
CURIE Academy, Summer 2021
Lab 2 Notes: Computer Engineering – Software Perspective

Prof. Christopher Batten
School of Electrical and Computer Engineering

Cornell University

The field of computer engineering is at the interface between hardware and software and seeks to
balance the tension between application requirements and technology constraints. In Lab 1, you
explored the field of computer engineering from a hardware perspective by assembling basic logic
gates to implement a simple “calculator” for adding small binary numbers. In this lab, you will ex-
plore the field of computer engineering from a software perspective by incrementally programming
a microcontroller in C++ to implement an IoT “smart light” system. These lab notes provide a brief
survey of background information relevant to understanding the purpose and context for the lab.

As illustrated in Figure 1, computer systems can be viewed as a stack of abstraction and implementa-
tion layers from applications at the highest layer to technology at the lowest layer. In these lab notes
we will briefly discuss the application, algorithm, programming language, operating system, com-
piler, and instruction set layers as they relate to our “smart light” system. In the actual lab session,
you will have an opportunity to put what you have learned into practice. We will focus on some
layers more than others, but by the end of this lab you should have a good understanding of how
computer engineers can leverage these layers to design software for future computing systems.

1. Application: Smart Light

Figure 2 illustrates an example “smart light” system from a company called Brilliant. An internet-
connected light switch enables turning on lights anywhere in the home, but this same light switch can

Application
Algorithm

Programming Language

Instruction Set Architecture
Microarchitecture

Register-Transfer Level
Gate Level

Circuits

Devices
Technology

C
om

pu
te

r E
ng

in
ee

ri
ng

Smart Light

Flowchart

C++

ARM Machine Instructions

Operating System

C
U

RI
E

La
b

2

Ripple Carry Adder

NOT, AND, OR, XOR

Resistors, LEDs,
Transistors

C
U

RI
E

La
b

1

Inverter

Compiler

Particle OS
Particle Development
Environment

Figure 1: Computer Systems Stack

1

CURIE Academy, Summer 2021 Lab 2 Notes: Computer Engineering – Software Perspective

Figure 2: Example Commercial “Smart Light” System from Brilliant

IoT Output
Device

IoT Input
Device

IoT
Cloud

LED
Output
Module

Button
Input
Module

Figure 3: Diagram of Simple “Smart Light” System

WiFi Atenna

Analog Port A0

Digital Port D4

Digital Port D2

I2C Port 1I2C Port 2

UART Port

Analog Port A4

Analog Port A2

USB
Port

Blue LED on Pin D7

Power Connector
for LiPo Battery

Reset
Button

Status
LED

Mode
Button

Figure 4: Particle Argon

2

CURIE Academy, Summer 2021 Lab 2 Notes: Computer Engineering – Software Perspective

also adjust the thermostat, lock/unlock doors, monitor security cameras, and control whole-house
music systems.

Figure 3 shows the simple “smart light” application we will building in this lab. A button input
module is attached to the IoT input device which will send a message to the IoT cloud whenever the
button is pressed. An LED output module is attached to the IoT output device which will receive
messages from the IoT cloud and turn on the LED whenever the button is pressed. The IoT input
device with a button input module is a simple version of more sophisticated smart light switches,
and the IoT output device with an LED output module is representative of a “real” smart light bulb.

Figure 4 shows a Particle Argon, which is the actual IoT device we will be using in this lab. The
Particle Argon includes a small processor along with a WiFi communications subsystem. The Particle
Argon can be powered either through a USB port or a special connector for a LiPo battery. Right in
the middle of the Particle Argon is multi-colored status LED which is the primary way to determine
what the Particle Argon is doing. Here is the meaning of the most common status LED signals:

• Breathing Cyan: Argon is connected and operating normally
• Blinking Green: Argon is connecting to WiFi network
• Blinking Cyan: Argon is connecting to Particle cloud
• Blinking Blue: Argon is in listening mode
• Blinking White: Argon’s WiFi module is off
• Breathing Magenta: Argon is in safe mode
• Rainbow Colors: Argon is being signaled from cloud

The Particle Argon has only two buttons. The reset button will restart the Particle Argon, and the
mode button is only used for initial setup and debugging. In general, you will not need to use these
buttons. Finally, there is an integrated blue LED wired to pin D7 which can be used for debugging.
We have plugged the Particle Argon into a shield which makes it easier to connect input/output
modules. The shield has a total of eight ports including two digital ports, three analog ports, two
I2C ports, and one UART port. For our “smart light” system, we can plug the button input module
into digital port D4 on the Particle Argon input device, and we can plug the LED output module into
digital port D4 on the Particle Argon output device.

