ECE 6775
High-Level Digital Design Automation
Fall 2024

Final Project




Announcements

> Midterm grades released

> Lab 4 deadline extended to Wednesday Nov 6

— Useful tips on array partition & reshape posted on Ed

-~ Focus on reducing HLS-estimated latency before generating
bitstream

— Designs with high resource utilization may cause routing failures



Project Logistics

> Fill out project teaming sheet today!
— 3-4 students per teams (12 teams expected)

> Project meetings start on Monday at Rhodes 471

> Due dates
— Project abstract due Friday 11/8 (no extension)
— Presentation due Tuesday 12/10 in a recorded video
— Final report due Friday 12/13



Project Presentations from 5775 FA22

Image Dataset Compressor for ML Using PCA (team 4c) || Final Project ||
ECES5775 FA22 @ Cornell

Zhiru Zhang + 97 views * 10 months ago

== Training and Inference Accelerator for Multilayer Perceptron (team 4h) || Final
Project || ECES775

Zhiru Zhang *+ 32 views * 10 months ago

High-Level Digital Design
Automation (ECE 5775 Fall22) [

Sparse Matrix Dense Vector Multiplication Accelerator (team 4e) || Final Project ||
ECES775 FA22

Zhiru Zhang * 71 views * 10 months ago

Zhiru Zhang

12 videos 279 views Last updated on Dec 23, 2022

= =

P Playall >3 shuffle

) Iris Flower Classification Using Gaussian Naive Bayes (team 4a) || Final Project ||
ECES5775 FA22

Zhiru Zhang + 65 views * 10 months ago

Stereo Disparity Map Acceleration with HLS (team 3a) || Final Project || ECE5775
FA22 @ Cornell

Zhiru Zhang * 51 views * 10 months ago

T = Modernizing HLS w/ Open Source Modular Compiler Infrastructure (team 3b) ||
' = Final Project || ECE5775

Zhiru Zhang * 39 views * 10 months ago

https://www.youtube.com/playlist?list=PLRvJfry30-220gHmVYfruWs8Hv-Fnwr57


https://www.youtube.com/playlist?list=PLRvJfry30-22OqHmVYfruWs8Hv-Fnwr57

Project Abstract (due Friday 11/8)

> Two project themes
— App: Accelerator design for compute/data-intensive applications
— Tool: Compilation/synthesis for accelerator design/programming

> Abstract format
— Write a concise one-page project overview consisting of 2-3
paragraphs
— Include the project title, theme, and list of team members
— Summarize the project, outlining key approaches
— Justify the project's feasibility within the given time constraints



Theme 1 (App)
Application-Specific Accelerator Design

» Utilize HLS to create FPGA-based hardware
accelerators for compute-intensive applications

— Explore hardware customization techniques in emerging
application domains, e.g., computer vision, genomics, machine
learning, confidential computing.

> Design languages: C++ or Python DSL

v

HLS tools: AMD Xilinx Vivado/Vitis HLS

v

FPGA platforms

- ZedBoard: a small device; relatively short compile time

— Alveo (datacenter): a much larger device equipped with high-
bandwidth memory (HBM); long compile time (~hours)



How to Choose an Application?

Ideal application characteristics for hardware acceleration
(a) Abundant parallelism

(b) Custom (low-bitwidth) numeric types

(c) Distributed memory accesses

Lab 1 CORDIC: (b)
Lab 2/3 K-Nearest Neighbors: (a) (c)

Lab 4 Binary Neural Network: (a) (b) (c)



Lab 4: Extreme Quantization with Binarization

CNN
2.4 6.2 .. 5.0 9.1 ...
3.3 1.8 0801 14378
* 03 08|
Weights :
Input Map Output Map Key Plffe_rences
1. Inputs are binarized (-1 or +1)
2. Weights are binarized (-1 or +1)
BNN 3. MAC becomes XNOR+Popcount
1 -1 .. 1 -3 .. 1 -1 ..
11 1-1)_ 1|3 -7 1 -1
* 1-1| —
Weights
Input Map (Binary) Xij Output Map
(Binary) (Integer) (Binary)

