CURIE Academy, Summer 2021
Lab 2 Handout: Computer Engineering — Software Perspective

Prof. Christopher Batten
School of Electrical and Computer Engineering
Cornell University

In this lab assignment, you will work in a group of three scholars to explore the field of computer
engineering from the software perspective by incrementally programming a microcontroller in C++
to implement an IoT “smart light” system. Feel free to consult the lab notes as you work through
the lab. In Part 1, you will compile and analyze the machine instructions for a simple Particle Argon
C++ program. In Part 2, you will experiment with a button input module and LED output module
connected to your Particle Argon. In Part 3, you will experiment with the Particle cloud. Finally in
Part 4, you will build the complete IoT “smart light” system. After completing all four parts, all of the
scholars will come together to create an IoT geolocation system so we can see where all of the scholars
are participating from. For each part and subparts you will need to have an instructor observe the
desired milestone and initial the appropriate box on the shared Google sign-off spreadsheet. Here is
a list of each milestone:

¢ Part 1: Understanding the Connection Between Applications and Machine Instructions
— Part 1.A: Test Simple Addition Program
— Part 1.B: Examine Corresponding Machine Instructions

¢ Part 2: Understanding Input/Output Modules
— Part 2.A: Experiment with LED Output Module
— Part 2.B: Develop a Button-Controlled LED System

¢ Part 3: Understanding the IoT Cloud
— Part 3.A: Experiment with Particle Variables
— Part 3.B: Experiment with Sending Particle Events
— Part 3.C: Experiment with Receiving Particle Events

¢ Part 4: Building an IoT System
— Part 4.A: Develop a "Smart Light" System
— Part 4.B: Share Photo or Video of Full-Adder on Slack

Before beginning, remove the following materials from your electronics prototyping kit and put all
of the remaining items aside (see Figure 1).

* Particle Argon

¢ Button input module

¢ LED output module

* Two short module connector cables
* White USB cable

1. Understanding the Connection Between Applications
and Machine Instructions

In this part, we will write our very first Particle Argon C++ program and examine the corresponding
machine instructions. Our initial program will add two numbers together and then display the out-
put by blinking an LED. Revisit the lab notes for more information about the Particle Argon and
the four sections of a Particle Argon C++ program.

CURIE Academy, Summer 2021 Lab 2 Handout: Computer Engineering — Software Perspective

Figure 1: Materials Required for Lab 2

Complete the following steps before continuing:

* Ensure your Particle Argon is powered through the USB cable. Note you do not need to plug
your Particle Argon into a laptop or workstation. The USB cable is only used for power, so you
can use a USB power adapter.

¢ Ensure your Particle Argon status LED is breathing cyan.

* Log into the Particle development environment at https://build.particle.io using your
group name and password provided by the instructors.

* Ensure your Particle Argon is selected by first clicking the devices icon and then clicking the
yellow star next to the name of your device. Confirm that the name of your Particle Argon
device is listed in the bottom right-hand corner of the Particle development environment.

¢ Try signaling your Particle Argon through the Particle development environment to ensure it
is working and connected to the cloud.

1.A Test Simple Addition Program

Recall the program in Figure 2 from the lab notes. Recall that the digitalWrite routine will write a
digital output pin with either a logic HIGH or a logic LOW. The delay routine will essentially wait
for the given time specified in milliseconds. Notice that we are using a for loop on lines 34-39 to
blink the LED several times; the number of times we blink the LED is equal to the sum of the two
input numbers.

Create a fresh program by clicking the code icon and then clicking create new app. It is very important
that you always prefix the name of your programs with your first name to ensure that all members
of the group are editing their own unique files! Enter the code from Figure 2. Always confirm you
are working with your specific Particle Argon by checking the device name in the lower right-
hand corner. Compile and upload your program to the Particle Argon using the flash (lightning)
icon. Once the code has been uploaded, confirm that the blue LED is blinking the desired number
of times. Try changing the values of x and y and recompile and reupload the program. Confirm the
blue LED is blinking the desired number of times.

