
PyMTL and Pydgin Tutorial

Python Frameworks for Highly Productive
Computer Architecture Research

Derek Lockhart, Berkin Ilbeyi, Christopher Batten

Computer Systems Laboratory
School of Electrical and Computer Engineering

Cornell University

42nd Int’l Symp. on Computer Architecture, June 2015

⇣ Presentation
Overview

⌘ Presentation
Pydgin Intro

Hands-On
GCD Instr

Presentation
PyMTL Intro

Hands-On
Max/RegIncr

Presentation
ML Modeling

Hands-On
GCD Unit

Typical Research Methodologies: Application-Level

Register-Transfer Level

Circuits
Devices

Instruction Set Arch.

Programming Language
Algorithm

Microarchitecture

Technology

Application

Operating System

Gate Level

I General Approach
. Use real machines
. Use real machines with dynamic

instrumentation (e.g., Pin)
. Use fast instruction set simulators or

emulators (e.g., SimIt-ARM, QEMU)

I Benefits
. Fast execution enables experimenting

with large, realistic applications

I Challenges
. Difficult to explore applications for

emerging architectures which do not
exist yet

ISCA 2015 PyMTL/Pydgin Tutorial: Python Frameworks for Highly Productive Computer Architecture Research 2 / 125

⇣ Presentation
Overview

⌘ Presentation
Pydgin Intro

Hands-On
GCD Instr

Presentation
PyMTL Intro

Hands-On
Max/RegIncr

Presentation
ML Modeling

Hands-On
GCD Unit

Typical Research Methodologies: Architecture-Level

Register-Transfer Level

Circuits
Devices

Instruction Set Arch.

Programming Language
Algorithm

Microarchitecture

Technology

Application

Operating System

Gate Level

I General Approach
. Use standard benchmark suite (e.g.,

Splash2, PARSEC, Rodina)
. Modify standard cycle-level C/C++

simulator (e.g., SESC, Simics, gem5)
. Use standard high-level physical modeling

tool (e.g., CACTI, Wattch, Orion, McPAT)

I Benefits
. More accurate than ISA simulation
. Faster and more flexible design-space

exploration than lower-level models

I Challenges
. Experimenting with large, realistic apps
. Physical modeling of radically new arch

ISCA 2015 PyMTL/Pydgin Tutorial: Python Frameworks for Highly Productive Computer Architecture Research 3 / 125

⇣ Presentation
Overview

⌘ Presentation
Pydgin Intro

Hands-On
GCD Instr

Presentation
PyMTL Intro

Hands-On
Max/RegIncr

Presentation
ML Modeling

Hands-On
GCD Unit

Typical Research Methodologies: VLSI-Level

Register-Transfer Level

Circuits
Devices

Instruction Set Arch.

Programming Language
Algorithm

Microarchitecture

Technology

Application

Operating System

Gate Level

I General Approach
. Possibly start with open-source IP (e.g.,

FabScalar, OpenRISC/SPARC, NetMaker)
. Write small microbenchmarks or

embedded applications
. Implement SystemVerilog/Verilog/VHDL

RTL (or Bluespec GAA) model of design
. Use standard commercial ASIC CAD tools

to estimate cycle time, area, energy

I Benefits
. More accurate physical characterization
. Increases credibility of design

I Challenges
. Only small apps possible due to slow sims
. Cumbersome design-space exploration

ISCA 2015 PyMTL/Pydgin Tutorial: Python Frameworks for Highly Productive Computer Architecture Research 4 / 125

⇣ Presentation
Overview

⌘ Presentation
Pydgin Intro

Hands-On
GCD Instr

Presentation
PyMTL Intro

Hands-On
Max/RegIncr

Presentation
ML Modeling

Hands-On
GCD Unit

Vertically-Integrated Modeling Environment

Register-Transfer Level

Circuits
Devices

Instruction Set Arch.

