
Final Project

ECE 6775
High-Level Digital Design Automation

Fall 2024

▸ Midterm grades released

▸ Lab 4 deadline extended to Wednesday Nov 6
– Useful tips on array partition & reshape posted on Ed
– Focus on reducing HLS-estimated latency before generating

bitstream
– Designs with high resource utilization may cause routing failures

1

Announcements

▸ Fill out project teaming sheet today!
– 3-4 students per teams (12 teams expected)

▸ Project meetings start on Monday at Rhodes 471

▸ Due dates
– Project abstract due Friday 11/8 (no extension)
– Presentation due Tuesday 12/10 in a recorded video
– Final report due Friday 12/13

2

Project Logistics

3

Project Presentations from 5775 FA22

https://www.youtube.com/playlist?list=PLRvJfry30-22OqHmVYfruWs8Hv-Fnwr57

https://www.youtube.com/playlist?list=PLRvJfry30-22OqHmVYfruWs8Hv-Fnwr57

▸ Two project themes
– App: Accelerator design for compute/data-intensive applications
– Tool: Compilation/synthesis for accelerator design/programming

▸ Abstract format
– Write a concise one-page project overview consisting of 2-3

paragraphs
– Include the project title, theme, and list of team members
– Summarize the project, outlining key approaches
– Justify the project's feasibility within the given time constraints

4

Project Abstract (due Friday 11/8)

▸ Utilize HLS to create FPGA-based hardware
accelerators for compute-intensive applications
– Explore hardware customization techniques in emerging

application domains, e.g., computer vision, genomics, machine
learning, confidential computing.

▸ Design languages: C++ or Python DSL

▸ HLS tools: AMD Xilinx Vivado/Vitis HLS

▸ FPGA platforms
– ZedBoard: a small device; relatively short compile time
– Alveo (datacenter): a much larger device equipped with high-

bandwidth memory (HBM); long compile time (~hours)

5

Theme 1 (App)
Application-Specific Accelerator Design

Lab 1 CORDIC: (b)

Lab 2/3 K-Nearest Neighbors: (a) (c)

Lab 4 Binary Neural Network: (a) (b) (c)

6

How to Choose an Application?

Ideal application characteristics for hardware acceleration
(a) Abundant parallelism
(b) Custom (low-bitwidth) numeric types
(c) Distributed memory accesses

Lab 4: Extreme Quantization with Binarization

Key Differences
1. Inputs are binarized (−1 or +1)
2. Weights are binarized (−1 or +1)
3. MAC becomes XNOR+Popcount

∗
Input Map

2.4		6.2		…
3.3		1.8

… …

Weights

0.8		0.1		
0.3		0.8 =

Output Map

5.0		9.1		…
4.3		7.8

… …

CNN

∗
Input Map
(Binary)

1			−1			…
	1					1

… …

Weights
(Binary)

1		−1		
		1		−1 =

𝒙!"
(Integer)

1				−3		…
		3				−7

… …

Output Map
(Binary)

1			−1			…
	1			−1	

… …→

BNN

BNNs are well suited for FPGAs (rich in LUTs) 7

8

Theme 1: A Potential (Umbrella) Project

▸ BitNet: LLM with ternary
weights {-1, 0, 1}
– No multiplication required for

matrix multiplication
– C++ implementation open sourced

on GitHub

▸ Implement key kernels in HLS
(e.g., attention, feedforward
network)

▸ Teams can focus on a single
kernel or choose to implement
multiple kernels

The Era of 1-bit LLMs:
All Large Language Models are in 1.58 Bits

Shuming Ma⇤ Hongyu Wang⇤ Lingxiao Ma Lei Wang Wenhui Wang
Shaohan Huang Li Dong Ruiping Wang Jilong Xue Furu Wei⇧

https://aka.ms/GeneralAI

Abstract
Recent research, such as BitNet [WMD+23], is paving the way for a new era of 1-
bit Large Language Models (LLMs). In this work, we introduce a 1-bit LLM variant,
namely BitNet b1.58, in which every single parameter (or weight) of the LLM is
ternary {-1, 0, 1}. It matches the full-precision (i.e., FP16 or BF16) Transformer
LLM with the same model size and training tokens in terms of both perplexity
and end-task performance, while being significantly more cost-effective in terms
of latency, memory, throughput, and energy consumption. More profoundly, the
1.58-bit LLM defines a new scaling law and recipe for training new generations of
LLMs that are both high-performance and cost-effective. Furthermore, it enables
a new computation paradigm and opens the door for designing specific hardware
optimized for 1-bit LLMs.

