
Toolbox for Exploration of Energy-Efficient Event
Processors for Human-Computer Interaction

Tayyar Rzayev1, David H. Albonesi1, François Guimbretière2, Rajit Manohar3, and Jaeyeon Kihm2

1Computer Systems Laboratory
Cornell University
Ithaca, NY, USA

{tr265, dha7}@cornell.edu

2Information Science Department
Cornell University
Ithaca, NY, USA

{fvg3, jk2443}@cornell.edu

3Computer Systems Laboratory,
Yale University

New Haven, CT, USA
{rajit.manohar}@yale.edu

Abstract—The advent of high speed input sensor and
display technologies and the drive for faster interactive
response suggests that human-computer interaction
(HCI) task processing deadlines of a few milliseconds
or less may be required in future handheld devices.
At the same time, users will expect the same, if not
better, battery life than today’s devices under these
more stringent response requirements.

In this paper, we present a toolbox for exploring
the design space of HCI event processors. We first
describe the simulation platform for interactive envi-
ronments that runs mobile user interface code with
inputs recorded from human users. We validate it
against a hardware platform from prior work. Given
system-level constraints on latency, we demonstrate
how this toolbox can be used to design a custom
heterogeneous event processor that maximizes battery
life. We show that our toolbox can pick design points
that are 1.5-2.5x more energy-efficient than general-
purpose big.LITTLE architectures.

I. Introduction
Computer systems have evolved from batch systems, to

personal computers, to the present day proliferation of
handheld devices such as cell phones, tablets, and eRead-
ers. Mobile devices have evolved into high performance
devices used for a wide range of everyday activities with
compute components were once scaled-down versions of
personal computers.

For these handheld systems, the “user experience,”
involving particular human-computer interaction (HCI)
tasks, has been gaining increasing attention from design-
ers, due to both the nature of the tasks being performed
on these devices, (e.g., finger drawing), and increasing user
expectations for rapid responsiveness. For these types of
tasks, the time between the action (such as a key press
or a screen touch) and the response (the appearance of
the key or a marking) is expected to meet a specified
(soft) real time deadline, the length of which depends on
the particular task and the price point of the system.
Response time has traditionally been dominated by the
display and sensor interfaces, whose combined latency in
the tens of milliseconds overshadowed the response time
contribution of the HCI processing hardware. However,

HCI task processing speeds are becoming increasingly
important. The emergence of display technologies such as
OLED [1] and bi-stable displays [2] and developing sensor
interfaces [3] have dramatically lowered input and output
device response time and power compared to previous
generations, such that combined response times of less
than 1ms are achievable today [4].

Moreover, studies that reported 100ms as the satisfac-
tory response time for human-computer interaction are
several decades old [5]. More recent studies [3, 6, 7]
with high frame rate cameras and much faster sensors
and processing technologies have shown that users can
perceive orders of magnitude faster response times. These
studies separate touch interactions into two types: tapping
inputs and direct manipulation inputs. Tapping inputs are
discrete events, where the user merely provides a one-
time stimulus to the device and expects feedback. Direct
manipulation, on the other hand, is an action (such as
finger drawing) where the user continuously provides input
and expects continuous real-time response. Response times
of under 20ms may be satisfactory for tapping inputs,
with some of that latency dedicated to waiting for the
full contact and mapping the input to a point [8]. For
direct manipulation inputs, users may perceive differences
in response times over a millisecond in duration [3, 6, 7].
In this paper, we study both types of touch interactions,
specifically common HCI tasks such as finger typing,
keyboard typing, annotating, and reading. These tasks are
used for activities such as text messaging (finger typing),
drawing (annotating), email and Facebook (reading, page
rendering, typing), and productivity apps (annotation,
reading, page rendering, typing).

At the same time, users expect long battery life while
performing these tasks with highly stringent latency re-
quirements. During periods of relatively “quiet” activity,
battery life may be expected to seemingly last forever,
yet the system must provide high responsiveness during
intensive activities. For these reasons, HCI task processing
times of a few milliseconds or less will soon become the
norm for handheld devices, yet with the expectation of the
same, if not better, battery life as current, less responsive,



systems. This accentuates the need for the development of
fast and energy-efficient HCI processing hardware.

However, not all interactive tasks require an aggressive
processor design. Tasks such as typing can be adequately
handled by a simpler core [9]. Handling typing tasks on a
high power core necessary for intensive tasks such as page
rendering wastes considerable energy, thereby degrading
battery life.

While heterogeneous multicore architectures have been
extensively studied for consumer, scientific, and commer-
cial workloads, relatively little attention has been paid to
interactive HCI tasks with real time constraints. Some
prior work [10] has demonstrated that the use of a
big.LITTLE architecture comprising ARM A9 and M3
cores can improve the energy efficiency of HCI tasks, but
this study was limited to the two core types implemented
in the hardware. Moreover, it is currently unclear whether
big.LITTLE architectures developed for general-purpose
computing are, in fact, energy efficient when processing
HCI tasks. The reason is that the architecture community
has to date lacked a flexible simulation infrastructure
that permits microarchitecture design space exploration
for HCI-specific hardware under real time constraints and
using real user input traces.

In this paper, we present what we believe to be the first
simulation-based platform for interactive environments
that runs user interface code ported from a second gener-
ation experimental ARM-based tablet [10]. The simulator
is based on the GEM5 ARM simulator [11], McPAT power
models [12], and idle time power management models
based on [13]. Our platform takes input traces from real
users that are captured on the handheld hardware, pro-
cesses them using the interactive application, and mea-
sures the response latency and energy. Thus, the simulator
permits the exploration of HCI-dedicated hardware across
user characteristics and real-time requirements.

The contributions of this paper include the following:
• We introduce a toolbox that models real-time human

interactions with a mobile device, as well as archi-
tectural details such as processing latency, idle-time
power management and a simple OS model.

• We validate the toolbox against a hardware platform
from prior work.

• We present a design methodology for selecting a cus-
tom architecture to maximize energy efficiency based
on UI latency constraints from the system design.

• We show experimental results for event processor
designs that are 1.5-2.5x more energy efficient than
general purpose big.LITTLE architectures.

