
CURIE Academy, Summer 2014
Design Project Input/Output Module Descriptions

Christopher Torng
School of Electrical and Computer Engineering

Cornell University

Each IoT design project will involve building an IoT system comprised of an IoT input device, IoT
cloud, and IoT output device. The IoT input devices will have various input modules attached that
can sense what is going on in the environment (e.g., light, temperature, motion, force, current, pulse,
liquid) and be able to upload data into the cloud. Each IoT output device will be able to download
data from the could and will have various output modules attached to display data (e.g., LEDs,
piezo buzzer, mini-printer) or react in some way (e.g., servo, relay for controlling appliances). The
following diagram illustrates the overall approach we will be using in our IoT systems.

IoT Cloud

IoT Output
Device

IoT Input
Device

IoT Input Modules
(sensors)

IoT Output Modules
(displays, actuators)

The rest of this document describes each input/output module and gives a simple circuit along with
the corresponding code to get you started. You will need to work on your own to determine the best
way to integrate the input/output module with the IoT cloud. You can use Lab 3 as an example. The
various input and output modules are listed below.

1 Light Input Module . 2
2 Infrared (IR) Input Module . 3
3 Temperature Input Module . 4
4 Force Input Module . 5
5 Flex Input Module . 6
6 Water Input Module . 7
7 Accelerometer Input Module . 8
8 RF Input Module . 9
9 Current Input Module . 10
10 Heart Rate Input Module . 11
11 RGB LED Output Module . 12
12 Servo Output Module . 13
13 Piezo Output Module. 14
14 Printer Output Module. 16
15 LED Matrix Output Module. 17
16 Relay Output Module . 19

1

ENGRG 1060 Explorations in Engineering Design Project Input/Output Module Descriptions

1. Light Input Module

This input module enables your IoT device to sense how much light is reaching the device. The
module uses a small photo-resistor which is similar in spirit to the potentiometer you experimented
with in Lab 2. For the potentiometer, the resistance varied as you twisted the knob on the robot. For
the photo-resistor, the resistance will vary based on how much light reaches the device. The Arduino
cannot directly sense resistance, but it can sense an analog input voltage. We will use a simple circuit
called a voltage divider so that the voltage across the photo-resistor is proportional to the resistance.

A sample circuit and Arduino code is shown below to get you started. The circuit places a 10 kΩ
resistor in series with the photo-resistor so that voltage is divided between the two components. A
10 kΩ resistor has brown-black-orange bands. We use a wire to connect the node in between the
resistor and the photo-resistor to an analog input of the Arduino so that the Arduino can read the
voltage from one end of the 10 kΩ resistor to ground. The example code will print the analog reading
from the photo-resistor on the serial monitor, similar to how we printed the analog reading from the
grayscale sensor in Lab 2. After setting up the circuit and programming the Arduino, open the serial
monitor and note how the sensor reading varies when the device is covered with your hand or when
the device is placed under a bright light. The reading from the sensor should get larger when the
device is in a dark environment, and should get smaller when the device is in a bright environment.

1
1

5
5

1
0

1
0

1
5

1
5

2
0

2
0

2
5

2
5

3
0

3
0

A A

B B

C C

D D

E E

F F

G G

H H

I I

J J

To Analog Input 0

P
ow

er
/

 G
ro

u
n

d

Resistor (10k�)
Brown-Black-Orange-Gold

Photo-
Resistor

1 int pin_light = A0;
2

3 void setup() {
4 Serial.begin(9600);
5 }
6

7 void loop() {
8 int light_level = analogRead(pin_light);
9 Serial.println(light_level);

10 delay(1000);
11 }

2

ENGRG 1060 Explorations in Engineering Design Project Input/Output Module Descriptions

2. Infrared (IR) Input Module

This input module enables your IoT device to sense the distance to an object placed 10–80 cm in front
of it, using the same Sharp GP2Y0A21 Distance Sensor you possibly experimented with in Lab 2. The
sensor works by bouncing infrared (IR) light off objects and sensing the angle at which it returns – a
process called triangulation. The figure below to the left shows IR light bounced off an object placed
at two different distances. Notice how knowing the angle of reflected light tells you the object’s
distance. The output of the sensor is a voltage, corresponding to the distance derived from the angle
of reflected light. Moving an object to different distances changes the output voltage as shown in the
figure below to the right. Can you see why the range of this device is chosen to be 10–80 cm?

A sample circuit and Arduino code is shown below to get you started. There is no need for any extra
components; we directly connect the blue wire from the IR sensor to an analog input on the Arduino.
The example code will print the analog reading from the IR sensor on the serial monitor, similar to
how we printed the analog reading from the grayscale sensor in Lab 2. After setting up the circuit
and programming the Arduino, open the serial monitor and experiment with placing objects (e.g., a
book) at various distances away from the front of the sensor. The reading from the sensor should be
larger for objects farther away from the sensor and smaller for objects closer to the sensor.

1
1

5
5

1
0

1
0

1
5

1
5

2
0

2
0

2
5

2
5

3
0

3
0

A A

B B

C C

D D

E E

F F

G G

H H

I I

J J

To Analog Input 0

IR SensorP
ow

er
 /

 G
ro

u
n

d

1 int pin_ir = A0;
2

3 void setup() {
4 Serial.begin(9600);
5 pinMode(pin_ir, INPUT);
6 }
7

8 void loop() {
9 int distance = analogRead(pin_ir);

10 Serial.println(distance);
11 delay(1000);
12 }

Questions: (1) What happens if the object is further than 80 cm (max range) from the sensor? (2)
What happens if the object is closer than 10 cm (min range) from the sensor? (3) The sensor is not
outputting distance in any particular unit. How can we convert the readings into centimeters?

