Dynamic IPC/Clock Rate Optimization®

David H. Albonesi
Dept. of Electrical Engineering
University of Rochester
Rochester, NY 14627
albonesi@ee.rochester.edu

Abstract

Current microprocessor designs set the functionality and clock
rate of the chip at design time based on the configuration that
achieves the best overall performance over a range of target appli-
cations. The result may be poor performance when running appli-
cations whose requirements are not well-matched to the particular
hardware organization chosen. We present a new approach called
Complexity-Adaptive Processors (CAPs) in which the IPC/clock
rate tradeoff can be altered at runtime to dynamically match the
changing requirements of the instruction stream. By exploiting
repeater methodologies used increasingly in deep sub-micron de-
signs, CAPs achieve this flexibility with potentially no cycle time
impact compared to a fixed architecture. Our preliminary results
in applying this approach to on-chip caches and instruction queues
indicate that CAPs have the potential to significantly outperform
conventional approaches on workloads containing both general-
purpose and scientific applications.

1 Introduction

Computer architects are constantly striving to design microarchi-
tectures whose hardware complexity achieves optimal balance be-
tween instructions per cycle (IPC) and clock rate such that perfor-
mance is maximized for a range of target applications. Although
features such as wide issue windows and large L1 caches can pro-
duce high IPC for many applications, if a clock speed degradation
accompanies the implementation of these large structures, the re-
sult may be lower performance for those applications whose IPC
does not improve appreciably. These latter applications may per-
form better with a less-aggressive microarchitecture emphasizing
high clock rate over high IPC. Thus, for a given set of target ap-
plications, there are seemingly endless combinations of features
leading to different clock speeds and IPC values which achieve
almost identical mean performance.

For example, the Digital 21164 [11] and HP PA-8000 [14]
achieve almost identical SPECfp95 baseline results [1], yet each
takes a much different approach to reaching this end. The 21164’s
streamlined in-order design and small (§KB) L1 caches (as well
as aggressive implementation technology and circuit design) pro-
vides a clock rate that is roughly three times that of the PA-8000,
while the PA-8000 provides a 56-entry out-of-order instruction
window and multi-megabyte L1 caches (currently implemented
off-chip). Although differences in instruction set architectures,
process technologies, and compilers clearly factor into performance
results, the IPC/clock rate tradeoff made in the design of key hard-
ware structures can have a dramatic impact on individual applica-
tion performance, with some applications favoring a simple, fast
approach, and others performing better on a more complex design.

*This research was supported in part by NSF CAREER Award MIP-9701915.

Although the net result may be the same, with each sharing the
lead in the SPECfp95 performance race, both of these implemen-
tations may suffer severe performance degradation on applications
whose characteristics are not well-matched to the IPC/clock rate
tradeoff point of the hardware design. This may be the case, for
example, on the 21164 with applications with frequently-accessed
megabyte-sized data structures that do not fit in the on-chip cache
hierarchy, causing the processor to frequently run at the speed of
the board-level cache. Such an application may perform better
on the PA-8000 with its multi-megabyte L1 Dcache, even at its
lower clock speed. Conversely, applications with small working
sets and little exploitable instruction-level parallelism (ILP) may
effectively waste the large Dcache and instruction window of the
PA-8000, and run more efficiently on the faster 21164. Thus, di-
versity of hardware requirements from application to application
forces microarchitects to implement hardware solutions that per-
form well overall, but which may compromise individual applica-
tion performance. Worse yet, diversity may exist within an indi-
vidual application. Wall found that the amount of ILP within an
individual application varied during execution by up to a factor of
three [27]. Thus, even implementations that are well-matched to
the overall requirements of a given application may still exhibit
suboptimal performance at various points of execution.

To address application diversity, proposed configurable archi-
tectures such as MATRIX [9] replace fixed hardware structures
with reconfigurable ones in order to allow the hardware to dynam-
ically adapt at runtime to the needs of the application. These intru-
sive approaches, however, may lead to decreased clock rate and in-
creased latency, both of which may override the performance ben-
efits of dynamic configuration. For these reasons, configurable ar-
chitectures are currently relegated to specialized applications and
have yet to be proven effective for general-purpose use.

This paper describes Complexity-Adaptive Processors (CAPs),
a low-intrusive, evolutionary approach to implementing config-
urability within conventional microprocessors. CAPs are simi-
lar to complexity-effective processors [23] in that both try to ob-
tain the highest performance by paying close attention to balanc-
ing IPC and clock speed in designing critical processor hardware.
However, complexity-effective processors, like all conventional
designs, fix the tradeoff between these two parameters at design
time. CAPs employ configurable hardware for the core super-
scalar control and cache hierarchy structures of the processor in
a way that minimizes, and often eliminates altogether, any cycle
time or latency penalty relative to a conventional superscalar de-
sign, and a dynamic clock that adapts along with the hardware
structure to allow each configuration to run at its full clock rate po-
tential. Thus, CAPs provide many different IPC/clock rate tradeotf
points within a single hardware implementation, yet do so while
maintaining the high clock rate of a fixed architecture. If the con-
figurable hardware can be effectively managed by selecting the

best configuration at critical runtime points, then a single CAP de-
sign may outperform conventional designs on a wide range of both
scientific and general-purpose applications.

The rest of this paper is organized as follows. In the next sec-
tion, we discuss scaling of logic and wire delays with feature size
and the implications on the design of future processor hardware
structures. We then describe in Section 3 how these trends will
allow fixed structures to be made adaptive with little extra effort
or delay penalty. Complexity-Adaptive Processors are introduced
in Section 4, and in Section 5, we demonstrate how even sim-
ple implementations of complexity-adaptive cache hierarchies and
instruction queues can significantly outperform conventional de-
signs. In Section 6, we discuss the prospects for greater perfor-
mance through finer-grained reconfigurable control of individual
applications. Finally, in Section 7, we conclude and discuss future
work.