The rest of this paper is organized as follows. In the
next section, we discuss related work. Then in Section III
we describe the simulation methodology that we have
developed for studying architectures for interactive appli-
cations, and validate its performance and power results
versus real hardware. We then examine energy-efficient
event processor designs in Section IV and quantify their

Trace Capture

Human User
Mobile Device

HW
Human UserHuman UserHuman UserHuman User

Human
Users

Benchmark
Generation

Mobile Device
SW

Post-Simulation
Analysis

Validation

Mobile Device
SW Benchmark

User Traces

HW Power Traces

Power/Energy
Modeling

Performance
Modeling

Fig. 1: Overall infrastructure organization.

energy savings compared to general-purpose approaches.
We conclude in Section V.

II. Related Work

Recent work has observed that the development of
better tools to study human computer interaction leads
to new observations regarding the limits of human per-
ception. Jota et al. [3] investigated the impact of latency
on the performance of direct physical manipulation tasks.
They studied user behavior when faced with systems of
various latency and concluded that humans can perceive
latency of tapping inputs below 25ms. They also state that
others have concluded that humans can recognize touch
latencies as low as 2.38ms [6]. Researchers from Microsoft
further show that for direct manipulation inputs delays of
over 1ms may be perceivable to users and degrade their
experience [7]. This is very critical to our work because
we consider tasks of both kinds: tapping inputs and direct
manipulation inputs. For example, our inking task is direct
manipulation and the keyboard tasks are tapping inputs.
The reading task falls into both categories. When the
user is just reading, it can be considered a tapping input,
however, when the user is scrolling through book pages, it
becomes a direct manipulation task.

Advanced input sensors [3] and displays have been
developed with significantly lower latencies and power con-
sumption. Commercial OLED displays [1] have response
times in the range of µs. There has been a body of
work [14, 15] developing power saving techniques utilizing
OLED technology. For instance, Zhao et al. [14] study
OLED in the context of mobile video streaming. They
design dynamic techniques to limit the OLED portion of
system power and energy. In other work, Anand et al. [15]
investigate opportunities to apply display power saving
techniques developed for LCD technology to OLED.



Task Sub-tasks Description
Physical Keyboard Physical Keypress, Typing on the physical keyboard.

Typing (PK) Blank Line Load Blank line is loaded at bottom of page.
Virtual Keyboard Virtual Keypress, Shift/CAPS, Typing on the virtual keyboard.

Typing (VK) Blank Paragraph Load Keyboard is updated on Shift/CAPS press.
Blank paragraph is loaded at bottom of page.

Inking (INK) Inking, Blank Page Load Annotating with pen.
Blank page is loaded when reach bottom of page.

Reading (RD) Book Page Load, New book page is loaded when user presses Next,
PDF Rendering and another PDF page is rendered into the image cache.

TABLE I: Major user interface tasks and their sub-tasks.

Improvements in user interface technology have influ-
enced the design of recent experimental mobile platforms.
Guimbretiere et al. [9] present a prototype of an asym-
metric dual core platform for interactive applications that
can leverage the large core for high intensity tasks, while
utilizing the smaller core to save energy during “quieter”
periods in the interaction with the user. More recently,
Kihm et al. [10] present a prototype system to show the
energy savings using an OMAP4460, with the big.LITTLE
A9 and the M3 cores splitting HCI tasks. They demon-
strate energy efficiency improvements for HCI tasks while
remaining responsive to the needs of the user. These works
explore the benefits of using heterogeneous multicore
architectures for running an essentially single-threaded
application for the purpose of energy efficiency, but are
limited to the core types in the hardware platform. In
particular, while they demonstrate that the big.LITTLE
approach is an improvement over the use of the A9 or the
M3 alone, the limitations of their platform prevent them
from exploring additional multicore architectures that may
be more energy efficient, and quantifying that difference.

Another work that models mobile systems is GemDroid
[16], which uses Android applications and focuses on ana-
lyzing the memory subsystem of an SoC, including improv-
ing core performance by modifying the memory controller
design. Our work is fundamentally different as we focus
on the HCI component of mobile devices by running HCI
system software and interactive user workloads complete
with user input traces, and we evaluate energy-efficient
architectures specific to these workloads.

III. Modeling Infrastructure
In this section, we present what we believe to be the

first simulation infrastructure for evaluating interactive
applications, including real user traces. Our methodology,
which is shown in Figure 1, comprises the following com-
ponents:

• Interactive user trace capture performed with test
subjects using custom-developed interactive eBook
reader hardware and software.

• Benchmark generation in which the user traces are
aggregated into a set of data traces representative of

the user activity on the platform.
• Performance modeling on a GEM5-based simulator

that runs the mobile user interface software.
• Power modeling, a post-processing step using McPAT

to obtain static and dynamic power, as well as to
model processor sleep states.

Each of these steps is now described in detail.

A. Interactive User Trace Capture
User interface traces are gathered on a second gener-

ation experimental tablet [10]. The setup uses a Pand-
aboard, which contains a Texas Instruments OMAP4460
SoC, connected to a Wacom digitizer and a mini projec-
tor projecting directly in the Wacom sensor to create a
static, table top device. The Wacom module with a serial
interface simplifies the interface and avoids the additional
power of the USB stack that runs on the ARM Cortex-A9
core. This simplification is essential to isolate user interface
power from other effects. The platform runs custom soft-
ware implementing typical handheld functionality such as
page turning, scrolling with inertia, inking, and text entry
using either a virtual keyboard or a physical keyboard that
can be connected to the system through a serial interface.

The simulator takes as input the reading, inking, and
text extry input traces previously captured on the plat-
form by Kihm et al. [10] and summarized in Table I. Each
of the nine user participants in the study, all of whom had
prior experience using mobile devices, read four text pages
and typed and wrote short texts at their own pace. Typ-
ing tasks were performed with both physical and virtual
keyboards. Each of the captured tasks comprises multiple
sub-tasks. For instance, the physical keyboard typing task
consists of keypress processing plus the addition of a blank
line whenever the bottom of the screen is reached. (The
virtual keyboard task loads a blank paragraph.)

More details on the platform and the input trace gath-
ering methodology can be found in [10].