2. Algorithm: Flowcharts

At the application level, we have specified the high-level goal of building a “smart light” system. We
now need to refine this high-level description into an actual algorithm. An algorithm is a step-by-step
procedure for implementing the desired application. There are many ways to represent algorithms,
but for this lab we will use a specific representation known as a flowchart which uses a set of shapes
and arrows to visually express the steps in an algorithm. Although conventions can vary, in this lab
we will use: an orange rectangle to indicate the very first step of the algorithm; a green rectangle to
indicate a processing step; and a yellow diamond to indicate a decision step.

Figure 5(a) illustrates the algorithm for the IoT input device using a flowchart. After setup, the
IoT input device will read the button state. If the button is pressed, then the algorithm will move
along the “yes” arrow, and if the button is not pressed, then the algorithm will move along the “no”
arrow. Depending on the state of the button, the algorithm will either send an “on” message or
an “off” message to the IoT cloud. After sending the message, the algorithm waits one second to
avoid sending messages to fast. There are often limits to the number and/or the rate of messages IoT
devices can send and/or receive to/from the IoT cloud.

Figure 5(b) illustrates the algorithm for the IoT output device also using a flowchart. After setup, the
IoT input device waits for a message. Once a message is received, the algorithm checks the content

3

CURIE Academy, Summer 2021 Lab 2 Notes: Computer Engineering – Software Perspective

Setup IoT Device

Read Button State

Button
Pressed?

Send "on" Msg Send "off" Msg

Wait 1 Second

(a) Flowchart for IoT Input Device

Setup IoT Device

Wait for Msg

Msg is
"on"?

Turn LED On Turn LED Off

(b) Flowchart for IoT Output Device

yes

no no

yes

Figure 5: Flowchart for “Smart Light” Algorithm

1 int a; // declaration
2 a = 2; // assignment
3 int b = 3; // initialization
4

5 int c;
6 c = a + b;

(a)

1 // function to add two integers
2 int add(int a, int b)
3 {
4 int sum;
5 sum = a + b;
6 return sum;
7 }

(b)

1 int c;
2 c = add(2, 3);

(c)

Figure 6: Example C++ Code Snippets

of the message. If the message is “on”, then the algorithm turns the light on. If the message is “off”,
then the algorithm turns the light off. Then the algorithm waits for another message.

3. Programming Language: C++

Now that we have refined our application into an algorithm, we can implement this algorithm as
a program in a specific programming language. There are many programming languages each with
different advantages and disadvantages, but for this lab we will be using the C++ programming
language. Figure 6 shows three example C++ code snippets. A program consists of a sequence of
statements; these statements are executed one at a time by the computer to ultimately execute the
program. Each statement is like a sentence in the English language; we read each sentence one at a
time to understand a paragraph. In C++, a statement ends with a semicolon (;), while in the English
language, a sentence ends with a period.

Figure 6(a) illustrates the most basic statements in the C++ programming language. The statement
on line 1 is a variable declaration statement. We can think of a variable as a named “box” where we
can store values. So in this example, we have a “box” named a. Each variable also has a type that
indicates what kind of values can be stored in the box. In this case, the variable sum can only store
values of type int which means the variable can store integer values (i.e., whole numbers). The
statement on line 2 is a variable assignment statement. The value of the expression on the right-hand
side of the equals operator (=) is stored in the variable on the left-hand side of the equals operator.