2 Scaling Trends and Implications

Semiconductor feature sizes continue to decrease at a rapid pace,
with 0.18 micron devices slated to appear in 1999, and 0.13 mi-
cron devices following in 2003 [2]. Although this creates greater
transistor budgets for the microprocessor architect, because to a
first order transistor delays scale linearly with feature size while
wire delays remain constant, wire delays are increasingly domi-
nating overall delay paths as feature sizes are decreased. For these
reasons, repeater methodologies, in which buffers are placed at
regular intervals within a long wire to reduce wire delays, are be-
coming more commonplace in deep submicron designs. For ex-
ample, the Sun UltraSPARC-IIi microprocessor, implemented in
a 0.25 micron CMOS process, contains over 1,200 buffers to im-
prove wire delay [21]. Note that wire buffers are used not only in
busses between major functional blocks, but within self-contained
hardware structures as well. The forthcoming HP PA-8500 micro-
processor, which is also implemented in 0.25 micron CMOS, uses
wire buffers for the global address and data buses of its on-chip
caches [12]. As feature sizes decrease to 0.18 micron and below,
other smaller structures will require the use of wire buffers in order
to meet timing requirements [18].

Our interest lies in the extent to which wire buffers will be re-
quired in the critical hardware structures of future dynamic super-
scalar processors. These include the instruction cache hierarchy,
branch predictor, register rename logic, instruction queues and is-
sue logic, register files, data cache hierarchy, Translation Looka-
side Buffers (TLBs), and reorder buffers, as well the structures
required for proposed new mechanisms such as value prediction
[16]. These structures are primarily composed of RAM or CAM-
based arrays implemented as replicated storage elements driven by
global address and data buses. (Control signals may be required
as well, which for the purpose of this discussion we include with
the address bus.) If these structures are implemented with many
elements or ports, their overall delay may reach the point where
they impact processor cycle time.

In order to obtain a first-order understanding of general wire
delay trends of these structures, we analyze both unbuffered and
buffered wire delays of various sizes of caches and instruction
queues using different feature sizes. We obtain these results us-
ing Bakoglu’s optimal buffering methodology [4], technology and
layout parameters from the CACTI cache cycle time model [28]
(with parameters scaled appropriately for the feature size), and by
assuming that buffer delays scale linearly with feature size while
wire delays remain constant.

Figure 1 shows unbuffered and buffered cache address wire de-

3 T T T T T

Unbuffered <—
2.5 | Buffers, 0.25u -+--
Buffers, 0.18u -3--

m 2 Buffers, 0.12u -

£ B 7]
>

©

© 15 F =
o]
9') -4
2 r :

o
e
1

4 6 8 10 12 14 16
Number of Cache Arrays

(a)

6 T T T T T

Unbuffered —<—
5 | Buffers, 0.25u —+--

Buffers, 0.18u -8--
| Buffers, 0.12u >

>
©
°© 3 -
(]
Qo
S 2]

0 (:‘HYI - L L L L
4 6 8 10 12 14 16
Number of Cache Arrays

(b)
Figure 1: Cache wire delay as a function of the number of subar-
rays and technology using (a) 2KB and (b) 4KB cache subarrays.

lays (data delays are identical) as a function of the number of sub-
arrays and feature size for caches constructed from 2KB and 4KB
cache subarrays. There is only one unbuffered curve as wire de-
lays remain constant with feature size. These results indicate that
16KB and larger caches constructed from 2KB subarrays and im-
plemented in 0.18 micron technology will benefit from buffering
strategies. Using 4KB subarrays, a buffering strategy will clearly
be beneficial for caches 32KB and larger with 0.18 micron tech-
nology.

Our instruction queue follows the R10000’s integer queue de-
sign, each entry of which contains 52 bits of single-ported RAM,
12 bits of triple-ported CAM, and 6 bits of quadruple-ported CAM
[29]. We assume that the area of a CAM cell is twice that of
a RAM cell [20], and that the area grows quadratically with the
number of ports, since both the number of wordlines and bitlines
scale linearly with the number of ports. Under these assumptions,
each R10000 integer queue entry is equivalent in area to roughly
60 bytes of single-ported RAM.

Figure 2 shows unbuffered and buffered integer queue wire de-
lays as a function of the number of queue entries and feature size.
Buffering performs better for a 32-entry queue with 0.12 micron
technology, while larger queue sizes clearly favor the buffered ap-
proach with a feature size of 0.18 microns. As architects attempt
to issue eight or more instructions in a cycle, integer queues larger
than 32 entries will become necessary. In addition, increased issue
width will necessitate an increase in the size of each queue entry,
due to more ports and a widening of the fields for rename regis-
ters and levels of branch speculation. For these reasons, the use of

14 T T T T T T T T T

10| Unbuffered ——
: Buffers, 0.25u —+--

Buffers, 0.18u -B--
1 I Buffers, 0.12u - A

Wire Delay (ns)

0
15 20 25 30 35 40 45 50 55 60 65
Number of Instruction Queue Entries

Figure 2: Integer queue wire delay as a function of the number of
entries and technology.

[EEEE
II
II
II
II
II

| temens_|

ElementZ
buffer
| Elementl | | Elementl |
Address Data Address Data
Bus Bus Bus Bus
(a) ()

Figure 3: (a) A four-element hardware structure with wire buffers
to reduce global address and data bus delays. (b) The same basic
structure but with twice the number of elements.

buffers will clearly become necessary to minimize integer queue
wire delays in future technologies.

Many other regular RAM or CAM-based structures, such as
branch predictor tables and TLBs, may easily exceed these inte-
ger queue sizes, making them prime candidates for wire buffering
strategies as well. Based on these initial results and the trends indi-
cated by the UltraSPARC-IIi and PA-8000 designs, we believe that
the use of buffered wire methodologies will within the next few
years become standard practice in designing many of the critical
superscalar control and cache structures of conventional micropro-
cessors. The widespread adoption of these structures throughout
the microprocessor creates new opportunities for architectural in-
novation as we explain in the next section.

3 A New Opportunity: Adaptive Hardware Struc-
tures

Figure 3(a) shows a conventional hardware structure containing
four identical elements and three sets of buffers in both the global

| Btemenss |
II

Element2

I Elementl I
Address Data
Bus Bus
clock Procev sor

select
L A1 £ Z
. Clk Distribution Tree
S I I

Figure 4: A hardware structure which can be configured with ei-
ther four or eight elements.

address and data busses to reduce wire delay. (Three is simply
a convenient number for drawing purposes; the optimal number
of buffers may actually be more or less than the number of ele-
ments.) Unlike unbuffered busses in which the entire line capac-
itance is seen at every element, each wire segment in Figure 3(a)
has virtually equal delay and is electrically isolated from adjacent
segments by the buffers. This isolation creates a distinct hierarchy
of delays, in which individual element delays become indepen-
dent of the number of remaining elements in the structure. The
result is that the Element delays in Figure 3(a) are the same as that
in Figure 3(b), despite the fact that the size of the structure has
been doubled. This property has a profound impact on our ability
to incorporate adaptivity in a low-intrusive manner, as we explain
further below.