B. Benchmark Generation
From the user traces, we derive the average injection

periods (average time between back-to-back packets, or
the inverse of the injection rate) for the different sub-tasks



Sub-task Injection Period [ms]
Phys Key Press 248.0

Blank Line Load 248.0
Virt Key Press 70.2

Shift/CAPS 70.2
Blank Paragraph Load 70.2

Inking 14.4
Blank Page Load 719.0
Book Page Load 35,365.8

TABLE II: Sub-task average injection periods.

Main Thread

User Thread

Fork

System Setup

Evaluation Thread

Process packet

Process packet

Process packet

Process packet

Process packet

Return
Cleanup Done

Simulation Data
Dump

Simulation Exit

Fig. 2: Operation of the simulator, including main, evalu-
ation, and user threads.

(Table II). The periods range from a low of 14.4ms (highest
rate) for inking to over 35,000ms for Book Page Load,
which only occurs when the user has finished reading a
page. Since the minimum time between consecutive events
in all the traces is much longer than the time to enter
a low power idle mode, we adopt an average injection
rate model, where the energy of each event includes the
energy to process the event plus the average idle time until
the next event. We then combine these per-event energies
across sub-tasks to determine the energy cost of typing,
inking, and reading.

C. Performance Modeling
The user interface application was ported to the GEM5

ARM-based performance model with integrated 45nm Mc-
PAT power models. The simulator uses Syscall Emulation
mode, which necessitates static compilation of the bina-
ries. This removes any dependence on target operating

Frequency (MHz) 1200 1000 800 600 300
Voltage (V) 1.4 1.3 1.2 1.1 1.025

TABLE III: Core frequency and voltage settings.

system shared library handling and resulting variability.
Since the out-of-order processor models (described below)
include SIMD units, we compiled the code for these models
with the following flags to turn on auto-vectorization: –
vectorize –cpu=Cortex-A9 -O3 -0time.

The user trace hardware captures the precise timing
of the occurrence of sub-task events for injection into
the simulator. As shown in Figure 2, after system setup,
the simulator spawns an evaluation thread that runs the
performance simulator, and a user thread that runs on a
separate core for the sole purpose of creating a packet in-
jection stream of inputs (e.g., characters from a keyboard)
that matches the relative timing of the real input trace
in simulation. (A post-processing step removes the power
generated by all but the evaluation thread.) The simulator
then measures the real time response time between a
packet injection and the required screen event response by
the user interface software running on a particular hard-
ware architecture. This capability permits the exploration
of real time response versus energy tradeoffs of different
hardware designs. So long as the real time delays do not
exceed the user perception time [3, 6], as is the case in
our system, these benchmarks can be run open loop, since
they will not affect user behavior.

D. Power Modeling
The maximum and minimum processor core voltage and

frequency points are taken from the Cortex-A9 core in the
OMAP4430, which is implemented in 45nm technology,
the same as the McPAT power models. A number of
intermediate points, derived by geometric scaling from
the end points, are also modeled as shown in Table III.
McPAT pipeline and cache models are generated for the
highest frequency and voltage for each core model. GEM5
performance results of each sub-task are then generated at
each frequency point and core model and post-processed
by the McPAT model. For the lower frequency and voltage
points, the dynamic power values generated by McPAT
are scaled by V 2f and the static values by V [17]. This
approach is adopted as an alternative to having McPAT
generate a different pipeline and cache model for each
frequency and voltage point, which could significantly
skew the results.

In conjunction with the McPAT power models, we
also model transitions to and from power management
sleep modes, which may be entered between input packet
processing. In these modes, the application is in wait-for-
interrupt (WFI) mode and aggressively attempts to save
energy. The characteristics of the sleep mode are defined
by several simulator input parameters:



0 20 40 60 80 100 120 140 160 1800.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

Cu
rr

en
t (

A)
Simulation

0 20 40 60 80 100 120 140 160 180
Time (s)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

Cu
rr

en
t (

A)

Hardware

Fig. 3: Comparison of simulation (top) and hardware
measurement (bottom) for reading task.

• Power gating wake-up/sleep delay
• Power gating slowdown due to the footer transistor
• Dynamic voltage scaling delay
• Clock gating delay
• Static power reduction
We explore three sleep state models in our experiments:
• Clock Gating / Dynamic Voltage and Frequency

Scaling (CGDVFS), where the clock is gated and
the voltage and frequency scaled to their minimum
settings.

• Ideal Power Gating (IdealPG), an idealized, zero-
overhead, power gating model.

• Realistic Power Gating (RealPG), which models the
performance degradation from the footer transistor,
and assumes non-ideal static power reduction in the
idle state.

The framework is easily extendable to include other
power management schemes.

E. Post-simulation Analysis
This is the final phase, which combines the performance

and power modeling results into the final timing model
constructed using the power management assumptions for
idle states. Here, the user can turn various knobs to explore
the design space, set deadlines for tasks, and compare
different architectures.

F. Simulator Validation
The infrastructure leverages established computer archi-

tecture simulation tools–GEM5 and McPAT–for detailed
system modeling. While these tools have been extensively
validated against real hardware [11, 12, 18], we also
validated our model against actual hardware using data
available from Kihm et al. [10]. In that user study, the
authors measured the current consumption of the Cortex-
A9, Cortex-M3 cluster, and memory system power do-
mains. The Cortex-M3 cluster power domain includes I/O

40 45 50 55 60 65 70 75 800.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14

Cu
rr

en
t (

A)

Simulation

40 45 50 55 60 65 70 75 80
Time (s)

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14

Cu
rr

en
t (

A)

Hardware

Fig. 4: Comparison of simulation (top) and hardware
measurement (bottom) for inking task.

devices and various busses, making it difficult to validate
an M3-type processor core. The Cortex-A9 power domain
is better suited for this comparison, since it doesn’t include
other SoC subsystems. Thus, we compare the Cortex-A9
measurements from [10] with ARM-based GEM5 and Mc-
PAT simulation results using the OOO2 model (Table VI).

Due to limitations of the hardware measurements [10],
we only had access to instantaneous current data from
the user studies and not the power data. The reason
is that all measurements were conducted from the pads
on the Pandaboard printed circuit board (PCB), and
voltage could not be measured since it was controlled
on-chip. Another limitation was the coarse grain level of
the measurements (millisecond scale). Thus, the keyboard
and virtual keyboard processing activity could not be
accurately captured due to their extremely low activity
factor and very short packet processing time.

