proceedings of the 9th International
Conference on Computer Aided Verification, pages 24–35.
Springer-Verlag, 1997.

[7] Rajeev Alur and Thomas A. Henzinger. Reactive modules.
Form. Methods Syst. Des., 15(1):7–48, 1999.

[8] C. N. Ip and D. L. Dill. Better verification through symme-
try. In David Agnew, Luc Claesen, and Raul Camposano,
editors, Proceedings of the 11th International Conference on
Computer Hardware Description Languages and their Appli-
cations (CHDL’93), volume 32 of IFIP Transactions A: Com-
puter Science and Technology, pages 97–112, Amsterdam, The
Netherlands, 1993. North-Holland.

[9] Dennis Abts and Mike Roberts. Verifying large-scale multi-
processors using an abstract verification environment. In Pro-
ceedings of the 36th Design Automation Conference (DAC99),
pages 163–168, June 1999.

[10] R. W. Hamming. Error detecting and correcting codes. Tech-
nical Report Vol 29, Bell Laboratories Technical Journal, pp.
147-160, 1950.

[11] C. Han Yang and David L. Dill. Validation with guided search
of the state space. In Proceedings of the 35th Annual Design
Automation Conference (DAC98), June 1998.

[12] D. E. Lenoski. The directory-based cache coherence protocol
for the DASH multiprocessor. Proc of the 17th Annual Int.
Symposium on Computer Architecture, pages 148–159, June
1990.

[13] James Laudon and Daniel Lenoski. The SGI origin: A cc-
NUMA highly scalable server. In Proceedings of the 24th
Annual International Symposium on Computer Architecture
(ISCA-97), volume 25,2 of Computer Architecture News,
pages 241–251, New York, 2–4 1997. ACM Press.

[14] Jun Yuan, Jian Shen, Jacob Abraham, and Adnan Aziz.
On combining formal and informal verification. In Proceed-
ings of 1997 Conference on Computer Aided Verification
(CAV1997), pages 376–387, 1997.

10

The Design Complexity of Program Undo Support
in a General-Purpose Processor

Radu Teodorescu and Josep Torrellas
Department of Computer Science

University of Illinois at Urbana-Champaign
http://iacoma.cs.uiuc.edu

1 Introduction

Several recently-proposed architectural techniques
require speculation over long program sections. Ex-
amples of such techniques are thread-level specula-
tion [4, 6, 11, 12], speculation on collision-free syn-
chronization [7, 10], speculation on the values of in-
validated cache lines [5], speculation on conforming
to a memory consistency model [3], and even specula-
tion on the lack of software bugs [8, 13].

In these techniques, as a thread executes specula-
tively, the architecture has to buffer the memory state
that the thread is generating. Such state can potentially
be quite large. If the speculation is shown to be cor-
rect, the architecture commits the speculative state. If,
instead, the speculation is shown to be incorrect, the
speculative state is discarded and the program is rolled
back to the beginning of the speculative execution.

A common way to support these operations with
low overhead is to take a checkpoint when entering
speculative execution and buffer the speculative state
in the cache. If the speculation is shown to be cor-
rect, the state in the cache is merged with the rest of
the program state. If the speculation is shown to be
incorrect, the speculative state buffered in the cache is
invalidated and the register checkpoint is restored.

While the hardware needed for these operations has
been discussed in many papers, it has not been imple-
mented before. In fact, there is some concern that the
hardware complexity may be too high to be cost effec-
tive.

In this paper, we set out to build such architectural
support on a simple processor and prototype it using
FPGA (Field Programmable Gate Array) technology.

The prototype implements register checkpointing and
restoration, speculative state buffering in the L1 cache
for later commit or discarding, and instructions for
transitioning between speculative and non-speculative
execution modes. The result is a processor that can
cleanly roll back (or “undo”) a long section of a pro-
gram.

We estimate the design complexity of adding the
hardware support for speculative execution and roll-
back using three metrics. The first one is the hardware
overhead in terms of logic blocks and memory struc-
tures. The second one is development time, measured
as the time spent designing, implementing and testing
the hardware extensions that we add. Finally, the third
metric is the number of lines of VHDL code used to
implement these extensions.

For our prototype, we modified LEON2 [2], a syn-
thesizable VHDL implementation of a 32-bit proces-
sor compliant with the SPARC V8 architecture. We
mapped the modified processor to a Xilinx Virtex-II
FPGA chip on a dedicated development board. This
allowed us to run several applications, including a ver-
sion of Linux.

