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Application: “Smart Light” System
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Algorithm: Flowcharts
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Programming Language: C++

CURIE Academy, Summer 2021 Lab 2 Notes: Computer Engineering – Software Perspective

Figure 5: Flowchart for “Smart Light” Algorithm

1 int a; // declaration
2 a = 2; // assignment
3 int b = 3; // initialization
4

5 int c;
6 c = a + b;

(a)

1 // function to add two integers
2 int add( int a, int b )
3 {
4 int sum;
5 sum = a + b;
6 return sum;
7 }

(b)

1 int c;
2 c = add( 2, 3 );

(c)

Figure 6: Example C++ Code Snippets

of the message. If the message is “on”, then the algorithm turns the light on. If the message is “off”,
then the algorithm turns the light off. Then the algorithm waits for another message.

3. Programming Language: C++

Now that we have refined our application into an algorithm, we can implement this algorithm as
a program in a specific programming language. There are many programming languages each with
different advantages and disadvantages, but for this lab we will be using the C++ programming
language. Figure 6 shows three example C++ code snippets. A program consists of a sequence of
statements; these statements are executed one at a time by the computer to ultimately execute the
program. Each statement is like a sentence in the English language; we read each sentence one at a
time to understand a paragraph. In C++, a statement ends with a semicolon (;), while in the English
language, a sentence ends with a period.

Figure 6(a) illustrates the most basic statements in the C++ programming language. The statement
on line 1 is a variable declaration statement. We can think of a variable as a named “box” where we
can store values. So in this example, we have a “box” named a. Each variable also has a type that
indicates what kind of values can be stored in the box. In this case, the variable sum can only store
values of type int which means the variable can store integer values (i.e., whole numbers). The
statement on line 2 is a variable assignment statement. The value of the expression on the right-hand
side of the equals operator (=) is stored in the variable on the left-hand side of the equals operator.
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1 int button_state;
2 button_state = read_button_state( button_pin );
3

4 if ( button_state == 1 ) {
5 // send "on" msg
6 }
7 else {
8 // send "off" msg
9 }

10

11 // wait 1 second

(a) Sketch of IoT Input Device Program

1 void receive_msg( msg )
2 {
3 if ( msg == "on" ) {
4 // turn light on
5 }
6 else {
7 // turn light off
8 }
9 }

(b) Sketch of IoT Output Device Program

Figure 7: Sketch of C++ Programs for Smart Light

In this case, we store the value 2 into the variable a (i.e., we put the value 2 into the box named
a). The statement on line 3 is a variable initialization statement which simply does a variable
declaration and assignment in a single step. Once the computer has finished executing lines 1–3, the
value 2 is stored in the variable a and the value 3 is stored in the variable b. Note that comments start
with two forward slashes (i.e., //) and are ignored by the computer. You can feel free to exclude them
although comments are important part of effective software engineering. Line 5 is another variable
declaration statement. Line 6 is a variable assignment statement where the right-hand side is more
complicated than just a single number. Here the computer must first determine the value stored in
the variable a, the value stored in the variable b, add these two values together, and store the result
(i.g., the value 5) in the variable c.

Figure 6(b) illustrates how to define a function. A function is a parameterized sequence of statements.
Line 2 declares the function’s interface including the function’s name (add), the functions parameters

(a,b), the type of each parameter (int), and the function’s return type (int). Lines 3–7 are called
the function body. In this example, the function first adds the values stored in the two parameters
and stores the result in a variable named sum. The sum is then returned using a return statement on
Line 6. Figure 6(c) illustrates how to call a function. We use the function’s name and include a list
of variables which will be passed in as the parameters to the function. So the example in Figure 6(c)
will first declare a variable named c, then call the function add, which adds the values 2 and 3 before
returning the result 5, which is finally stored in the variable c.

Figure 7 is a sketch of an initial C++ program for both the IoT input device and the IoT output
device which corresponds to the algorithms shown in Figure 5. Lines 4–9 are a conditional statement.
First, the conditional expression within the parenthesis on line 4 is evaluated (i.e., does the variable
button_state contain the value 1?). If this conditional expression is true, then the statement on
line 5 is executed. If this conditional expression is false, then the statement on line 8 is executed. A
conditional statement can be used to implement decision steps in our flowchart. However, the C++
program in Figure 7 is not complete; it is just a sketch, since how our program reads the button state,
sends messages, receives messages, and turns on/off LEDs depends on the operating system which
is discussed in the next section.