However, the reading and inking tasks lended them-
selves well to measurement and validation. While the
reading task has low activity, processing a reading trace
packet takes significant processing time, resulting in a
relatively wide and high pulse, which can be captured with
high accuracy. While the inking task packets are processed
quickly, they are plentiful so they can be grouped into
a single pulse of activity that is easily observable on the
measurement scale.

To compare with the hardware current readings, we
divide the simulation power values by voltage to obtain
instantaneous current. However, there are two differences
between the hardware and simulator that require cali-
bration of our model. First, we do not model in-rush
currents from DVFS or power gating. Second, we do not
model operating system (OS) effects such as extra work,
scheduling, OS quantum effects, and delays in waking up
from interrupt. To bridge this modeling gap, we assume
a simple OS model that wakes up the processor upon
interruption to process a task and then puts the processor



Metric: Idle(s) Total(s) Error Charge[A s] Error
Sim 1 164.7 164.7 0.1% 2.2 -6.0%
HW 1 164.5 2.3
Sim 2 221.5 221.6 0.1% 3.0 11.5%
HW 2 221.3 2.6
Sim 3 242.5 242.6 0.0% 3.2 1.0%
HW 3 242.4 3.2
Sim 4 191.5 191.6 0.1% 2.6 1.6%
HW 4 191.4 2.5

TABLE IV: Percentage error in percent idle time and
drawn battery charge for simulation versus hardware mea-
surements [10] for four user traces of the reading task.

Metric: Idle(s) Total(s) Error Charge[As] Error
Sim 1 122.9 129.2 2.4% 2.3 -14.8%
HW 1 120.0 2.7
Sim 2 101.2 104.7 -0.2% 1.8 0.7%
HW 2 101.4 1.7
Sim 3 162.5 170.4 -1.3% 3.0 5.8%
HW 3 164.8 2.9
Sim 4 116.4 123.5 2.4% 2.7 -10.8%
HW 4 113.6 2.4

TABLE V: Percentage error in percent idle time and
drawn battery charge for simulation versus hardware mea-
surements [10] for four user traces of the inking task.

to sleep a specified amount of time after activity ends. In
order to pick the right value for this sleep parameter, we
trained the model on a separate training data set, which
we did not use for testing. We also trained the static and
dynamic power levels since we only aimed to model relative
power trends. For this we also picked training sets that we
did not use in testing.

In order to make a comparison between the hardware
measurements and the simulation, we quantized the raw
hardware data using its own statistics. Due to the nature
of the measurements (connecting probes directly to the
PCB, and the inability to separate spurious current effects
due to OS activity and switching states), the raw data
contained significant noise. For tasks such as reading where
the activity factor is low (<1%), we pick the mean value
to represent the low quantization level as this will mostly
represent the mean value of the idle phase, and the active
phase will have minimal effect. For tasks such as inking
with higher activity factors (5-10%), we chose a separate
trace that had no activity and used its mean value for
the low quantization level. For the high quantization level,
we picked the portion of a trace where the user actively
performs the task and used the mean value. We also
computed the standard deviation of the noise in order
to pick a threshold about which to quantize. We picked
the threshold to be at low quantization level plus six
sigma, since the traces that we analyzed are long (100-
300 seconds) with millisecond resolution and we desired a
low false positive expectation.

Figures 3 and 4 show the resulting comparisons of

the simulation and hardware data after post-processing
and training. For the reading task (Figure 3), the spikes
represent the user flipping to the next page in the reading
app. The hardware activity is closely matched by the
simulation data. The amplitudes are mismatched because
we trained our simulation on active current for an inking
trace, while the reading trace active current is significantly
higher (this contributes to some of the error shown later
in Table IV). The inking task has much more activity than
the reading task. Therefore, we visually compare the idle
periods, which are shown to be relatively well matched in
Figure 4.

In addition to visual comparison, we performed a quan-
titative analysis of the reading and inking tasks. In our
analysis, we used several user traces and compared the
simulation results to the data measured on the hardware
platform. We used traces from four different users for each
task and evaluated two metrics: the percentage of idle
time (an important metric given that many HCI tasks are
dominated by idle time) and the drawn battery charge.
The results are shown in Tables IV and V. For both tasks,
the idle time percentage is extremely well matched, with
virtually no error for reading and less than 2.5% error
for inking. Thus, for the reading and inking tasks, the
combination of the previously shown close visual match
and the low error in idle time percentage indicate good
simulation accuracy with respect to the processor current
profile, which is a proxy for the power profile.

In addition to the power profile, another important
metric is the drawn battery energy, for which we use as
a proxy the drawn battery charge, which we can obtain
by integrating the current profile over time. The results
are shown in the right columns of Tables IV and V. The
result here is the accumulated error from mismatching low
and high power levels as well as mismatching active and
idle portions. While this results in a higher error than for
percent idle time, the correlation between the hardware
and simulator is still good, with the maximum error less
than 15%.

IV. Design Exploration of Energy-Efficient
HCI Event Processors

Unlike prior work [10], our modeling methodology per-
mits the evaluation of general-purpose architectures for
HCI processing, and the development of more energy-
efficient designs for current interface technologies and
those expected in the future. In this section, we apply our
modeling infrastructure to the design of such specialized
processors and their per-core power management strate-
gies. We quantitatively compare these designs against
general-purpose single core and big.LITTLE implementa-
tions and show significant gains in energy efficiency.