Programming Language
Algorithm

Microarchitecture

Technology

Application

Operating System

Gate Level

App

Arch

VLSI

I Unified package with integrated
applications, test programs,
cross compilers, proxy kernels,
full OS kernels, ISA emulators,
microarchitectural models, RTL
models, ASIC/FPGA CAD
scripts, and unit tests

I Support for rapid/iterative
design-space exploration across
abstraction layers especially for
emerging applications and
radically new architectures

ISCA 2015 PyMTL/Pydgin Tutorial: Python Frameworks for Highly Productive Computer Architecture Research 5 / 125

⇣ Presentation
Overview

⌘ Presentation
Pydgin Intro

Hands-On
GCD Instr

Presentation
PyMTL Intro

Hands-On
Max/RegIncr

Presentation
ML Modeling

Hands-On
GCD Unit

Highly Productive Modeling Environment

Change Simulator
Configuration

Time

Sim

Modify Simulator
Slightly Sim

Modify Simulator
Significantly Sim

+ Write
Emerging Apps

+ Implement
RTL Models

Sim

Highly Productive
Modeling Env Sim

I Choose language at the
application, architecture, and
VLSI level to emphasize
productivity over performance

I Possibly use a single language
at all abstraction levels

ISCA 2015 PyMTL/Pydgin Tutorial: Python Frameworks for Highly Productive Computer Architecture Research 6 / 125

⇣ Presentation
Overview

⌘ Presentation
Pydgin Intro

Hands-On
GCD Instr

Presentation
PyMTL Intro

Hands-On
Max/RegIncr

Presentation
ML Modeling

Hands-On
GCD Unit

Previous Vertically Integrated Methodology

Cross
Compiler

Native
Compiler

C++
ISA Sim

Cross BinaryNative Binary

C++ Application Kernel

Software Toolflow

C++
Microarch Sim

Verilog RTL

Gate-Level Model

Verilog RTL
Simulator

Verilog GL
Simulator

Switching Activity

Power
Analysis

Hardware Toolflow

Layout

Synthesis
Place&Route

Results

Area
&

Cycle Time

Cycle Count

Energy

Software and hardware toolflows are
driven by a combination of

Makefiles and Autoconf

ISCA 2015 PyMTL/Pydgin Tutorial: Python Frameworks for Highly Productive Computer Architecture Research 7 / 125

⇣ Presentation
Overview

⌘ Presentation
Pydgin Intro

Hands-On
GCD Instr

Presentation
PyMTL Intro

Hands-On
Max/RegIncr

Presentation
ML Modeling

Hands-On
GCD Unit

Python-Based Vertically Integrated Methodology

Cross
Compiler

Native
Compiler

C++
ISA Sim

Cross BinaryNative Binary

C++ Application Kernel

Software Toolflow

C++
Microarch Sim

Verilog RTL

Gate-Level Model

Verilog RTL
Simulator

Verilog GL
Simulator

Switching Activity

Power
Analysis

Hardware Toolflow

Layout

Synthesis
Place&Route

Results

Area
&

Cycle Time

Cycle Count

Energy

Software and hardware toolflows are
driven by a combination of

Makefiles and Autoconf

Pydgin
ISA Sim

PyMTL
FL & CL Sim

PyMTL
RTL Sim

PyMTL RTL

ISCA 2015 PyMTL/Pydgin Tutorial: Python Frameworks for Highly Productive Computer Architecture Research 8 / 125

⇣ Presentation
Overview

⌘ Presentation
Pydgin Intro

Hands-On
GCD Instr

Presentation
PyMTL Intro

Hands-On
Max/RegIncr

Presentation
ML Modeling

Hands-On
GCD Unit

Why Python?

I Python is well regarded as a highly productive
language with lightweight, pseudocode-like syntax

I Python supports modern language features to
enable rapid, agile development (dynamic typing,
reflection, metaprogramming)

I Python has a large and active developer and support community

I Python includes extensive standard and third-party libraries

I Python enables embedded domain-specific languages

I Python facilitates engaging application-level researchers

I Python includes built-in support for integrating with C/C++

I Python performance is improving with advanced JIT compilation

ISCA 2015 PyMTL/Pydgin Tutorial: Python Frameworks for Highly Productive Computer Architecture Research 9 / 125

⇣ Presentation
Overview

⌘ Presentation
Pydgin Intro

Hands-On
GCD Instr

Presentation
PyMTL Intro

Hands-On
Max/RegIncr

Presentation
ML Modeling

Hands-On
GCD Unit

What is PyMTL?What&is&PyMTL?&

!
• A!Python!EDSL!for!concurrentNstructural!hardware!modeling!
• A!Python!API!for!analyzing!models!described!in!the!PyMTL!EDSL!!
• A!Python!tool!for!simulaBng!PyMTL!FL,!CL,!and!RTL!models!
• A!Python!tool!for!translaBng!PyMTL!RTL!models!into!Verilog!
• A!Python!tesBng!framework!for!model!validaBon!
!

