CURIE Academy, Summer 2014
Lab Notes 1: Computer Engineering — Hardware Perspective

Prof. Christopher Batten
School of Electrical and Computer Engineering
Cornell University

The field of computer engineering is at the interface between hardware and software and seeks to
balance the tension between application requirements and technology constraints. In the lab, you
will explore the field of computer engineering from a hardware perspective by gradually building a
simple binary adder. In Lab 2, you will explore the field of computer engineering from a software
perspective by gradually building a mobile robot control application. These lab notes provide a brief
survey of background information relevant to understanding the purpose and context for the lab.

As illustrated in Figure 1, computer systems can be viewed as a stack of abstraction and implemen-
tation layers from applications at the highest layer to technology at the lowest layer. In these lab
notes we will briefly discuss the technology, devices, circuits, gate-level, register-transfer-level, and
microarchitecture layers as they relate to our simple binary adder. In the actual lab session, you will
have an opportunity to put what you have learned into practice. We will focus on some layers more
than others, but by the end of this lab you should have a good understanding of how computer
engineers can leverage these layers to implement higher-level arithmetic operations in hardware.

1. Devices and Technology: Resistors, LEDs, Transistors

Figure 2 illustrates the basic devices we will be using this lab: voltage sources (e.g., a battery), resis-
tors, light-emitting diodes, NMOS transitors, and PMOS transistors. Figure 3 illustrates the abstract
symbols we can use when drawing circuit schematics.

Figure 4(a) illustrates a simple circuit where the positive terminal of a battery is attached to one end of
a resistor, and the negative terminal of the battery is attached to the other end of the resistor. In order

Application Mobile Robot Control
Algorithm Finite-State Machine ~
<
Programming Language ~
- Arduino Sketches E
b Operating System 5
£ Instruction Set Architect Arduino Machine “
;':qj nstruction e rcnitecture Instructions i
&b Microarchitecture
s Ripple Carry Adder 4
B Register-Transfer Level _
=}
g Gate Level NOT, AND, OR, XOR &
o
. . m
O N Circuits Inverter %
. @)
Devices Resistors, LEDs,
Transistors

Technology

Figure 1: Computer Systems Stack

CURIE Academy, Summer 2014 Lab Notes 1: Computer Engineering — Hardware Perspective

(a) LEDs (b) Resistors (c) Transistor

Figure 2: Various Devices

@ { /2 /<~?

() (¢) (<) u) (e)
VolTAqE fusisron LED NMoS OM oS
Sourte AransWOToA— TrAnS\S Tor—

Figure 3: Symbols for Various Devices

Va
sV &
3 NALLon
N JEgaui YIipE
P
oV \ et \\
\/e.
(a) ERLTe CafeoL T (s) WHTEA C\reO\T

Figure 4: Basic Electrical and Water Circuit

CURIE Academy, Summer 2014 Lab Notes 1: Computer Engineering — Hardware Perspective

to build our intuition into how these devices work, we will use a simple analogy with the “water
circuit” shown in Figure 4(b). The battery converts chemical energy into electrical potential energy;
this is analogous to a human converting mechanical energy into gravitational potential energy by
pouring water from the lower bucket into the higher bucket in Figure 4(b). Point V; in the electrical
circuit has higher electrical potential energy compared to point V}, just like point P, in the water
circuit has higher gravitational potential energy compared to point P,. The difference between two
electrical potentials is called the voltage and is measured in Volts. The current in the electrical circuit
has a tendency to move towards the point with lowest electrical potential energy, just like the current
in the water circuit has a tendency to move towards the point with the lowest gravitational potential
energy. A resistor in an electrical circuit is analogous to a narrow segment of pipe in the water circuit;
both the resistor and the narrow pipe serve to restrict the flow of current. So the greater the resistance
(narrower the pipe) the less current can flow through circuit. In the example, point V is at 5 Volts
and point V}, is at 0 Volts. Since point V; is at the positive terminal of the voltage source it is usually
called VDD; since Vj is at the negative terminal of the voltage source it is usually called ground.

The current in both the electical and water circuits flows in a circle. In the electrical circuit: (1) chem-
ical energy is converted into electrical potential energy by moving electrical current from point Vj, to
Va; (2) the current tends to move from point V, to V}, which has a lower electrical potential energy;
(3) the current is obstructed when moving through the resistor (and the electrical potential energy is
converted into heat); and (3) eventually the current reaches point V;, and the cycle starts again. In
the water circuit: (1) mechanical energy is converted into gravitational potential energy by pouring
water from the bottom bucket into the top bucket; (2) the current tends to move from point P, to P,
which has a lower gravitational potential energy; (3) the current is obstructed when moving through
the narrow pipe; and (4) eventually the current reaches point P, and the cycles starts again. Note that
this is a very simple analogy that breaks down pretty quickly, but it will be sufficient for building the
intuition required in this lab.