A. Design Parameters and Alternatives
We define at a range of core performance/power points

that comprise both in-order and out-of-order designs with



Parameter IO1-1K IO1 OOO1 OOO2 OOO3 OOO8
Fetch/Dispatch/Issue width 1/1/1 1/1/1 1/1/1 2/2/2 3/3/3 3/6/8

Out-of-order? No No Yes Yes Yes Yes
Issue Queue entries - - 8 16 24 32

ROB entries - - 10 20 30 40
Int/FP ALUs 1/1 1/1 2/2 2/2 2/2 2/2
Int Mpy/Div 1 1 1 1 1 1

L1 I/D Caches (KB) 1/1 32/32 32/32 32/32 32/32 32/32
I/D MSHRs 1/1 1/1 2/2 2/4 2/6 2/6

TABLE VI: Summary of core model characteristics.

the parameters shown in Table VI. The models range
from a simple scalar in-order model (IO1 ) to the most
complex out-of-order superscalar ARM model provided
with GEM5 (OOO8 ). For all models, we use 32KB two-
way set associative instruction and data caches, except
for IO1-1K, which has a smaller 1KB caches that may
be suitable for the small instruction and data footprints
of some sub-tasks. None of the models include an L2
cache. We examined the performance benefit of L2 caches
of sizes up to 32MB and found they had little impact
on response time. We use the GEM5 LPDDR2-S4 main
memory system model.

For those HCI tasks that include long idle periods, idle
time power management is critically important for energy
efficiency. Therefore, we have built into our methodol-
ogy three idle time management policies. The two main
policies are Clock Gating with Dynamic Voltage and Fre-
quency Scaling (CGDVFS), and Power Gating (PG). For
the former, we stop the clocks and then transition to the
lowest voltage level. For the latter, we explore two models:
Ideal PG and Real PG. The Ideal model assumes perfect
core and cache power gating (and thus no idle power) and
no performance penalty for power gating. This shows the
absolute limit of what power gating could theoretically
provide. The Real PG model includes leakage power while
power gated and the performance degradation resulting
from the footer transistor. We assume 80% static power
reduction during idle periods and 20% performance degra-
dation during active times, based on the power gating
studies and evaluation of various techniques in [13].

We assume transition times of 1 µs and 300 µs for the
CGDVFS and PG models, respectively. Transition times
are incurred at the arrival of a new event packet and at the
conclusion of its processing. The larger transition time for
power gating accounts for the loss of state and the need
to control in-rush currents.

B. Analysis of HCI Sub-Task Latency and Energy
In order to propose practical designs, we first gain

an understanding of the latency and energy of different
HCI sub-tasks for the different core models, for both
clock gating/DVFS and power gating. We then use this
information to determine the number of cores and their

types to incorporate into a multicore design. While our
analysis is specific to our sub-tasks and particular hard-
ware assumptions, the methodology is generally applicable
to a range of sub-task types and hardware designs.

1) Sub-Task Characterization Under Idle Time Clock
Gating/DVFS: Figure 5 shows the latency versus energy
for processing events of each sub-task for the different core
types, assuming idle time clock gating/DVFS. Each curve
includes the five frequency and voltage settings; the top
point is the lowest setting. The energy results account
for both the processing of the event and the energy of
the average idle time between back-to-back events. Thus,
infrequent events will have a higher idle time energy
component1.

For the simpler and low event rate sub-tasks such as
the external keyboard, the per-event energy is relatively
independent of clock frequency. This is due to the fact that
the idle time energy predominates due to the low event
rate and low processing time. Thus, the greater dynamic
power of the higher frequency cores has little impact on
per-event energy.

The lower per-event energy of the virtual keyboard
compared to the physical keyboard arises from its higher
injection rate due to repeated pressure events. This leads
to more events and thus on average less idle time between
events.

For the PDF rendering sub-task, energy is dominated
by the active component. As frequency increases so does
dynamic energy but static energy reduces due to the
shorter processing time. Thus, the lowest energy point lies
at an intermediate frequency that best balances the two.

As expected, the keypress and inking sub-tasks have
very low response latencies, at most tens of µs even
with the simplest core. The remaining sub-tasks require
manipulating a larger portion of the screen and thus have
orders of magnitude higher latencies, for even the most
complex cores. The PDF rendering sub-task has some
design points with latencies in the hundreds of ms range,
the highest of all sub-tasks.

1The PDF rendering sub-task ignores idle time since this is in-
cluded in page loading, which together with PDF rendering encom-
passes the reading task.



20 25 30 35 40 45 50 55 60 65
Total Energy With CG and DVFS (mJ)

5

10

15

20

25

30

L
at

en
cy

 (
U

s)

Key Press With CG and DVFS

OOO8

OOO3

OOO2

OOO1

IO1

IO1-1K

20 25 30 35 40 45 50 55 60 65
Total Energy With CG and DVFS (mJ)

0

500

1000

1500

2000

2500

3000

3500

L
at

en
cy

 (
U

s)

Blank Line Load With CG and DVFS

OOO8

OOO3

OOO2

OOO1

IO1

IO1-1K

4 6 8 10 12 14 16
Total Energy With CG and DVFS (mJ)

1

2

3

4

5

6

7

8

9

L
at

en
cy

 (
U

s)

Virtual Key Press With CG and DVFS

OOO8

OOO3

OOO2

OOO1

IO1

IO1-1K

4 6 8 10 12 14 16
Total Energy With CG and DVFS (mJ)

200

400

600

800

1000

1200

1400

1600

1800

L
at

en
cy

 (
U

s)

Shift/CAPS With CG and DVFS

OOO8

OOO3

OOO2

OOO1

IO1

IO1-1K

4 6 8 10 12 14 16 18
Total Energy With CG and DVFS (mJ)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000
L
at

en
cy

 (
U

s)
Blank Paragraph Load With CG and DVFS

OOO8

OOO3

OOO2

OOO1

IO1

IO1-1K

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Total Energy With CG and DVFS (mJ)

0

2

4

6

8

10

12

14

16

18

L
at

en
cy

 (
U

s)

Inking With CG and DVFS

OOO8

OOO3

OOO2

OOO1

IO1

IO1-1K

60 80 100 120 140 160 180 200
Total Energy With CG and DVFS (mJ)

0

5000

10000

15000

20000

25000

L
at

en
cy

 (
U

s)

Blank Page Load With CG and DVFS

OOO8

OOO3

OOO2

OOO1

IO1

IO1-1K

3000 4000 5000 6000 7000 8000 9000
Total Energy With CG and DVFS (mJ)

0

5000

10000

15000

20000

25000

L
at

en
cy

 (
U

s)

Book Page Load With CG and DVFS

OOO8

OOO3

OOO2

OOO1

IO1

IO1-1K

30 40 50 60 70 80 90
Total Energy With CG and DVFS (mJ)

0

100000

200000

300000

400000

500000

L
at

en
cy

 (
U

s)

PDF Rendering With CG and DVFS

OOO8

OOO3

OOO2

OOO1

IO1

IO1-1K

Fig. 5: Sub-task per-event latency and energy for clock gating/DVFS.