3

ENGRG 1060 Explorations in Engineering Design Project Input/Output Module Descriptions

3. Temperature Input Module

This input module enables your IoT device to sense the temperature of the environment using an
easy-to-use temperature sensor. This may be useful in environmental control systems, thermal pro-
tection, industrial process control, fire alarms, power system monitors, cpu thermal management,
etc. The TMP36 temperature sensor contains an integrated circuit with a single signal output lead.
This signal’s voltage rises and falls, depending on the ambient temperature, at 10 mV per degree
centigrade (Celsius).

A sample circuit and Arduino code is shown below to get you started. There is no need for any extra
components; we directly connect the middle lead on the temperature sensor to an analog input on
the Arduino. Make sure the sensor’s "flat end" is facing the correct direction (shown in the diagram).
If you point the flat end of the sensor to your left, the top lead connects to power (the red wire), the
middle lead is the signal, and the bottom lead connects to ground (the black wire).

Since the analog reading from the temperature sensor is a digital value between 0 and 1023, the ex-
ample code scales this value to a range between 0–5 V, converts voltage to temperature, and then
prints the temperature in centigrade (Celsius) on the serial monitor, similar to how we printed the
analog reading from the grayscale sensor in Lab 2. After setting up the circuit and programming
the Arduino, open the serial monitor and check the reported room temperature in degrees centi-
grade (Celsius). Does the reading sound right? Experiment with the sensor by changing the ambient
temperature (e.g., with a hair dryer) and see how warm or cool you can make it!

1
1

5
5

1
0

1
0

1
5

1
5

2
0

2
0

2
5

2
5

3
0

3
0

A A

B B

C C

D D

E E

F F

G G

H H

I I

J J

TMP
36

To Analog Input 0

P
ow

er
/

 G
ro

u
n

d

Temperature Sensor
(Flat end on this side ^)

1 int pin_temperature = A0;
2

3 void setup() {
4 Serial.begin(9600);
5 pinMode(pin_temperature, INPUT);
6 }
7

8 void loop() {
9

10 // Read temperature sensor and convert from
11 // a 0 to 1023 digital range to 0 to 5 volts.
12

13 float voltage =
14 analogRead(pin_temperature) * .004882814;
15

16 // Convert from 10 mV per degree with 500
17 // mV offset to degrees Celsius (i.e.,
18 // temperature = (voltage-500mV) * 100).
19

20 float temperature = (voltage - .5) * 100;
21

22 Serial.println(temperature);
23 delay(1000);
24 }

4

ENGRG 1060 Explorations in Engineering Design Project Input/Output Module Descriptions

4. Force Input Module

This input module enables your IoT device to sense the amount of force exerted on the surface of a
squeeze pad. This may be useful in medical devices, physical therapy, stress relief technology, virtual
motion, computer peripherals, touch-sensitive devices, etc. The sensor is a variable resistor whose
resistance depends on how much force is exerted on the squeeze pad (e.g., squeezing it between two
fingers); the resistance is high (infinite) when there is no force and low when the force is high. The
Arduino cannot directly sense resistance, but it can sense an analog input voltage. We will use a
simple circuit called a voltage divider so that the voltage across the force sensor is proportional to
the resistance.

A sample circuit and Arduino code is shown below to get you started. The circuit places a 10 kΩ
resistor in series with the force sensor so that voltage is divided between the two components. A
10 kΩ resistor has brown-black-orange bands. We use a wire to connect the node in between the
resistor and the force sensor to an analog input of the Arduino so that the Arduino can read the
voltage from one end of the 10 kΩ resistor to ground. The example code will print the analog reading
from the force sensor on the serial monitor, similar to how we printed the analog reading from the
grayscale sensor in Lab 2. After setting up the circuit and programming the Arduino, open the serial
monitor and check how much force the sensor is detecting. Then try squeezing the squeeze pad
between two fingers. Does the reading increase? Can you explain this behavior?

1
1

5
5

1
0

1
0

1
5

1
5

2
0

2
0

2
5

2
5

3
0

3
0

A A

B B

C C

D D

E E

F F

G G

H H

I I

J J

To Analog Input 0

Force Sensor

P
ow

er
 /

 G
ro

u
n

d

Squeeze Pad

Resistor (10k�)
Brown-Black-Orange-Gold

1 int pin_force = A0;
2

3 void setup() {
4 Serial.begin(9600);
5 pinMode(pin_force, INPUT);
6 }
7

8 void loop() {
9 int force = analogRead(pin_force);

10

11 Serial.println(force);
12 delay(1000);
13 }

5

ENGRG 1060 Explorations in Engineering Design Project Input/Output Module Descriptions

5. Flex Input Module

This input module enables your IoT device to sense the flexing of a 6 cm strip. This may be useful in
medical devices, physical therapy, stress relief technology, virtual motion, computer peripherals, etc.
The flex sensor is a variable resistor whose resistance depends on how much the strip is flexed (i.e.,
by bending it); the resistance is higher when flexed in one direction and lower when flexed in the
other. The Arduino cannot directly sense resistance, but it can sense an analog input voltage. We will
use a simple circuit called a voltage divider so that the voltage across the flex sensor is proportional
to the resistance.