BNNs are well suited for FPGAs (rich in LUTS)



Theme 1: A Potential (Umbrella) Project

Pareto Improvement

____________ D T LT Ty T
BitNet b1.58 (This Work) : Transformer LLMs
{-1,0,1} 16-bit Float (FP16/BF16)

> BitNet: LLM with ternary
weights {-1, 0, 1}
— No multiplication required for wlo . o4 a
matrix multiplication 11 . o0

— C++ implementation open sourcec o0
on GitHub

aduew.ojiad

1 -1 .. 0.2961 -0.0495 .. -0.4765

W= | 00413 0.2812 0.2403

-0.4809 .. -0.1741 -0.3853

Cost
Y = f(W, X) Model W 8 InputXx = Output Y
> Implement key kernels in HLS __ [ow oun e e y 5 S R
(e.g., attention, feedforward g
-0.4809 0.3244 -0.1741-0.3853 | x3 N\"\‘\Q ]
network)
R B e
. 1(.58)-bit *® — i 2 ev\cvare
> Teams can focus on a single oo . e Hard
kernel or choose to implement ’ ’
multiple kernels https://github.com/microsoft/BitNet

S. Ma et al., The Era of 1-bit LLMs: All Large Language Models are in 1.58 Bits. arXiv e-print 2024.


https://github.com/microsoft/BitNet

Theme 1: Other Topics to Consider

» Compute customization

— Systolic arrays for dense linear algebra, e.g., MV, MM

- Evaluate the design using a simple ML model such as an
attention layer in Transformer

» Data type customization
— HLS library for low-precision floating point arithmetic
- Evaluate the library using lab designs such as CORDIC
— Large-bitwidth integer arithmetic on FPGAs (e.g., 512b multiply)
- Evaluate the design using a crypto application

> Memory customization
- Reuse buffer for stencil-based image/video processing
— Custom memory layout for sparse linear algebra



Theme 1: Examples from Previous Years

FPGA Based Acceleration of Canny Edge _ 2
Detection L £ tell ]yt

Pitch shifted s

anny Edge Detection Real-Time Vocal

Processor of Pop Music

partitioned
196 196
training_ 2% pipelined 25 nearest
Selt% r 196/ | find_min_ find_ count_set Af :
/| difference | 8 | difference| 8 | bits
X ae HH 4 L* neighbor
Y

196
2.0 {228} .
o unrolied {‘
[ ]
I arest_
nnnnnnnn \es
198[ pipelined 198
& | find_min_ find_ count_set ?
difference| 8 | difference| 8 | bits

Face Detection

Digit Recognition 10



Theme 1: Do’s and Don’ts

> Choose an application you are familiar with (or one that’s
easy to grasp)

» Minimize “setup” time for the baseline implementation
(under 1 week)

> Analyze parallelism and Ol before HLS coding

» Focus on HLS-level performance optimization and
minimize runs of bitstream generation

11



Anticipated Project Schedule

> Week 1 (Nov 4): Brainstorm and project abstract

» Week 2 (Nov 11): Complete baseline design with proper
testing

» Week 3 (Nov 18): Perform design optimizations at HLS
level

> Week 4 (Nov 25): Implement design on board

» Week 5 (Dec 2): Continue optimization and work on the
project report

12



Theme 2 (Tool)
Accelerator-Centric Compilation/Synthesis

> Develop new compilation and/or HLS techniques
— Compiler analysis & transformations for accelerators
— Improving core HLS algorithms: scheduling, pipelining, binding
— Optimizing new design metrics (e.g., security)

» Software frameworks

— Open-source compiler infrastructure: LLVM, MLIR, Allo
— Commercial HLS as a back end: Vivado/Vitis HLS

13



Theme 2: Topics to Consider

> Machine learning (ML) for HLS

— New scheduling algorithms leveraging ML techniques
— ML for latency and resource estimation
— HLS optimization on GPUs

» Automated performance modeling
— Compiler analysis passes to estimate Ol

» HLS for ASIC design

— Extend an open-source MLIR based HLS toolflow

14



Theme 2 Example: Trace-Based Array Banking

Gycles | P20 | BDT | Rp2 | RDs [N
EENEEENENENEEENE ..