The large disparity between the simpler keypress and
inking tasks and the display rendering tasks motivates the
need for a customized heterogeneous multicore design. As
shown later, the page load tasks require an OOO8 core
for the stringent real time deadlines, while the simplest
core suffices for the simpler tasks. The use of the OOO8
core for these simple tasks would more than double or
triple the per-event energy over the simpler core. Cou-
pling a very simple core with the complex one achieves
large energy savings over either a single “do everything”
core or a general-purpose big.LITTLE design, as we will
demonstrate in Section IV-C.

2) Sub-Task Characterization Under Idle Time Power
Gating: We also explore the impact on power and latency
of realistic power gating (Figure 6). As expected, the per-

event energy is dramatically reduced compared to idle time
clock gating/DVFS. The effect is more pronounced for
simple sub-tasks with long idle times. However, because
the idle time power is eliminated, the lowest energy con-
figuration is no longer the one with the lowest frequency
(as with DVFS) but rather the one with the best balance
between dynamic and static energy. Moreover, since per-
event energy is dominated by active time energy, designs
that process extra packets can consume an order of mag-
nitude more energy. For example, using our infrastructure,
we found this to be the case in platforms with proximity
sensing (hovering), a detailed analysis of which we leave
for future work.

The response latencies also increase with power gating
due to the higher transition times. The effect is more pro-



4 5 6 7 8 9 10 11 12 13
Total Energy With Real PG (mJ)

300

305

310

315

320

325

330

335

L
at

en
cy

 (
U

s)

Key Press With Real PG

OOO8

OOO3

OOO2

OOO1

IO1

IO1-1K

4 6 8 10 12 14
Total Energy With Real PG (mJ)

500

1000

1500

2000

2500

3000

3500

4000

4500

L
at

en
cy

 (
U

s)

Blank Line Load With Real PG

OOO8

OOO3

OOO2

OOO1

IO1

IO1-1K

1.0 1.5 2.0 2.5 3.0 3.5
Total Energy With Real PG (mJ)

300

302

304

306

308

310

L
at

en
cy

 (
U

s)

Virtual Key Press With Real PG

OOO8

OOO3

OOO2

OOO1

IO1

IO1-1K

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Total Energy With Real PG (mJ)

500

1000

1500

2000

2500

L
at

en
cy

 (
U

s)

Shift/CAPS With Real PG

OOO8

OOO3

OOO2

OOO1

IO1

IO1-1K

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
Total Energy With Real PG (mJ)

2000

4000

6000

8000

10000

L
at

en
cy

 (
U

s)
Blank Paragraph Load With Real PG

OOO8

OOO3

OOO2

OOO1

IO1

IO1-1K

0.2 0.3 0.4 0.5 0.6 0.7 0.8
Total Energy With Real PG (mJ)

300

305

310

315

320

L
at

en
cy

 (
U

s)

Inking With Real PG

OOO8

OOO3

OOO2

OOO1

IO1

IO1-1K

10 15 20 25 30 35 40 45
Total Energy With Real PG (mJ)

0

5000

10000

15000

20000

25000

30000

L
at

en
cy

 (
U

s)

Blank Page Load With Real PG

OOO8

OOO3

OOO2

OOO1

IO1

IO1-1K

600 800 1000 1200 1400 1600 1800
Total Energy With Real PG (mJ)

0

5000

10000

15000

20000

25000

30000

L
at

en
cy

 (
U

s)

Book Page Load With Real PG

OOO8

OOO3

OOO2

OOO1

IO1

IO1-1K

30 40 50 60 70 80 90
Total Energy With Real PG (mJ)

0

100000

200000

300000

400000

500000

600000

L
at

en
cy

 (
U

s)

PDF Rendering With Real PG

OOO8

OOO3

OOO2

OOO1

IO1

IO1-1K

Fig. 6: Sub-task per-event latency and energy for realistic power gating.

nounced for the keypress and inking sub-tasks, although
their latencies remain far below that of the other sub-tasks.

C. Energy-Efficient Customized Designs
In this section, we explore the event processor design

space with implications on system design. We view the
interactive system design problem as a constrained design
problem, where we have Ltotal ms of budgeted latency
and we need to pick a sensor, a display, and an event
processor, where Ldisp+Lsense+LeventProc<Ltotal with an
objective to maximize battery life within reasonable cost
constraints. Our proposed toolbox explores the design
space for LeventP roc with all the consequences on energy-
efficiency/battery life, as we showed in the previous sec-
tion. We analyzed CGDVFS and realistic power gating
with three latency deadlines: 7ms, 4ms, and 2ms to explore

progressively more aggressive architectures, each of which
may be applicable for a different combination of input and
display technologies.

For both clock gating/DVFS and power gating, the sim-
plest IO1-1K core suffices for all sub-tasks for the slowest
7ms latency deadline, although this requires using almost
the entire range of frequencies. As the deadline becomes
more stringent, the more complex cores are required. The
mid-range OOO2 and OOO3 cores are required to meet
the deadline at 4ms, and the most complex OOO8 core
at full frequency is needed to meet the 2ms deadline for
several sub-tasks. The best single and dual core configu-
rations also require the more complex core. However, the
IO1-1K core at the lowest frequency always suffices for the
keypress and inking sub-tasks.



PK VK INK RD
0

1000

2000

3000

4000

5000

E
n
er

gy
 (

J
)

CGDVFS

Single Core

big.LITTLE-HP

big.LITTLE-LP

Optimized

PK VK INK RD
0

200

400

600

800

1000

1200
Real PG

Single Core

big.LITTLE-HP

big.LITTLE-LP

Optimized

Fig. 7: Overall energy usage for the best single core (SC) and best dual core (DC) for clock gating with DVFS and Real
PG running each task for 4 hours. PK = physical keyboard, VK = virtual keyboard, INK = inking, RD = reading.

