
ENGRG 1060 Explorations in Engineering, Summer 2013
Lab Notes: Computer Engineering – Software Perspective

Prof. Christopher Batten
School of Electrical and Computer Engineering

Cornell University

The field of computer engineering is at the interface between hardware and software and seeks to
balance the tension between application requirements and technology constraints. In an earlier, you
explored the field of computer engineering from a hardware perspective by gradually building a
simple binary adder. In this lab, you will explore the field of computer engineering from a software
perspective by gradually building a mobile robot control application. These lab notes provide a brief
survey of background information relevant to understanding the purpose and context for the lab.

As illustrated in Figure 1, computer systems can be viewed as a stack of abstraction and implementa-
tion layers from applications at the highest layer to technology at the lowest layer. In these lab notes
we will briefly discuss the application, algorithm, programming language, operating system, and
instruction set layers as they relate to our mobile robot control application. In the actual lab session,
you will have an opportunity to put what you have learned into practice. We will focus on some
layers more than others, but by the end of this lab you should have a good understanding of how
computer engineers can leverage these layers to design software for future computing systems.

1. Application: Mobile Robot Control

Our target application is to build a mobile robot which can quickly and autonomously navigate a rel-
atively well-known environment to find a specific target. This kind of autonomous mobile robot con-
trol is becoming increasingly common in a variety of contexts including landmine detection, plane-
tary exploration, and underwater surveying. Figure 2 shows the specific environment that our robots
will be navigating in this lab. The environment is 4’×3’ with light-colored plywood floors and 6” tall

Application

Algorithm

Programming Language

Instruction Set Architecture

Microarchitecture

Register-Transfer Level

Gate Level

Circuits

Devices

Technology

C
om

p
u

te
r

E
n

g
in

ee
ri

n
g

Mobile Robot Control

Finite-State Machine

Arduino Sketches

Arduino Machine
Instructions

Operating System

C
U

R
IE

 L
ab

 2

Ripple Carry Adder

NOT, AND, OR, XOR

Resistors, LEDs,
Transistors

C
U

R
IE

 L
ab

 1

Inverter

Figure 1: Computer Systems Stack

1

ENGRG 1060, Summer 2013 Lab Notes: Computer Engineering – Software Perspective

walls. Although you can assume that the robots start in the indicated quadrant, you cannot rely on
the robot starting in a specific location or with a specific orientation. The target for the lab will be a
12”×12” black square on the floor in the indicated location.

At the highest level, a mobile robot control application uses sensors to observe the environment
and actuators to interact with the environment (see Figure 3). In this lab, we will use a variety of
sensors including mechanical bump switches, analog grayscale sensors, and infrared range sensors.
The primary actuators will be the two drive motors which enable the robot to move around in its
environment. There are two primary classes of controllers: an open loop controller relies primarily
on predetermined information about its environment instead of using sensors; while a closed loop
controller continually interprets sensor data to make decisions on how to use its actuators and to
observe whether or not the actuators are indeed having the desired effect. For example, an open
loop controller might have the robot move in a predetermined pattern to move around obstacles,
but if the robot accidentally bumped into an obstacle it would be stuck. In contrast, a closed loop
controller would use sensors to determine whether or not the robot has accidentally bumped into
an obstacle and if so work to navigate around the obstacle. Closed loop controllers are much more
robust since sensors and actuators are far from perfect: sensors are noisy, actuators are inaccurate,
and both can sometimes fail. In this lab, you must use a closed loop controller since you do not know
the initial location and orientation of your robot.

Figures 4–6 illustrate the mobile robotic platform we will be using in this lab in more detail. There
are two mechanical bump switches mounted on the front of the robot to help the robot detect obsta-
cles, and there is an analog grayscale sensor on the bottom of the robot to help the robot detect the
target. An infrared range sensor is mounted on the robot, although this is only used in the optional
extensions at the end of the lab. There is a stack of three circuit boards on the top of the robot. The
lowest board is an Arduino board which includes a small computing system called a microcontroller.
The middle board is a motor-driver board which helps the Arduino control the drive motors. The
top board is the prototyping board which has two LEDs, a button, a potentiometer, and space for
a small solderless breadboard. The solderless breadboard is used for connecting the sensor cables
to the robot. Figure 6 illustrates the various pins and components on the prototyping board. You
should avoid using pins which are shaded in the figure since these are either not relevant to the lab,
or are already in use internally. You will notice that several other pins are already wired up for you.

The robot has two separate battery packs: the single 9V battery powers the stack of circuit boards,
while the five AA batteries power the drive motors. To power the circuit boards you need to insert

Robot starts
in this quadrant

12"x12"
Target

Robot wanders environment
searching for target

Figure 2: Environment for Mobile Robot

Mechanical
Bump Switches

Analog Grayscale
Sensor

Infared Range
Sensor

Button
Potentiometer

LEDs
Serial Monitor

Drive Motors

Sensors

Other Inputs Other Outputs

Actuators

Mobile
Robot

Figure 3: Sensors and Actuators

2

ENGRG 1060, Summer 2013 Lab Notes: Computer Engineering – Software Perspective

the barrel plug connector into the Arduino board. To power the drive motors you need to flip the
drive motor switch on the top of the robot into the ON position. We have included a wooden block
which the robot can sit on; this is useful for testing so that you can experiment with controlling the
drive motors and the analog grayscale sensor without having the robot actually move. Please note
that if at anytime you need to immediately stop the robot from moving simply flip the drive motor
switch into the OFF position!

