
State of the Akvario Project
Andreas Erik Hindborg, Nicklas Bo Jensen, Pascal Schleuniger and Sven Karlsson

DTU Compute
Technical University of Denmark

I. INTRODUCTION

The cost of producing a custom ASIC is ever increasing.
The prices have long since reached a point where it is not
feasible for most research groups to produce a custom ASIC.
At the same time, the number of instructions simulated per
second by software based simulators for multi-core systems
has remained constant between 1998 and 2008 [1]. Further,
as the number of simulated cores is increased, the number
of instructions executed per simulated core is decreased for
a constant overall throughput. In the last decade, researchers
have tried to utilize FPGA devices to accelerate simulation.
Mid-range FPGA devices have reached a size where 64+ cores
can be implemented or simulated in an affordable device (sub
$1000) [2]. We have developed Akvario, a toolset that helps
researchers evaluate future many-core systems by providing
easy access to the power of FPGA devices. Akvario is based
on the Tinuso processor core and other IP cores we have
developed.

Tinuso is a processor architecture that targets implementa-
tion in FPGA fabric. Tinuso-I is the first implementation of
the Tinuso architecture. It is a high performance processor
core, achieving clock rates of up to 376 MHz when synthe-
sized for modern FPGA devices [3]. Tinuso-I is smaller and
faster than other state-of-the-art processor cores that target
implementation in FPGA fabric [4]. Akvario includes a set
of tools that allow researchers and designers to create highly
customized Tinuso-based many-core systems for FPGA de-
vices. We use Akvario to construct accelerators for demanding
high-performance compute systems [5], [6]. This is possible
because the Tinuso architecture is designed with performance
in mind, and because the Tinuso architecture is highly config-
urable. We also use Akvario to construct simulation platforms
that mimic future many-core systems as known from Intel SCC
[7] and Adapteva Epiphany.

When we use Akvario as a basis for a simulator, it differs
from other FPGA based simulators such as HASim and RAMP
Gold by having a 1:1 mapping of host cycles to simulated
target cycles. This direct RTL implementation strategy makes
it difficult to change the Tinuso core to explore new micro-
architectural features. However, it is ideal for exploring higher-
level concepts such as programming models and languages
for future many-core systems. It also allows Tinuso based
systems achieve higher performance than other FPGA based
simulators. HASim is capable of simulating a 5-stage in-order
pipeline at 5.1 MIPS [8], while a Tinuso-based system can
achieve more than 300 MIPS.
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Fig. 1. The Tinuso processor core pipeline.
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Fig. 2. Tinuso cores in a mesh network.

II. STATE OF THE AKVARIO IP CORES AND TOOLS

Tinuso-I is a statically scheduled, in-order processor core
that targets high performance when synthesized for FPGA
fabric. The processor core relies on pipelined access to caches
and register files to achieve a high clock rate. See figure 1 for
reference. The deep pipeline results in 4 branch delay slots.
Tinuso-I supports predication on most instructions to be able
to place conditional code in these branch delay slots.

The instruction set for the processor core can be highly
customized. Features such as multiplier, different bit-shifters
and IEEE-754 compliant floating point unit can be enabled or
disabled when configuring the core. Further, Tinuso-I supports
a tightly integrated co-processor interface. The user can add
additional instructions or hardware blocks via this interface.

The Tinuso-I core is designed to connect to a network
interface for an on-chip network. See figure 2 for reference.
We currently support a 2D mesh network with xy routing, but
other topologies are possible.

Akvario systems are easily constructed by describing the
desired system topology with an XML-based configuration
file. A system construction tool parses the XML file and



Fig. 3. Execution times for benchmarks executed on a Tinuso processor core
and a MicroBlaze processor core.

constructs RTL code for the system. The tools are even capable
of doing a full implementation flow for specific Xilinx FPGA
devices by invoking the Xilinx Vivado tool automatically [9].

We use a custom port of the GCC compiler to compile pro-
grams for our Tinuso systems. The compiler is very efficient in
utilizing the predicated instructions in the Tinuso instruction
set to increase performance in code that contain a high amount
of branches [10].

We currently support programs written in the C language.
We use a port of the Newlib C library to provide a standard
C runtime for programs running on Tinuso systems. We
experimentally support the C++ language.

At the moment the Akvario tools support a simple message-
passing programming model (a subset of MPI), and a shared
memory programming model based on software assisted re-
lease consistency.

Akvario systems are usually considered resource con-
strained embedded systems. In order to provide access to
complex services such as file systems and process manage-
ment, we have added a system call offloading capability to the
Akvario tools. See figure 4 for reference. This technique allow
programs running on Tinuso cores to access operating system
services on a local desktop machine via an RPC mechanism
[11]. The current implementation of this mechanism relies
on the ARM Cortex A9 processor core present in the Xilinx
Zynq devices. With this offloading mechanism we have run
benchmarks from the SPEC 2006 and SPLASH2 benchmark
suites, see figure 3. We are able to show a speedup of up to
64% for Tinuso-I versus Xilinx MicroBlaze.

III. CURRENT AND FUTURE EFFORTS

We are constantly improving IP cores and tools. At the mo-
ment we are working to release the Tinuso-I RTL model and
associated tools under a permissive open source license. We
plan to expand the set of supported programming languages to
include specialized languages such as OpenMP, OpenCV and
RVC-CAL.
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Fig. 4. Tinuso provides access to operating system services via offloading.

IV. CONCLUSION

Akvario is a versatile toolbox for implementing many-core
accelerators in FPGA fabric. The tools allow researchers to
study future many-core systems and to construct accelerators
for demanding compute problems. We expect Akvario to be
released to the public domain in the near future.
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