A sample circuit and Arduino code is shown below to get you started. The circuit places a 10 kΩ
resistor in series with the flex sensor so that voltage is divided between the two components. A 10 kΩ
resistor has brown-black-orange bands. We use a wire to connect the node in between the resistor
and the flex sensor to an analog input of the Arduino so that the Arduino can read the voltage from
one end of the 10 kΩ resistor to ground. The example code will print the analog reading from the
flex sensor on the serial monitor, similar to how we printed the analog reading from the grayscale
sensor in Lab 2. After setting up the circuit and programming the Arduino, open the serial monitor
and check what the sensor is reporting regarding how much the strip is flexed. Try flexing the sensor
strip in one direction. Does the reading increase or decrease? Try flexing the sensor strip in the other
direction. Can you explain this behavior?

1
1

5
5

1
0

1
0

1
5

1
5

2
0

2
0

2
5

2
5

3
0

3
0

A A

B B

C C

D D

E E

F F

G G

H H

I I

J J

To Analog Input 0

Flex Sensor

P
ow

er
 /

 G
ro

u
n

d

Resistor (10k�)
Brown-Black-Orange-Gold

1 int pin_flex = A0;
2

3 void setup() {
4 Serial.begin(9600);
5 pinMode(pin_flex, INPUT);
6 }
7

8 void loop() {
9 int flex = analogRead(pin_flex);

10

11 Serial.println(flex);
12 delay(1000);
13 }

6

ENGRG 1060 Explorations in Engineering Design Project Input/Output Module Descriptions

6. Water Input Module

This input module enables your IoT device to sense the level of water in the environment using a
water sensor called eTape. Water level sensing can play an important role in environmental monitor-
ing systems, disaster warning, cooling systems, water purification, medical equipment care, etc. This
tape can easily be secured to a street pole, hung on the wall of a room, or attached to the side of a
water container or other similar environments. The tape is a variable resistor. When immersed in wa-
ter, the sensor tape is compressed from both sides by hydrostatic pressure, and the tape’s resistance
varies as the water level rises and falls. The resistance and water level are inversely proportional:
the lower the water level, the higher the output resistance; the higher the water level, the lower the
output resistance. The Arduino cannot directly sense resistance, but it can sense an analog input
voltage. We will use a simple circuit called a voltage divider so that the voltage across the water
sensor is proportional to the resistance.

A sample circuit and Arduino code is shown below to get you started. The circuit places a 560 Ω
resistor in series with the water sensor so that voltage is divided between the two components. A
560 Ω resistor has green-blue-purple bands. We use a wire to connect the node in between the resistor
and the water sensor to an analog input of the Arduino so that the Arduino can read the voltage from
one end of the 560 Ω resistor to ground. Use long wires to connect the water sensor to the breadboard
so that you can freely move the sensor away from the Arduino and breadboard (which should not
get wet!). The example code will print the analog reading from the water level sensor on the serial
monitor, similar to how we printed the analog reading from the grayscale sensor in Lab 2. After
setting up the circuit and programming the Arduino, open the serial monitor and check the value of
the water level sensor when dipped in a container of water. Be careful not to get the top electrical
leads of the sensor wet. Try dipping the water level sensor further into the water. What happens to
the reading and why do you think this happens?

1
1

5
5

1
0

1
0

1
5

1
5

2
0

2
0

2
5

2
5

3
0

3
0

A A

B B

C C

D D

E E

F F

G G

H H

I I

J J

To Analog Input 0

P
ow

er
/

 G
ro

u
n

d

Resistor (560Ω)
Green-Blue-Purple-Gold

Water
Sensor

eTape

Female to Male
Header Pins

1 int pin_water = A0;
2

3 void setup() {
4 Serial.begin(9600);
5 pinMode(pin_water, INPUT);
6 }
7

8 void loop() {
9 int water_level = analogRead(pin_water)

10

11 Serial.println(water_level);
12 delay(1000);
13 }

7

ENGRG 1060 Explorations in Engineering Design Project Input/Output Module Descriptions

7. Accelerometer Input Module

This input module enables your IoT device to sense physical acceleration – perfect for applications
requiring tilt-sensing, motion, shock, vibration, etc. The ADXL335 3-axis accelerometer you will
use is a micro-electro-mechanical system (MEMS) device: a device that combines tightly-coupled
electrical and mechanical systems on a very small scale (micro-meters!). The accelerometer works by
measuring the capacitance between fixed plates and a tiny structure suspended in mid-air by tiny
springs. As the device experiences acceleration in the X, Y, and/or Z axes, the suspended structure
deflects, changing the capacitance along each axis. Each capacitance converts to an output voltage,
proportional to the acceleration on that axis, which can then be sensed by the Arduino.

A sample circuit and Arduino code is shown below to get you started. The example code will print
calibrated accelerometer readings for each axis on the serial monitor, similar to how we printed the
analog reading from the grayscale sensor in Lab 2. After setting up the circuit and programming the
Arduino, open the serial monitor, place your device on the table, and check the values the accelerom-
eter is sensing. These should be close to (x = 0, y = 0, z = 100). Then pick up the device and tilt it or
shake it. See how the values change along the three axes!