!
API!

SimulaBon!
Tool!

TranslaBon!
Tool!

Model!EDSL!

TesBng!Framework!

ISCA 2015 PyMTL/Pydgin Tutorial: Python Frameworks for Highly Productive Computer Architecture Research 10 / 125

⇣ Presentation
Overview

⌘ Presentation
Pydgin Intro

Hands-On
GCD Instr

Presentation
PyMTL Intro

Hands-On
Max/RegIncr

Presentation
ML Modeling

Hands-On
GCD Unit

What is PyMTL for and not (currently) for?

I PyMTL is for ...
. Taking an accelerator design from concept to implementation
. Construction of highly-parameterizable RTL chip generators
. Rapid design, testing, and exploration of hardware mechanisms
. Quickly prototyping models and interfacing them with GEM5
. Interfacing models with imported Verilog

I PyMTL is not (currently) for ...
. Python high-level synthesis
. Many-core simulations with hundreds of cores
. Full-system simulation with real OS support
. Users needing a complex OOO processor model “out of the box”
. Users needing an ARM/x86 processor model “out of the box”
. Users needing a mature modeling framework that will not change

ISCA 2015 PyMTL/Pydgin Tutorial: Python Frameworks for Highly Productive Computer Architecture Research 11 / 125

⇣ Presentation
Overview

⌘ Presentation
Pydgin Intro

Hands-On
GCD Instr

Presentation
PyMTL Intro

Hands-On
Max/RegIncr

Presentation
ML Modeling

Hands-On
GCD Unit

What is Pydgin?

Pydgin is a Python-based framework for productively
generating very fast instruction-set simulators

What&is&Pydgin?&

Pydgin!is!a!PythonNbased!framework!for!
producBvely!generaBng!very!fast!

instrucBon!set!simulators!!

RPython!
TranslaBon!
Toolchain!

InstrucBon!Set!
Interpreter!in!C!

with!DBT!

Architectural!
DescripBon!
Language!

Pydgin

•  Flexible,!producBve,!pseudocodeNlike!ADL!syntax!
•  ADL!embedded!in!a!popular,!generalNpurpose!language!
•  TracingNJIT!generator!applies!across!many!different!ISAs!
•  Leverages!advancements!from!dynamicNlanguage!JIT!research!
!

I Flexible, productive, pseudocode-like ADL syntax
I ADL embedded in a popular, general-purpose language
I Tracing-JIT generator applies across many different ISAs
I Leverages advancements from dynamic-language JIT research
I Capable of simulating RISC instruction sets at 100’s of MIPS

ISCA 2015 PyMTL/Pydgin Tutorial: Python Frameworks for Highly Productive Computer Architecture Research 12 / 125

⇣ Presentation
Overview

⌘ Presentation
Pydgin Intro

Hands-On
GCD Instr

Presentation
PyMTL Intro

Hands-On
Max/RegIncr

Presentation
ML Modeling

Hands-On
GCD Unit

What is Pydgin for and not (currently) for?

I Pydgin is for ...
. Building your own very fast instruction set simulators
. Experimenting with emerging research instruction sets
. Easily instrumenting an instruction set simulator for early analysis

I Pydgin is not (currently) for ...
. Multi-core simulations (planned for the near future)
. Full-system simulation
. Users needing an ARMv8/x86 simulator “out of the box”
. Users needing a mature modeling framework that will not change

ISCA 2015 PyMTL/Pydgin Tutorial: Python Frameworks for Highly Productive Computer Architecture Research 13 / 125