CURIE Academy, Summer 2021 Lab 2 Handout: Computer Engineering — Software Perspective

1 // Global constants for pin assignments and global variables

3 int led_pin = D7;

5 int x = 2;
6 int y = 3;
7 int z = 0;

9 // Helper functions

1 int add(int a, int b)

2 {

13 int sum;

14 sum = a + b;

15 return sum;

16}

17

18 // The setup routine runs once when you press reset
19

20 void setup()

2

2 // Configure led_pin as digital output
23 pinMode(led_pin, OUTPUT);

%}

25

2% // The loop routine runs over and over again
27

23 void loop()

29 {

30 // Do the addition

31 z = add(x, y);

32

3 // Blink LED z times

34 for (int i = 0; i < z; i++) {

35 digitalWrite(led_pin, HIGH); // Turn on the LED
36 delay(500) ; // Wait 0.5 seconds
37 digitalWrite(led_pin, LOW); // Turn off the LED
38 delay(500) ; // Wait 0.5 seconds
39 T

10

1 // Wait four seconds

2 delay(4000);

13}

Figure 2: Complete Example C++ Program

Sign-Off Milestone: Once you have experimented with your program, demonstrate for an instructor
that the program can successfully add two new input values. Ideally, all scholars in the group should
sign-off this milestone before moving on to the next milestone. Work together to help each other
achieve the milestone!

Critical Thinking Questions to Discuss Within Your Group: What would happen to the LED if we re-
placed line 31 with z = add(x, z)? Explain why this would happen.

CURIE Academy, Summer 2021 Lab 2 Handout: Computer Engineering — Software Perspective

1.B Examine Corresponding Machine Instructions

In this subpart, we wish to examine the machine instructions that correspond to the add function in
the high-level program language on lines 11-16 in Figure 2. To see these machine instructions, we
will use an online tool called Compiler Explorer at this URL (see Figure 3):

® https://godbolt.org

Find where the drop-down box that says x86-64 gcc 11.1 and choose ARM gcc trunk (linux). This
makes sure the compiler is generating the same kind of machine instructions used by the Particle
Argon. Enter just the add function from lines 11-16 in Figure 2 into the left-hand box of Compiler Ex-
plorer. The compiler will generate the machine instructions in the right-hand box for you to examine.
You can force the compiler to do more optimizations by entering in -03 into the Compiler options text
box. Experiment with other code. For example, replace the + operator with - to do subtraction, * to
do multiplication, or / to do division. Examine the machine instructions generated by the compiler.

Sign-Off Milestone: An instructor will choose one scholar in the group to share her screen and show
the machine instructions corresponding to her new function which uses either the subtract (-), mul-
tiply (x), or divide (/) operator.

Critical Thinking Questions to Discuss Within Your Group: The add instruction might very likely be
implemented with a ripple-carry adder similar to what you built in Lab 1. How many full adders do
we need in the ripple-carry adder if we can guarantee that the inputs are in the range 0-255?

& Compiler Explorer X + ()
& godbolt.org * @ » &
¢ COMPILER [~ 1 ‘ { ‘ Select ARM gcc trunk (linux) here
) Add...~ Viore ¥
—s EXPLORER r
C++ source #1 X =] iler #1) C++ X O
A~ B +~ v £ » C++ v x86-64 gec 11.1 @ (Compiler options... D~
1 // Type your code here, or load an Y
2 int square(int num) { -
1 square(int):
3 return num * num; -
2 push rbp
4 %
3 mov rbp, rsp
Write your C++ 4 mov DWORD PTR [rbp-4], edi
code here ... 5 mov eax, DWORD PTR [rbp-4]
6 imul eax, eax
7 pop rbp
8 ret

Compiler will generate the
corresponding machine
instructions here ...

Try entering
-O3 here

C B Output (0/0) x86-64 gcc 111 § - 77ms (27928) ~170 lines filtered L

Figure 3: Compiler Explorer

CURIE Academy, Summer 2021 Lab 2 Handout: Computer Engineering — Software Perspective

2. Understanding Input/Output Modules

Now that we better understand the connection between applications and machine instructions, let’s
start to explore the various input and output modules. We will begin by blinking the LED output
module, before adding the button input module to control the LED output module.

2.A Experiment with LED Output Module

Connect one end of a short module connector cable to the LED output module, and connect the
other end to digital port D4 on the Particle Argon. Revisit the lab notes for more on the Particle
Argon ports. Once we have made these connections we can now control the LED output module in
the exact same way we controlled the blue LED on digital pin D7 in Figure 2. We simply need to
specify a pin number D4.