4

CURIE Academy, Summer 2021 Lab 2 Notes: Computer Engineering – Software Perspective

1 int button_state;
2 button_state = read_button_state(button_pin);
3

4 if (button_state == 1) {
5 // send "on" msg
6 }
7 else {
8 // send "off" msg
9 }

10

11 // wait 1 second

(a) Sketch of IoT Input Device Program

1 void receive_msg(msg)
2 {
3 if (msg == "on") {
4 // turn light on
5 }
6 else {
7 // turn light off
8 }
9 }

(b) Sketch of IoT Output Device Program

Figure 7: Sketch of C++ Programs for Smart Light

In this case, we store the value 2 into the variable a (i.e., we put the value 2 into the box named
a). The statement on line 3 is a variable initialization statement which simply does a variable
declaration and assignment in a single step. Once the computer has finished executing lines 1–3, the
value 2 is stored in the variable a and the value 3 is stored in the variable b. Note that comments start
with two forward slashes (i.e., //) and are ignored by the computer. You can feel free to exclude them
although comments are important part of effective software engineering. Line 5 is another variable
declaration statement. Line 6 is a variable assignment statement where the right-hand side is more
complicated than just a single number. Here the computer must first determine the value stored in
the variable a, the value stored in the variable b, add these two values together, and store the result
(i.g., the value 5) in the variable c.

Figure 6(b) illustrates how to define a function. A function is a parameterized sequence of statements.
Line 2 declares the function’s interface including the function’s name (add), the functions parameters
(a,b), the type of each parameter (int), and the function’s return type (int). Lines 3–7 are called
the function body. In this example, the function first adds the values stored in the two parameters
and stores the result in a variable named sum. The sum is then returned using a return statement on
Line 6. Figure 6(c) illustrates how to call a function. We use the function’s name and include a list
of variables which will be passed in as the parameters to the function. So the example in Figure 6(c)
will first declare a variable named c, then call the function add, which adds the values 2 and 3 before
returning the result 5, which is finally stored in the variable c.

Figure 7 is a sketch of an initial C++ program for both the IoT input device and the IoT output
device which corresponds to the algorithms shown in Figure 5. Lines 4–9 are a conditional statement.
First, the conditional expression within the parenthesis on line 4 is evaluated (i.e., does the variable
button_state contain the value 1?). If this conditional expression is true, then the statement on
line 5 is executed. If this conditional expression is false, then the statement on line 8 is executed. A
conditional statement can be used to implement decision steps in our flowchart. However, the C++
program in Figure 7 is not complete; it is just a sketch, since how our program reads the button state,
sends messages, receives messages, and turns on/off LEDs depends on the operating system which
is discussed in the next section.

If you would like to learn more about basic C++ programming consider reviewing this gentle intro-
duction which is part of an intermediate programming course taught at Cornell University:

• https://cornell-ece2400.github.io/ece2400-docs/ece2400-T01-intro-c

5

CURIE Academy, Summer 2021 Lab 2 Notes: Computer Engineering – Software Perspective

4. Operating System: Particle OS

Figure 7 was an incomplete sketch of the programs needed to implement our flowchart algorithms.
To complete the sketch, we will need to call various functions that are part of the operating system. The
operating system is in charge of managing the interaction between the application program and the
underlying low-level hardware. The Particle operating system (OS) provides functions for setting
up the Particle Argon, reading/writing pins, and sending/receiving messages (also called events).
We will start by considering a simple example that adds two numbers, before revisiting the complete
C++ programs to implement our flowchart algorithms.

Figure 8 shows a C++ program which adds two numbers together and displays the result using an
LED. The Particle Argon devices we are targeting do not have any kind of screen, so we have to
think creatively about how to display the status of the program. Here we are blinking an LED z
times where z is the sum of the variables x and y.

Our Particle Argon programs can be divided into four sections. The first section (lines 1–7) is where
we create global names for pin assignments and define global variables (i.e., variables that can be
accessed in any function throughout the program). The second section (lines 9–16) is where we
define any helper functions (e.g., an add helper function to add two integers together). The third
section (lines 18–24) is the setup function. The statements in the setup function execute only once
at the very beginning of the program. The fourth and final section (lines 26–43) is the loop function.
The statements in the loop function execute repeatedly over and over again. Throughout this lab, we
will provide you the necessary code for the first three sections; you will be responsible for focusing
on the loop function and possibly adding global variables where necessary. The Particle OS takes
care of calling the setup and loop functions appropriately.