Stack of Three
Printed Circuit

Boards

Drive Motors Power Switch

Infrared Range Sensor

Mechanical Bump Switches

USB
Connector

9V Battery
Cable

Figure 4: Top-View of Mobile Robotic Platform

Prototyping Board

Motor Driver Board

Arduino Board

AA Battery Pack

Drive Motors
Power Switch

9V Battery Pack in Back

Analog Grayscale Sensor
on Bottom of Robot

Caster

Drive
Wheel

Drive
Wheel

Mechanical Bump Switches

Infrared Range Sensor

Figure 5: Front-View of Mobile Robotic Platform

A
n

al
og

 P
in

s
P

w
r/

G
n

d

D
ig

it
al

 P
in

s
D

ig
it

al
 P

in
s

P
ot

L
E

D
2

L
E

D
1

B
u

tt
on

A5
A4
A3
A2
A1
A0

Ground
Ground
5V

Power/Ground

G
ro

u
n

d
G

ro
u

n
d

Reset
Button

LED2

Poten-
tiometer

LED1

Button

5V 5V 5V

D0
D1
D2
D3
D4
D5
D6
D7

D8
D9

D10
D11
D12
D13

Ground

Figure 6: Prototyping Board

3

ENGRG 1060, Summer 2013 Lab Notes: Computer Engineering – Software Perspective

FWD
State

REV
State

ROT
State

bumped

not bumped
and no target

TGT
State

STOP
State

found
target

r seconds n seconds

t seconds

Figure 7: Finite-State Machine Algorithm for Wander-to-Target Behavior

2. Algorithm: Finite-State Machines

At the application level, we have specified the high-level goal of controlling a mobile robot to navi-
gate an environment in search of a target and we have outlined more details on the specific environ-
ment, target, and mobile robotic platform. We now need to refine this high-level description into an
actual algorithm. An algorithm is a step-by-step procedure for implementing the desired application.
There are many ways to represent algorithms, but for this lab we will use a specific representation
known as a finite-state machine (FSM) which uses a set of states and state transitions to concretely
express an algorithm. For our mobile robot control application, the robot will set actuators based on
its current state and use the sensor inputs to determine when to transition to a new state.

Figure 7 illustrates the five-state FSM we will be using in this lab. The robot starts in the FWD state
where it simply moves forward. The robot remains in the FWD state until either it senses an obstacle
using its mechanical bump switches or it senses the target using its analog grayscale sensor. If the
robot senses an obstacle, it transitions into the REV state where it will move in reverse for a certain
fixed amount of time. Once the robot has backed away from the obstacle, it then transitions into
the ROT state where it rotates in place for a fixed amount of time. Finally, the robot returns to the
FWD state to begin exploring in a new direction. If the robot senses the target, it transitions into the
TGT state where it spins in a circle to indicate that it has successfully found the target. After a fixed
amount of time the robot transitions into the STOP state where it remains until the algorithm is reset.

3. Programming Language and Operating System: Arduino Sketches

Now that we have refined our application into an algorithm, we can implement this algorithm as a
program in a specific programming language. There are many programming languages each with
different advantages and disadvantages, but for this lab we will use a C-like language that is pro-
vided as part of the Arduino programming framework. Figure 8 illustrates an example Arduino
program which adds two numbers together and displays the result on the computer attached to the
Arduino.

by blinking an LED n times where n is the sum. Note that in the Arduino documentation, an Arduino
program is often called a “sketch”. In the lab, you will gradually develop a more complicated pro-
gram which implements the mobile robot control application using a finite-state-machine algorithm.

A program consists of a sequence of statements; these statements are executed one at a time by
the microcontroller to ultimately execute the program. Note that comments start with two forward
slashes (i.e., //) and are ignored by the Arduino. You can feel free to exclude them although com-

4

ENGRG 1060, Summer 2013 Lab Notes: Computer Engineering – Software Perspective

1 // Global constants for pin assignments
2

3 int pin_led1 = 4;
4

5 // The setup routine runs once when you press reset
6

7 void setup() {
8 Serial.begin(9600); // Setup the serial terminal
9 pinMode(pin_led1, OUTPUT); // Configure pin_led1 as digital output