If you would like to learn more about basic C++ programming consider reviewing this gentle intro-
duction which is part of an intermediate programming course taught at Cornell University:

• https://cornell-ece2400.github.io/ece2400-docs/ece2400-T01-intro-c
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Compiler: Particle OS

CURIE Academy, Summer 2021 Lab 2 Notes: Computer Engineering – Software Perspective

1 // Global constants for pin assignments and global variables
2

3 int led_pin = D7;
4

5 int x = 2;
6 int y = 3;
7 int z = 0;
8

9 // Helper functions
10

11 int add( int a, int b )
12 {
13 int sum;
14 sum = a + b;
15 return sum;
16 }
17

18 // The setup routine runs once when you press reset
19

20 void setup()
21 {
22 // Configure led_pin as digital output
23 pinMode( led_pin, OUTPUT );
24 }
25

26 // The loop routine runs over and over again
27

28 void loop()
29 {
30 // Do the addition
31 z = add( x, y );
32

33 // Blink LED z times
34 for ( int i = 0; i < z; i++ ) {
35 digitalWrite( led_pin, HIGH ); // Turn on the LED
36 delay(500); // Wait 0.5 seconds
37 digitalWrite( led_pin, LOW ); // Turn off the LED
38 delay(500); // Wait 0.5 seconds
39 }
40

41 // Wait four seconds
42 delay(4000);
43 }

Figure 8: Complete Example C++ Program
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1 int button_pin = D4;
2 int button_state = -1;
3

4 void setup()
5 {
6 pinMode( button_pin, INPUT );
7 }
8

9 void loop()
10 {
11 button_state = digitalRead( button_pin );
12 if ( button_state == 1 ) {
13 Particle.publish( "button_state", "on" );
14 }
15 else {
16 Particle.publish( "button_state", "off" );
17 }
18 delay(1000);
19 }

(a) IoT Input Device Program

1 int led_pin = D4;
2

3 void receive_msg( const char* event, const char* msg )
4 {
5 if ( strcmp( msg, "on" ) == 0 ) {
6 digitalWrite( led_pin, HIGH );
7 }
8 else {
9 digitalWrite( led_pin, LOW );

10 }
11 }
12

13 void setup()
14 {
15 pinMode( led_pin, OUTPUT );
16 Particle.subscribe( "button_state", receive_msg );
17 }
18

19 void loop()
20 {
21 // empty
22 }

(b) IoT Output Device Program

Figure 9: Complete C++ Programs for Smart Light

5. Compiler: Particle Development Environment

Now that we have refined our algorithm into a programming language with operating system sup-
port, we can use a compiler to translate the high-level program statements into the low-level instruc-
tions that the machine can actually execute. In this lab, we will be using the online Particle develop-
ment environment to compile our programs. You can start the Particle development environment by
going to this URL:

• https://build.particle.io

You should not create a new account. You should login with your group username and password.
Figure 10 labels the key icons on the left-hand side of the Particle development environment:

• Flash: Compiles and flashes the current code to the selected device
• Verify: Compiles without flashing the current code
• Save: Saves the current code
• Code: Shows a list of available programs
• Library: Explore libraries
• Help: Does not work for our Particle Argon
• Docs: Brings you to the Particle documentation site
• Devices: Shows a list of all devices
• Console: Brings you to the Particle console for monitoring the IoT cloud
• Settings: Log out

The most important icon is the flash (lightning) icon in the upper left-hand corner. Clicking this icon
will cause the Particle IDE to compile your program into machine instructions and then to upload the
resulting machine instructions to the Particle Argon for execution. Figure 10 illustrates what happens
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Compiler: Particle Devel Environment
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Compiler: Particle Devel Environment

• Always confirm your Particle Argon status LED is 
breathing cyan

• Always confirm that your Particle Argon is selected in 
the device list as indicated by the yellow star

• Always confirm that your Particle Argon is selected as 
indicated by the device name in the lower left-hand 
corner

• Always prefix the names your Particle Argon C++ 
programs with your first name (e.g., jane-blink-led)