1 0000 0000 0000 0010 0010 0000 0010 0010

2 0000 0001 0000 0011 0010 0001 0010 0011  for (inti=1;i<Rows—1;i++)
for(intj=1;j<Cols—1;j++)
10 0000 1001 0000 1011 0010 1001 0010 1011 sum = A[i-1][j-1] + A[i-1][j+1]

+ Ali+1][j-1] + Ali+1][j+1];
b Important bits (mask)

||| i3 | 13 io i 0 1 2 3 4 5 6 7
: uE - 0 001 1 0 0 1 1
| R NE .1 1 00 1 1 0 0 1 1
Hash function |:> 2 2 2 3 3 2 2 3 3
Mask Bank Szlzl s 3 el s s
4 0 01 1 0 0 1 1
00 0 5 0 0 1 1 0 0 1 1
01 1 6 2 2 3 3 2 2 3 3
10 2 2 s 3 2 3 3

11 3 Partitioning array A 15




Theme 2: Do’s and Don’ts

> Leverage open-source compiler infrastructures and
programming frameworks

— Avoid building a new IR from scratch

> Formulate the problem in an exact way before
Implementing any heuristic algorithms

16



Recap: Learning Outcomes (The Intangibles)

» Develop a principled approach to analyzing accelerator
design process and essential design factors (e.g.,
parallelism, resources, precision)

» Gain comprehensive insights into accelerator design
from the perspective of an HLS compiler

We aim to achieve these objectives through a balanced
mix of theoretical foundations (lectures & homework)
and practical applications (labs & project)

17



Essentials of Hardware Specialization

}

[Data type customization AA A AA A A A ]

v v

Parallelism Resources Data
Pipelining Parallel processing Bandwidth Reuse Precision Layout

18



Recap: What this Course is About

Hardware/Software Co-Design

» Specify applications/algorithms in software programs

» Synthesize software descriptions into special-purpose
hardware components, namely, accelerators

-~ Perform manual source-level code optimizations
— Utilize automatic compilation & synthesis optimizations
— Explore performance-cost trade-offs

> Realize the synthesized accelerators on FPGAs

19



Co-Design Revisited

Mapping
“HARD” Software
to

“SOFT” Hardware

“SOFT”: FPGA is a reconfigurable fabric
“HARD”: Performance-oriented programming is challenging, esp. for FPGAs

20



Blurred Line Between Hardware and Software Design

» Hardware

» Software

int max; .text
findmax: 1ldr r2, .L10
int findmax (int a[l10]) { .L10 1ldr r3, [r0, #0]
unsigned 1i; str r3, [r2, #0]
max = a[0]; mov ip, #1
for (i=1; is¥0; i++) .L7: ldr [r0, ip, asl #2]
if > max) |max = |a[i]; ldr T3, [r2, #0]
} add ip, ip, #1
\\\\\ cmp rl, r3
strgt rl, [r2, #0]
Cmp 1p, #9
movhi pc, 1lr
b L7
L1l .align 2.
L10: .word max

21



Hardware Lottery* => Jackpot!

> High performance is achieved only when the
application characteristics match the
underlying hardware architecture

Not matched Not matched Matched! A
P P\ P\ New App + New Xcel
NN + CPU RNN + GPU Transformer + GPU R~ Stimulate

* Hardware Lottery: https://hardwarelottery.github.io/

22



Next Time

> Project meetings (Rhodes 471)

23