Our measurements show that the complexity of sup-
porting program rollback over long code sections is
very modest. The hardware required amounts to an
average of less than 4.5% of the logic blocks in the
simple processor analyzed. Moreover, the time spent
designing, implementing, and debugging the hardware
support is only about 20% higher than adding write
back support to a write-through cache. Finally, the
VHDL code written to implement our hardware adds
about 14.5% more code to the data cache controller,
and 7.5% to the simple pipeline.

This paper is organized as follows: Section 2 out-
lines the implementation; Section 3 estimates the com-
plexity in terms of hardware overhead, rough develop-
ment time, and lines of code; and Section 4 concludes.

2 Implementation

In order to support lightweight rollback and replay
over relatively long code sections, we need to im-
plement two main extensions to a simple processor:
(1) modify the cache to also buffer speculative data
and support rollback and (2) add support for regis-
ter checkpointing and rollback. This allows a retiring
speculative instruction to store the speculative datum
that it generates into the cache, and ensures that the
register state of the processor before speculation can
be restored in case of a rollback request. We now de-
scribe both extensions in some detail. We also show
how the transitions between non-speculative and spec-
ulative execution modes are controlled by software.

2.1 Data cache with rollback support

In order to allow the rollback of speculative instruc-
tions, we need to make sure that the data they generate
can be invalidated if necessary. To this end, we keep
the speculative data (the data generated by the system
while executing in speculative mode) in the cache, and
do not allow it to change the memory state. To avoid a
costly cache flush when transitioning between execu-
tion modes, the cache must be able to hold both spec-
ulative and non-speculative data at the same time. For
this, we add a singleSpeculative bit per cache line. If
the Speculative bit is0, the line does not contain spec-
ulative data. Otherwise, the line contains speculative
data, and the non-speculative version of the line is in
memory.

In addition to the Speculative bit, we extend the
cache controller with a Cache Walk State Machine
(CWSM) that is responsible for traversing the cache
and clearing the Speculative bit (in case of a successful
commit) or invalidating the lines with the Speculative
bit set (in case of a rollback).

The Speculative bit is stored at line granularity.
Therefore, while the processor is in speculative mode,
for every write hit we check if the line we are writing
to contains non-speculative, dirty data. If it does, we

I D L EW A L K R E S T O R E
Figure 1. Cache Walk State Machine.

write back the dirty data, update the line, and then set
the Speculative bit. From this point on, the line is spec-
ulative and will be invalidated in case of a rollback.

While in speculative mode, if a line is about to be
evicted, we first check if it is speculative. If it is, we
choose a non-speculative line in the same set for evic-
tion. If none exists, we end the speculative section.
In this initial version of our prototype, we commit the
section at this point.

The Cache Walk State Machine (CWSM) is used
to traverse the entire data cache and either commit or
invalidate the speculative data. The state machine is
activated when a commit or rollback instruction (Sec-
tion 2.3) reaches the Memory stage of the pipeline.
The pipeline is stalled and the cache controller trans-
fers control to the CWSM. The CWSM has three states
as shown in Figure 1.

In case of commit, the CWSM uses the Walk state
to traverse the cache and clear the Speculative bits, ef-
fectively merging the speculative and non-speculative
data. The traversal takes one cycle for each line in the
cache. In the case of rollback, the CWSM is called to
invalidate all the speculative lines in the cache. This
means traversing the cache and checking the Specula-
tive bit for each line. If the line contains speculative
data, the Speculative and Valid bits are cleared.

2.2 Register checkpointing and rollback

Before transitioning to speculative state, we must
ensure that the processor can be rolled back to the cur-
rent, non-speculative state. Consequently, we check-
point the register file. This is done using a Shadow
Register File (SRF), a structure identical to the main
register file. Before entering speculative execution, the
pipeline is notified that a checkpoint needs to be taken.
The pipeline stalls and control is passed to the Regis-

2

I D L EC H E C K P O I N T R O L L B A C KR E S T O R E
Figure 2. Register Checkpointing State Ma-
chine.

ter Checkpointing State Machine (RCSM). The RCSM
has four states as shown in Figure 2, and is responsible
for coordinating the checkpoint.

The RCSM is in the Idle state while the pipeline
is executing normally. A transition to the Checkpoint
state occurs before the processor moves to speculative
mode. While in this state, the valid registers in the
main register file are copied to the SRF. The register
file is implemented in SRAM and has two read ports
and one write port. This means that we can only copy
one register per cycle. Thus the checkpoint stage takes
as many cycles as there are valid registers in the regis-
ter file. In addition, we need one cycle for all the status,
control and global registers. These are not included in
the SRF and can all be copied in one cycle.