Create a fresh program by clicking the code icon and then clicking create new app. It is very important
that you always prefix the name of your programs with your first name to ensure that all members
of the group are editing their own unique files! Enter the code from Figure 4. Always confirm you
are working with your specific Particle Argon by checking the device name in the lower right-
hand corner. Compile and upload your program to the Particle Argon using the flash (lightning)
icon. Once the code has been uploaded, confirm that the red LED is blinking. Try changing the delay
values to make the red LED blink slower or faster.

Sign-Off Milestone: Show an instructor that the red LED is blinking. Ideally, all scholars in the group
should sign-off this milestone before moving on to the next milestone. Work together to help each
other achieve the milestone!

Critical Thinking Questions to Discuss Within Your Group: What would happen if we change the delay
on line 11 to a very small value (e.g., 100)? What would happen if we instead change the delay on
line 13 to a very small value (e.g., 100)?

int led_pin = D4;

void setup()

1
2

3

+ {

5 pinMode(led_pin, OUTPUT);

6 X

7

8 void loop()

o {

10 digitalWrite(led_pin, HIGH); // Turn on the LED
1 delay(1000); // Wait 1 second

12 digitalWrite(led_pin, LOW); // Turn off the LED
13 delay(1000); // Wait 1 second
14}

Figure 4: Code for LED Output Module

CURIE Academy, Summer 2021 Lab 2 Handout: Computer Engineering — Software Perspective

2.B Develop a Button-Controlled LED System

Connect one end of a short module connector cable to the button input module, and connect the
other end to digital port D2 on the Particle Argon. Revisit the lab notes for more on the Particle
Argon ports. Once we have made these connections we can now control the LED output module
using the button input module.

Create a fresh program by clicking the code icon and then clicking create new app. It is very important
that you always prefix the name of your programs with your first name to ensure that all members
of the group are editing their own unique files! Start with the template code from Figure 5 and fill in
the code for the 1loop function. You will need to use a conditional statement. Always confirm you are
working with your specific Particle Argon by checking the device name in the lower right-hand
corner. Compile and upload your program to the Particle Argon using the flash (lightning) icon.
Once the code has been uploaded, confirm that the red LED turns on when the button is pressed.
Hint: Take a look at Figure 9(a) in the lab notes for an example of a C++ conditional statement.

Sign-Off Milestone: Show an instructor that the red LED turns on when the button is pressed. Ideally,
all scholars in the group should sign-off this milestone before moving on to the next milestone. Work
together to help each other achieve the milestone!

1 int led_pin = D4;
2 int button_pin = D2;
3 int button_state = -1;

5 void setup()

6 1
7 pinMode(led_pin, QUTPUT);
8 pinMode(button_pin, INPUT);
s}

1 void loop()

12 {

13 // read the button value

14 button_state = digitalRead(button_pin);

16 // Add code here to check the button value ...

17 // ... if button value is one, turn on LED.
18 // ... if button value is zero, turn off LED.
19

20 // wait 1 second before reading button again
21 delay(1000) ;

» }

Figure 5: Code for Button-Controlled LED System

CURIE Academy, Summer 2021 Lab 2 Handout: Computer Engineering — Software Perspective

3. Understanding the Particle Cloud

In the previous part, we developed a button-controlled LED system, but this system did not com-
municate with the Particle cloud. In this part, we will first connect the button input module to the
Particle cloud and then we will separately connect the Particle cloud to the LED output module.

3.A Experiment with Particle Variables

We can use a Particle variable as a way to read variables stored on your Particle Argon from the Particle
cloud. We simply need to include a call to the Particle.variable function to tell the Particle OS
which variables we wish to monitor from the cloud. Remove the LED output module, and connect
the button input module to digital port D4.

Create a fresh program by clicking the code icon and then clicking create new app. It is very important
that you always prefix the name of your programs with your first name to ensure that all members
of the group are editing their own unique files! Enter the code from Figure 6. Always confirm you
are working with your specific Particle Argon by checking the device name in the lower right-
hand corner. Compile and upload your program to the Particle Argon using the flash (lightning)
icon.

Once the code has been uploaded then open the Particle console by clicking the console icon in the Par-
ticle development environment. Click on the devices icon in the Particle console and choose your de-
vice from the list. Recall the figure from the lab notes also shown in Figure 7. Find the button_state
Particle variable in the variables section in the lower right-hand corner. Click gef to refresh the vari-
able. Press the button, click get, release the button, click get. Confirm that the variable correctly
reflects the state of the button on your IoT device.