Figure 2(c) shows a light-emitting diode (LED). LEDs have two terminals and emit light when current
flows through them in a specific direction. If current flows through an LED in the “wrong” direction,
then the LED will prevent any current from flowing through the circuit and will not light up.

For this lab we will be exclusively focusing on digital circuits. In a digital circuit, we usually do not
care about specific voltages. By convention, we simply name VDD as logic one and ground as logic
zero. Figure 2(d—e) illustrates NMOS and PMOS transistors. These transistors have three terminals
and act as switches. An NMOS transistor is “closed” when its input is a logic one and is “open” when
its input is a logic zero. A PMOS transistor is the exact opposite. A PMOS transistor is “closed” when
its input is a logic zero and is “open” when its input is a logic one.

2. Circuits: Inverter

We can compose multiple devices together to create interesting circuits. Figure 5 shows a simple LED
circuit which will cause the LED to light up. We use a resistor with the LED to limit how much current
is flowing through the LED; without the resistor there would be too much current flowing through
the LED and it would quickly burn out. To build our circuits we will use a solderless breadboard. A
breadboard provides a convenient way to quickly prototype circuits by simply inserting components
and wires into the breadboard holes. There is wiring inside the breadboard which internally connects
all holes in each half-column as shown in Figure 6. Figure 7 shows the implementation of the simple
LED circuit using the prototyping platform provided for you in this lab. The prototyping platform
provides VDD (5V) and ground (0V) “rails” at the top and bottom of the breadboard, and also
provides five digital input switches and five digital output LEDs.

Lab Notes 1: Computer Engineering — Hardware Perspective

CURIE Academy, Summer 2014

ted

47

534

‘LES\STOM s

i

Figure 5: Simple LED Circuit

oV

Figure 6: Connectivity Inside Breadboard Shown in Purple

Digital Output LEDs

Digital Input Switches

A1ddng 1amo
pIeoqpearg

Figure 7: Simple LED Circuit Implemented on Prototyping Platform

CURIE Academy, Summer 2014 Lab Notes 1: Computer Engineering — Hardware Perspective

NDD

L_A{N
<

Qﬂov}\l)

i~ T

Figure 8: Inverter Circuit (P = PMOS transistor, N = NMOS transistor)

Digital Input Switches Digital Output LEDs

O0000 00000
RREEE

Breadboard
Power Supply

B

Figure 9: Inverter Circuit Implemented on Prototyping Platform

Figure 8 shows a more interesting circuit called an inverter. This circuit uses a PMOS transistor and
an NMOS transistor. When the input is a logic one then the PMOS transistor is open and the NMOS
transistor is closed; this essentially causes the output to be “pulled down” to a logic zero. When
the input is a logic zero then the PMOS transistor is closed and the NMOS transistor is open; this
essentially causes the output to be “pulled up” to a logic one. Figure 9 shows the implementation
of the inverter using the prototyping platform provided for you in this lab. Notice how we have

CURIE Academy, Summer 2014 Lab Notes 1: Computer Engineering — Hardware Perspective

N ArD o OLE 5

T @@" L)

Bl e A LB B0 | AGC | ¥
o |\ o0 | o g0 |9 0o |o
T o | o) o | I Ol‘l
* e | e Lo [(0§l
¢ ! Lo \ 11 |0

Figure 10: Symbol and Truth Table for NOT, AND, OR, XOR Gates

Voo Voo Voo [G M-COH L-E@F F

S P P P PR PR RS U PO O PO PO RN PR MY O (O N

SN

T 7 7 g v 0 7 T 7 3 0 5 0 7
1 2 3 O 5 5 7
Vss Vss B

1=A®B K@D C 0 vss

(b) AND Chip (c) OR Chip (d) XOR Chip

(a) Integrated Circuit

Figure 11: Four Logic Gates Implemented as an Integrated Circuit in a Single Chip

attached the input of the inverter to one of the digital input switches and the output of the inverter
to one of the digital output LEDs. Turning on the input will turn off the output; and turning off the
input will turn on the output.

3. Gates: NOT, AND, OR, XOR

As computer engineers, we often use abstraction to hide implementation details and provide cleaner
higher-level interfaces. Indeed digital signalling itself is an abstraction since we ignore the details
of exact voltages and instead focus on logic one and logic zero values. To build more complicated
circuits, we will create simple circuits and then abstract them into useful logic gates. For example,
we can abstract the inverter discussed in the previous section into the NOT gate shown in Figure 10.
If the input to a NOT gate is a logic one then the output is a logic zero; if the input to a NOT gate is
a logic zero then the output is a logic one. Abstraction enables us to ignore the details of the specific
implementation of a NOT gate using PMOS and NMOS transistors.