The statement on line 23 is a call to the pinMode function which is provided by the Particle OS. The
pinMode function configures the given pin number to be either an input pin or an output pin. Since
we assigned the value D7 to the variable led_pin, we are effectively configuring digital pin D7 to be an
output. Digital pin D7 corresponds to the small blue LED by the USB connector on the Particle Argon
(see Figure 4). The iteration statement on line 34 is a for loop which is used to execute the loop body
multiple times. This specific code will execute the loop body on lines 35–38 z times. The loop body
contains two calls to the digitalWrite function and two calls to the delay function. Both of these
functions are provided by the Particle OS. The digitalWrite function will write the corresponding
output pin with either a HIGH or LOW voltage, while the delay function tells the Particle Argon to wait
for the given number of milliseconds before continuing to the next statement. Finally, on line 42 we
wait an additional four seconds.

Figure 9 shows the complete C++ programs that implement the algorithms shown in Figure 5. Notice
how the digital pin D4 is setup to be an input pin in the IoT input device program, but it is setup
to be an output pin in the IoT output device program. The Particle OS digitalRead function is
used to read the button state in the IoT input device program, and the Particle OS digitalWrite
function is used to write the LED in the IoT output device program. The IoT input device program
in Figure 9(a) uses the Particle.publish function to send messages (also called events) to the IoT
cloud (see line 13 and 16). The IoT output device program Figure 9(b) uses the Particle.subscribe
function to indicate what other function should be called to receive messages from the IoT cloud.
Line 16 specifies that the receive_msg function should be called which is defined on lines 3–11. The
Particle OS will call this function with the name of the event and the message as C strings. C strings
can be quite tricky to work with, so care is required. On line 5, we use the strcmp function to compare
the string variable msg to string literal "on". The strcmp function returns 0 if the two strings match.

6

CURIE Academy, Summer 2021 Lab 2 Notes: Computer Engineering – Software Perspective

1 // Global constants for pin assignments and global variables
2

3 int led_pin = D7;
4

5 int x = 2;
6 int y = 3;
7 int z = 0;
8

9 // Helper functions
10

11 int add(int a, int b)
12 {
13 int sum;
14 sum = a + b;
15 return sum;
16 }
17

18 // The setup routine runs once when you press reset
19

20 void setup()
21 {
22 // Configure led_pin as digital output
23 pinMode(led_pin, OUTPUT);
24 }
25

26 // The loop routine runs over and over again
27

28 void loop()
29 {
30 // Do the addition
31 z = add(x, y);
32

33 // Blink LED z times
34 for (int i = 0; i < z; i++) {
35 digitalWrite(led_pin, HIGH); // Turn on the LED
36 delay(500); // Wait 0.5 seconds
37 digitalWrite(led_pin, LOW); // Turn off the LED
38 delay(500); // Wait 0.5 seconds
39 }
40

41 // Wait four seconds
42 delay(4000);
43 }

Figure 8: Complete Example C++ Program

7

CURIE Academy, Summer 2021 Lab 2 Notes: Computer Engineering – Software Perspective

1 int button_pin = D4;
2 int button_state = -1;
3

4 void setup()
5 {
6 pinMode(button_pin, INPUT);
7 }
8

9 void loop()
10 {
11 button_state = digitalRead(button_pin);
12 if (button_state == 1) {
13 Particle.publish("button_state", "on");
14 }
15 else {
16 Particle.publish("button_state", "off");
17 }
18 delay(1000);
19 }

(a) IoT Input Device Program

1 int led_pin = D4;
2

3 void receive_msg(const char* event, const char* msg)
4 {
5 if (strcmp(msg, "on") == 0) {
6 digitalWrite(led_pin, HIGH);
7 }
8 else {
9 digitalWrite(led_pin, LOW);

10 }
11 }
12

13 void setup()
14 {
15 pinMode(led_pin, OUTPUT);
16 Particle.subscribe("button_state", receive_msg);
17 }
18

19 void loop()
20 {
21 // empty
22 }

(b) IoT Output Device Program

Figure 9: Complete C++ Programs for Smart Light

5. Compiler: Particle Development Environment

Now that we have refined our algorithm into a programming language with operating system sup-
port, we can use a compiler to translate the high-level program statements into the low-level instruc-
tions that the machine can actually execute. In this lab, we will be using the online Particle develop-
ment environment to compile our programs. You can start the Particle development environment by
going to this URL:

• https://build.particle.io

You should not create a new account. You should login with your group username and password.
Figure 10 labels the key icons on the left-hand side of the Particle development environment:

