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Various Electrical Devices
CURIE Academy, Summer 2014 Lab Notes 1: Computer Engineering – Hardware Perspective

(a) LEDs (b) Resistors (c) Transistor

Figure 2: Various Devices

Figure 3: Symbols for Various Devices

Figure 4: Basic Electrical and Water Circuit
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Basic Electrical and Water Circuit
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Simple LED Circuit
CURIE Academy, Summer 2014 Lab Notes 1: Computer Engineering – Hardware Perspective

Figure 5: Simple LED Circuit

Figure 6: Connectivity Inside Breadboard Shown in Purple

Figure 7: Simple LED Circuit Implemented on Prototyping Platform
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Figure 5: Simple LED Circuit

Figure 6: Connectivity Inside Breadboard Shown in Purple
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Connectivity Inside Breadboard
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Figure 5: Simple LED Circuit
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LED Circuit on Breadboard
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Figure 5: Simple LED Circuit

Figure 6: Connectivity Inside Breadboard Shown in Purple

Figure 7: Simple LED Circuit Implemented on Prototyping Platform
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Inverter Circuit
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Figure 8: Inverter Circuit (P = PMOS transistor, N = NMOS transistor)

Figure 9: Inverter Circuit Implemented on Prototyping Platform

Figure 8 shows a more interesting circuit called an inverter. This circuit uses a PMOS transistor and
an NMOS transistor. When the input is a logic one then the PMOS transistor is open and the NMOS
transistor is closed; this essentially causes the output to be “pulled down” to a logic zero. When
the input is a logic zero then the PMOS transistor is closed and the NMOS transistor is open; this
essentially causes the output to be “pulled up” to a logic one. Figure 9 shows the implementation
of the inverter using the prototyping platform provided for you in this lab. Notice how we have
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Inverter Circuit on Breadboard
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Figure 8: Inverter Circuit (P = PMOS transistor, N = NMOS transistor)
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Figure 9: Inverter Circuit Implemented on Prototyping Platform

Figure 8 shows a more interesting circuit called an inverter. This circuit uses a PMOS transistor and
an NMOS transistor. When the input is a logic one then the PMOS transistor is open and the NMOS
transistor is closed; this essentially causes the output to be “pulled down” to a logic zero. When
the input is a logic zero then the PMOS transistor is closed and the NMOS transistor is open; this
essentially causes the output to be “pulled up” to a logic one. Figure 9 shows the implementation
of the inverter using the prototyping platform provided for you in this lab. Notice how we have
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NOR, AND, OR, XOR Logic GatesCURIE Academy, Summer 2014 Lab Notes 1: Computer Engineering – Hardware Perspective

Figure 10: Symbol and Truth Table for NOT, AND, OR, XOR Gates

(a) Integrated Circuit
(b) AND Chip (c) OR Chip (d) XOR Chip

Figure 11: Four Logic Gates Implemented as an Integrated Circuit in a Single Chip

attached the input of the inverter to one of the digital input switches and the output of the inverter
to one of the digital output LEDs. Turning on the input will turn off the output; and turning off the
input will turn on the output.

3. Gates: NOT, AND, OR, XOR

As computer engineers, we often use abstraction to hide implementation details and provide cleaner
higher-level interfaces. Indeed digital signalling itself is an abstraction since we ignore the details
of exact voltages and instead focus on logic one and logic zero values. To build more complicated
circuits, we will create simple circuits and then abstract them into useful logic gates. For example,
we can abstract the inverter discussed in the previous section into the NOT gate shown in Figure 10.
If the input to a NOT gate is a logic one then the output is a logic zero; if the input to a NOT gate is
a logic zero then the output is a logic one. Abstraction enables us to ignore the details of the specific
implementation of a NOT gate using PMOS and NMOS transistors.