Compiler: Particle Devel Environment



Computer Systems Stack
Application
Algorithm

Programming Language

Instruction Set Architecture
Microarchitecture

Register-Transfer Level
Gate Level

Circuits
Devices

Technology

C
om

pu
te

r E
ng

in
ee

ri
ng

Smart Light

Flowchart

C++

ARM Machine Instructions

Operating System

C
U

RI
E 

La
b

2

Ripple Carry Adder

NOT, AND, OR, XOR

Resistors, LEDs,
Transistors

C
U

RI
E 

La
b 

1

Inverter

Compiler
Particle OS
Particle Development
Environment



ISA: ARM Machine Instructions

CURIE Academy, Summer 2021 Lab 2 Notes: Computer Engineering – Software Perspective

6. Instruction Set Architecture: ARM Machine Instructions

The compiler translates the high-level statements used in the programming language into very sim-
ple machine instructions which are part of an instruction set architecture. Figure 13 illustrates a very
simple architecture with a processor to compute on data and two kinds of memory to store data:
main memory is slow but can store a large amount of data, while registers are fast but can only store
a small amount of data. This simple architecture supports three kinds of machine instructions: load

instructions move values from memory into registers; store instructions move values from registers
into memory; and arithmetic instructions perform simple arithmetic on values stored in registers.

As mentioned in the previous section, the compiler transforms the sequence of high-level statements
in Figure 6 into a sequence of machine instructions the processor can understand. Figure 14 shows
the actual machine instructions generated by the compiler for line 5 in Figure 6(b). There are four ma-
chine instructions: the first two machine instructions load values from main memory into registers,
the third machine instruction adds these two values together, and the final machine instruction stores
the sum back out to main memory. Note that the processor can use a ripple-carry adder similar to the
one you developed in Lab 1 to implement the add machine instruction which means our tour of the
computer systems stack is complete! In Lab 1, we explored technology to machine instructions, and
in lab 2 we explored from applications to machine instructions. We meet in the middle of the stack
at the instruction set architecture, where hardware meets software and software meets hardware!

Figure 13: Simple Architecture

1 # load two values from main
2 # memory into two registers
3 ldr r2, [r7, #4]
4 ldr r3, [r7]
5

6 # do the actual addition
7 add r3, r3, r2
8

9 # store the sum from a register
10 # back into main memory
11 str r3, [r7, #12]

Figure 14: Machine Instructions for Line 5 in Figure 6(b)
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1 // Global constants for pin assignments and global variables
2

3 int led_pin = D7;
4

5 int x = 2;
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8
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41 // Wait four seconds
42 delay(4000);
43 }

Figure 8: Complete Example C++ Program

7

CURIE Academy, Summer 2021 Lab 2 Notes: Computer Engineering – Software Perspective

6. Instruction Set Architecture: ARM Machine Instructions

The compiler translates the high-level statements used in the programming language into very sim-
ple machine instructions which are part of an instruction set architecture. Figure 13 illustrates a very
simple architecture with a processor to compute on data and two kinds of memory to store data:
main memory is slow but can store a large amount of data, while registers are fast but can only store
a small amount of data. This simple architecture supports three kinds of machine instructions: load

instructions move values from memory into registers; store instructions move values from registers
into memory; and arithmetic instructions perform simple arithmetic on values stored in registers.

As mentioned in the previous section, the compiler transforms the sequence of high-level statements
in Figure 6 into a sequence of machine instructions the processor can understand. Figure 14 shows
the actual machine instructions generated by the compiler for line 5 in Figure 6(b). There are four ma-
chine instructions: the first two machine instructions load values from main memory into registers,
the third machine instruction adds these two values together, and the final machine instruction stores
the sum back out to main memory. Note that the processor can use a ripple-carry adder similar to the
one you developed in Lab 1 to implement the add machine instruction which means our tour of the
computer systems stack is complete! In Lab 1, we explored technology to machine instructions, and
in lab 2 we explored from applications to machine instructions. We meet in the middle of the stack
at the instruction set architecture, where hardware meets software and software meets hardware!

Main
Memory

Registers

Load/Store
Instructions

Arithmetic
Instructions

Figure 13: Simple Architecture

1 # load two values from main
2 # memory into two registers
3 ldr r2, [r7, #4]
4 ldr r3, [r7]
5

6 # do the actual addition
7 add r3, r3, r2
8

9 # store the sum from a register
10 # back into main memory
11 str r3, [r7, #12]

Figure 14: Machine Instructions for Line 5 in Figure 6(b)

12



ISA: ARM Machine Language

Write your C++
code here ...