The Rollback state is activated when the pipeline
receives a rollback signal. While in this state, the con-
tents of the register file is restored from the checkpoint,
along with the status and global registers. Similarly,
this takes as many cycles as there are valid registers,
plus one.

2.3 Controlling speculative execution

There are several possible approaches to control
when to enter and exit speculative execution. One ap-
proach is to have instructions that explicitly mark the
beginning and end of speculative execution. A second
approach is to use certain hardware events to trigger
the beginning and the end of speculative execution.
Finally, it is possible to implicitly keep the proces-
sor always in speculative mode, by using a hardware-

managed “sliding window” of speculative instructions.
In this prototype, we have implemented the first ap-
proach.

2.3.1 Enabling speculative execution

The transition to speculative execution is triggered by
a LDA (Load Word from Alternate Space) instruc-
tion with a dedicated ASI (Address Space Identifier).
These are instructions introduced in the SPARC archi-
tecture to give special access to memory (for instance,
access to the tag memory of the cache). We extended
the address space of these instructions to give us soft-
ware control over the speculative execution.

The special load is allowed to reach the Memory
stage of the pipeline. The cache controller detects,
initializes and coordinates the transition to speculative
execution. This is done at this stage rather than at De-
code because, at this point, all non-speculative instruc-
tions have been committed or are about to finish the
Write Back stage. This means that, from this point
on, any data written to registers or to the data cache is
speculative and can be marked as such.

The cache controller signals the pipeline to start
register checkpointing. Interrupts are disabled to pre-
vent any OS intervention while checkpointing is in
progress. Control is transferred to the RCSM, which
is responsible for saving the processor status registers,
the global registers, and the used part of register file.

When this is finished, the pipeline sends acheck-
pointing complete signal to the cache controller. The
cache controller sets its state to speculative. Next, the
pipeline is released and execution resumes. From this
point on, any new data written to the cache is marked
as speculative.

2.3.2 Exiting speculative execution

Speculative execution can end either with a com-
mit, which merges the speculative and non-speculative
states or with a rollback in case some event that re-
quires an “undo” is encountered. Both cases are trig-
gered by a LDA instruction with a dedicated ASI. The
distinction between the two is made through the value
stored in the address register of the instruction.

An LDA from address0 causes a commit. In this
case, the pipeline allows the load to reach the Memory
stage. At that point, the cache controller takes over,

3

stalls the pipeline, and passes control to the CWSM.
The CWSM is responsible for traversing the cache and
resetting the Speculative bit. When the cache walk is
complete, the pipeline is released and execution can
continue non-speculatively.

An LDA from any other address triggers a rollback.
When the load reaches the Memory stage, the cache
controller stalls the pipeline and control goes to the
RCSM. The register file, global and status registers are
restored. The nextPC is set to the saved PC. A signal
is sent to the cache controller when rollback is done.
At the same time, the cache controller uses the CWSM
to traverse the cache, invalidating speculative lines and
resetting the speculative bits. When both the register
restore and cache invalidation are done, the execution
can resume.

3 Evaluation

3.1 Experimental infrastructure

As a platform for our experiments, we used LEON2
[2], a synthesizable VHDL implementation of a 32-bit
processor compliant with the SPARC V8 architecture.

The processor has an in-order, single-issue, five
stage pipeline (Fetch, Decode, Execute, Memory and
Write Back). Most instructions take 5 cycles to com-
plete if no stalls occur. The Decode and Execute stages
are multi-cycle and can take up to 3 cycles each.

The data cache can be configured as direct mapped
or as multi-set with associativity of up to 4, imple-
menting least-recently used (LRU) replacement pol-
icy. The set size is configurable to 1-64 KBytes and
divided into cache lines of 16-32 bytes. The proces-
sor is part of a system-on-a-chip infrastructure that in-
cludes a synthesizable SDRAM controller, PCI and
Ethernet interfaces. The system is synthesized using
Xilinx ISE v6.1.03. The target FPGA chip is a Xilinx
Virtex II XC2V3000 running on a GR-PCI-XC2V de-
velopment board [9]. The board has 8MB of FLASH
PROM and 64 MB SDRAM. Communication with the
device, loading of programs in memory, and control
of the development board are all done through the PCI
interface from a host computer.

On this hardware we run a special version of the
SnapGear Embedded Linux distribution [1]. SnapGear
Linux is a full source package, containing kernel, li-

braries and application code for rapid development of
embedded Linux systems. A cross-compilation tool-
chain for the SPARC architecture is used for the com-
pilation of the kernel and applications.

3.2 Estimating design complexity

We estimate the design complexity of adding our
hardware extensions using three metrics: the hardware
overhead in terms of logic blocks and memory struc-
tures, implementation time, and VHDL code size.