1
1

5
5

1
0

1
0

1
5

1
5

2
0

2
0

2
5

2
5

3
0

3
0

A A

B B

C C

D D

E E

F F

G G

H H

I I

J J

P
ow

er
/

 G
ro

u
n

d

To Analog Pin 2

To Analog Pin 1

To Analog Pin 0

Accelerometer
Breakout Board

1 int pin_x_accel = A2;
2 int pin_y_accel = A1;
3 int pin_z_accel = A0;
4

5 // Calibration
6

7 int x_min = 267; int x_max = 399;
8 int y_min = 272; int y_max = 404;
9 int z_min = 274; int z_max = 412;

10

11 void setup() {
12 Serial.begin(9600);
13 }

1 void loop() {
2 // Read each axis.
3

4 int x_raw = analogRead(pin_x_accel);
5 int y_raw = analogRead(pin_y_accel);
6 int z_raw = analogRead(pin_z_accel);
7

8 // Scale measurements to calibrated minimum
9 // and maximum.

10

11 int x_scaled =
12 map(x_raw, x_min, x_max, -100, 100);
13 int y_scaled =
14 map(y_raw, y_min, y_max, -100, 100);
15 int z_scaled =
16 map(z_raw, z_min, z_max, -100, 100);
17

18 // Report scaled measurements.
19

20 Serial.print(" x: "); Serial.print(x_scaled);
21 Serial.print("; y: "); Serial.print(y_scaled);
22 Serial.print("; z: "); Serial.print(z_scaled);
23 Serial.println();
24

25 // Wait 500ms before next reading.
26

27 delay(500);
28 }

8

ENGRG 1060 Explorations in Engineering Design Project Input/Output Module Descriptions

8. RF Input Module

This input module enables your IoT device to send and receive radio frequency (RF) signals wire-
lessly in a 25 ft radius. RF control devices are useful in many applications – e.g., car security systems,
home security and automation systems, garage door controllers, remote control fan, remote control
toys, remote control industrial use. In an RF-based control system, an RF transmitter emits radio
waves in the range of 3 kHz to 300 GHz, and an RF receiver receives the signals and acts on them.
In this module, you will use a 4-button keyfob RF remote to send 315 MHz signals to an RF receiver
connected to your Arduino, which can then act on the signal.

A sample circuit is shown below to get you started. The RF receiver module has seven pins. D0,
D1, D2, and D3 are signal pins corresponding to the four buttons on the keyfob RF remote; VT is
a special pin that is HIGH if any button is pushed and LOW if none are pushed. The 4-button
keyfob RF remote requires no assembly or connectivity. Pressing any of the four buttons transmits a
315 MHz radio wave command that can be picked up by the RF receiver.

The example Arduino code shown below will read which button you have pressed on the remote,
and then print the output on the serial monitor every 100 ms. After setting up the circuit and pro-
gramming the Arduino, open the serial monitor and try pressing each button on the RF remote. You
should see each letter detected by the Arduino displayed on the serial monitor. Try to see how far
away you can move with the RF remote while still successfully receiving the signal!

1
1

5
5

1
0

1
0

1
5

1
5

2
0

2
0

2
5

2
5

3
0

3
0

A A

B B

C C

D D

E E

F F

G G

H H

I I

J J

P
ow

er
/

 G
ro

u
n

d To Digital Pin 6

To Digital Pin 7

To Digital Pin 10

RF Receiver

To Digital Pin 3

1 int pin_RF_A = 3;
2 int pin_RF_B = 6;
3 int pin_RF_C = 7;
4 int pin_RF_D = 10;
5

6 void setup() {
7 pinMode(pin_RF_A, INPUT);
8 pinMode(pin_RF_B, INPUT);
9 pinMode(pin_RF_C, INPUT);

10 pinMode(pin_RF_D, INPUT);
11 Serial.begin(9600);
12 }
13

14 void loop() {
15 // Read RF input on each pin
16 int A = digitalRead(pin_RF_A);
17 int B = digitalRead(pin_RF_B);
18 int C = digitalRead(pin_RF_C);
19 int D = digitalRead(pin_RF_D);
20

21 // Print the letter if the input is detected.
22 if (A) Serial.print("A"); else Serial.print("-");
23 if (B) Serial.print("B"); else Serial.print("-");
24 if (C) Serial.print("C"); else Serial.print("-");
25 if (D) Serial.print("D"); else Serial.print("-");
26 Serial.println(); // make a new line
27

28 // Loop every 100ms.
29 delay(100);
30 }

9

ENGRG 1060 Explorations in Engineering Design Project Input/Output Module Descriptions

9. Current Input Module

This input module enables your IoT device to read the AC voltage and current used to power lights,
appliances, and everything else in your home. The emonTx Shield you will use is an open-source
energy monitoring and control system suitable for domestic and industrial use. The emonTx will
allow you to safely measure the voltage and current that a lamp, for example, uses when plugged
into the wall.

You will be using an AC-to-AC adapter to measure voltage. Using a transformer, the AC-to-AC
adapter reduces the wall voltage down by a factor of about 12, so 110 V becomes 9 V. If the wall
voltage changes, you will be able to see that change, reduced by a factor of about 12. The current
sensor is also a transformer. By wrapping a ferrite loop around a wire, you can detect the induced
magnetic field from an AC current in the wire. This induced field creates a voltage proportional to
the current, which we can measure using the Arduino. Power is current times voltage, or P = IV, so
armed with these two measurements we can calculate the power consumed by a household device.