If this particular structure is on the critical processor timing
path when it contains four or more elements, then the implemen-
tation of the four-element structure of Figure 3(a) will result in
a faster clock than the eight-element design of Figure 3(b). Be-
cause the latter structure is larger, its use may result in a higher
IPC than the faster structure for applications which make frequent
use of the additional elements. We can in fact make both of these
options available in a single implementation if we start with the
eight-element design, provide the ability to conditionally disable
Elements 5-8, and employ a dynamic clock design which sets the
on-chip processor clock speed according to whether four or eight
elements are enabled. The resulting complexity-adaptive hardware
structure, shown in Figure 4, can be dynamically reconfigured to
meet the changing requirements of the instruction stream, yet do
so with potentially no cycle time degradation relative to the fixed
designs of Figure 3. We can generalize this concept to create struc-
tures with a finer configuration increment, which is the granularity
at which the structure increases or decreases in size and/or other
organizational parameter. The structures in Figure 3 can support
a configuration increment of a single element if individual disable

signals are provided for each element. In general, the minimum
configuration increment that can be supported without imposing a
delay penalty is that which results from using the optimal number
of buffers needed to minimize wire delay. In this case, if the con-
ditional disabling logic (which may be necessary in a conventional
design to reduce power dissipation) does not unduly impact timing
delays, then the complexity-adaptive hardware structure will suffer
no cycle time penalty relative to a conventional design, and in fact
the two may be identical. Thus, once a repeater methodology has
been adopted for a particular hardware structure for delay reasons,
this fixed structure can be converted into a complexity-adaptive
one with little or no additional effort. Pure logic structures that
are designed by replicating common elements, such as a tree of
priority encoders used in selecting instructions to issue [22], can
also be made complexity-adaptive by selectively disabling partic-
ular elements. The flexibility of the CAP approach allows the de-
signer to increase the size of certain structures to meet the require-
ments of particular “degenerate”, but strategically important, ap-
plications, while allowing structures to be “shrunk” to better match
the IPC/clock rate tradeoff point of more “average” applications.
This flexibility, if managed properly, can afford a significant per-
formance advantage over current fixed structures for many appli-
cations.

3.1 Varying Latency Instead of Clock Rate

To achieve high performance, it is essential that some structures
be accessed in a single cycle. An example is an instruction queue,
where a multi-cycle issue operation would severely increase data
dependency-related stalls. Thus, it is appropriate when increasing
the size of such structures to the point where they fall on the critical
timing path to decrease the clock rate, if the increase in structure
size results in a net performance gain.

For other structures where single-cycle access is not as critical,
like the Dcache, an alternative to slowing the clock is to increase
the latency (in cycles). The advantage of this alternative is that
only instructions which make use of the hardware structure are af-
fected, as the clock speed is not changed. Thus, in the case of the
Dcache, arithmetic units are unaffected by the increase in Dcache
size, and thus arithmetic instructions still complete at the same
rate. However, careful design and location of selectable latches is
necessary so as not to unduly impact critical path delays and hard-
ware structure size. In addition, pipeline control and scheduling
complexities introduced by this scheme need to be examined. Our
future research plans include investigating these issues and deter-
mining the appropriate option (changing the clock, changing the
latency, or changing both) for each hardware structure.

4 Complexity-Adaptive Processors

Figure 5 shows the overall organization of a Complexity-Adaptive
Processor. The processor, caches, and external interface consist
of conventional fixed hardware structures (denoted FS) intermixed
with complexity-adaptive structures (denoted CAS) like those de-
scribed in the previous section. Fixed structures are employed
where implementing adaptivity is unwieldly, will strongly impact
cycle time, or is ineffective due to a lack of diversity in target ap-
plication requirements for the particular structure.

The Configuration Manager controls the organization of each
CAS and the clock speed of the entire processor at appropriate ex-
ecution points. The various clock speeds are predetermined based
on worst-case timing analysis of each FS and combination of CAS
configurations. In this figure, we have shown several clock sources

Processor, Caches, and External Interface

Configuration
Control (CC)

Config

Manager

Clock
Selector
Control

Processor Clock

\NA A A
()

(Clk Distribution Tree)

Figure 5: Overall organization of a Complexity-Adaptive Proces-
sor showing both fixed (FS) and complexity-adaptive structures
(CAS). Configuration Control (CC) signals control the organiza-
tion of each CAS.

selectable through a clock holding and multiplexing scheme (anal-
ogous to some scan designs), although other schemes are possible
[8, 13].

Effective configuration management requires on-chip perfor-
mance monitoring hardware, configuration registers, and good heur-
istics for selecting optimal CAS configurations and reconfigura-
tion points during execution. These heuristics may be implemented
in software, hardware, or both. A CAP compiler may perform
profiling analysis to determine at which points within the appli-
cation particular CAS configurations should be enabled. Alterna-
tively, adaptive control hardware may read the performance mon-
itoring hardware at regular intervals at runtime, analyze the per-
formance information, predict the configuration which will per-
form best over the next interval (perhaps using modified branch-
prediction techniques), and switch configurations as appropriate.
Further analysis of these options is left as an area for future re-
search. In this paper, we use a simple process-level adaptive scheme
in which the configuration remains unchanged throughout the ex-
ecution of a given application, but can vary from application to
application.

4.1 Advantages of the CAPs Approach

The primary advantage of the CAPs approach is that it allows mi-
croarchitects to push hardware structures beyond cycle time limits
to meet the needs of particular applications, without penalizing
other applications that perform better with a smaller structure run-
ning at a faster clock rate. As issue widths increase, the complex-
ity of larger superscalar control structures and on-chip caches is
becoming more of a concern, due to the potential impact on cy-
cle time [22]. Yet for some applications, increased cycle time can
be justified if accompanied by a larger increase in IPC. A CAP
design can be tailored at runtime to the optimal IPC/clock rate
tradeoff point of the dynamic instruction stream, thereby achiev-
ing balanced performance across a wide range of applications.

A second advantage of the CAPs approach is that it is a tech-
nique that can be used with other advanced architectural approaches
such as Superspeculative [17] and Trace processors [25]. The per-
formance of these approaches is highly dependent on the effec-

tiveness of critical control and storage structures, which are typ-
ically largely RAM or CAM-based and therefore can be made
complexity-adaptive. Thus, the adoption of a complexity-adaptive
approach does not in general preclude other architectural innova-
tions.