Sign-Off Milestone: An instructor will choose one scholar in the group to share her screen and show
that the Particle variable correctly reflects the state of the button. Ideally, all scholars in the group
should sign-off this milestone before moving on to the next milestone. Work together to help each
other achieve the milestone!

D4;
_1;

int button_pin
int button_state

1

2

3

4+ void setup()

s {

6 pinMode(button_pin, INPUT);

7 Particle.variable("button_state", button_state);
8

9

}

10 void loop()

1n {

12 // read the button value

13 button_state = digitalRead(button_pin);

14

15 // wait 1 second before reading button again
16 delay(1000) ;
17}

Figure 6: Code for Button Particle Variable

CURIE Academy, Summer 2021 Lab 2 Handout: Computer Engineering — Software Perspective

¥ Particle Console | Build your ¢ X + (-]
@ console.particle.io/devices/e00fce684d7¢11c254664147 t ®» (31
Sandbox ¢ D Docs | @ Contact Sales | & Support | A Notifications | curie2021 v
View Device PING | (7 EDIT
ID: eOO0fce684d7c11c254664147 Name: brg-argon-154 Notes
Device OS: 2.1.0 Type: @ Argon
Serial Number: ARNKAB8429VABCH Last Handshake: Jul 19th 2021, 10:35 am
Last Heard: Jul 19th 2021, 10:35 am
EVENTS LAST VITALS
N = . ADVANCED Jul 19th, 2021, 10:27AM
. button_state © = Strong Wi-Fi signal
Published by e00fce684d7c11c254664147 on 7/1 . ~
NAME DATA DEVICE PUBLISHED AT /21 at 10:35:32 am © 219ms round-trip time
O 50kB of 165kB RAM used
Unpause to reveal 12 queued events. . © 0 rate-limited publishes
() B cxe)
button_state off brg-argon-154 7/19/21 at 10:35:36
on
button_state off brg-argon-154 7/19/21 at 10:35:35
button_state off brg-argon-154 7/19/21 at 10:35:34. FIRMWARE &
off brg-argon-154 7/19/21 at 10:35:33 OTA Updates: Enabled
7/19/21 at 10:35:32 Force Enable OTA
Force enable OTA updates to
button_state on brg-argon-154 7/19/21 at 10:35:32 override device firmware setting
button_state on brg-argon-154 7/19/21 at 10:35:30.
FUNCTIONS
spark/device/dia... {"device":{"networ... brg-argon-154 7/19/21 at 10:35:30.
button_state on brg-argon-154 7/19/21 at 10:35:29 No functions found on device. Read
more functi here.
button_state off brg-argon-154 7/19/21 3t 10:35:28 ore about functions here
button_state off brg-argon-154 7/19/21 at 10:35:27
VARIABLES
particle/device/u... false brg-argon-154 7/19/21 at 10:35:27
button_state off brg-argon-154 7/19/21 3t 10:35:26 No variables found on device. Read
more about variables here.
particle/device/u... false brg-argon-154 7/19/21 at 10:35:26
particle/device/u... true brg-argon-154 7/19/21 at 10:35:26
ACTIONS
spark/device/las... power_down brg-argon-154 7/19/21 at 10:35:26 1 UNCLAIM
spark/status online brg-argon-154 7/19/21 at 10:35:25
spark/status offline brg-argon-154 7/19/21 at 10:31:45

Figure 7: Particle Console Device Page

CURIE Academy, Summer 2021 Lab 2 Handout: Computer Engineering — Software Perspective

3.B Experiment with Sending Particle Events

Particle variables are useful for debugging, but they do not enable Particle Argons to communicate
with each other. We will need to use Particle events (also called messages) where IoT input devices
send events into the cloud and IoT output devices receive events from the cloud. To sending a Particle
event to the Particle cloud, We simply need to include a call to the Particle.publish function to tell
the Particle OS about the event and the data we want to send to the cloud.

Create a fresh program by clicking the code icon and then clicking create new app. It is very important
that you always prefix the name of your programs with your first name to ensure that all members
of the group are editing their own unique files! Enter the code from Figure 8. To make sure each
scholar’s events are unique, use your name as part of the event name. Always confirm you are
working with your specific Particle Argon by checking the device name in the lower right-hand
corner. Compile and upload your program to the Particle Argon using the flash (lightning) icon.