A sample circuit and Arduino code is shown below to get you started. The emonTx plugs directly
into the Arduino, the current sensors plug into the 3.5 mm audio jacks, and the AC-to-AC connector
goes into the barrel connector jack. We will share the voltage sensor across all of the current sensors
(note that current sensor 4 is disabled, so don’t use it). The sample code below will let you calculate
power for the devices connected to current sensor 1.

1 #include "EmonLib.h"
2 EnergyMonitor emon1;
3

4 // Include an offset to "zero" the power
5 float power_offset = 3.9;

1 void setup() {
2 // Voltage: input pin, calibration, phase_shift
3 emon1.voltage(0, 120.0, 1.7);
4

5 // Current: input pin, calibration.
6 emon1.current(1, 60.6);
7

8 Serial.begin(9600);
9 }

10

11 void loop() {
12 // Calculate all.
13 // Params: num_half_wavelengths (crossings), time-out
14 emon1.calcVI(20,2000);
15

16 // Extract Real Power into variable
17 float realPower = emon1.realPower - power_offset;
18

19 // Extract Vrms into Variable
20 float supplyVoltage = emon1.Vrms;
21

22 // Floor the power at 0.
23 if (realPower < 0.0)
24 realPower = 0.0;
25

26 Serial.print(realPower); Serial.print("W @ ");
27 Serial.print(emon1.Vrms); Serial.println("V");
28 }

10

ENGRG 1060 Explorations in Engineering Design Project Input/Output Module Descriptions

10. Heart Rate Input Module

This input module enables your IoT device to sense your heart beating. Heart rate monitors are use-
ful for monitoring heart rate in a variety of applications, including exercise and fitness (targetting
a healthy heart rate), injury rehabilitation, hospital monitoring systems, and biotelemetry. The Po-
lar T34 Non-Coded Heart Rate Transmitter (the wearable chest strap) monitors and then wirelessly
transmits your heart rate data from the chest strap to the Polar Heart Rate Receiver (the small green
IC), which can then communicate data to the Arduino. The heart rate monitor works by detecting
electrical heart muscle signals as the heart beats. The chest strap can sense these electric signals
when the two contacts are moistened and are in direct contact with your skin, and it sends a pulsed
wireless signal to the receiver when it detects a beat.

A sample circuit and Arduino code is shown below to get you started. There is no need for any extra
components. The example code will print "Heartbeat" on the serial monitor whenever a heart beat is
detected. After setting up the circuit and programming the Arduino, you can secure the chest strap
to your partner’s chest, just below the chest muscles, and buckle the strap together. Moisten the two
grooved electrode areas on the back of the chest strap. Check that the wet grooved areas are firmly
against the skin and that the word "Polar" is right-side up. The moistened grooved areas activate the
transmitter, so make sure to dry the sensor when not in use. After securing the chest strap, open the
serial monitor, use your hand to find your own pulse, and verify that "Heartbeat" is printed at the
same time your heart is beating.

1
1

5
5

1
0

1
0

1
5

1
5

2
0

2
0

2
5

2
5

3
0

3
0

A A

B B

C C

D D

E E

F F

G G

H H

I I

J J

P
ow

er
/

 G
ro

u
n

d

Heart Rate
Receiver Module

To Digital Pin 3

D9
NEOSID

1 int pin_heart = 3;
2 byte old_sample, sample;
3

4 void setup() {
5 Serial.begin(9600);
6 pinMode (pin_heart, INPUT);
7

8 Serial.println("Waiting for heart beat...");
9

10 // Wait until a heart beat is detected
11 while (!digitalRead(pin_heart)) {};
12 Serial.println ("Heart beat detected!");
13 }
14

15 int heartbeat_count;
16

17 void loop() {
18 sample = digitalRead(pin_heart);
19 if (sample && (old_sample != sample)) {
20 Serial.print("Heartbeat: ");
21 Serial.println(heartbeat_count);
22 heartbeat_count++;
23 }
24 old_sample = sample;
25 }
26

11

ENGRG 1060 Explorations in Engineering Design Project Input/Output Module Descriptions

11. RGB LED Output Module

This output module enables your IoT device to display colored light using an RGB LED (three LEDs
in a single housing), where RGB stands for ’red’, ’green’, and ’blue’. Using the RGB LED, we can
generate any color we desire through color mixing. Do you still remember color wheels?

A sample circuit and Arduino code is shown below to get you started. Three leads of the RGB LED
are set by digital output Arduino pins corresponding to ’red’, ’green’, and ’blue’; the longest lead
of the RGB LED provides power. The example code will set the color of the RGB LED to violet.
After setting up the circuit and programming the Arduino, check to make sure the RGB LED lights
up violet. You can then experiment with other colors by choosing your own RGB values (the table
below lists RGB values for common colors). You can also try to make the LED blink or change colors
in time!

Color RGB values
RED (255, 0, 0)
ORANGE (83, 4, 0)
YELLOW (255, 255, 0)
GREEN (0, 255, 0)
BLUE (0, 0, 255)
INDIGO (4, 0, 19)
VIOLET (23, 0, 22)
CYAN (0, 255, 255)
MAGENTA (255, 0, 255)
WHITE (255, 255, 255)
PINK (158, 4, 79)

1
1

5
5

1
0

1
0

1
5

1
5

2
0

2
0

2
5

2
5

3
0

3
0

A A

B B

C C

D D

E E

F F

G G

H H

I I

J J

To Digital Pin 3 (red)

P
ow

er
/

 G
ro

u
n

d

This lead is the longest lead!