In addition to performance benefits, CAPs offer the potential
for improved power management. The controllable clock frequen-
cy and hardware disables of a CAP design provide several per-
formance/power dissipation design points that can be managed at
runtime. The lowest-power mode can be enabled by setting all
complexity-adaptive structures to their minimum size, and select-
ing the slowest clock. The processor can be put into this mode
under certain conditions, for example when a power failure occurs
and a uninterruptible power supply is enabled. In addition, a single
CAP design can be configured for product environments ranging
from high-end servers to low power laptops.

Another advantage is that complexity-adaptive structures can
be easily implemented in asynchronous processor designs. These
designs utilize a handshaking protocol instead of a global clock,
with each stage potentially communicating at a different speed.
With a complexity-adaptive approach, very large structures can be
designed, yet the average stage delay can be much lower than the
worst-case delay if faster elements are frequently accessed. Thus,
stage delays are automatically adjusted according to the location
of elements, obviating the need for a Configuration Manager.

An additional advantage is fast reconfiguration time relative
to many other configurable architectures, due to implementation
in custom silicon technology and the simple register and disable-
based configuration scheme. However, the need to reliably switch
clock sources may require tens of cycles to pause the active clock
and enable the new clock. This is still much faster than many con-
figurable architectures, considering the clock speed differential.

4.2 Potential Design Issues

At a first glance, perhaps the most radical aspect of a CAP is its
dynamic clock. Commercial microprocessors are developed using
established synchronous design techniques that assume a stable
clock signal. However, these techniques can still be used in a CAP
design, as a single clock distribution tree is used as with a con-
ventional design. We currently view the front-end clock selection
logic as an extension of some scan designs that introduce a second
clock into the system, and reliably stop one clock and start another
without loss of data. Note that other dynamic clocking schemes
have been proposed [8, 13, 19], although these have not been im-
plemented to our knowledge. Thus, we believe that a reliable, high
performance flexible clocking system is viable, but more analysis
is needed in this area.

Even if a dynamic clock is feasible, and no clock speed penalty
is incurred, CAPs will likely be less efficient for most configura-
tions than a fixed design with the same hardware features. This
is because CAP designers are forced to define pipeline stages ac-
cording to the fastest clock speed used. The resulting design may
not be the most efficient for slower clock speeds, e.g., branch mis-
prediction penalties may be higher than that in a corresponding
fixed design. Designers can circumvent this issue to some degree
by increasing the minimum size of each CAS structure and using
coarser grained increments. However, this restricts flexibility and
so the right balance must be found. Based on our initial results, we
believe that the performance advantages of CAPs will far override
any lack of efficiency that may exist due to its flexible architecture.

Another inefficiency that may arise in a CAP design regards use
of chip resources. Disabled portions of complexity-adaptive struc-
tures represent wasted transistors. However, conventional micro-

processors do not always make the best use of resources as well.
Furthermore, in some cases, we may be able to avoid disabling ele-
ments by instead using them as “backups” to the primary elements.
For example, a complexity-adaptive cache can be divided into L1
and L2 sections as we describe in the next section. Branch predic-
tor tables and TLBs may consist of single and two cycle lookup
elements. An instruction queue may be divided into elements that
are close to issuing in the following cycle (“on-deck” [24]), and a
backup section of instructions waiting for all of their operands or
for a long-latency operation to be completed. These can be trans-
ferred to the on-deck section once most of their operands become
available or the resource nearly becomes free. Although a backup
strategy may allow for more efficient silicon usage and higher IPC,
the control functionality required may become quite complicated
in some cases.

Several issues complicate the design of the Configuration Man-
ager. First, in transitioning from one configuration to another,
some “cleanup” operations may be required. For example, entries
in the portion of a configurable queue that are to be disabled need
to be emptied before reconfiguration takes place. In general, these
operations are simple and have low enough overhead to not unduly
impact performance. A second challenge regards the determina-
tion of the optimal reconfiguration frequency, a tradeoff between
maintaining processor efficiency and minimizing reconfiguration
overhead. A more complicated issue is that of next-configuration
prediction when complexity-adaptive structures are implemented
throughout the processor. Because of the amount of performance
information that must be gleaned, and the interactions between
different hardware structures, predicting the best-performing con-
figuration for the next interval of operation can be quite complex.

A final issue involves communication between CAPs operat-
ing at different frequencies, which will likely necessitate imple-
menting synchronizers between the processor clock and a fixed-
frequency external bus clock. This approach is commonly used
in multiprocessors that permit the coexistence of different micro-
processors running at different clock speeds. Direct interfaces to
external memory chips can be handled within the processor clock
domain by making control signals programmable, as is common
practice today to allow processors to take advantage of faster com-
ponents when they become available.

5 Implementations of Complexity-Adaptive Tech-
niques

In this section, we perform a preliminary evaluation of implemen-
tations of complexity-adaptive two-level on-chip Dcaches and in-
struction queues. We chose these two structures for our initial in-
vestigation as their design can have a large impact on overall per-
formance. We emphasize that we have only briefly explored the
design space of each of these areas, and thus the implementations,
and our results, are very likely to be suboptimal. We expect that a
more rigorous investigation will yield much greater performance
improvements than we achieve in this initial investigation.

5.1 Methodology

We used Atom [26] to obtain address traces of the first 100 mil-
lion data cache references of 21 applications: the entire SPEC95
benchmark suite (except for go which we had difficulty instru-
menting), airshed, stereo, and radar from the CMU suite [10],
and the NAS benchmark appcg [3]. We chose these applications
to demonstrate how a complexity-adaptive design can outperform
a conventional approach on SPEC95, while achieving a signifi-
cant performance improvement on scientific applications which

may not perform as well on a general purpose machine. We ran
each trace into a two-level cache simulator that assumed blocking
caches and ignored access conflicts. We assumed a 4-way issue
processor whose pipeline in the absence of L1 Dcache misses was
67% efficient (2.67 IPC).

Individual cache increment delays were found using CACTI
[28] and scaling results to 0.18 micron technology using CACTI’s
scaling factor parameter. Global address and data bus delays were
determined using Bakoglu’s optimal buffering methodology [4].
The optimal number of buffers to minimize wire delays provided
the necessary isolation to support our increment size. Whenever
buffered line delays were faster than unbuffered delays, we used
buffered values for the conventional cache hierarchy as well. We
assumed that the L1 cache cycle time determined the cycle time of
the processor, and used a three cycle L1 cache latency. L2 hit la-
tencies were calculated as [(L2accesstime/Llcycletime)], and
the average L2 cache miss latency was 30ns, or 2-3 times the L2 hit
latency, an estimate of the average latency with a large board-level
cache.

