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▸ Midterm grades released 

▸ Lab 4 deadline extended to Wednesday Nov 6
– Useful tips on array partition & reshape posted on Ed
– Focus on reducing HLS-estimated latency before generating 

bitstream
– Designs with high resource utilization may cause routing failures
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Announcements



▸ Fill out project teaming sheet today!
– 3-4 students per teams (12 teams expected)

▸ Project meetings start on Monday at Rhodes 471

▸ Due dates
– Project abstract due Friday 11/8 (no extension)
– Presentation due Tuesday 12/10 in a recorded video
– Final report due Friday 12/13
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Project Logistics
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Project Presentations from 5775 FA22 

https://www.youtube.com/playlist?list=PLRvJfry30-22OqHmVYfruWs8Hv-Fnwr57

https://www.youtube.com/playlist?list=PLRvJfry30-22OqHmVYfruWs8Hv-Fnwr57


▸ Two project themes
– App: Accelerator design for compute/data-intensive applications
– Tool: Compilation/synthesis for accelerator design/programming

▸ Abstract format
– Write a concise one-page project overview consisting of 2-3 

paragraphs
– Include the project title, theme, and list of team members
– Summarize the project, outlining key approaches
– Justify the project's feasibility within the given time constraints
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Project Abstract (due Friday 11/8)



▸ Utilize HLS to create FPGA-based hardware  
accelerators for compute-intensive applications
– Explore hardware customization techniques in emerging 

application domains, e.g., computer vision, genomics, machine 
learning, confidential computing.

▸ Design languages: C++ or Python DSL

▸ HLS tools: AMD Xilinx Vivado/Vitis HLS

▸ FPGA platforms
– ZedBoard: a small device; relatively short compile time
– Alveo (datacenter): a much larger device equipped with high-

bandwidth memory (HBM); long compile time (~hours)
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Theme 1 (App)
Application-Specific Accelerator Design



Lab 1 CORDIC: (b)

Lab 2/3 K-Nearest Neighbors: (a) (c)

Lab 4 Binary Neural Network: (a) (b) (c)
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How to Choose an Application?

Ideal application characteristics for hardware acceleration
(a) Abundant parallelism 
(b) Custom (low-bitwidth) numeric types 
(c) Distributed memory accesses



Lab 4: Extreme Quantization with Binarization

Key Differences
1. Inputs are binarized (−1 or +1)
2. Weights are binarized (−1 or +1)
3. MAC becomes XNOR+Popcount
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BNNs are well suited for FPGAs (rich in LUTs) 7
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Theme 1: A Potential (Umbrella) Project

▸ BitNet: LLM with ternary 
weights {-1, 0, 1}
– No multiplication required for 

matrix multiplication
– C++ implementation open sourced 

on GitHub

▸ Implement key kernels in HLS 
(e.g., attention, feedforward 
network)

▸ Teams can focus on a single 
kernel or choose to implement 
multiple kernels

The Era of 1-bit LLMs:
All Large Language Models are in 1.58 Bits

Shuming Ma⇤ Hongyu Wang⇤ Lingxiao Ma Lei Wang Wenhui Wang
Shaohan Huang Li Dong Ruiping Wang Jilong Xue Furu Wei⇧

https://aka.ms/GeneralAI

Abstract
Recent research, such as BitNet [WMD+23], is paving the way for a new era of 1-
bit Large Language Models (LLMs). In this work, we introduce a 1-bit LLM variant,
namely BitNet b1.58, in which every single parameter (or weight) of the LLM is
ternary {-1, 0, 1}. It matches the full-precision (i.e., FP16 or BF16) Transformer
LLM with the same model size and training tokens in terms of both perplexity
and end-task performance, while being significantly more cost-effective in terms
of latency, memory, throughput, and energy consumption. More profoundly, the
1.58-bit LLM defines a new scaling law and recipe for training new generations of
LLMs that are both high-performance and cost-effective. Furthermore, it enables
a new computation paradigm and opens the door for designing specific hardware
optimized for 1-bit LLMs.
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Figure 1: 1-bit LLMs (e.g., BitNet b1.58) provide a Pareto solution to reduce inference cost (latency,
throughput, and energy) of LLMs while maintaining model performance. The new computation
paradigm of BitNet b1.58 calls for actions to design new hardware optimized for 1-bit LLMs.

⇤ Equal contribution. ⇧ Corresponding author. S. Ma, L. Ma, L. Wang, W. Wang, S. Huang, L. Dong, J. Xue,
F. Wei are with Microsoft Research. H. Wang and R. Wang are with University of Chinese Academy of Sciences.
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S. Ma et al., The Era of 1-bit LLMs: All Large Language Models are in 1.58 Bits. arXiv e-print 2024.

https://github.com/microsoft/BitNet

https://github.com/microsoft/BitNet


▸ Compute customization
– Systolic arrays for dense linear algebra, e.g., MV, MM

• Evaluate the design using a simple ML model such as an 
attention layer in Transformer

▸ Data type customization
– HLS library for low-precision floating point arithmetic

• Evaluate the library using lab designs such as CORDIC
– Large-bitwidth integer arithmetic on FPGAs (e.g., 512b multiply)

• Evaluate the design using a crypto application

▸ Memory customization
– Reuse buffer for stencil-based image/video processing
– Custom memory layout for sparse linear algebra 
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Theme 1: Other Topics to Consider
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Theme 1: Examples from Previous Years

Canny Edge Detection

Digit Recognition

Real-Time Vocal 
Processor of Pop Music

Face Detection



▸ Choose an application you are familiar with (or one that’s 
easy to grasp)