• Flash: Compiles and flashes the current code to the selected device
• Verify: Compiles without flashing the current code
• Save: Saves the current code
• Code: Shows a list of available programs
• Library: Explore libraries
• Help: Does not work for our Particle Argon
• Docs: Brings you to the Particle documentation site
• Devices: Shows a list of all devices
• Console: Brings you to the Particle console for monitoring the IoT cloud
• Settings: Log out

The most important icon is the flash (lightning) icon in the upper-left hand corner. Clicking this icon
will cause the Particle IDE to compile your program into machine instructions and then to upload the
resulting machine instructions to the Particle Argon for execution. Figure 10 illustrates what happens

8

CURIE Academy, Summer 2021 Lab 2 Notes: Computer Engineering – Software Perspective

Flash

Verify

Save

Code

Library

Help

Docs

Devices

Console

Settings

Figure 10: Particle Development Environment

when you click on the devices icon. Note that you must select your specific device by clicking the little
star next the device that matches your device number. You can always look at the bottom right-hand
corner to verify that you are working on your specific device. You can click the little > to reveal the
signal button. Clicking this button will cause your Particle Argon to blink rainbow colors which is a
great way to confirm that your Particle Argon is connected to the internet and working.

Clicking the console icon will take you to the Particle Console which enables monitoring what is going
on in the Particle cloud. To start, you probably want to first click on the devices icon in the upper-left
hand corner of the Particle console and then choose your device. Figure 11 illustrates what the device
page looks like in the Particle Console. In the upper-right hand corner you can click the signal button
to signal your Particle Argon and case the status LED to blink rainbow colors. The last vitals pane is
a useful way to verify that your Particle Argon device has a strong conenction to the WiFi network.
You can monitor messages (also called events) being sent into the Particle cloud. You can click on an
event to see more information. You can also update Particle variables in the lower-right hand corner.
We will learn more about Particle variables in the actual lab session.

Take a few minutes to watch these two video tutorials:

• https://www.youtube.com/watch?v=b6sUP16HWKM
• https://www.youtube.com/watch?v=QFXK7RvDT-Y

9

CURIE Academy, Summer 2021 Lab 2 Notes: Computer Engineering – Software Perspective

Figure 11: Particle Console Device Page

10

CURIE Academy, Summer 2021 Lab 2 Notes: Computer Engineering – Software Perspective

Figure 12: Particle Console Event Page

11

CURIE Academy, Summer 2021 Lab 2 Notes: Computer Engineering – Software Perspective

6. Instruction Set Architecture: ARM Machine Instructions

The compiler translates the high-level statements used in the programming language into very sim-
ple machine instructions which are part of an instruction set architecture. Figure 13 illustrates a very
simple architecture with a processor to compute on data and two kinds of memory to store data:
main memory is slow but can store a large amount of data, while registers are fast but can only store
a small amount of data. This simple architecture supports three kinds of machine instructions: load
instructions move values from memory into registers; store instructions move values from registers
into memory; and arithmetic instructions perform simple arithmetic on values stored in registers.

As mentioned in the previous section, the compiler transforms the sequence of high-level statements
in Figure 6 into a sequence of machine instructions the processor can understand. Figure 14 shows
the actual machine instructions generated by the compiler for line 5 in Figure 6(b). There are four ma-
chine instructions: the first two machine instructions load values from main memory into registers,
the third machine instruction adds these two values together, and the final machine instruction stores
the sum back out to main memory. Note that the processor can use a ripple-carry adder similar to the
one you developed in Lab 1 to implement the add machine instruction which means our tour of the
computer systems stack is complete! In Lab 1, we explored technology to machine instructions, and
in lab 2 we explored from applications to machine instructions. We meet in the middle of the stack
at the instruction set architecture, where hardware meets software and software meets hardware!

Main
Memory

Registers

Load/Store
Instructions

Arithmetic
Instructions

Figure 13: Simple Architecture

1 # load two values from main memory into two registers
2 ldr r2, [r7, #4]
3 ldr r3, [r7]
4

5 # do the actual addition
6 add r3, r3, r2
7

8 # store the sum from a register back into main memory
9 str r3, [r7, #12]

Figure 14: Machine Instructions for Line 5 in Figure 6(b)

12

