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I General Approach
. Use real machines
. Use real machines with dynamic

instrumentation (e.g., Pin)
. Use fast instruction set simulators or

emulators (e.g., SimIt-ARM, QEMU)

I Benefits
. Fast execution enables experimenting

with large, realistic applications

I Challenges
. Difficult to explore applications for

emerging architectures which do not
exist yet
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I General Approach
. Use standard benchmark suite (e.g.,

Splash2, PARSEC, Rodina)
. Modify standard cycle-level C/C++

simulator (e.g., SESC, Simics, gem5)
. Use standard high-level physical modeling

tool (e.g., CACTI, Wattch, Orion, McPAT)

I Benefits
. More accurate than ISA simulation
. Faster and more flexible design-space

exploration than lower-level models

I Challenges
. Experimenting with large, realistic apps
. Physical modeling of radically new arch
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I General Approach
. Possibly start with open-source IP (e.g.,

FabScalar, OpenRISC/SPARC, NetMaker)
. Write small microbenchmarks or

embedded applications
. Implement SystemVerilog/Verilog/VHDL

RTL (or Bluespec GAA) model of design
. Use standard commercial ASIC CAD tools

to estimate cycle time, area, energy

I Benefits
. More accurate physical characterization
. Increases credibility of design

I Challenges
. Only small apps possible due to slow sims
. Cumbersome design-space exploration
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I Unified package with integrated
applications, test programs,
cross compilers, proxy kernels,
full OS kernels, ISA emulators,
microarchitectural models, RTL
models, ASIC/FPGA CAD
scripts, and unit tests

I Support for rapid/iterative
design-space exploration across
abstraction layers especially for
emerging applications and
radically new architectures
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I Choose language at the
application, architecture, and
VLSI level to emphasize
productivity over performance

I Possibly use a single language
at all abstraction levels
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Software and hardware toolflows are
driven by a combination of

Makefiles and Autoconf
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Why Python?

I Python is well regarded as a highly productive
language with lightweight, pseudocode-like syntax

I Python supports modern language features to
enable rapid, agile development (dynamic typing,
reflection, metaprogramming)

I Python has a large and active developer and support community

I Python includes extensive standard and third-party libraries

I Python enables embedded domain-specific languages

I Python facilitates engaging application-level researchers

I Python includes built-in support for integrating with C/C++

I Python performance is improving with advanced JIT compilation
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What is PyMTL?What&is&PyMTL?&

!
• A!Python!EDSL!for!concurrentNstructural!hardware!modeling!
• A!Python!API!for!analyzing!models!described!in!the!PyMTL!EDSL!!
• A!Python!tool!for!simulaBng!PyMTL!FL,!CL,!and!RTL!models!
• A!Python!tool!for!translaBng!PyMTL!RTL!models!into!Verilog!
• A!Python!tesBng!framework!for!model!validaBon!
!

!
API!

SimulaBon!
Tool!

TranslaBon!
Tool!

Model!EDSL!

TesBng!Framework!
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What is PyMTL for and not (currently) for?

I PyMTL is for ...
. Taking an accelerator design from concept to implementation
. Construction of highly-parameterizable RTL chip generators
. Rapid design, testing, and exploration of hardware mechanisms
. Quickly prototyping models and interfacing them with GEM5
. Interfacing models with imported Verilog

I PyMTL is not (currently) for ...
. Python high-level synthesis
. Many-core simulations with hundreds of cores
. Full-system simulation with real OS support
. Users needing a complex OOO processor model “out of the box”
. Users needing an ARM/x86 processor model “out of the box”
. Users needing a mature modeling framework that will not change
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What is Pydgin?

Pydgin is a Python-based framework for productively
generating very fast instruction-set simulators

What&is&Pydgin?&

Pydgin!is!a!PythonNbased!framework!for!
producBvely!generaBng!very!fast!

instrucBon!set!simulators!!