We independently assessed the performance of complexity-adap-
tive instruction queues using the same applications (with the addi-
tion of go) and the SimpleScalar Toolset [7] for modeling 8-way
out-of-order superscalar designs. We ran each benchmark for the
first 100 million instructions, and assumed a perfect branch pre-
diction mechanism, plentiful functional units, and perfect caches.

In analyzing instruction queue timing, we assumed that the in-
struction queue wakeup and selection logic is on the critical timing
path for all configurations. (This assumes that bypass delays are
reduced via clustering, which would produce a slightly lower IPC
than our simulation model [23].) The wakeup logic determines
which instructions within the instruction queue are ready to is-
sue, while the select logic selects instructions to issue based on
the available pool. The combined operation must be performed
atomically in one cycle to allow dependent instructions to issue in
successive cycles. We used Palacharla’s 16-entry queue wakeup
delay values [22] for 0.18 micron technology, and assumed that the
operand tag lines are buffered between each group of 16 queue en-
tries (our increment size). Our analysis indicates that for 0.18 mi-
cron technology, this produces roughly equal or lower delay than
an unbuffered approach for all of our queue sizes. We then used
the appropriate selection logic delay values from [22] based on the
height of the selection tree required for each window size. (The
selection logic in [22] is comprised of a tree of 4-bit priority en-
coders.) Thus, priority encoders associated with window entries
that are not currently active are disabled, and the height and root
node of the tree may vary as well.

For both cases, we use a simplified process-level adaptive con-
figuration management approach in which we fix the complexity-
adaptive organization for the duration of each individual applica-
tion, and where the configuration registers are loaded/saved by the
operating system on context switches. We assume that a CAP
compiler and/or runtime environment can identify the best orga-
nization overall for an application. Because we disable unused in-
struction queue entries rather than use them as “backups” (as with
the cache design), before we reconfigure to a smaller queue size,
entries in the portion of the queue to be disabled must first issue.
This low-overhead operation occurs only on context switches and
therefore does not pose a noticeable performance penalty.

Because in each case all applications were run for the same
number of instructions or Dcache references, we used the metric
average time per instruction (TPI), computed as the cycle time di-
vided by IPC, to evaluate overall performance and as the basis for
reconfiguration decisions. For the cache design, we also measured

CACHE
INCR

CACHE
INCR

I
CACHE ; CACHE

INCR A INCR

CACHE | CACHE
INCR INCR

current L2 cache

movable optimal
LIL2 repeaters
"boundary" CACHE | CACHE

current L1 cache

INCR INCR)

address bus
(similar for data bus)

Figure 6: Structure of a complexity-adaptive cache hierarchy.

the average TPI due to cache misses (TPL;ss) to evaluate how
well our adaptive approach reduces miss penalties.

5.2 A Complexity-Adaptive Cache Hierarchy

Figure 6 shows the hardware structure of an on-chip complexity-
adaptive Dcache hierarchy in which cache increments are assigned
to the L1 and L2 Dcaches as needed by the application. The struc-
ture directly follows from large conventional cache designs that
use multiple common cache banks [5, 6, 15]. Cache increments
that are not part of the L1 cache are not disabled but are merely
defined as belonging to the L2 Dcache. The “boundary” between
the L1 and L2 caches is movable and defines the timing of the L1
and L2 caches. To simplify instruction scheduling and forwarding
of load results, the L1 cache latency is kept constant in terms of
cycles; the cycle time varies, however, depending on the delay of
the slowest L1 cache increment. L2 cache banks have longer ad-
dress and data bus delays than the L1 banks and therefore require
more access cycles.

In order to reconfigure without having to invalidate or transfer
data, we employ an exclusive caching policy within the hierarchy
and enforce a simple rule: as an increment is added to (subtracted
from) the L1 cache, its size and associativity are increased (de-
creased) by the increment size and associativity, and the L2 cache
size and associativity are changed accordingly. This rule maintains
a constant mapping of the index and tag bits independent of place-
ment of the L1/L2 boundary. Two-level exclusive caching avoids
the situation where two copies of the same cache block that were
previously located separately in L1 and L2, are upon reconfigura-
tion located in the same cache due to a redefinition of the L1/L.2
boundary. With exclusion, a cache block is either in L1 or L2 but
not both. The downside of our mapping rule is that it can lead
to highly associative configurations. Although some applications
would not benefit from such wide associativity, we believe that this
is a reasonable tradeoff to simplify the mapping problem, and in
practice we have found this solution to work well.

In contrast to a conventional cache in which the tag arrays are
physically separated from the data arrays, each cache increment
in Figure 6 is a complete subcache containing both tag and status
bits. Grouping the tags and data arrays simplifies our design as
it allows each cache to perform local hit/miss determination and
enable its local data drivers on a hit. Because of exclusion and
the way we have mapped the cache, only one of the L1 or L2
cache increments will have a hit on a given access. Thus, each
cache can (in most cases) act locally without the need for global

information. An additional benefit of organizing the cache in this
manner is shorter wire lengths between the tag comparators and
data output drivers. Such localized wiring will become necessary
with smaller feature sizes to maintain high clock rates [18].

5.2.1 Configurations Analyzed

In order to gain insight into the potential of our approach, we
compared the performance of a single complexity-adaptive 128KB
Dcache structure composed of 16 8KB two-way set associative
and two-way banked increments against conventional two-level
organizations of the same total size, with L1 sizes ranging from
8KB-64KB. We chose this design as it appeared to offer a bet-
ter tradeoff between increment granularity and overall delay than
a competing direct-mapped two-way banked 4KB increment de-
sign. Thus far, we have limited our investigation of this design to
L1 caches up to 64KB in size.

5.2.2 Diversity of Cache Requirements

The performance improvement obtained with a process-level adap-
tive approach is highly dependent on the diversity of requirements
from application to application. Figure 7 plots performance as
a function of the L1 cache size with the L1/L2 boundary fixed
throughout execution. The vast majority of the applications per-
form best with an 8KB or 16KB L1 Dcache, but this is not always
due to small working set sizes. In some cases, some of the applica-
tion’s structures do not fit in our largest 64KB L1 Dcache, and so
the configurations with the fastest cycle time perform best. For ex-
ample, applu’s L1 Dcache miss ratio is 9% with an 8KB L1 cache,
and only drops to 8% with a 64KB L1 cache. Most of these misses
miss in the L2 cache as well, indicating that our total cache size of
128KB is too small for this application.