Our methodology shows that, for our given subtasks,
the IO1-1K core is an essential component as shown
in Table VII. Moreover, we show that the most energy
efficient frequency is not always the minimum one but
that which best balances active-time dynamic and idle-
time static power.

We use this insight into the processing requirements of
the different sub-tasks to evaluate the energy usage of
the Physical Keyboard Typing (PK ), Virtual Keyboard
Typing (VK ), Inking (INK ), and Reading (RD) tasks.
We compare the customized configurations with the best
single core design and our best effort attempt (within the
constraints of GEM5) to model two big.LITTLE archi-
tectures: (1) big.LITTLE-LP, a low-power configuration
comprising the OOO2 and IO1 cores (inspired by OMAP);
and (2) big.LITTLE-HP, a higher performance configura-
tion consisting of the OOO8 and OOO2 cores (inspired
by Cortex-A57+A53). All configurations use identical idle
time power management approaches.

We assume a system similar to [9, 10] in which sub-tasks
are statically assigned to a specific core and do not migrate
to the other core during their allotted time schedule. When
a sub-task request arrives, the lowest power core wakes up
and decides whether to perform the work or to wake up
the other core to perform the sub-task.

Table VIII shows the lowest energy cores used by each of
the two big.LITTLE configurations to meet the deadline,
as well as the increased energy overhead compared to
the customized dual core design for the 2ms deadline.
For the LP configuration, the overheads are 40-50% for
many sub-tasks, and in several cases it misses deadlines
(indicated by a negative performance overhead). While the
HP big.LITTLE meets the deadlines, its energy overheads
with respect to the customized design approach 2.5X
for a number of sub-tasks. For blank paragraph load,
big.LITTLE-HP uses slightly less energy (-5.8%) than the

customized dual core. This is because in this sub-task
OOO2 happens to be optimal. However, for a dual core
design, the best overall choice is to use OOO8 coupled with
IO1-1K in order to meet the deadlines and use the least
possible energy overall. For the 7ms and 4ms deadlines,
big.LITTLE-LP expends as much as 51-53% and 76-85%
more energy over our approach. For big.LITTLE-HP, the
energy overhead increases to 149-150% and 153% for CG
and PG, respectively.

Figure 7 shows the energy consumption with four hours
of operation allotted to each of the four tasks (physical
keyboard, virtual keyboard, inking, and reading) for the
best single core, big.LITTLE designs, and customized
dual core under the 2ms latency requirement. Overall, the
heterogeneous dual core achieves significant energy savings
over the single core and big.LITTLE designs. For reading,
the LP design uses less energy since it misses the deadline.

For idle time clock gating/DVFS, while the savings for
the reading task is less than 1%, for the physical keyboard,
virtual keyboard, and inking tasks, the energy savings rise
to 62-63%, or 2238-2240J in absolute terms. With respect
to big.LITTLE those savings are 30-31% for the LP and
58-59% for the HP configurations. Assuming a 23.8Wh
battery as in the iPad Mini 3 [19], four hours of performing
these tasks using the single core and big.LITTLE-HP
designs would drain the battery several percent more than
the customized design, a significant difference.

Under the realistic power gating model, the heteroge-
neous dual core saves a significant amount of energy over
the best single core design. Here, the improvement is 1.4%
in energy savings for reading but 62-63% for the other
three tasks, which translates into 447-495J in absolute en-
ergy. In terms of battery life over four hours of continuous
operation, the single core design would drain the battery
by 0.8-0.9%, but by only 0.35% for the heterogeneous dual-
core architecture. The savings over big.LITTLE designs for



CGDFVS Power Gating
7ms 4ms 2ms 7ms 4ms 2ms

Best Single Core IO1-1K OOO2 OOO8 IO1-1K OOO3 OOO8
Best Customized Dual Core - OOO2+IO1-1K OOO8+IO1-1K IO1+IO1-1K OOO3+IO1-1K OOO8+IO1-1K

TABLE VII: Best single core, and best dual core architecture for CGDVFS and realistic PG for 7, 4, and 2ms deadlines.
Task CGDFVS Power Gating

big.LITTLE-LP big.LITTLE-HP big.LITTLE-LP big.LITTLE-HP
Core Overhead Core Overhead Core Overhead Core Overhead

Key Press (PK) IO1-300 45.2% OOO2-300 145.9% IO1-300 45.2% OOO2-300 145.9%
Blank Line Load (PK) IO1-600 45.5% OOO2-300 145.9% IO1-1008 47.6% OOO2-600 143.3%

Virtual Key Press (VK) IO1-300 45.2% OOO2-300 145.9% IO1-300 45.2% OOO2-300 145.8%
Shift/CAPS (VK) IO1-300 46.0% OOO2-300 146.7% IO1-600 52.2% OOO2-600 147.0%

Paragraph Load (VK) OOO2-800 -9.2% OOO2-800 -9.2% OOO2-1200 -5.8% OOO2-1200 -5.8%
Inking (INK) IO1-300 45.2% OOO2-300 145.9% IO1-300 45.0% OOO2-300 145.1%

Blank Page Load (INK) OOO2-1200 -9.0% OOO8-1200 0.0% OOO2-1200 -10.5% OOO8-1200 0.0%
Book Page Load (RD) OOO2-1200 -8.5% OOO8-1200 0.0% OOO2-1200 -8.6% OOO8-1200 0.0%
PDF Rendering (RD) IO1-800 33.7% OOO2-600 51.5% IO1-800 33.7% OOO2-600 51.5%

TABLE VIII: Best core configuration per sub-task and per task for the big.LITTLE high performance and low power
designs and their respective per-subtask energy overheads versus the customized dual-core design for 2ms deadline.

PG are similar to those using CGDVFS - ∼30% over LP
and ∼60% over HP.

V. Conclusions
Recent improvements in input sensor and display tech-

nologies coupled with increasing demand for faster interac-
tive response calls for rapid yet power efficient interactive
task processing. We developed a toolbox that models real-
time human interactions with a mobile device, as well as
architectural details such as event processing latency and
idle-time power management. We validated our models
against a hardware platform from prior work. We pre-
sented a design methodology that customized event pro-
cessing architectures to maximize energy efficiency based
on UI latency constraints from the system design.