0.2961 -0.0495

0.0413 ...

… -0.4765

0.2812 0.2403

-0.1808 0.1304

-0.4809 …

… -0.1771

-0.1741 -0.3853

Transformer LLMs

16-bit Float (FP16/BF16)

Cost

Perform
ance

1 -1

0 …

… 1

-1 -1

-1 1

-1 …

… 0

0 -1

BitNet b1.58 (This Work)

{-1, 0, 1}

W=

Pareto Improvement

W=

0.0413 0.3397 0.2812 0.2403

-0.1808 0.1304

-0.4809 0.3244

0.4322 -0.1771

-0.1741 -0.3853

0.2961 -0.0495 -0.0924 -0.4765 𝒙𝟎

𝒙𝟏

𝒙𝟐

𝒙𝟑

𝟎. 𝟐𝟗𝟔𝟏𝒙𝟎 − 𝟎. 𝟎𝟒𝟗𝟓𝒙𝟏 − 𝟎. 𝟎𝟗𝟐𝟒𝒙𝟐 − 𝟎. 𝟒𝟕𝟔𝟓𝒙𝟑

…

1 -1

0 1

-1 1

-1 -1

-1 0

-1 1

1 -1

1 0

𝒙𝟎 − 𝒙𝟏 − 𝒙𝟐 + 𝒙𝟑

…

𝒙𝟎

𝒙𝟏

𝒙𝟐

𝒙𝟑

1(.58)-bit

FP16

Model W Input X Output YY = f(W, X)

GPU

New
Hardware

Figure 1: 1-bit LLMs (e.g., BitNet b1.58) provide a Pareto solution to reduce inference cost (latency,
throughput, and energy) of LLMs while maintaining model performance. The new computation
paradigm of BitNet b1.58 calls for actions to design new hardware optimized for 1-bit LLMs.

⇤ Equal contribution. ⇧ Corresponding author. S. Ma, L. Ma, L. Wang, W. Wang, S. Huang, L. Dong, J. Xue,
F. Wei are with Microsoft Research. H. Wang and R. Wang are with University of Chinese Academy of Sciences.

ar
X

iv
:2

40
2.

17
76

4v
1

 [c
s.C

L]
 2

7
Fe

b
20

24

S. Ma et al., The Era of 1-bit LLMs: All Large Language Models are in 1.58 Bits. arXiv e-print 2024.

https://github.com/microsoft/BitNet

https://github.com/microsoft/BitNet

▸ Compute customization
– Systolic arrays for dense linear algebra, e.g., MV, MM

• Evaluate the design using a simple ML model such as an
attention layer in Transformer

▸ Data type customization
– HLS library for low-precision floating point arithmetic

• Evaluate the library using lab designs such as CORDIC
– Large-bitwidth integer arithmetic on FPGAs (e.g., 512b multiply)

• Evaluate the design using a crypto application

▸ Memory customization
– Reuse buffer for stencil-based image/video processing
– Custom memory layout for sparse linear algebra

9

Theme 1: Other Topics to Consider

10

Theme 1: Examples from Previous Years

Canny Edge Detection

Digit Recognition

Real-Time Vocal
Processor of Pop Music

Face Detection

▸ Choose an application you are familiar with (or one that’s
easy to grasp)

▸ Minimize “setup” time for the baseline implementation
(under 1 week)

▸ Analyze parallelism and OI before HLS coding

▸ Focus on HLS-level performance optimization and
minimize runs of bitstream generation

11

Theme 1: Do’s and Don’ts

▸ Week 1 (Nov 4): Brainstorm and project abstract

▸ Week 2 (Nov 11): Complete baseline design with proper
testing

▸ Week 3 (Nov 18): Perform design optimizations at HLS
level

▸ Week 4 (Nov 25): Implement design on board

▸ Week 5 (Dec 2): Continue optimization and work on the
project report

12

Anticipated Project Schedule

▸ Develop new compilation and/or HLS techniques
– Compiler analysis & transformations for accelerators
– Improving core HLS algorithms: scheduling, pipelining, binding
– Optimizing new design metrics (e.g., security)

▸ Software frameworks
– Open-source compiler infrastructure: LLVM, MLIR, Allo
– Commercial HLS as a back end: Vivado/Vitis HLS