Figure 10 also shows three more useful logic gates. We can use a truth table to succinctly capture the
functionality of each logic gate. The truth table shows what the output of the logic gate should be for
every combination of inputs to the logic gate. For example, the output of an AND gate is only one
when both of its inputs are one.
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Logic Gates Implemented in Single Chip
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Figure 10: Symbol and Truth Table for NOT, AND, OR, XOR Gates

(a) Integrated Circuit
(b) AND Chip (c) OR Chip (d) XOR Chip

Figure 11: Four Logic Gates Implemented as an Integrated Circuit in a Single Chip
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to one of the digital output LEDs. Turning on the input will turn off the output; and turning off the
input will turn on the output.
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As computer engineers, we often use abstraction to hide implementation details and provide cleaner
higher-level interfaces. Indeed digital signalling itself is an abstraction since we ignore the details
of exact voltages and instead focus on logic one and logic zero values. To build more complicated
circuits, we will create simple circuits and then abstract them into useful logic gates. For example,
we can abstract the inverter discussed in the previous section into the NOT gate shown in Figure 10.
If the input to a NOT gate is a logic one then the output is a logic zero; if the input to a NOT gate is
a logic zero then the output is a logic one. Abstraction enables us to ignore the details of the specific
implementation of a NOT gate using PMOS and NMOS transistors.

Figure 10 also shows three more useful logic gates. We can use a truth table to succinctly capture the
functionality of each logic gate. The truth table shows what the output of the logic gate should be for
every combination of inputs to the logic gate. For example, the output of an AND gate is only one
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Aside: Binary Arithmetic

CURIE Academy, Summer 2014 Lab Notes 1: Computer Engineering – Hardware Perspective

These logic gates are often implemented as integrated circuits with four gates per chip. Figure 11
shows what one of these chips looks like and illustrates how the logic gates are organized inside the
chip.

4. Aside: Binary Arithmetic

In the next section, we will compose logic gates to create a hardware unit capable of adding two
numbers together, but first we need to understand a bit about binary arithmetic. Computers use
digital circuits which can only handle logic ones and zeros; in other words, computers work with
binary numbers (i.e., base 2) and binary arithmetic. This is in contrast to how we usually use decimal
numbers (i.e., base 10) and decimal arithmetic. Let’s quickly review decimal numbers: each digit can
be a number between zero and nine. The first digit is the “ones digit” (100), the second digit is the
“tens digit” (101), the third digit is the “hundreds digit” (102), and so on. We multiply the number in
each digit by 10i where i indicates which digit. For binary numbers: each digit can only be zero or
one. The first digit is the “ones digit” (20), the second digit is the “twos digit” (21), the third digit is
the “fours digit” (22), and so on. We multiply the number in each digit by 2i where i indicates which
digit. Figure 12 illustrates the binary and decimal representations for all numbers between zero and
15.

Binary addition works exactly like decimal addition, except using binary numbers instead of decimal
numbers. Figure 13 illustrates how to add three plus six using binary numbers and binary addition.
In the first step, we add the “ones digit”; one plus zero is one. In the second step, we add the “twos
digit”; one plus one is two, but remember we cannot use two in binary numbers. We can only use
zero or one. We need to carry a one to the next digit. This is exactly the same as carrying a one when
performing decimal arithmetic. In the third step, we add one (the carry bit) plus zero plus one to
again get two, so we again must carry a one to the next digit. In the final step, we simply add one
plus zero plus zero to get the final answer: 1001 which is nine in decimal. As expected three plus six
is nine, but we have now demonstrated how to do this addition using binary arithmetic.

dec : 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

bin : 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

Figure 12: Binary and Decimal Representation

Step 1 Step 2 Step 3 Step 4

1 11 11

011 011 011 011

+ 110 + 110 + 110 + 110

------ ------ ------ ------

1 01 001 1001

Figure 13: Example Using Binary Addition for 3+6

7



Half-Adder Unit: Add Two 1b Numbers
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5. Register-Transfer Level and Microarchitecture: Ripple-Carry Adder

Now we wish to use basic logic gates to implement a hardware unit that can add two binary numbers
together. This is a relatively complicated task, so we will break it into a few smaller steps. Our first
task is to implement a half adder capable of adding two one-bit numbers together. The reason it
is called a half adder will become apparent a little later in this section. Figure 14 shows the four
possibilities when adding two one-bit numbers.

As discussed in the previous section, if we add one plus one the answer is two which cannot be
represented with a single bit. We must "overflow" from a one-bit result into a two-bit result. We call
the right-most bit of the result the sum bit and the left-most bit of the result the carry bit. For example,
when we add one plus zero, the sum bit is one and the carry bit is zero and when we add one plus
one the sum bit is zero and the carry bit is one.