Resistor (560�)
Green-Blue-Purple-Gold

To Digital Pin 6 (blue)

To Digital Pin 5 (green)

RGB LED

1 // Choose RGB LED pins (these must be PWM pins)
2 // redPin = 3, greenPin = 5, bluePin = 6
3 int pin_RGB[] = {3, 5, 6};
4

5 void setup() {
6 for (int i = 0; i < 3; i++) {
7 pinMode(pin_RGB[i], OUTPUT);
8 }
9 }

10

11 void loop() {
12 // Choose the RGB (red, green, blue) value
13 // In this demo, we choose violet.
14

15 byte my_color[] = {23, 0, 22};
16

17 // Iterate through each of the three pins
18 // (red, green blue).
19

20 for (int i = 0; i < 3; i++) {
21

22 // Write the analog value to the pin. We
23 // use (255 - value) because our RGB LED
24 // is common anode, which means the color
25 // is fully on when we output
26 // analogWrite(pin, 0) and fully off when
27 // we output analogWrite(pin, 255).
28

29 analogWrite(pin_RGB[i], 255 - my_color[i]);
30 }
31 }

12

ENGRG 1060 Explorations in Engineering Design Project Input/Output Module Descriptions

12. Servo Output Module

This output module enables your IoT device to control a high-torque standard servo. Servos are
useful for interfacing directly with the environment; for example, servos can tilt, rotate, push other
objects, or flip switches. Servos can be large or small, but the servo you will use is a standard servo
that is useful in IoT environments. The position of the servo motor is set by the length of a pulse, and
the servo expects to receive a pulse roughly every 20 ms. If the Arduino sends a pulse that is high for
1 ms, then the servo angle will be zero; if it is 1.5 ms, then it will be at its center position, and if it is
2 ms it will be at 180 degrees. The motor can rotate 180 degrees at max speed in about half a second,
but slower and more fine-tuned turning is possible as well.

A sample circuit and Arduino code is shown below to get you started. Note that the servo’s ribbon
wire has red, brown, and yellow wires. Red is power, while brown is ground, and yellow is used
to control the servo from the Arduino. The 470 uF capacitor ensures a steady power supply to the
Arduino. Make sure the longer lead of the capacitor is connected to power while the shorter lead is
connected to ground. The example code will sweep the servo position between 0 and 180 degrees
back and forth. After setting up the circuit and programming the Arduino, check that the servo is
sweeping back and forth steadily between 0 and 180 degrees. You can then attach arms or horns
to the servo to control other objects and place the servo itself in more strategic locations. Also try
experimenting with smaller delays by replacing delay(15) with a smaller number like 5. What
happens when you try this and could it be useful?

1
1

5
5

1
0

1
0

1
5

1
5

2
0

2
0

2
5

2
5

3
0

3
0

A A

B B

C C

D D

E E

F F

G G

H H

I I

J J

To Digital Pin 6

P
ow

er
/

 G
ro

u
n

d

Capacitor (470uF)
(Longer lead to bottom row)

Servo

Jumper
wires

1 #include <Servo.h>
2

3 int pin_servo = 6;
4

5 Servo servo;
6 int servo_angle = 0; // Servo position in degrees
7

8 void setup() {
9 servo.attach(pin_servo);

10 }
11

12 void loop() {
13 // Scan from 0 to 180 degrees
14

15 for(servo_angle = 0; servo_angle < 180; servo_angle++) {
16 servo.write(servo_angle);
17 delay(15);
18 }
19

20 // Scan back from 180 to 0 degrees
21

22 for(servo_angle = 180; servo_angle > 0; servo_angle--) {
23 servo.write(servo_angle);
24 delay(15);
25 }
26 }

13

ENGRG 1060 Explorations in Engineering Design Project Input/Output Module Descriptions

13. Piezo Output Module

This output module enables your IoT device to play tones using a piezo element. A piezo element
makes a clicking sound each time it is pulsed with current. If we pulse it at the right frequency (for
example 440 times a second to make the note middle A), these clicks produce notes.

A sample circuit and Arduino code is shown below to get you started. Note that the piezo element is
powered directly from the Arduino signal pin. There is no need for any extra components; with the
rectangular "TDX" label facing to your left, we directly connect the left lead of the piezo element to a
digital output PWM pin on the Arduino and the right lead to ground.

The example code has two experiments. In the first, we play a middle A by pulsing the piezo element
with a square wave at 440 Hz – i.e., 1136 µs HIGH and 1136 µs LOW. In the second experiment, we
play a tune using the playNote() library function. You can use this function by giving it a note name
(see the table below for notes) and a duration to play the note; the function will play the note using
the same technique we saw in the first experiment. After setting up the circuit and programming
the Arduino, listen to the notes produced by the piezo element and see if it makes sense. You can
then experiment with other tunes by choosing your own notes! The table below lists the frequencies,
periods, and the time to pulse the piezo element to play different notes across two octaves.