NOTE: Each group account has a limit on the total number of events that can be sent/received to the
Particle cloud per month. To stay under this limit, try to avoid sending too many events. Try not to
send an event more than once a second and turn off your Particle Argon when you are not using it.

Once the code has been uploaded then open the Particle console by clicking the console icon in the
Particle development environment. Click on the events icon in the Particle console. Press the button
input module and watch for the corresponding events to show up in the event list.

Sign-Off Milestone: An instructor will choose one scholar in the group to share her screen and show
that the Particle console shows the correct event when the button is pressed. Ideally, all scholars in
the group should sign-off this milestone before moving on to the next milestone. Work together to
help each other achieve the milestone!

1 int button_pin D4;
int button_state = -1;

4+ void setup()

5

6 pinMode(button_pin, INPUT);
7}

9 void loop()

10 {

1 // read the button value

12 button_state = digitalRead(button_pin);

13

14 // NOTE: Replace SCHOLARS_FIRST_NAME with your first name!
15 if (button_state == 1) {

16 Particle.publish("SCHOLARS_FIRST_NAME_button_state", "on");
17 }

18 else {

19 Particle.publish("SCHOLARS_FIRST_NAME_ button_state", "off");
20 }

21

2 // wait 1 second before reading button again

23 delay(1000) ;

%}

Figure 8: Code for Sending Particle Events

CURIE Academy, Summer 2021 Lab 2 Handout: Computer Engineering — Software Perspective

3.C Experiment with Receiving Particle Events

The previous part experimented how to send Particle events, and in this part we will experiment with
how to receive Particle events. Receiving events is a bit more complicated. We need to include a call
to the Particle.subscribe function to tell the Particle OS what handler function to call whenever
a specific kind of event is received, and then we need to actually process the event in the handler
function. Remove the button input module and connect the LED output module to digital port D4.

Create a fresh program by clicking the code icon and then clicking create new app. It is very important
that you always prefix the name of your programs with your first name to ensure that all members
of the group are editing their own unique files! Enter the code from Figure 9. To make sure each
scholar’s events are unique, use your name as part of the event name. Always confirm you are
working with your specific Particle Argon by checking the device name in the lower right-hand
corner. Compile and upload your program to the Particle Argon using the flash (lightning) icon.

Once the code has been uploaded then open the Particle console by clicking the console icon in the
Particle development environment. Click on the events icon in the Particle console. Recall the figure
from the lab notes also shown in Figure 10. We can use the Particle console to not just monitor events
but also to send new Particle events directly from the cloud. Click on the little blue arrow head. Enter
in the name of your event and either “on” or “off”. Then click publish. Verify that the LED output
module correctly turns on or off.

Sign-Off Milestone: An instructor will choose one scholar in the group to share her screen and show
she is able to turn the LED output module on/off from the Particle console using events. Ideally, all
scholars in the group should sign-off this milestone before moving on to the next milestone. Work
together to help each other achieve the milestone!

1 int led_pin = D4;

3 void receive_msg(const char* event, const char* msg)
+ o

5 if (strcmp(msg, "on") == 0)

6 {

7 digitalWrite(led_pin, HIGH);
8 }

9 else {

10 digitalWrite(led_pin, LOW);
1 T

12}

14 void setup()

15 {

16 pinMode(led_pin, OUTPUT);

17 Particle.subscribe("NAME_toggle_led", receive_msg);
18}

20 void loop()
an o
2 // empty
3}

Figure 9: Code for Receiving Particle Events

10

CURIE Academy, Summer 2021 Lab 2 Handout: Computer Engineering — Software Perspective

¥ Particle Console | Build your X + (+]

@ console.particle.io/events

Sandbox ¢ D Docs @ Contact Sales (<]

Events (Click this to send an event ...

