CURIE Academy 2021 Design Project: Computing at the Edge

Christopher Batten School of Electrical and Computer Engineering Cornell University

https://www.csl.cornell.edu/curie2021

Computer Engineering		ng Th	The Internet of Things		CURIE Design Project	
11:45	(11:00-11:55) <u>Zoom</u>	Icebreaker (11:45) Zoom	Icebreaker (11:45) Zoom	(11:45) <u>Zoom</u>	Icebreaker (11:45) Zoom	
12:00- 12:40	ORIE Banerjee Zoom	CS Zoom	Eield Session EAS Prof. Katie Keranen Zoom	Eield Session CEE McLaskey Zoom	Eield Session AEP Kourkoutis Zoom	
5 min	Break	Break	Break	Break	Break	
	Design Project	Design Project	Design Project		Design Project	
12:45- 3:45	Electrical and Computer EngineeringBattenBattenBattenBattenZoomZoomZoomZoom					
30 min	Break	Break	Break	Break	Break	
4:15- 4:55	CBE Prof. Rong Yang Zoom	Information Session Engineering Admissions Beth Kunz Zoom	MSE Dshemuchadse Zoom	P Meulen Zoom	MAE Andarawis-Puri Zoom	
35 min	Break	Break	Break	Break	Break	
5:30-	Escape Room	Cornell e-Tour	Game Night	Talent Show	Program Closing (5:30-6:20 pm) &	
CURIE Academ	iy 2021	Des	sign Project Overview		2 /	

The Internet of Things

CURIE Design Project

ECE is the Study and Application of Electricity, Micro-Electronics, and Electro-Magnetism

CURIE Academy 2021

Design Project Overview

The Internet of Things

CURIE Design Project

ECE is everywhere!

Cornell was founded because of ECE!

Samuel Morse invented the telegraph (a digital communication device), but needed help building the network

Ezra Cornell built the first telegraph line (the beginning of telecommunications), and invested in the Western Union Telegraph Co

Ezra Cornell's investments created the fortune that eventually enabled the founding of Cornell University

The Internet of Things

CURIE Design Project

How important is ECE at Cornell?

(right) Photo from Cornell Chronicle

The Internet of Things

CURIE Design Project

Computer Engineering

The Computer Systems Stack

1	Application			
	Application			
	Algorithm			
<u>ת</u>	Programming Language			
5 (Operating System			
	Compiler			
<u>ר</u> ק	Instruction Set Architecture			
5)[Microarchitecture			
	Register-Transfer Level			
Ē	Gate Level			
5	Circuits			
	Devices			
	Technology			

In its broadest definition, computer engineering is the development of the abstraction/implementation layers that allow us to execute information processing applications efficiently using available manufacturing technologies

The Computer Systems Stack

Sort an array of numbers 2,6,3,8,4,5 -> 2,3,4,5,6,8

Out-of-place selection sort algorithm

- 1. Find minimum number in array
- 2. Move minimum number into output array
- 3. Repeat steps 1 and 2 until finished

C implementation of selection sort

```
void sort( int b[], int a[], int n ) {
  for ( int idx, k = 0; k < n; k++ ) {
    int min = 100;
    for ( int i = 0; i < n; i++ ) {
        if ( a[i] < min ) {
            min = a[i];
            idx = i;
            }
        }
        b[k] = min;
        a[idx] = 100;
    }
}</pre>
```

The Computer Systems Stack

Computer Engineering	Application			
	Algorithm			
	Programming Language			
	Operating System			
	Compiler			
	Instruction Set Architecture			
	Microarchitecture			
	Register-Transfer Level			
	Gate Level			
	Circuits			
	Devices			
	Technology			

Mac OS X, Windows, Linux Handles low-level hardware management

C Compiler

Transform programs into assembly

MIPS32 Instruction Set

Instructions that machine executes

blez \$a2, done
move \$a7, \$zero
li \$t4, 99
move \$a4, \$a1
li \$a3, 99
lw \$a5, 0(\$a4)

The Computer Systems Stack

Computer Systems: CS vs. EE vs. CE

In its broadest definition, computer engineering is the development of the abstraction/implementation layers that allow us to execute information processing applications efficiently using available manufacturing technologies

Talk Outline

Computer Engineering

The Internet of Things

CURIE Design Project

The Internet of Things

Bell's Law

Roughly every decade a new, smaller, lower priced computer class forms based on a new programming platform resulting in entire new industries

The Internet of Things •

CURIE Design Project

Emerging Trend Towards an Internet of Things

Interconnected "things" augmented with inexpensive embedded controllers, sensors, actuators to collect information and interact with the world

The Internet of Things

CURIE Design Project

IoT Example: Spending the Day Hiking

CURIE Academy 2021

Design Project Overview

The Internet of Things

CURIE Design Project

IoT Smart Home

The Internet of Things

CURIE Design Project

IoT Early Disaster Warning System

The Internet of Things

CURIE Design Project

IoT Wearable Health Monitor

Design Project Overview

The Internet of Things

CURIE Design Project

IoT Digital Agriculture

Adapted from https://www.iberdrola.com/innovation/smart-farming-precision-agriculture

