CURIE Academy, Summer 2021 Lab 1: Computer Engineering Hardware Perspective

Prof. Christopher Batten School of Electrical and Computer Engineering Cornell University

Materials Required for Lab 1

	Application	Smart Light	1
	Algorithm	Flowchart	0 2
	Programming Language	C++	E Lab
_	Operating System	Particle OS	CURIE
_	Compiler	Particle Development Environment	
_	Instruction Set Architecture	ARM Machine Instructions	•
-	Microarchitecture	Ripple Carry Adder	•
	Register-Transfer Level	inpple carry mader	←
	Gate Level	NOT, AND, OR, XOR	Lab
	Circuits	Inverter	CURIE
-	Devices	Resistors, LEDs,	Ū
_	Technology	Transistors	

	Application	Smart Light	1
	Algorithm	Flowchart	0 2
	Programming Language	C++	E Lab
_	Operating System	Particle OS	URI
	Compiler	Particle Development Environment	
	Instruction Set Architecture	ARM Machine Instructions	
	Microarchitecture	Ripple Carry Adder	•
	Register-Transfer Level		
_	Gate Level	NOT, AND, OR, XOR	Lab
	Circuits	Inverter	CURIE
	Devices	Resistors, LEDs,	C
	Technology	Transistors	I

(6) WATER CIRCUIT

	Application	Smart Light	
	Algorithm	Flowchart	0 2
	Programming Language	C++	E Lab
_	Operating System	Particle OS	URI
_	Compiler	Particle Development Environment	
	Instruction Set Architecture	ARM Machine Instructions	
-	Microarchitecture	Ripple Carry Adder	
_	Register-Transfer Level	Ripple Cally Addel	—
	Gate Level	NOT, AND, OR, XOR	Lab
	Circuits	Inverter	URIE
	Devices	Resistors, LEDs,	Ū
_	Technology	Transistors	

Simple LED Circuit

nduuo S C 0-0-C ---6 0-1 U B (C)) GROUND GROUND

Inverter Circuit

	Application	Smart Light	1
	Algorithm	Flowchart	0 2
	Programming Language	C++	E Lab
_	Operating System	Particle OS	CURIE
	Compiler	Particle Development Environment	
	Instruction Set Architecture	ARM Machine Instructions	
	Microarchitecture	Ripple Carry Adder	•
	Register-Transfer Level	Ripple Cally Addel	
[[Gate Level	NOT, AND, OR, XOR	Lab
	Circuits	Inverter	CURIE
-	Devices	Resistors, LEDs,	U U
-	Technology	Transistors	

NOR, AND, OR, XOR Logic Gates

(a) Integrated Circuit

	Application	Smart Light	1
-	Algorithm	Flowchart	0 2
-	Programming Language	C++	E Lal
_	Operating System	Particle OS	CURIE
	Compiler	Particle Development Environment	
	Instruction Set Architecture	ARM Machine Instructions	
Γ	Microarchitecture	Ripple Carry Adder	•
	Microarchitecture Register-Transfer Level	Ripple Carry Adder	
		Ripple Carry Adder NOT, AND, OR, XOR	Lab 1
	Register-Transfer Level		
	Register-Transfer Level Gate Level	NOT, AND, OR, XOR	CURIE Lab 1

Aside: Binary Arithmetic

 dec :
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15

 bin :
 0000
 0001
 0010
 0011
 0100
 0110
 0111
 1000
 1001
 1011
 1100
 1101
 1111
 1110
 1111

Figure 12: Binary and Decimal Representation

 Step 1
 Step 2
 Step 3
 Step 4

 1
 11
 11

 011
 011
 011
 011

 +
 110
 +
 110
 +
 110

 1
 01
 001
 1001
 1001

Figure 13: Example Using Binary Addition for 3+6

Full-Adder: Add Three 1b Numbers

Ripple Carry Adder

Lab 1 Overview

- Part 1.A Experiment with LED
- Part 1.B Experiment with Inverters
- Part 1.C Develop NAND Gate
- Part 2.A Experiment with Logic Gates
- Part 2.B Develop Parity Checker
- Part 3.A Experiment with Half-Adder
- Part 3.B Develop Full-Adder
- Part 3.C Share Photo or Video of Full-Adder
- Experiment with multi-bit adder

Let's wire up a simple LED and inverter circuit