Stereo and swim experience a large reduction in TPI as cache
size is increased. Stereo’s curve does not flatten out until the 4§KB
L1 cache point. Appcg experiences a sharp drop once L1 cache
size is increased beyond 48KB. This is because of frequently-
accessed data structures that require these larger caches to coex-
ist. Of the integer applications, only compress improves with a
cache larger than 16KB. Thus, although some applications benefit
from the larger L1 caches, most perform best overall with small
L1 caches, indicating that our workload is only modestly diverse
in cache requirements from application to application.

5.2.3 Overall Performance Results

Figures 8 and 9 plot average TPL,;ss and average TPI, respec-
tively, for the best-performing conventional configuration (which
has 4-way set associative 16KB L1 Dcache) and the process-level
adaptive case. Despite the fact that many of the applications per-
form best overall with the conventional organization, the simple
process-level complexity-adaptive approach reduces TPL,;ss by
and average of 26% and delivers a respectable 9% average reduc-
tion in TPI over this configuration. Much of the benefit is due to
significant improvements in stereo (reductions in TPL,,;ss and TPI
of 65% and 46%), appcg (86% and 22%), swim (28% and 15%),
and to a lesser extent, wave5, airshed, and radar.

The performance of stereo and appcg demonstrates how con-
ventional microarchitectures that “design to the average” of a set
of applications can exhibit significant performance degradation for
applications that are not well-matched to the chosen hardware im-
plementation. This may occur frequently when running applica-
tions with large data structures on general-purpose processors de-
signed with good averaging-performing, but small, L1 Dcaches.

0.5 T

m88ksim —<—

gcc —+-

compress -&--
r li E|
ijpeg 2 X

perl -%--
vortex -o-- x

0.45

Avg TPI (ns)

02 1 1 1 1 1 1

32 40 48 56 64
L1 Dcache Size (KB)

(a)

T
airshed -—
12 | stereo -+- |
' radar -8--
appcg -

- tomcatv &~
Ty swim -%--
1¥ su2cor -o-- |
. N hydro2d -+---
mgrid -& -
applu »—

N \ turb3d -a--
0.8 \ AN apsi -*--
' fpppp -
wave5 —+-

Avg TPI (ns)

32 40
L1 Dcache Size (KB)

(b)
Figure 7: Variation of average TPI with L1 Dcache size for (a)
integer and (b) floating point benchmarks. The L1/L2 boundary is
fixed throughout execution.

In contrast, the adaptive approaches deliver good performance for
each individual application, even bringing stereo’s performance in
line with the other applications. Note that our results indicate that
significant gains can be obtained with the simple process-level ap-
proach of allowing each application to use one particular cache
hierarchy configuration. Thus, even a simple CAP approach can
afford a significant performance improvement over a conventional
design.

The TPl,,;ss of the adaptive approach is in some cases higher
than that of the conventional design. This is simply due to the fact
that when optimizing for overall TPI, within some intervals, it is
more beneficial to select a configuration with a faster clock than
one with lower TPI,,;ss. For example, if there are very few load
and store instructions, or if the L1 cache miss ratio is very low, then
reducing miss activity will have little impact on overall TPI. For
similar reasons, some applications with large overall reductions
in TPL,;ss gain very little benefit from a process-level adaptive
approach. Compress, for example, achieves a 43% reduction in
TPI,;ss With the adaptive approach, but because loads and stores
constitute less than 10% of the workload, this has only a minor
impact on overall TPIL.

0.87

0.4

0.35-

0.25

0.2

Avg Miss TPI (ns)

0.15-

0.1+

|

0.05-

Tl o

[

— Best conventional ——
Process-level adaptive -----

W.H*

m88ksim gcc compress i ijpeg

perl vortex airshed stereo radar appcgtom‘catv swim suécothydrodegrid applu turb3d apsi fpppp waveb5average

Benchmark

Figure 8: Average TPL,,ss for conventional and process-level adaptive for each application and overall average.

0.7

0.65-

0.6

0.55

0.5

0.45

Avg TPI (ns)

0.4

0.35-

0.34 [+ |

Best conventional ——
Process-level adaptive -----

i H ‘

[] :

=10 0]

T T T
m88ksim gcc compress i

e

iipeg

T T T T T
perl vortexairshedstereo radar appcgtomcatv swim su2cothydro2dmgrid applu turb3d apsi fpppp wavebSaverage

Benchmark

Figure 9: Average TPI for conventional and process-level adaptive for each application and overall average.

5.3 Complexity-Adaptive Instruction Issuing Logic

We compare fixed instruction queues ranging in size from 16 to
128 entries at 16-entry increments with a complexity-adaptive struc-
ture whose size could take on any of these values. We first examine
application diversity, and then present overall performance results.

5.3.1 Diversity of Instruction Queue Requirements

Figure 10 shows diversity in instruction queue requirements from
application to application. Most applications perform best with a
the 64-entry instruction queue, although there are several excep-
tions. A 128-entry instruction queue performs best for compress,
while radar, fpppp, and appcg clearly favor the smallest 16-entry
configuration. For some applications, such as turb3d and vortex,
there is a significant variation in requirements during execution,
indicating that a finer-grain level of adaptivity may afford perfor-
mance benefits over the simple process-level approach. We exam-
ine these opportunities more fully in Section 6.

5.4 Overall Performance Results

Figure 11 shows TPI results for the best conventional configura-
tion (64-entry instruction queue) and the process-level adaptive ap-
proach. The process-level complexity-adaptive approach reduces
TPI by an average of 7% over the conventional design. Much of
the improvement is due to appcg (TPI reduction of 28%) and fpppp

(21%). Appcg strongly favors a 16-entry configuration which puts
its requirements far from the average. Radar, compress, and ijpeg
achieve solid TPI reductions of 10%, 8%, and 8%, respectively, as
well. Once again, although many of our applications favor the 64-
entry design and therefore do not gain in performance, the few ap-
plications whose hardware requirements deviate from those in the
conventional design perform significantly better under the simple
process-level adaptive model.