⇣ Presentation
Overview

⌘ Presentation
Pydgin Intro

Hands-On
GCD Instr

Presentation
PyMTL Intro

Hands-On
Max/RegIncr

Presentation
ML Modeling

Hands-On
GCD Unit

PyMTL/Pydgin in Practice

I PyMTL/Pydgin in Research
. PyMTL CL modeling used in recent XLOOPS accelerator project
. PyMTL/Pydgin modeling used in current HLS accelerator work
. PyMTL/Pydgin modeling used in current data-parallel accelerator work
. Pydgin used in porting PBBS to our PARC instruction set

I PyMTL/Pydgin in Teaching
. Graduate-Level Complex Digital ASIC Design Course
. Undergraduate-Level Computer Architecture Course

ISCA 2015 PyMTL/Pydgin Tutorial: Python Frameworks for Highly Productive Computer Architecture Research 14 / 125

⇣ Presentation
Overview

⌘ Presentation
Pydgin Intro

Hands-On
GCD Instr

Presentation
PyMTL Intro

Hands-On
Max/RegIncr

Presentation
ML Modeling

Hands-On
GCD Unit

PyMTL
PyMTL: A Unified Framework for
Vertically Integrated Computer

Architecture Research

[MICRO 2014]
https://github.com/cornell-brg/pymtl

Pydgin
Pydgin: Generating Fast

Instruction Set Simulators from
Simple Architecture Descriptions
with Meta-Tracing JIT Compilers

[ISPASS 2015]
https://github.com/cornell-brg/pydgin

ISCA 2015 PyMTL/Pydgin Tutorial: Python Frameworks for Highly Productive Computer Architecture Research 15 / 125

⇣ Presentation
Overview

⌘ Presentation
Pydgin Intro

Hands-On
GCD Instr

Presentation
PyMTL Intro

Hands-On
Max/RegIncr

Presentation
ML Modeling

Hands-On
GCD Unit

PyMTL/Pydgin Project Sponsors

Funding partially provided by
the National Science

Foundation through NSF
CAREER Award #1149464

Funding partially provided by
the Defense Advanced

Research Projects Agency
through a DARPA Young

Faculty Award

ISCA 2015 PyMTL/Pydgin Tutorial: Python Frameworks for Highly Productive Computer Architecture Research 16 / 125

⇣ Presentation
Overview

⌘ Presentation
Pydgin Intro

Hands-On
GCD Instr

Presentation
PyMTL Intro

Hands-On
Max/RegIncr

Presentation
ML Modeling

Hands-On
GCD Unit

PyMTL/Pydgin Tutorial Organizers

Derek Lockhart
I Nth-Year Ph.D. Candidate, ECE, Cornell University
I Graduating this summer and heading to Google Platforms
I Research Interests: Hardware design methodologies,

computer architecture, VLSI design
I Lead researcher/developer for PyMTL framework
I Co-Lead researcher/developer for Pydgin framework

Berkin Ilbeyi
I 3nd-Year Ph.D. Candidate, ECE, Cornell University
I Research Interests: Computer architecture, just-in-time

compilation, novel hardware/software interfaces
I First “real” user of PyMTL framework for XLOOPS project
I Co-Lead researcher/developer for Pydgin framework

ISCA 2015 PyMTL/Pydgin Tutorial: Python Frameworks for Highly Productive Computer Architecture Research 17 / 125

⇣ Presentation
Overview

⌘ Presentation
Pydgin Intro

Hands-On
GCD Instr

Presentation
PyMTL Intro

Hands-On
Max/RegIncr

Presentation
ML Modeling

Hands-On
GCD Unit

PyMTL/Pydgin Tutorial Schedule

8:30am – 8:50am Virtual Machine Installation and Setup

8:50am – 9:00am Presentation: PyMTL/Pydgin Tutorial Overview

9:00am – 9:10am Presentation: Introduction to Pydgin

9:10am – 10:00am Hands-On: Adding a GCD Instruction using Pydgin

10:00am – 10:10am Presentation: Introduction to PyMTL

10:10am – 11:00am Hands-On: PyMTL Basics with Max/RegIncr

11:00am – 11:30am Coffee Break

11:30am – 11:40am Presentation: Multi-Level Modeling with PyMTL

11:40am – 12:30pm Hands-On: FL, CL, RTL Modeling of a GCD Unit

ISCA 2015 PyMTL/Pydgin Tutorial: Python Frameworks for Highly Productive Computer Architecture Research 18 / 125