14

ENGRG 1060 Explorations in Engineering Design Project Input/Output Module Descriptions

Note Name Frequency Period Time High
C 131 Hz 7634 3817
D 147 Hz 6802 3401
E 165 Hz 6060 3030
F 175 Hz 5714 2857
G 196 Hz 5102 2551
A 220 Hz 4546 2273
B 247 Hz 4048 2024
c 261 Hz 3830 1915
d 294 Hz 3400 1700
e 329 Hz 3038 1519
f 349 Hz 2864 1432
g 392 Hz 2550 1275
a 440 Hz 2272 1136
b 493 Hz 2028 1014

1 // Experiment 1: Playing a note
2

3 #include <Piezo.h>
4

5 int pin_piezo = 6;
6

7 void setup() {
8 pinMode(pin_piezo, OUTPUT);
9 }

10

11 void loop() {
12

13 // Play an A4 (440Hz, 2272us period).
14 // Dividing the period by 2 makes 1136us --
15 // the time we hold the signal HIGH or LOW.
16

17 while (1) {
18 digitalWrite(pin_piezo, HIGH);
19 delayMicroseconds(1136);
20 digitalWrite(pin_piezo, LOW);
21 delayMicroseconds(1136);
22 }
23 }

1
1

5
5

1
0

1
0

1
5

1
5

2
0

2
0

2
5

2
5

3
0

3
0

A A

B B

C C

D D

E E

F F

G G

H H

I I

J J

To Digital Pin 6

G
ro

u
n

d

Piezo
Element

1 // Experiment 2: Playing a tune
2

3 #include <Piezo.h>
4

5 int pin_piezo = 6;
6

7 void setup() {
8 pinMode(pin_piezo, OUTPUT);
9 }

10

11 void loop() {
12

13 // Set up the tune. The length is the
14 // number of notes. The notes array
15 // contains the tune -- a space is a
16 // rest. The beats array contains how
17 // many beats each note should take.
18

19 int length = 30;
20 char notes[] = "ABcGGdcBAAAABcABcGGdcdeefedcdc ";
21 int beats[] = { 1, 1, 6, 1, 1, 6, 1, 1,
22 1, 1, 2, 1, 2, 6,
23 1, 1, 6, 1, 1, 6, 1, 1,
24 1, 2, 2, 1, 1, 1, 1, 4, 4 };
25 int tempo = 100;
26

27 // Play tune using the playNote() function.
28

29 for (int i = 0; i < length; i++) {
30 playNote(pin_piezo, notes[i], beats[i] * tempo);
31 delay(tempo / 2); // Pause between notes
32 }
33

34 }

15

ENGRG 1060 Explorations in Engineering Design Project Input/Output Module Descriptions

14. Printer Output Module

This printer output module enables your IoT device to print a paper copy of collected/processed
data for the end-user. The printer is a thermal receipt printer, similar to what is used in most retail
stores. A thermal printer works by selectively heating special thermochromic paper. Heated sections
of paper turn black, creating the desired text or image, e.g., a barcode.

We’ll be using the Arduino to control the printer. However, because the printer’s thermal print head
needs to be hot to work, it requires its own power supply. The printer comes with its own wall-wart
power supply, which you should plug into the barrel connector to screw-down terminal converter.
Ensure that positive (red) is connected to the + and negative (black) is connected to the -. The printer
has small plugs on the bottom: a 2-pin (power) and a 3-pin (data). Connect the power cable to the
2-pin plug (red/black) and hook that up to the barrel connector converter. The data cable connects
to the Arduino for control. Green to digital pin 5, yellow to digital pin 6, and black to ground.

1 #include "SoftwareSerial.h"
2 #include "Adafruit_Thermal.h"
3 #include <avr/pgmspace.h>
4

5 int printer_RX_Pin = 5;
6 int printer_TX_Pin = 6;
7

8 Adafruit_Thermal
9 printer(printer_RX_Pin, printer_TX_Pin);

1 void setup() {
2 Serial.begin(9600);
3 pinMode(7, OUTPUT);
4 digitalWrite(7, LOW);
5 printer.begin();
6 }
7

8 void loop() {
9 print.println("Hello World!")

10

11 // Set text justification (left, center, right)
12 // Accepts ’L’, ’C’, ’R’
13 printer.justify(’C’);
14 printer.println("This Text Center Justified");
15

16 // Set type size, accepts ’S’, ’M’, ’L’
17 printer.setSize(’M’);
18 printer.println("Medium Text");
19

20 printer.feed(1);
21 }

16

ENGRG 1060 Explorations in Engineering Design Project Input/Output Module Descriptions

15. LED Matrix Output Module

This output module enables your IoT device to control a 16x24 LED matrix which can display useful
messages and graphics on its large screen; for example, the matrix can display digital clocks, ther-
mometers, counters and meters, instrumentation readouts, industrial control indicators, etc. You can
also chain multiples of these displays together! The panel works using a special HT1632C chip on
the back which does most of the necessary work to display messages for you. Communication with
the matrix happens through a 3-pin serial interface which is easy to work with.

A sample circuit and Arduino code is shown below to get you started. The LED matrix has a gray
ribbon connector that has a "red strip" on one side of it. When connecting wires to the connector, the
red wire for power will be on the same side as the "red strip" on the ribbon connector. The example
code will draw a blinking rectangle on the screen. After setting up the circuit and programming
the Arduino, check that the shape appears on the screen correctly. You can now experiment with
drawing moving shapes or even scrolling text!

1
1

5
5

1
0

1
0

1
5

1
5

2
0

2
0

2
5

2
5

3
0

3
0

A A

B B

C C

D D

E E

F F

G G

H H

I I

J J

To Digital Pin 7 (white)

P
ow

er
/

 G
ro

u
n

d

The red wire is
on the same side
as the "red strip"

on the ribbon
connector!