Compiler will generate the
corresponding machine
instructions here ...

Select ARM gcc trunk (linux) here

Try entering 
-O3 here



Lab 2 Overview
• Part 1.A  Test Simple Addition Program
• Part 1.B  Examine Machine Instructions
• Part 2.A  Experiment with LED Output
• Part 2.B  Experiment with Button Input
• Part 3.A  Experiment with Particle Variables
• Part 3.B  Experiment with Sending Particle Events
• Part 3.C  Experiment with Receiving Particle Events
• Part 4.A  Develop a “Smart Light” System
• Part 4.B  Share Photo or Video of IoT System 
• Experiment with IoT Geolocation System

Let’s write a simple blinking LED program
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(a) LEDs (b) Resistors (c) Transistor

Figure 2: Various Devices

Figure 3: Symbols for Various Devices

Figure 4: Basic Electrical and Water Circuit
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1 // Global constants for pin assignments and global variables
2

3 int led_pin = D7;
4

5 int x = 2;
6 int y = 3;
7 int z = 0;
8

9 // Helper functions
10

11 int add( int a, int b )
12 {
13 int sum;
14 sum = a + b;
15 return sum;
16 }
17

18 // The setup routine runs once when you press reset
19

20 void setup()
21 {
22 // Configure led_pin as digital output
23 pinMode( led_pin, OUTPUT );
24 }
25

26 // The loop routine runs over and over again
27

28 void loop()
29 {
30 // Do the addition
31 z = add( x, y );
32

33 // Blink LED z times
34 for ( int i = 0; i < z; i++ ) {
35 digitalWrite( led_pin, HIGH ); // Turn on the LED
36 delay(500); // Wait 0.5 seconds
37 digitalWrite( led_pin, LOW ); // Turn off the LED
38 delay(500); // Wait 0.5 seconds
39 }
40

41 // Wait four seconds
42 delay(4000);
43 }

Figure 8: Complete Example C++ Program
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6. Instruction Set Architecture: ARM Machine Instructions

The compiler translates the high-level statements used in the programming language into very sim-
ple machine instructions which are part of an instruction set architecture. Figure 13 illustrates a very
simple architecture with a processor to compute on data and two kinds of memory to store data:
main memory is slow but can store a large amount of data, while registers are fast but can only store
a small amount of data. This simple architecture supports three kinds of machine instructions: load

instructions move values from memory into registers; store instructions move values from registers
into memory; and arithmetic instructions perform simple arithmetic on values stored in registers.

As mentioned in the previous section, the compiler transforms the sequence of high-level statements
in Figure 6 into a sequence of machine instructions the processor can understand. Figure 14 shows
the actual machine instructions generated by the compiler for line 5 in Figure 6(b). There are four ma-
chine instructions: the first two machine instructions load values from main memory into registers,
the third machine instruction adds these two values together, and the final machine instruction stores
the sum back out to main memory. Note that the processor can use a ripple-carry adder similar to the
one you developed in Lab 1 to implement the add machine instruction which means our tour of the
computer systems stack is complete! In Lab 1, we explored technology to machine instructions, and
in lab 2 we explored from applications to machine instructions. We meet in the middle of the stack
at the instruction set architecture, where hardware meets software and software meets hardware!

Main
Memory

Registers

Load/Store
Instructions

Arithmetic
Instructions

Figure 13: Simple Architecture

1 # load two values from main
2 # memory into two registers
3 ldr r2, [r7, #4]
4 ldr r3, [r7]
5

6 # do the actual addition
7 add r3, r3, r2
8

9 # store the sum from a register
10 # back into main memory
11 str r3, [r7, #12]

Figure 14: Machine Instructions for Line 5 in Figure 6(b)
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Figure 20: Four-Bit Ripple-Carry Adder (FA = full-adder)

Column A produces a carry bit which we must include when calculating the second bit of the sum,
and similarly column B produces a carry bit meaning the result overflows into three bits. If we focus
on column B, we will realize that we actually need to add three one-bit numbers together (one bit
from the first input, one bit from the second input, and the carry bit from column A) and that we
will produce two outputs (a sum bit and a carry bit for the next column). A full adder provides the
exact functionality needed to calculate each column of a multi-bit addition. Figure 20 illustrates how
we can chain a series of full adders to compute a four-bit addition. The carry bit output from a full
adder is connected to one of the three inputs of the full adder to the left. Note that the third input of
the right-most full adder should be set to zero and that the carry bit output of the left-most full adder
allows us to detect overflow (i.e., the result cannot be encoded in just four bits).