We used this methodology to explore energy-efficient
HCI task processing hardware and quantified the en-
ergy savings compared to single core and big.LITTLE
architectures. We showed savings approaching 2.5X (60%
improvement) on some sub-tasks over the high perfor-
mance big.LITTLE approach, and roughly 1.5X (33%
improvement) over the low power big.LITTLE design that
could not meet all of the deadlines. Overall, we showed
how our methodology can be applied to the design of
HCI-specific hardware, and how such designs can achieve
significant energy efficiency improvements over general-
purpose approaches.

References
[1] Sony Inc. OLED Sony Technical Report. Avail-

able at http://pro.sony.com/bbsccms/assets/files/micro/
OLED/brochures/oled techhndbk di0248 f.pdf.

[2] Qualcomm. Interferometric Modulator
(IMOD) Technology Overview. Available at
”http://www.qualcomm.com/sites/default/files/
uploads/imod tech overview-06-2009.pdf”, 2009.

[3] Ricardo Jota, Albert Ng, Paul Dietz, and Daniel Wigdor.
How Fast is Fast Enough?: A Study of the Effects of
Latency in Direct-touch Pointing Tasks. In Proceedings of

the SIGCHI Conference on Human Factors in Computing
Systems, CHI ’13, pages 2291–2300, New York, NY, USA,
2013. ACM.

[4] Ricardo Jota, Clifton Forlines, Darren Leigh,
Steven Sanders, and Daniel Wigdor. Towards
Zero-Latency User Experiences. Available at
”http://www.tactuallabs.com/press/GDCTactual32014
.pdf”, 2014.

[5] Stuart K. Card, George G. Robertson, and Jock D.
Mackinlay. The Information Visualizer, an Information
Workspace. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, CHI ’91, pages
181–186, New York, NY, USA, 1991. ACM.

[6] Albert Ng, Julian Lepinski, Daniel Wigdor, Steven
Sanders, and Paul Dietz. Designing for Low-latency
Direct-touch Input. In Proceedings of the 25th Annual
ACM Symposium on User Interface Software and Technol-
ogy, UIST ’12, pages 453–464, New York, NY, USA, 2012.
ACM.

[7] Paul Ditz. Applied Sciences Group:
High - Performance Touch. Available at
http://research.microsoft.com/apps/video/default.aspx
?id=160670.

[8] Christian Holz and Patrick Baudisch. Understanding
Touch. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, CHI ’11, pages
2501–2510, New York, NY, USA, 2011. ACM.

[9] François Guimbretiére, Shenwei Liu, Han Wang, and Rajit
Manohar. An Asymmetric Dual-processor Architecture for
Low-power Information Appliances. ACM Trans. Embed.
Comput. Syst., 13(4):98:1–98:19, March 2014.

[10] Jaeyeon Kihm, François V. Guimbretière, Julia Karl, and
Rajit Manohar. Using Asymmetric Cores to Reduce Power
Consumption for Interactive Devices with Bi-stable Dis-
plays. In Proceedings of the 32Nd Annual ACM Conference
on Human Factors in Computing Systems, CHI ’14, pages
1059–1062, New York, NY, USA, 2014. ACM.

[11] Nathan Binkert, Bradford Beckmann, Gabriel Black,
Steven K. Reinhardt, Ali Saidi, Arkaprava Basu, Joel
Hestness, Derek R. Hower, Tushar Krishna, Somayeh Sar-
dashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib,
Nilay Vaish, Mark D. Hill, and David A. Wood. The Gem5
Simulator. SIGARCH Comput. Archit. News, 39(2):1–7,
August 2011.



[12] Sheng Li, Jung Ho Ahn, Richard D. Strong, Jay B.
Brockman, Dean M. Tullsen, and Norman P. Jouppi. The
McPAT Framework for Multicore and Manycore Architec-
tures: Simultaneously Modeling Power, Area, and Timing.
ACM Trans. Archit. Code Optim., 10(1):5:1–5:29, April
2013.

[13] Carlos Ortega, Jonathan Tse, and Rajit Manohar. Static
power reduction techniques for asynchronous circuits. In
Asynchronous Circuits and Systems (ASYNC), 2010 IEEE
Symposium on, pages 52–61. IEEE, 2010.

[14] Mengying Zhao, Hao Zhang, Xiang Chen, Yiran Chen, and
Chun Jason Xue. Online OLED Dynamic Voltage Scaling
for Video Streaming Applications on Mobile Devices. In
Proceedings of the Ninth IEEE/ACM/IFIP International
Conference on Hardware/Software Codesign and System
Synthesis, CODES+ISSS ’13, pages 9:1–9:10, Piscataway,
NJ, USA, 2013. IEEE Press.

[15] Bhojan Anand, Karthik Thirugnanam, Jeena Sebastian,
Pravein G. Kannan, Akhihebbal L. Ananda, Mun Choon
Chan, and Rajesh Krishna Balan. Adaptive Display Power
Management for Mobile Games. In Proceedings of the 9th
International Conference on Mobile Systems, Applications,
and Services, MobiSys ’11, pages 57–70, New York, NY,
USA, 2011. ACM.

[16] Nachiappan Chidambaram Nachiappan, Praveen Yedla-
palli, Niranjan Soundararajan, Mahmut Taylan Kandemir,
Anand Sivasubramaniam, and Chita R. Das. GemDroid: A
Framework to Evaluate Mobile Platforms. SIGMETRICS
Perform. Eval. Rev., 42(1):355–366, June 2014.

[17] J. Adam Butts and Gurindar S. Sohi. A Static Power
Model for Architects. In Proceedings of the 33rd Annual
ACM/IEEE International Symposium on Microarchitec-
ture, MICRO 33, pages 191–201, New York, NY, USA,
2000. ACM.

[18] A. Gutierrez, J. Pusdesris, R.G. Dreslinski, T. Mudge,
C. Sudanthi, C.D. Emmons, M. Hayenga, and N. Paver.
Sources of error in full-system simulation. In Performance
Analysis of Systems and Software (ISPASS), 2014 IEEE
International Symposium on, pages 13–22, March 2014.

[19] Apple. iPad Mini 3 - Technical Specifications. Available
at http://http://www.apple.com/ipad-mini-3/specs/.