To Digital Pin 5 (orange)

To Digital Pin 6 (yellow)

LED Matrix

Ribbon
Connector

1 #include "HT1632.h"
2

3 int pin_data = 5; // orange wire
4 int pin_wr = 6; // yellow wire
5 int pin_cs = 7; // white wire
6

7 HT1632LEDMatrix matrix =
8 HT1632LEDMatrix(pin_data, pin_wr, pin_cs);
9

10 void setup() {
11 Serial.begin(9600);
12 matrix.begin(HT1632_COMMON_16NMOS);
13 matrix.fillScreen();
14 delay(500);
15 matrix.clearScreen();
16 }

RECTANGLES:

Use drawRect(x_coordinate, y_coordinate,
rect_width, rect_height, value). In this example,
we draw a rectangle at point (6, 4), that is half the
width and half the height of the entire matrix.
Then we clear it. Use "fillRect" to draw a filled
rectangle.

1 void loop() {
2 matrix.drawRect(6, 4,
3 matrix.width()/2,
4 matrix.height()/2, 1);
5 matrix.writeScreen();
6 delay(500);
7 matrix.clearScreen();
8 delay(500);
9 }

10

17

ENGRG 1060 Explorations in Engineering Design Project Input/Output Module Descriptions

PIXELS:

Use drawPixel(x_coord, y_coord, value). In
this example, we draw a pixel at (0, 0), de-
lay 500 ms, clear the pixel, and wait another
500 ms.

1 void loop() {
2 matrix.drawPixel(0, 0, 1);
3 matrix.writeScreen();
4 delay(500);
5 matrix.drawPixel(0, 0, 0);
6 delay(500);
7 }

LINES:

Use drawLine(x1_coord, y1_coord,
x2_coord, y2_coord, value). In this ex-
ample, we draw an X and then clear it.

1 void loop() {
2 matrix.drawLine(0, 0,
3 matrix.width()-1,
4 matrix.height()-1, 1);
5 matrix.drawLine(matrix.width()-1, 0,
6 0, matrix.height()-1, 1);
7 matrix.writeScreen();
8 delay(500);
9 matrix.clearScreen();

10 delay(500);
11 }

CIRCLES:

Use drawCircle(x_coord, y_coord, radius, value).
The coordinates are for the center of the circle. In
this example we draw a circle and clear it. Use
"fillCircle" to draw a filled circle instead.

1 void loop() {
2 matrix.drawCircle(
3 matrix.width()/2-1, matrix.height()/2-1,
4 8, 1);
5 matrix.writeScreen();
6 delay(500);
7 matrix.clearScreen();
8 delay(500);
9 }

TEXT:

Use:

1 - matrix.setCursor(x_coord, y_coord)
2 - matrix.print(text_to_print)

In this example, we draw two lines of text!

1

2 void loop() {
3 matrix.setTextSize(1); // size 1 == 8 pixels high
4 matrix.setTextColor(1); // ’lit’ LEDs
5

6 matrix.setCursor(0, 0); // start at top left
7 matrix.print("Curi");
8 matrix.setCursor(0, 8); // next line, 8 pixels down
9 matrix.print("e’14");

10 matrix.writeScreen();
11 delay(500);
12 matrix.clearScreen();
13 delay(500);
14 }

18

ENGRG 1060 Explorations in Engineering Design Project Input/Output Module Descriptions

16. Relay Output Module

This output module enables your IoT device to control electrical devices such as heaters, small skil-
lets, lights, etc. with a signal from an Arduino. This is ideal for making controllable lights, preci-
sion timing cooking devices, automatic shutoff water kettles and coffee roasters, home automation
projects, or for controlling any device that plugs into the electrical wall socket.

A sample circuit and Arduino code is shown below to get you started. First, test the example code
with the relay connected to the Arduino and not connected to the power strip / wall socket. Power
strips / wall sockets run at a high voltage of 110 V, so it is good practice to test that the circuit works
with the Arduino first, which runs at a much safer voltage of 3.3–5 V. To connect a wire to the relay
pins, ask for a small flathead screwdriver and use it to loosen tiny screws above each pin (turn the
screw counter-clockwise to loosen), which will open tiny wire holders in the slot below. Slip the wire
into the holder and then use the screwdriver again to tighten (turn the screw clockwise to tighten)
until the wire is steady and firm. Then program the Arduino.

The example code turns the relay on and off for 5s each in a loop. After programming the Arduino,
you should see the LED turn on and off for 5s. The LED indicates when the device under control is
receiving power. If this works, you can plug one end of the relay into a power strip / wall socket,
and you can plug an appliance (e.g., a mini-fan) into the other end. Turn the fan on and make sure
it is on for 5s and off for 5s. Try experimenting with other devices and see what you can control!
Modify the 5s looped Arduino code if you want to control timing in other ways.

1
1

5
5

1
0

1
0

1
5

1
5

2
0

2
0

2
5

2
5

3
0

3
0

A A

B B

C C

D D

E E

F F

G G

H H

I I

J J

To Digital Pin 7Ground

The pin closest to
the LED connects

to the Arduino

Relay

This pin is unused!

This end
plugs into
the power strip.

Electrical
device to

control plugs in here.

1 int pin_relay = 7;
2

3 void setup() {
4 pinMode(pin_relay, OUTPUT);
5 }
6

7 void loop() {
8 digitalWrite(pin_relay, HIGH);
9 delay(5000);

10 digitalWrite(pin_relay, LOW);
11 delay(5000);
12 }

19