Figure 10 also shows three more useful logic gates. We can use a truth table to succinctly capture the
functionality of each logic gate. The truth table shows what the output of the logic gate should be for
every combination of inputs to the logic gate. For example, the output of an AND gate is only one
when both of its inputs are one.

CURIE Academy, Summer 2014 Lab Notes 1: Computer Engineering — Hardware Perspective

These logic gates are often implemented as integrated circuits with four gates per chip. Figure 11
shows what one of these chips looks like and illustrates how the logic gates are organized inside the
chip.

4. Aside: Binary Arithmetic

In the next section, we will compose logic gates to create a hardware unit capable of adding two
numbers together, but first we need to understand a bit about binary arithmetic. Computers use
digital circuits which can only handle logic ones and zeros; in other words, computers work with
binary numbers (i.e., base 2) and binary arithmetic. This is in contrast to how we usually use decimal
numbers (i.e., base 10) and decimal arithmetic. Let’s quickly review decimal numbers: each digit can
be a number between zero and nine. The first digit is the “ones digit” (10°), the second digit is the
“tens digit” (10'), the third digit is the “hundreds digit” (10?), and so on. We multiply the number in
each digit by 10’ where i indicates which digit. For binary numbers: each digit can only be zero or
one. The first digit is the “ones digit” (2°), the second digit is the “twos digit” (2!), the third digit is
the “fours digit” (22), and so on. We multiply the number in each digit by 2/ where i indicates which
digit. Figure 12 illustrates the binary and decimal representations for all numbers between zero and
15.

Binary addition works exactly like decimal addition, except using binary numbers instead of decimal
numbers. Figure 13 illustrates how to add three plus six using binary numbers and binary addition.
In the first step, we add the “ones digit”; one plus zero is one. In the second step, we add the “twos
digit”; one plus one is two, but remember we cannot use two in binary numbers. We can only use
zero or one. We need to carry a one to the next digit. This is exactly the same as carrying a one when
performing decimal arithmetic. In the third step, we add one (the carry bit) plus zero plus one to
again get two, so we again must carry a one to the next digit. In the final step, we simply add one
plus zero plus zero to get the final answer: 1001 which is nine in decimal. As expected three plus six
is nine, but we have now demonstrated how to do this addition using binary arithmetic.

dec : 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
bin : 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

Figure 12: Binary and Decimal Representation
Step 1 Step 2 Step 3 Step 4
1 11 11

011 011 011 011
+ 110 + 110 + 110 + 110

Figure 13: Example Using Binary Addition for 3+6

CURIE Academy, Summer 2014 Lab Notes 1: Computer Engineering — Hardware Perspective

5. Register-Transfer Level and Microarchitecture: Ripple-Carry Adder

Now we wish to use basic logic gates to implement a hardware unit that can add two binary numbers
together. This is a relatively complicated task, so we will break it into a few smaller steps. Our first
task is to implement a half adder capable of adding two one-bit numbers together. The reason it
is called a half adder will become apparent a little later in this section. Figure 14 shows the four
possibilities when adding two one-bit numbers.

As discussed in the previous section, if we add one plus one the answer is two which cannot be
represented with a single bit. We must "overflow" from a one-bit result into a two-bit result. We call
the right-most bit of the result the sum bit and the left-most bit of the result the carry bit. For example,
when we add one plus zero, the sum bit is one and the carry bit is zero and when we add one plus
one the sum bit is zero and the carry bit is one.

So how do we implement a one-bit half adder using boolean logic gates? We can think of the half
adder as a black box which has two inputs and two outputs. The two inputs correspond to the two

input input result result carry sum

A B base 10 base 2 Dbit bit
0 + 0 =0 00 0 0
0 + 1 =1 01 0 1
1 + 0 =1 01 0 1
1 + 1 =2 10 1 0

input dinput sum input input carry
A B bit A B out

0 0 0 0 0 0

0 1 1 0 1 0

1 0 1 1 0 0

1 1 0 1 1 1

Figure 16: Half-Adder

CURIE Academy, Summer 2014 Lab Notes 1: Computer Engineering — Hardware Perspective

input input input result result carry sum
A B C base 10 base 2 bit bit
0 +0 +0 =0 00 0 0
0 + 0 +1 =1 01 0 1
0 +1 + 0 =1 01 0 1
0 + 1 +1 =2 10 1 0
1 + 0 + 0 =1 01 0 1
1 + 0 +1 =2 10 1 0
1 + 1 +0 =2 10 1 0
1 + 1 +1 =3 11 1 1

Figure 17: Eight Possibilities when Adding Three One-Bit Numbers

Figure 18: Full-Adder

one-bit numbers we wish to add and the two outputs correspond to the sum and carry bits. As a
computer engineer, we need to choose a network of boolean logic gates which will always generate
the desired outputs as a function of the inputs. We start by writing a truth table for each of the two
outputs in isolation (see Figure 15). We can then look at our toolbox of logic gates to see if there
are any matches and indeed it should be clear that we can implement the sum bit by connecting
the inputs to a single XOR gate and that we can implement the carry bit by connecting the inputs
to a single AND gate. The implementation of the half adder using boolean logic gates is shown in
Figure 16.