So how do we implement a one-bit half adder using boolean logic gates? We can think of the half
adder as a black box which has two inputs and two outputs. The two inputs correspond to the two

input input result result carry sum

A B base 10 base 2 bit bit

-------------------------------------------

0 + 0 = 0 00 0 0

0 + 1 = 1 01 0 1

1 + 0 = 1 01 0 1

1 + 1 = 2 10 1 0

Figure 14: Four Possibilities when Adding Two One-Bit Numbers

input input sum input input carry

A B bit A B out

----------------- -------------------

0 0 0 0 0 0

0 1 1 0 1 0

1 0 1 1 0 0

1 1 0 1 1 1

Figure 15: Truth Tables for Sum Bit and Carry Bit

Figure 16: Half-Adder
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Full-Adder: Add Three 1b NumbersCURIE Academy, Summer 2014 Lab Notes 1: Computer Engineering – Hardware Perspective

input input input result result carry sum

A B C base 10 base 2 bit bit

----------------------------------------------------

0 + 0 + 0 = 0 00 0 0

0 + 0 + 1 = 1 01 0 1

0 + 1 + 0 = 1 01 0 1

0 + 1 + 1 = 2 10 1 0

1 + 0 + 0 = 1 00 0 0

1 + 0 + 1 = 2 10 1 0

1 + 1 + 0 = 2 10 1 0

1 + 1 + 1 = 3 11 1 1

Figure 17: Eight Possibilities when Adding Three One-Bit Numbers

Figure 18: Full-Adder

one-bit numbers we wish to add and the two outputs correspond to the sum and carry bits. As a
computer engineer, we need to choose a network of boolean logic gates which will always generate
the desired outputs as a function of the inputs. We start by writing a truth table for each of the two
outputs in isolation (see Figure 15). We can then look at our toolbox of logic gates to see if there
are any matches and indeed it should be clear that we can implement the sum bit by connecting
the inputs to a single XOR gate and that we can implement the carry bit by connecting the inputs
to a single AND gate. The implementation of the half adder using boolean logic gates is shown in
Figure 16.

We can use a similar approach to build a “full adder” which can add three one-bit numbers to pro-
duce a two-bit result. Figure 17 shows the eight possibilities when adding three one-bit numbers. We
now wish to implement a one-bit full adder using boolean logic gates. The full adder has three inputs
corresponding to three one-bit numbers we wish to add together and two outputs corresponding to
the sum and carry bits. As in the previous section, we could now create truth tables for both the
sum bit and the carry bit and carefully construct a network of boolean logic gates which will always
generate the desired outputs as a function of the inputs; note that we will need to use multiple stages
of boolean logic.
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Ripple Carry AdderCURIE Academy, Summer 2014 Lab Notes 1: Computer Engineering – Hardware Perspective

Figure 20: Four-Bit Ripple-Carry Adder (FA = full-adder)

Column A produces a carry bit which we must include when calculating the second bit of the sum,
and similarly column B produces a carry bit meaning the result overflows into three bits. If we focus
on column B, we will realize that we actually need to add three one-bit numbers together (one bit
from the first input, one bit from the second input, and the carry bit from column A) and that we
will produce two outputs (a sum bit and a carry bit for the next column). A full adder provides the
exact functionality needed to calculate each column of a multi-bit addition. Figure 20 illustrates how
we can chain a series of full adders to compute a four-bit addition. The carry bit output from a full
adder is connected to one of the three inputs of the full adder to the left. Note that the third input of
the right-most full adder should be set to zero and that the carry bit output of the left-most full adder
allows us to detect overflow (i.e., the result cannot be encoded in just four bits).

This section illustrates modular design, a powerful design concept which is critical for implementing
complex systems. We first designed and evaluated a small module (half adder) and then reused
this small module to implement a larger and more complex module (full adder). We then chained
multiple full adders together into a ripple-carry adder to enable multi-bit addition.
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Lab 1 Overview
• Part 1.A  Experiment with LED
• Part 1.B  Experiment with Inverters
• Part 1.C  Develop NAND Gate
• Part 2.A  Experiment with Logic Gates
• Part 2.B  Develop Parity Checker
• Part 3.A  Experiment with Half-Adder
• Part 3.B  Develop Full-Adder
• Part 3.C  Share Photo or Video of Full-Adder
• Experiment with multi-bit adder
Let’s wire up a simple LED and inverter circuit