3.2.1 Hardware overhead

One approach to estimating the complexity of our de-
sign is to look at the hardware overhead imposed by
our scheme. We synthesize the processor core, includ-
ing the cache. We look at the utilization of two main
resources: Configurable Logic Blocks (CLBs) and Se-
lectRAM memory blocks.

The Virtex II CLBs are organized in an array and are
used to build the combinational and synchronous logic
components of the design. Each CLB element is tied
to a switch matrix to access the general routing matrix.
A CLB element comprises 4 similar slices. Each slice
includes two 4-input function generators, carry logic,
arithmetic logic gates, wide-function multiplexers and
two storage elements. Each 4-input function genera-
tor is programmable as a 4-input lookup table (LUT),
16 bits of distributed SelectRAM memory, or a 16-bit
variable-tap shift register element.

The SelectRAM memory blocks are 18 Kbit,
dual-port RAMs with two independently-clocked and
independently-controlled synchronous ports that ac-
cess a common storage area. Both ports are function-
ally identical. The SelectRAM block supports various
configurations, including single- and dual-port RAM
and various data/address aspect ratios. These devices
are used to implement the large memory structures in
our system (data and instruction caches, the register
file, shadow register file, etc).

We also measure the hardware overhead introduced
by implementing a write-back cache controller. The
original LEON2 processor has a write-through data
cache. Since our system needs the ability to buffer
speculative data in the cache, a write back cache is
needed. We implement it by modifying the existing

4

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

4KB 8KB 16KB 32KB 64KB

Data cache size

C
L

B
s

base write_back reg_ckpt spec_cache

Figure 3. Number of CLBs used by different
hardware structures. Each bar corresponds
to a core with a different cache size.

controller. This allows us to compare the implementa-
tion complexity of the hardware we propose with the
complexity of modifying a write-through cache into a
write-back one.

Figure 3 shows a breakdown of the number of CLBs
used by the processor core and each of the main ex-
tensions added to it. Each bar corresponds to a core
with a different data cache size. Thebase represents
the size of the original processor core with a write-
through cache; thewrite back represents the overhead
of adding the write back cache; thereg ckpt represents
the register checkpointing mechanism; and finally, the
spec cache represents the cache support for specula-
tive data.

The CLB overhead of adding program rollback sup-
port (reg ckpt plusspec cache) to a processor is small
(less than 4.5% on average) and relatively constant
across the range of cache sizes that we tested. This
overhead is computed with respect to the processor
with the write back data cache controller (base plus
write back), a configuration typical for most current
processors.

We notice that the hardware overhead introduced
by the register checkpointing support is very small
compared to the rollback support in the cache. This
is due to a simple design of the register checkpoint-
ing state machine which requires less state informa-
tion and fewer control signals. Also, the overhead of
adding the write back cache controller is larger than

0

5

10

15

20

25

30

35

40

45

50

4KB 8KB 16KB 32KB 64KB

Data cache size

2KBRAMbl ock s
base write_back reg_ckpt spec_cache

Figure 4. Number of SelectRAM blocks used
by different hardware structures. Each bar
corresponds to a core with a different cache
size.

that of adding the full support for speculative execu-
tion.

Figure 4 shows a comparison between the same
configurations, but looking at the number of Selec-
tRAM blocks utilized. We see that the amount of ex-
tra storage space necessary for our additions is small
across the five configurations that we evaluated.

3.2.2 Design, implementation and testing time

Another complexity indicator is the time spent design-
ing, implementing and debugging the hardware. We
consider the three major components of our design,
namely the speculative cache, the register checkpoint-
ing and the software control support. We compare the
time spent developing them with the time spent devel-
oping the write back cache controller.

The estimates are shown in Figure 5. We note that
out of the three extensions, the speculative cache took
the longest to develop. Overall, the time spent design-
ing, implementing, and debugging our hardware sup-
port is only about 20% higher than adding write back
support to a write-through cache.

3.2.3 Lines of VHDL code

The third measure of complexity we use is VHDL code
size. The processor is implemented in a fully synthe-

5

0

100

200

300

400

500

600

700

800

900

W B C a c h eC o n t r o l l e r S p e c u l a t i v eC a c h e R e g i s t e rC h e c k p o i n t i n g S o f t w a r eC o n t r o lTi me(man Dh ours)
D e s i g n I m p l e m e n t a t i o n T e s t i n g

Figure 5. Estimates of the design, implemen-
tation and testing time (in man hours) for in-
dividual components in our system.

sizable RTL description that provides sufficient details
to make code size a good indication of design com-
plexity.