We can use a similar approach to build a “full adder” which can add three one-bit numbers to pro-
duce a two-bit result. Figure 17 shows the eight possibilities when adding three one-bit numbers. We
now wish to implement a one-bit full adder using boolean logic gates. The full adder has three inputs
corresponding to three one-bit numbers we wish to add together and two outputs corresponding to
the sum and carry bits. As in the previous section, we could now create truth tables for both the
sum bit and the carry bit and carefully construct a network of boolean logic gates which will always
generate the desired outputs as a function of the inputs; note that we will need to use multiple stages
of boolean logic.

CURIE Academy, Summer 2014 Lab Notes 1: Computer Engineering — Hardware Perspective

input input result result carry sum sum
A B base 10 base 2 bit bit 1 bit O
00 + 00 =0 000 0 0 0
00 + 01 =1 001 0 0 1
00 + 10 =2 010 0 1 0
00 + 11 =3 011 0 1 1
01 + 00 =1 001 0 0 1
01 + 01 =2 010 0 1 0
01 + 10 =3 011 0 1 1
01 + 11 =4 100 1 0 0
10 + 00 =2 010 0 1 0
10 + 01 =3 011 0 1 1
10 + 10 =4 100 1 0 0
10 + 11 =5 101 1 0 1
11 + 00 =3 011 0 1 1
11 + 01 =4 100 1 0 0
11 + 10 =5 101 1 0 1
11 + 11 =6 110 1 1 0

Figure 19: 16 Possibilities when Adding Two Two-Bit Numbers

As a clever alternative, we can instead consider a way to leverage the half adder we already designed
in the previous section to build a full adder. The half adder adds two one-bit numbers to create a two-
bit result, so our full adder can use a half adder to add input A and input B and then use another
half adder to add the result of the first half adder to input C. We just need to be careful how we
implement the carry out for the full adder; if either of the carry bit of either of the half adders is one
then the carry out for the full adder will also be a one. The implementation of a full adder using two
half adders and an extra OR gate for the carry bit is shown in Figure 18.

Now we wish to implement a hardware unit that can add two binary numbers with many bits to-
gether. Figure 19 shows the sixteen possibilities when adding two two-bit numbers. Let’s take a
closer look at one of these possibilities. Assume we wish to add two plus one.

10 (2 in base 10)
+01 (1 in base 10)

11 (3 in base 10)

It might seem that we can consider each column in isolation to calculate the corresponding column
in the two bit-output, but what happens if one column requires us to carry into the next column? For
example, assume we wish to add three plus one.

CBA (column label)
11 (3 in base 10)
+01 (1 in base 10)

100 (4 in bsae 10)

10

CURIE Academy, Summer 2014 Lab Notes 1: Computer Engineering — Hardware Perspective

As 5 AL 0L At B Jo fo
2 VL L L. b

|
~ Voo e & Y
Cared | \1/3\ Carrdt FA CAir FA Cacry €A Ber =

R Sk ! B

S oM Jom Svmad v ©

Figure 20: Four-Bit Ripple-Carry Adder (FA = full-adder)

Column A produces a carry bit which we must include when calculating the second bit of the sum,
and similarly column B produces a carry bit meaning the result overflows into three bits. If we focus
on column B, we will realize that we actually need to add three one-bit numbers together (one bit
from the first input, one bit from the second input, and the carry bit from column A) and that we
will produce two outputs (a sum bit and a carry bit for the next column). A full adder provides the
exact functionality needed to calculate each column of a multi-bit addition. Figure 20 illustrates how
we can chain a series of full adders to compute a four-bit addition. The carry bit output from a full
adder is connected to one of the three inputs of the full adder to the left. Note that the third input of
the right-most full adder should be set to zero and that the carry bit output of the left-most full adder
allows us to detect overflow (i.e., the result cannot be encoded in just four bits).

This section illustrates modular design, a powerful design concept which is critical for implementing
complex systems. We first designed and evaluated a small module (half adder) and then reused
this small module to implement a larger and more complex module (full adder). We then chained
multiple full adders together into a ripple-carry adder to enable multi-bit addition.

11