10 }
11

12 // Global variables
13

14 short input_a = 2;
15 short input_b = 2;
16 short sum = 0;
17

18 // The loop routine runs over and over again
19

20 void loop() {
21

22 // Do the addition
23 sum = input_a + input_b;
24

25 // Print the result to the serial monitor
26 Serial.println(sum);
27

28 // Blink LED sum times
29 for (int i = 0; i < sum; i++) {
30 digitalWrite(pin_led1, HIGH); // Turn on the LED
31 delay(500); // Wait 0.5 seconds
32 digitalWrite(pin_led1, LOW); // Turn off the LED
33 delay(500); // Wait 0.5 seconds
34 }
35

36 // Wait four seconds
37 delay(4000);
38 }

Figure 8: Example Arduino Program

ments are important part of effective software engineering. An Arduino program can be divided
into four sections. The first section (Lines 1–3) is where we create global names for pin assignments.
The second section (Lines 5–10) is the setup routine. The statements in the setup routine execute
only once at the very beginning of the program. The third section (Lines 12–16) is where we define
global variables. We can think of a variable as a named “box” where we can store values. So in this
example we have three “boxes” named input_a, input_b, and sum. Variables also have types which
indicate what kind of values can be stored in the box; and in this case the type of all three global
variables is short. The type int means the variable can store integer values and will probably be the
most common type you use in your programs. The fourth and final section (Lines 18–38) is the loop
routine. The statements in the loop routine execute repeatedly over and over again. Throughout
this lab, we will provide you the necessary code for the first two sections; you will be responsible for
focusing on the loop routine and possibly adding global variables where necessary.

The statement on Line 3 is a variable assignment. It specifies that the variable named pin_led1
should be assigned the value 4. From then on, whenever we use the name pin_led1 it will be inter-
preted as the value 4. Effectively, what we are saying that LED1 on the prototyping board is wired
up to digital input 4 on the Arduino board.

5

ENGRG 1060, Summer 2013 Lab Notes: Computer Engineering – Software Perspective

The statement on Line 9 is a call to a routine which tells the Arduino to setup the serial monitor on
the host computer attached to the Arduino through a USB cable. We can use the serial monitor to
view results sent back from the Arduino. The statement on Line 10 tells the Arduino that pin number
pin_led1 (i.e., pin number 4) should be configured as a digital output pin.

Line 23 does the actual addition, and Line 26 uses a routine to send the sum back to the host com-
puter. Lines 28–34 use a for loop to blink an LED sum times. The statement on Line 30 is a call
to a routine which tells the Arduino microcontroller to write a logic low value to the pin number
pin_led1. The statement on Line 31 is a call to a routine which tells the Arduino microcontroller to
wait for the given number of milliseconds before continuing to the next statement.

Normally, a program interfaces with the hardware through the operating system; the operating sys-
tem acts as a master referee which controls which program can access which hardware at which time.
The Arduino microcontroller is so simple that it actually does not have a real operating system.

4. Instruction Set Architecture: Arduino Machine Instructions

Processors cannot directly execute the sequence of high-level statements which make up the program
in the previous section. Instead, processors execute a sequence of very simple machine instructions.
Figure 9 illustrates a very simple architecture with a processor to compute on data and two kinds
of memory to store data: main memory is slow but can store a large amount of data, while registers
are fast but can only store a small amount od data. This simple architecture supports three kinds
of machine instructions: load instructions move values from memory into registers; store instructions
move values from registers into memory; and arithmetic instructions perform simple arithmetic on
values stored in registers.

We use a special piece of software called a compiler to transform the sequence of high-level statements
in Figure 8 into a sequence of machine instructions the processor can understand. The Arduino pro-
gramming framework provides a convenient graphical user interface to write and compile Arduino
programs and then upload them to the Arduino-based mobile robotic platform. Figure 11 illustrates
the Arduino programming framework’s graphical user interface which includes a series of icons on
the toolbar. You will primarily be using the first two icons. The checkmark icon is used to compile
your program into machine instructions and the right-arrow icon is used to upload these machine
instructions to the robot.

Figure 10 shows the actual machine instructions generated by the compiler for Line 21 in Figure 8.
There are four machine instructions: the first two machine instructions load values from main mem-
ory into registers, the third machine instruction adds these two values together, and the final machine
instruction stores the sum back out to main memory. The processor would likely use a ripple-carry
adder similar to the one you developed in Lab 1 to implement the add machine instruction.

6

ENGRG 1060, Summer 2013 Lab Notes: Computer Engineering – Software Perspective

Main
Memory

Registers

Load/Store
Instructions

Arithmetic
Instructions

Figure 9: Simple Architecture

1 ...
2 00000100 <loop>:
3 100: push r28
4 102: push r29
5

6 # load two values from main memory into two registers
7 104: lds r24, 0x0103
8 108: lds r25, 0x0102
9

10 # do the actual addition
11 10c: add r24, r25
12

13 # store the sum from a register back into main memory
14 10e: sts 0x0104, r24
15 ...

Figure 10: Machine Instructions for Line 21 in Figure 8

Toolbar

Compile to instructions

Program code

Extra log information

Upload to robot

New program

Open program

Save program

Open serial monitor

Compile and upload status

Figure 11: Arduino Programming Framework

7