RPython!
TranslaBon!
Toolchain!

InstrucBon!Set!
Interpreter!in!C!

with!DBT!

Architectural!
DescripBon!
Language!

Pydgin

•  Flexible,!producBve,!pseudocodeNlike!ADL!syntax!
•  ADL!embedded!in!a!popular,!generalNpurpose!language!
•  TracingNJIT!generator!applies!across!many!different!ISAs!
•  Leverages!advancements!from!dynamicNlanguage!JIT!research!
!

I Flexible, productive, pseudocode-like ADL syntax
I ADL embedded in a popular, general-purpose language
I Tracing-JIT generator applies across many different ISAs
I Leverages advancements from dynamic-language JIT research
I Capable of simulating RISC instruction sets at 100’s of MIPS
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What is Pydgin for and not (currently) for?

I Pydgin is for ...
. Building your own very fast instruction set simulators
. Experimenting with emerging research instruction sets
. Easily instrumenting an instruction set simulator for early analysis

I Pydgin is not (currently) for ...
. Multi-core simulations (planned for the near future)
. Full-system simulation
. Users needing an ARMv8/x86 simulator “out of the box”
. Users needing a mature modeling framework that will not change
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PyMTL/Pydgin in Practice

I PyMTL/Pydgin in Research
. PyMTL CL modeling used in recent XLOOPS accelerator project
. PyMTL/Pydgin modeling used in current HLS accelerator work
. PyMTL/Pydgin modeling used in current data-parallel accelerator work
. Pydgin used in porting PBBS to our PARC instruction set

I PyMTL/Pydgin in Teaching
. Graduate-Level Complex Digital ASIC Design Course
. Undergraduate-Level Computer Architecture Course
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PyMTL
PyMTL: A Unified Framework for
Vertically Integrated Computer

Architecture Research

[ MICRO 2014 ]
https://github.com/cornell-brg/pymtl

Pydgin
Pydgin: Generating Fast

Instruction Set Simulators from
Simple Architecture Descriptions
with Meta-Tracing JIT Compilers

[ ISPASS 2015 ]
https://github.com/cornell-brg/pydgin
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PyMTL/Pydgin Project Sponsors

Funding partially provided by
the National Science

Foundation through NSF
CAREER Award #1149464

Funding partially provided by
the Defense Advanced

Research Projects Agency
through a DARPA Young

Faculty Award
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PyMTL/Pydgin Tutorial Organizers

Derek Lockhart
I Nth-Year Ph.D. Candidate, ECE, Cornell University
I Graduating this summer and heading to Google Platforms
I Research Interests: Hardware design methodologies,

computer architecture, VLSI design
I Lead researcher/developer for PyMTL framework
I Co-Lead researcher/developer for Pydgin framework

Berkin Ilbeyi
I 3nd-Year Ph.D. Candidate, ECE, Cornell University
I Research Interests: Computer architecture, just-in-time

compilation, novel hardware/software interfaces
I First “real” user of PyMTL framework for XLOOPS project
I Co-Lead researcher/developer for Pydgin framework
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PyMTL/Pydgin Tutorial Schedule

8:30am – 8:50am Virtual Machine Installation and Setup

8:50am – 9:00am Presentation: PyMTL/Pydgin Tutorial Overview

9:00am – 9:10am Presentation: Introduction to Pydgin

9:10am – 10:00am Hands-On: Adding a GCD Instruction using Pydgin

10:00am – 10:10am Presentation: Introduction to PyMTL

10:10am – 11:00am Hands-On: PyMTL Basics with Max/RegIncr

11:00am – 11:30am Coffee Break

11:30am – 11:40am Presentation: Multi-Level Modeling with PyMTL

11:40am – 12:30pm Hands-On: FL, CL, RTL Modeling of a GCD Unit

ISCA 2015 PyMTL/Pydgin Tutorial: Python Frameworks for Highly Productive Computer Architecture Research 18 / 125