This section illustrates modular design, a powerful design concept which is critical for implementing
complex systems. We first designed and evaluated a small module (half adder) and then reused
this small module to implement a larger and more complex module (full adder). We then chained
multiple full adders together into a ripple-carry adder to enable multi-bit addition.
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Figure 10: Symbol and Truth Table for NOT, AND, OR, XOR Gates

(a) Integrated Circuit
(b) AND Chip (c) OR Chip (d) XOR Chip

Figure 11: Four Logic Gates Implemented as an Integrated Circuit in a Single Chip

attached the input of the inverter to one of the digital input switches and the output of the inverter
to one of the digital output LEDs. Turning on the input will turn off the output; and turning off the
input will turn on the output.

3. Gates: NOT, AND, OR, XOR

As computer engineers, we often use abstraction to hide implementation details and provide cleaner
higher-level interfaces. Indeed digital signalling itself is an abstraction since we ignore the details
of exact voltages and instead focus on logic one and logic zero values. To build more complicated
circuits, we will create simple circuits and then abstract them into useful logic gates. For example,
we can abstract the inverter discussed in the previous section into the NOT gate shown in Figure 10.
If the input to a NOT gate is a logic one then the output is a logic zero; if the input to a NOT gate is
a logic zero then the output is a logic one. Abstraction enables us to ignore the details of the specific
implementation of a NOT gate using PMOS and NMOS transistors.

Figure 10 also shows three more useful logic gates. We can use a truth table to succinctly capture the
functionality of each logic gate. The truth table shows what the output of the logic gate should be for
every combination of inputs to the logic gate. For example, the output of an AND gate is only one
when both of its inputs are one.
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input input input result result carry sum

A B C base 10 base 2 bit bit

----------------------------------------------------

0 + 0 + 0 = 0 00 0 0

0 + 0 + 1 = 1 01 0 1

0 + 1 + 0 = 1 01 0 1

0 + 1 + 1 = 2 10 1 0

1 + 0 + 0 = 1 00 0 0

1 + 0 + 1 = 2 10 1 0

1 + 1 + 0 = 2 10 1 0

1 + 1 + 1 = 3 11 1 1

Figure 17: Eight Possibilities when Adding Three One-Bit Numbers

Figure 18: Full-Adder

one-bit numbers we wish to add and the two outputs correspond to the sum and carry bits. As a
computer engineer, we need to choose a network of boolean logic gates which will always generate
the desired outputs as a function of the inputs. We start by writing a truth table for each of the two
outputs in isolation (see Figure 15). We can then look at our toolbox of logic gates to see if there
are any matches and indeed it should be clear that we can implement the sum bit by connecting
the inputs to a single XOR gate and that we can implement the carry bit by connecting the inputs
to a single AND gate. The implementation of the half adder using boolean logic gates is shown in
Figure 16.

We can use a similar approach to build a “full adder” which can add three one-bit numbers to pro-
duce a two-bit result. Figure 17 shows the eight possibilities when adding three one-bit numbers. We
now wish to implement a one-bit full adder using boolean logic gates. The full adder has three inputs
corresponding to three one-bit numbers we wish to add together and two outputs corresponding to
the sum and carry bits. As in the previous section, we could now create truth tables for both the
sum bit and the carry bit and carefully construct a network of boolean logic gates which will always
generate the desired outputs as a function of the inputs; note that we will need to use multiple stages
of boolean logic.
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Figure 8: Inverter Circuit (P = PMOS transistor, N = NMOS transistor)

Figure 9: Inverter Circuit Implemented on Prototyping Platform

Figure 8 shows a more interesting circuit called an inverter. This circuit uses a PMOS transistor and
an NMOS transistor. When the input is a logic one then the PMOS transistor is open and the NMOS
transistor is closed; this essentially causes the output to be “pulled down” to a logic zero. When
the input is a logic zero then the PMOS transistor is closed and the NMOS transistor is open; this
essentially causes the output to be “pulled up” to a logic one. Figure 9 shows the implementation
of the inverter using the prototyping platform provided for you in this lab. Notice how we have
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