▸ Minimize “setup” time for the baseline implementation 
(under 1 week)

▸ Analyze parallelism and OI before HLS coding

▸ Focus on HLS-level performance optimization and 
minimize runs of bitstream generation
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Theme 1: Do’s and Don’ts



▸ Week 1 (Nov 4): Brainstorm and project abstract 

▸ Week 2 (Nov 11): Complete baseline design with proper 
testing 

▸ Week 3 (Nov 18): Perform design optimizations at HLS 
level 

▸ Week 4 (Nov 25): Implement design on board 

▸ Week 5 (Dec 2): Continue optimization and work on the 
project report
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Anticipated Project Schedule



▸ Develop new compilation and/or HLS techniques
– Compiler analysis & transformations for accelerators
– Improving core HLS algorithms: scheduling, pipelining, binding
– Optimizing new design metrics (e.g., security)

▸ Software frameworks
– Open-source compiler infrastructure: LLVM, MLIR, Allo
– Commercial HLS as a back end: Vivado/Vitis HLS
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Theme 2 (Tool)
Accelerator-Centric Compilation/Synthesis



▸ Machine learning (ML) for HLS
– New scheduling algorithms leveraging ML techniques
– ML for latency and resource estimation 
– HLS optimization on GPUs

▸ Automated performance modeling
– Compiler analysis passes to estimate OI

▸ HLS for ASIC design
– Extend an open-source MLIR based HLS toolflow
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Theme 2: Topics to Consider
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i/j 0 1 2 3 4 5 6 7
0 0 0 1 1 0 0 1 1
1 0 0 1 1 0 0 1 1
2 2 2 3 3 2 2 3 3
3 2 2 3 3 2 2 3 3
4 0 0 1 1 0 0 1 1
5 0 0 1 1 0 0 1 1
6 2 2 3 3 2 2 3 3
7 2 2 3 3 2 2 3 3

Important bits (mask)

i … i3 i2 i1 i0

j … j3 j2 j1 j0

Hash function
Mask Bank

00 0
01 1
10 2
11 3 Partitioning array A

Cycles
RD0 RD1 RD2 RD3

i j i j i j i j
1 0000 0000 0000 0010 0010 0000 0010 0010
2 0000 0001 0000 0011 0010 0001 0010 0011
… … … … … … … … …
10 0000 1001 0000 1011 0010 1001 0010 1011
… … … … … … … … …

int A[Rows][Cols];
 int sum;

 for ( int i = 1; i < Rows – 1; i ++ )
    for ( int j = 1; j < Cols – 1; j ++ )
        sum =  A[i-1][j-1] + A[i-1][j+1] 
                 + A[i+1][j-1] + A[i+1][j+1];

Theme 2 Example: Trace-Based Array Banking



▸ Leverage open-source compiler infrastructures and 
programming frameworks
– Avoid building a new IR from scratch

▸ Formulate the problem in an exact way before 
implementing any heuristic algorithms
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Theme 2: Do’s and Don’ts



▸ Develop a principled approach to analyzing accelerator 
design process and essential design factors (e.g., 
parallelism, resources, precision)

▸ Gain comprehensive insights into accelerator design 
from the perspective of an HLS compiler

We aim to achieve these objectives through a balanced 
mix of theoretical foundations (lectures & homework) 

and practical applications (labs & project)
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Recap: Learning Outcomes (The Intangibles)
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Essentials of Hardware Specialization

Compute customization

Data type customization

Memory customization

32b 32b 32b ...

16b 16b 16b 16b 16b 16b ...

m
em

m
em

m
em

m
em

m
em

m
em

m
em

m
em

m
em

m
em

m
em

m
em ...

Parallelism 
PrecisionPipelining Parallel processing

Resources Data
Bandwidth Reuse Layout



▸ Specify applications/algorithms in software programs

▸ Synthesize software descriptions into special-purpose 
hardware components, namely, accelerators 
– Perform manual source-level code optimizations
– Utilize automatic compilation & synthesis optimizations
– Explore performance-cost trade-offs

▸ Realize the synthesized accelerators on FPGAs
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Recap: What this Course is About

Hardware/Software Co-Design
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Co-Design Revisited

Mapping
        Software

  to 
 “SOFT” Hardware

“HARD”

“HARD”: Performance-oriented programming is challenging, esp. for FPGAs
“SOFT”: FPGA is a reconfigurable fabric



▸Hardware

▸Software
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Blurred Line Between Hardware and Software Design

int max;

int findmax(int a[10]) {  
unsigned i;  
max = a[0];  
for (i=1; i<10; i++)    

if (a[i] > max) max = a[i];
}

.text
findmax: ldr r2, .L10
.L10 ldr r3, [r0, #0]

str r3, [r2, #0]
mov ip, #1

.L7: ldr r1, [r0, ip, asl #2]
ldr r3, [r2, #0]
add ip, ip, #1
cmp r1, r3
strgt r1, [r2, #0]
cmp ip, #9
movhi pc, lr
b .L7

.L11: .align 2.
L10: .word max
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▸High performance is achieved only when the 
application characteristics match the 
underlying hardware architecture

Hardware Lottery* => Jackpot!

NN + CPU RNN + GPU Transformer + GPU

Not matched Not matched Matched!

? ? ?

New App + New Xcel
Stimulate

* Hardware Lottery: https://hardwarelottery.github.io/



▸Project meetings (Rhodes 471)

23

Next Time