13

Theme 2 (Tool)
Accelerator-Centric Compilation/Synthesis

▸ Machine learning (ML) for HLS
– New scheduling algorithms leveraging ML techniques
– ML for latency and resource estimation
– HLS optimization on GPUs

▸ Automated performance modeling
– Compiler analysis passes to estimate OI

▸ HLS for ASIC design
– Extend an open-source MLIR based HLS toolflow

14

Theme 2: Topics to Consider

15

i/j 0 1 2 3 4 5 6 7
0 0 0 1 1 0 0 1 1
1 0 0 1 1 0 0 1 1
2 2 2 3 3 2 2 3 3
3 2 2 3 3 2 2 3 3
4 0 0 1 1 0 0 1 1
5 0 0 1 1 0 0 1 1
6 2 2 3 3 2 2 3 3
7 2 2 3 3 2 2 3 3

Important bits (mask)

i … i3 i2 i1 i0

j … j3 j2 j1 j0

Hash function
Mask Bank

00 0
01 1
10 2
11 3 Partitioning array A

Cycles
RD0 RD1 RD2 RD3

i j i j i j i j
1 0000 0000 0000 0010 0010 0000 0010 0010
2 0000 0001 0000 0011 0010 0001 0010 0011
… … … … … … … … …
10 0000 1001 0000 1011 0010 1001 0010 1011
… … … … … … … … …

int A[Rows][Cols];
 int sum;

 for (int i = 1; i < Rows – 1; i ++)
 for (int j = 1; j < Cols – 1; j ++)
 sum = A[i-1][j-1] + A[i-1][j+1]
 + A[i+1][j-1] + A[i+1][j+1];

Theme 2 Example: Trace-Based Array Banking

▸ Leverage open-source compiler infrastructures and
programming frameworks
– Avoid building a new IR from scratch

▸ Formulate the problem in an exact way before
implementing any heuristic algorithms

16

Theme 2: Do’s and Don’ts

▸ Develop a principled approach to analyzing accelerator
design process and essential design factors (e.g.,
parallelism, resources, precision)

▸ Gain comprehensive insights into accelerator design
from the perspective of an HLS compiler

We aim to achieve these objectives through a balanced
mix of theoretical foundations (lectures & homework)

and practical applications (labs & project)

17

Recap: Learning Outcomes (The Intangibles)

18

Essentials of Hardware Specialization

Compute customization

Data type customization

Memory customization

32b 32b 32b ...

16b 16b 16b 16b 16b 16b ...

m
em

m
em

m
em

m
em

m
em

m
em

m
em

m
em

m
em

m
em

m
em

m
em ...

Parallelism
PrecisionPipelining Parallel processing

Resources Data
Bandwidth Reuse Layout

▸ Specify applications/algorithms in software programs

▸ Synthesize software descriptions into special-purpose
hardware components, namely, accelerators
– Perform manual source-level code optimizations
– Utilize automatic compilation & synthesis optimizations
– Explore performance-cost trade-offs

▸ Realize the synthesized accelerators on FPGAs

19

Recap: What this Course is About

Hardware/Software Co-Design

20

Co-Design Revisited

Mapping
 Software

 to
 “SOFT” Hardware

“HARD”

“HARD”: Performance-oriented programming is challenging, esp. for FPGAs
“SOFT”: FPGA is a reconfigurable fabric

▸Hardware

▸Software

21

Blurred Line Between Hardware and Software Design

int max;

int findmax(int a[10]) {
unsigned i;
max = a[0];
for (i=1; i<10; i++)

if (a[i] > max) max = a[i];
}

.text
findmax: ldr r2, .L10
.L10 ldr r3, [r0, #0]

str r3, [r2, #0]
mov ip, #1

.L7: ldr r1, [r0, ip, asl #2]
ldr r3, [r2, #0]
add ip, ip, #1
cmp r1, r3
strgt r1, [r2, #0]
cmp ip, #9
movhi pc, lr
b .L7

.L11: .align 2.
L10: .word max

22

▸High performance is achieved only when the
application characteristics match the
underlying hardware architecture

Hardware Lottery* => Jackpot!

NN + CPU RNN + GPU Transformer + GPU

Not matched Not matched Matched!

? ? ?

New App + New Xcel
Stimulate

* Hardware Lottery: https://hardwarelottery.github.io/

▸Project meetings (Rhodes 471)

23

Next Time