5.5 Summary of Performance Results

Overall, we find these initial results to be quite encouraging for
several reasons. First, in both cases, we explored a very small
fraction of the design space, and thus we expect that a more rig-
orous investigation will yield much greater performance improve-
ments. Second, our overall workload was only modestly diverse
in its cache and instruction queue requirements, with many appli-
cations favoring the best conventional configuration in both cases.
Third, the complexity-adaptive approach outperformed SPEC95
while dramatically improving performance for other applications
that were not well-matched to the conventional organizations; for
the cache design, the TPI of stereo was reduced by 46%, while ap-
pcg experienced a speedup of 28% with the complexity-adaptive
instruction queue. Fourth, the fact that we achieved good per-
formance improvements in applying the complexity-adaptive ap-
proach to two separate hardware structures indicates that these

0.8

0.74

0.6

0.5

0.44

Avg TPI (ns)

0.34

| H m [T I il

Best conventional —
Process-level adaptive -----

[l gnnnll

01 H: (| |
ijpeg perl

g‘o m88ksim gcc compress i

vorltex airshed stereo radar appcgtomcatv swim su2corhydro2d mgrid applu turESd apsi fpppp wa\‘/esaven"age

Benchmark

Figure 11: Average TPI for conventional and process-level adaptive for each application and overall average.

0.3 T T
go <—
- m88ksim -+--

L . gcc -8-- ,

028 compress -

li -&-

ijpeg -*--
perl -o---

- vortex -+--

0.26

Avg TPI (ns)

112 128

8 64 80 9
Instruction Queue Size (entries)

(a)

airshed To—
stereo —+--
radar -8--
1.4 |- appcg -x B
tomcatv &~
swim -~
1.2 | su2cor -o-- ,
hydro2d -+--
mgrid -& -
applu ~— g
I~ turb3d -&-- -
apsi -
foppp o

Avg TPI (ns)
o
Y
T

L=
]
<
L@
‘AUI
]
i
o
\
¥
1
1
i
|
%
i
i
1
i
Il

16 32 48 64 80 96 112 128
Instruction Queue Size (entries)

(b)
Figure 10: Variation of average TPI with the number of Instruction
Queue entries for (a) integer and (b) floating point benchmarks.

techniques may be applied in concert to other critical parts of
the machine (such as TLBs and branch predictors) to yield even
greater performance improvements (although the number of con-
figurations for a given structure might be limited due to larger
delays in other structures). Finally, we used a simple process-
level configuration management approach that does not exploit
the diversity within individual applications. In the next section,
we examine the potential for greater speedups by exploiting intra-
application diversity.

6 Prospects for Finer-Grained Adaptivity

Although several applications showed significant performance im-
provement with process-level adaptivity, many did not benefit as
their average requirements matched those of the conventional con-
figuration. In this section, we examine the intra-application diver-
sity of two of these applications (vortex and turb3d) to determine
if they can potentially benefit from reconfiguring during their exe-
cution. We chose these two applications as they are representative
of the diversity we have observed thus far in several other applica-
tions (although some exhibit little intra-application diversity). For
each, we compare performance snapshots of two instruction queue
configurations that collectively perform best over 90% of the time:
the 64 and 128-entry queue configurations for turb3d, and for vor-
tex, the 16 and 64-entry configurations. Specifically, we are inter-
ested in long periods of execution during which one configuration
performs best, and regular patterns that can be detected and ex-
ploited by a dynamic hardware prediction mechanism.

Figure 12 shows the average TPI for turb3d for the 64 and 128-
entry queue configurations over two snapshots of execution. Each
point in the plot represents the average TPI over an interval of 2000
instructions. Thus, Figure 12(a) shows four million instructions in
all. Such long periods of execution in which one configuration
clearly performs best are found throughout much of turb3d’s exe-
cution, making its intra-application diversity easy to exploit.

Vortex exhibits periodic behaviors like those shown in Fig-
ure 13(a), in which the best-performing configuration alternates
roughly every 15 intervals in a fairly regular fashion, indicating
that the same instruction sequences are being encountered repeat-
edly. Such regular patterns can potentially be detected and ex-
ploited by a dynamic hardware predictor.

Not all of vortex’s behavior is easy to predict, however. Fig-
ure 13(b) shows a sequence in which the best-performing config-
uration varies frequently and almost randomly. Note, however,

0.35 T T T
64 entries <— 16 entries o—

128 entries —+-- 03 64 entries —+- |

0.34

0.33

@ @
2 2
= 0.32 =
o o
= =
0.31 oy £
‘ "“““Wil [“M il
o “HH\ S | “
lilig ' I 11
L b Al N
0.29 L 19 L o L © 1 o0 1 © L o 1 © 0. L L L L L L L
10000 10200 10400 10600 10800 11000 11200 11400 11600 11800 12000 47360 47380 47400 47420 47440 47460 47480 47500
Interval (2000 Instructions) Interval (2000 Instructions)
(a) (a)
T 0.5 T
64 entries <— 16 entries <—
0.35 128 entries —+-- | 64 entries -+--
0.45 1
04 i
' ! ot
08 i 1 e R ‘
s L RIHRIE
035 ! | IR ERE T T L1417 49 4
g g E SRl R B
T T T { T 1 d 11 I &
= 025 4 = AR it b I
015 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
30000 30200 30400 30600 30800 31000 16000 16100 16200 16300 16400 16500 16600
Interval (2000 Instructions) Interval (2000 Instructions)
(b) (b)
Figure 12: Two snapshots of turb3d’s execution. In (a), the 64- Figure 13: Two snapshots of vortex’s execution. In (a), the best-
entry configuration performs about 10% better overall, while in performing configuration alternates in a regular pattern, while little

(b) the 128-entry performs about 20% better. predictability is observed in (b).

that the average performance of both configurations is about the
same over this period. In this case, it would be better to maintain
one or the other configuration over this entire period of execution
rather than pay the penalty to reconfigure for no gain. Thus, as
with value prediction, a complexity-adaptive hardware predictor
should assign a confidence level to each prediction that is made, in
order to avoid needless reconfiguration overhead.

7 Conclusions and Future Work

In this paper, we have presented Complexity-Adaptive Processors
(CAPs), anew approach to incorporating configurability into com-
modity microprocessors in an low-intrusive manner. CAPs exploit
the wire buffering methodologies being increasingly used as fea-
ture sizes decrease, to convert critical processor and cache hier-
archy hardware structures into configurable ones with little or no
cycle time impact. By employing a dynamic clock that allows each
configuration to operate at its full clock rate potential, CAPs incor-
porate a number of different IPC/clock rate design points within a
single implementation. This allows the hardware organization to
be tailored to the needs of a diverse application base, while still
maintaining the high clock rate of conventional fixed designs.