We look at the number of lines of VHDL code
needed to implement our hardware extensions in the
two main processor components that we modified: the
data cache controller and the pipeline. The results are
shown in Figure 6. The bars show a breakdown of
the lines of code for the two components. We also in-
clude data about the write back support in the cache
controller.

We note that the code needed to implement our ex-
tensions is small. The results are consistent with the
previous two experiments. The write back cache con-
troller is the most complex to implement, accounting
for as much code as all the other extensions combined.
The VHDL code written to implement our hardware
adds about 14.5% more code to the data cache con-
troller, and 7.5% to the simple pipeline.

4 Discussion

While our conclusions have to be qualified by the
fact that we are dealing with a simple processor, our
working prototype has given us good insights into the
complexity of developing hardware support for pro-
gram rollback.

Our analysis shows that the complexity of support-
ing program rollback over long code sections is very

0

500

1000

1500

2000

2500

3000

3500

D a t a C a c h eC o n t r o l l e r P i p e l i n eLi nesofVHDL cod e S o f t w a r e c o n t r o lS p e c u l a t i v e c a c h eR e g i s t e r c h e c k p o i n t i n gW r i t e b a c k e x t e n s i o n sB a s e l i n e u n i t
Figure 6. Breakdown of the lines of VHDL
code in the data cache controller and the
pipeline.

modest. The hardware required amounts to an average
of less than 4.5% of the logic blocks in the simple pro-
cessor analyzed. Moreover, the time spent designing,
implementing, and debugging the hardware support is
only about 20% higher than adding write back sup-
port to a write-through cache. Finally, the VHDL code
written to implement our hardware adds about 14.5%
more code to the data cache controller, and 7.5% to the
pipeline.

Considering that the hardware support described
can be used in many novel speculative techniques
(Section 1), we argue that it is complexity effective.

References

[1] CyberGuard. Snapgear embedded linux distribution.
www.snapgear.org.

[2] J. Gaisler. LEON2 Processor. www.gaisler.com.
[3] C. Gniady, B. Falsafi, and T. N. Vijaykumar. Is SC +

ILP = RC? InProceedings of the 26th Annual Inter-
national Symposium on Computer Architecture, pages
162–171. IEEE Computer Society, 1999.

[4] L. Hammond, M. Willey, and K. Olukotun. Data
Speculation Support for a Chip Multiprocessor. In
Proceedings of the 8th International Conference on
Architectural Support for Programming Languages
and Operating Systems, Oct. 1998.

[5] J. Huh, J. Chang, D. Burger, and G. S. Sohi. Coher-
ence decoupling: Making use of incoherence. InPro-
ceedings of the 11th International Conference on Ar-
chitectural Support for Programming Languages and
Operating Systems, pages 97–106. ACM Press, 2004.

6

[6] V. Krishnan and J. Torrellas. A Chip-Multiprocessor
Architecture with Speculative Multithreading.IEEE
Transactions on Computers, pages 866–880, Septem-
ber 1999.

[7] J. F. Martı́nez and J. Torrellas. Speculative syn-
chronization: applying thread-level speculation to ex-
plicitly parallel applications. InProceedings of the
10th International Conference on Architectural Sup-
port for Programming Languages and Operating Sys-
tems, pages 18–29. ACM Press, 2002.

[8] J. Oplinger and M. S. Lam. Enhancing software relia-
bility with speculative threads. InProceedings of the
10th International Conference on Architectural Sup-
port for Programming Languages and Operating Sys-
tems (ASPLOS), pages 184–196, Oct. 2002.

[9] R. Pender. Pender Electonic Design. www.pender.ch.
[10] R. Rajwar and J. R. Goodman. Speculative Lock Eli-

sion: Enabling highly concurrent multithreaded exe-
cution. InProceedings of the 34th International Sym-
posium on Microarchitecture (MICRO), pages 294–
305, Austin, TX, Dec. 2001.

[11] G. Sohi, S. Breach, and T. Vijayakumar. Multiscalar
Processors. In22nd International Symposium on
Computer Architecture, pages 414–425, June 1995.

[12] J. G. Steffan and T. C. Mowry. The Potential for Us-
ing Thread-Level Data Speculation to Facilitate Auto-
matic Parallelization. InHigh Performance Computer
Architecture (HPCA), February 1998.

[13] P. Zhou, F. Qin, W. Liu, Y. Zhou, and J. Torrel-
las. iWatcher: Efficient Architecture Support for Soft-
ware Debugging. InProceedings of the 31st Annual
International Symposium on Computer Architecture
(ISCA), pages 224–237, June 2004.

7