1 o ADVANCED
< B button_state
on
@ Pprivate O Public PUBLISH

button_state off brg-argon-154 7/19/21 at 10:40:47 am
button_state off brg-argon-154 7/19/21 at 10:40:46 am
button_state off brg-argon-154 7/19/21 at 10:40:45 am
button_state off brg-argon-154 7/19/21 at 10:40:44 am
button_state off brg-argon-154 7/19/21 at 10:40:43 am
button_state off brg-argon-154 7/19/21 at 10:40:42 am
button_state off brg-argon-154 7/19/21 at 10:40:41 am Select an event to see more details about it
button_state off brg-argon-154 7/19/21 at 10:40:40 am
button_state off brg-argon-154 7/19/21 at 10:40:39 am
button_state off brg-argon-154 7/19/21 at 10:40:38 am

spark/device/diagnostics... {"device”:("network”:{"sign... brg-argon-154 19/21 at 10:40:38 am

button_state off brg-argon-154 7/19/21 at 10:
button_state off brg-argon-154 7/19/21 at 10:40:36 am
button_state off brg-argon-154 7/19/21 at 10:40:35 am
particle/device/updates/p... false brg-argon-154

button_state off brg-argon-154

particle/device/updates/f.. false brg-argon-154

particle/device/updates/e... true brg-argon-154

spark/device/last reset nower down bra-arann-154

Figure 10: Particle Console Events Page

11

CURIE Academy, Summer 2021 Lab 2 Handout: Computer Engineering — Software Perspective

4. Building an IoT System

In the previous part, we learned how to use Particle events. In this part we will now put together the
fully integrated “smart light” system as shown in Figure 11 from the notes.

4.A Develop a “Smart Light” System

Start by choosing which scholar(s) will implement the IoT input device and which scholar(s) will
implement the IoT output device. You will need at least one scholar implementing each type of
device. For the IoT input device, connect the button input module to digital port D4. For the IoT
output device, also connect the LED output module to digital port D4.

The code for the IoT input device is shown in Figure 12(a) and the code for the IoT output device is
shown in Figure 12(b). Notice how the event name no longer includes your name as a prefix. This
is critical since this will enable all of your Particle Argon devices to send and receive the same event
and thus enables them to communicate with each other! Each scholar should create a new program
with the code for their device based on wether they are implementing the IoT input device or the IoT
output device. Make sure to prefix the name of your program with your first name!

Once everything is connected and all devices have been programmed, then test out your “smart
light” system. If any scholar with an IoT input device pesses her button, then the LEDs on all of the
IoT output devices should turn on. When the scholar releases her button, then all of the LEDs should
turn off. Try using the the Particle console to monitor the events!

Sign-Off Milestone: Demonstrate the fully working “smart light” system to an instructor.

4.B Share Photo or Video of “Smart Light” on Slack

Now that you have your “smart light” working, take a photo of your final device, code, and/or
record a short video of your system in operation. Then upload your photo and/or video to Slack
using the #lab2-final-media-milestone channel. It would be great if you could maybe even have
someone else take a photo of you either hooking up your device or showing it off for the camera!

Sign-Off Milestone: Show your uploaded photo and/or video to an instructor.

Device Device

[IoT Input]_» —_ [IoT Output]

Button LED
Input Output
Module Module “

Figure 11: Diagram of Simple “Smart Light” System

12

CURIE Academy, Summer 2021 Lab 2 Handout: Computer Engineering — Software Perspective

1 int led_pin = D4;

3 void receive_msg(const char* event, const char* msg)

int button_pin = D4; .
int button_state = -1; 5 if (strcmp(msg, "on") == 0) {
6 digitalWrite(led_pin, HIGH);

void setup() 7 }
{ 8 else {

pinMode(button_pin, INPUT); 9 digitalWrite(led_pin, LOW);
} 10 }

n ¥

void loop() 12
{ 13 void setup()

button_state = digitalRead(button_pin) u {

if (button_state == 1) { 15 pinMode(led_pin, OUTPUT);

Particle.publish("button_state", "on"); 16 Particle.subscribe("button_state", receive_msg);
} v}
else { 18
Particle.publish("button_state", "off"); 19 void loop()

} 0 o

delay(1000) ; 21 // empty
} 2 }

(a) IoT Input Device Program (b) IoT Output Device Program

Figure 12: Complete C++ Programs for Smart Light

Next Steps

Parts 14 are the required portions of the lab. If you complete these parts quickly, you can start to get
ready for a final activity which will involve all of the scholars coming together to experiment with
an IoT geolocation system. To prepare connect the LED output module to digital port D4 and the
button input module to digital port D2. Then take a few minutes to read this Khan Academy article
about geolocation:

® https://tinyurl.com/92zywfsb

We will be using the Wi-Fi positioning system strategy to geolocate all of the scholars’ Particle Argon
devices.

13