CURIE Academy 2021

Design Project Overview

The Internet of Things

CURIE Design Project

IoT Cloud Analytics

The Internet of Things •

CURIE Design Project

Internet of Things + Computer Engineering

Field of computer engineering is well-situated to serve as a foundation for students interested in this emerging area The Internet of Things

CURIE Design Project •

Talk Outline

Computer Engineering

The Internet of Things

CURIE Design Project

CURIE Design Project Schedule

Monday	Lab 1: Computer Engineering – Hardware Perspective
	Assemble basic logic gates to implement binary adder

TuesdayLab 2: Computer Engineering – Software PerspectiveProgram microcontroller to implement "smart light"

Wednesday Begin Designing IoT System for Project

Thursday Design, Implement, and Test IoT System

FridayTest IoT System; Prepare Project PresentationFinal Presentations

Optional lab/office hours from 7:30-8:30pm

Lab 1: Computer Engineering – Hardware Perspective

Scholars will assemble basic logic gates to implement a simple "calculator" for adding small binary numbers

Lab 2: Computer Engineering – Software Perspective

Scholars will incrementally program a microcontroller in C++ to implement an IoT "smart light" system

The Internet of Things

CURIE Design Project

CURIE IoT Input Modules

The Internet of Things

CURIE Design Project

CURIE IoT Output Modules

LED

Multi-Color LED

Buzzer

4-Digit Display

The Internet of Things

CURIE Design Project

CURIE IoT Smart Home

Design Project Overview

The Internet of Things

CURIE Design Project •

CURIE IoT Early Disaster Warning System

30 / 35

The Internet of Things

CURIE Design Project •

CURIE IoT Wearable Health Monitor

The Internet of Things

CURIE Design Project •

CURIE IoT Digital Agriculture

CURIE Academy 2021

0

CURIE Design Project •

Cornell University School of Electrical and Computer Engineering Diversity Programs in Engineering

CURIE Academy 2021 Design Project: Computing at the Edge

Prof. Christopher Batten Fully Virtual • July 19–23, 2021

home | details | schedule | projects | readings | sponsors

Scholars are expected to complete the following reading assignments before arriving for the CURIE Academy. PDFs are provided for all of hte readings. The first reading serves as an introduction to the field of computer engineering and briefly describes the concept of abstraction, the distinction between hardware and software, and the computer engineering "stack" spanning problems, algorithms, programming languages, instruction sets, microarchitecture, circuits, and devices. The second reading explains what is meant by the Internet of Things and captures some of the magic of these devices, while the final reading discusses some of the troubling challenges related to security within the context of the Internet of Things.

- Y. Patt and S. Patel. Chapter 1: Welcome Aboard. Introduction to Computer Systems: From Bits & Gates & to C & Beyond, 2nd edition. McGraw-Hill, 2003. [ch1/pdf | amazon | publisher]
- A. McEwen and H. Cassimally. Chapter 1: The Internet of Things: An Overview. Designing the Internet of Things. Wiley, 2012. [ch1/pdf | amazon | publisher]
- A. Grau. Can You Trust Your Fridge? IEEE Spectrum, Mar 2015. [pdf | link]

Cornell University School of Electrical and Computer Engineering Diversity Programs in Engineering

CURIE Academy 2021 Design Project: Computing at the Edge

Prof. Christopher Batten Fully Virtual • July 19–23, 2021 home | details | schedule | **projects** | readings | sponsors

IoT Design Project Overview

Each IoT design project will involve building an IoT system comprised of an IoT input device, IoT cloud, IoT output device, and IoT dashboard. The IoT input devices will have various input modules attached that can sense what is going on in the environment (e.g., light, temperature, moisture, motion) and be able to upload data into the cloud. We will be using Particle as our IoT cloud service. Each IoT output device will be able to download data from the cloud and will have various output modules attached to display data (e.g., LEDs, numeric display, piezo buzzer). An IoT dashboard enables users to interact with the IoT system through the IoT cloud. We will be using Ubitdots as our IoT dashboard service. The following diagram illustrates the overall approach we will be using in our IoT systems.

The IoT design projects will be centered around one of several themes: smart home, early disaster warning, wearable health monitoring, and digital agriculture. Each project is described in more detail below.

IoT Design Project: Smart Home

There has been quite a bit of excitement lately about smart homes that integrate sensors into everyday objects around the home including thermostats, appliances, doors/windows, and lights. These sensors can automatically learn about our behavior and autonomously interact with the cloud to improve our standard of living.

In this project, scholars will build a simple smart home system that is capable of monitoring temperature, humidity, light, and/or motion and then display status information. For example, a group might start by building an IoT input device with an ultrasound range finder input module to monitor motion for security purposes.

Design Project Summary

- Lab 1: Computer Engineering from the Hardware Perspective
- Lab 2: Computer Engineering from the Software Perspective
- Projects involve designing, implementing, and testing a simple IoT system inspired by real-world applications of IoT

Goal: Introduce CURIE scholars broadly to the practice of engineering and more specifically to computer engineering The Internet of Things

CURIE Design Project

CURIE Design Project Sponsors

Funding partially provided by the National Science Foundation through NSF SHF Award #2008471

An equipment donation including Argon Internet-of-Thing devices was provided by Particle Industries

Funding and logistics partially provided by the Diversity Programs in Engineering Office