We discussed the design of two complexity-adaptive structures:
a two-level on-chip cache hierarchy and an instruction queue. Us-
ing a simple configuration management strategy in which we main-
tained the same configuration throughout a given application’s ex-
ecution, we obtained average TPI reductions of 7-9% on an appli-
cation base that was only modestly diverse. Individual applications
whose requirements were not well-matched to the best overall-
performing conventional design achieved reductions of up to 46%.

We finally explored the diversity within individual applications
and discovered that the best-performing configuration often exhib-
ited regular patterns of behavior that could potentially be exploited
by a hardware-based prediction mechanism. We also discovered
very irregular patterns suggesting that a confidence level should
be assigned to predictions to avoid unnecessary reconfiguration
overhead.

As we have explored a tiny fraction of the design space of
this idea, much work remains. We need to expand our IPC and
cycle time analysis environment and more thoroughly examine
CAP design options for caches and instruction queues, as well
as other structures such as TLBs and branch predictors, both in-
dividually and collectively. A more challenging task is to exam-
ine if complexity-adaptive techniques can be meaningfully applied
to varying issue width and register file size. Dynamic clocking
schemes need to be evaluated, and mechanisms to exploit intra-
application diversity need to be explored, including an analysis of
both hardware and software configuration management schemes.
‘We remain optimistic that applying complexity-adaptive techniques
widely throughout the processor, and exploring the design space
of this approach, will lead to individual processor designs that can
achieve excellent performance on a wide range of diverse applica-
tions.

Acknowledgements

The author wishes to thank the members of EE492 (Yehea Ismail,
Xun Liu, Radu Secareanu, Patrick Furchill, and Justin Vlietstra)
who helped flush out some of the initial ideas and developed the
cache simulation tool, and Michael Scott and Tom Leblanc of
the Computer Science department for providing the computing re-
sources for this study.

References

[1]
[2]

[3]
[4]
[5]
[6]

[7

—

[8

=

[9

—

[10]
[11]
[12]
[13]
[14]
[15]

[16]

[17]
[18]

[19]

(20]

(21]

(22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

Microprocessor Report, 11(9):23, July 14, 1997.

The national technology roadmap for semiconductors. Semiconduc-
tor Industry Association, 1997.

D. Bailey et al. The NAS parallel benchmarks. Technical Report
RNR-94-007, NASA Ames Research Center, March 1994.

H. Bakoglu and J. Meindl. Optimal interconnect circuits for VLSI.
IEEE Transactions on Computers, 32(5):903-909, May 1985.

P. Bannon. Private communication. June 1997.

W. Bowhill et al. Circuit implementation of a 300-MHz 64-bit
second-generation CMOS Alpha CPU. Digital Technical Journal,
7(1):100-118, Special Issue 1995.

D. Burger and T. Austin. The simplescalar toolset, version 2.0. Tech-
nical Report TR-97-1342, University of Wisconsin-Madison, June
1997.

M. Dean. STRIP: A self-timed RISC processor. Technical Report
CSL-TR-92-543, Stanford University, July 1992.

A. DeHon, D. Hartman, and E. Mirsky. MATRIX: A reconfigurable
computing device with configurable instruction distribution. Hot
Chips IX Symposium, August 1997.

P. Dinda et al. The CMU task parallel program suite. Technical
Report CMU-CS-94-131, Carnegie Mellon University, March 1994.
J. Edmondson et al. Internal organization of the Alpha 21164, a
300MHz 64-bit quad-issue CMOS RISC microprocessor. Digital
Technical Journal, 7(1):119-135, Special Issue 1995.

J. Fleischman. Private communication. November 1997.

C. Georgiou, T. Larsen, and E. Schenfeld. Variable chip-clocking
mechanism. U.S. Patent number 5,189,314, February 1993.

A. Kumar. The HP PA-8000 RISC CPU. IEEE Computer, 17(2):27-
32, March 1997.

G. Lesartre and D. Hunt. PA-8500: The continuing evolution of the
PA-8000 family. Proceedings of Compcon’97, 1997.

M. Lipasti and J. Shen. Exceeding the data-flow limit via value pre-
diction. Proceedings of the 29th International Symposium on Mi-
croarchitecture, pages 226-237, December 1996.

M. Lipasti and J. Shen. Superspeculative microarchitectures for be-
yond AD 2000. IEEE Computer, 30(9):59-66, September 1997.

D. Matzke. Will physical scalability sabotage performance gains?
IEEE Computer, 30(9):37-39, September 1997.

A. Merchant, B. Melamed, E. Schenfeld, and B. Sengupta. Anal-
ysis of a control mechanism for a variable speed processor. /EEE
Transactions on Computers, 45(7):793-801, July 1996.

J. Mulder, N. Quach, and M. Flynn. An area model for on-chip
memories and its application. IEEE Journal of Solid-State Circuits,
26(2):98-106, February 1991.

K. Normoyle et al. UltraSPARC-IIi: Expanding the boundaries of a
system on a chip. IEEE Micro, 18(2):14-24, March 1998.

S. Palacharla, N. Jouppi, and J. Smith. Quantifying the complexity
of superscalar processors. Technical Report TR-96-1328, University
of Wisconsin-Madison, November 1996.

S. Palacharla, N. Jouppi, and J. Smith. Complexity-effective super-
scalar processors. Proceedings of the 24th International Symposium
on Computer Architecture, pages 206-218, June 1997.

Y. Patt et al. One billion transistors, one uniprocessor, one chip.
IEEE Computer, 30(9):51-57, September 1997.

E. Rotenberg et al. Trace processors. Proceedings of the 30th Inter-
national Symposium on Microarchitecture, pages 138—148, Decem-
ber 1997.

A. Srivastava and A. Eustace. Atom: A system for building cus-
tomized program analysis tools. Proceedings of the SIGPLAN’94
Conference on Programming Language Design and Implementation,
June 1994.

D. Wall. Limits of instruction-level parallelism. Technical Report
93/6, Digital Western Research Laboratory, November 1993.

S. Wilton and N. Jouppi. An enhanced access and cycle time model
for on-chip caches. Technical Report 93/5, Digital Western Research
Laboratory, July 1994.

K. Yeager. The Mips R10000 superscalar microprocessor. [EEE
Micro, 16(2):28-41, April 1996.

