ECE 6775 High-Level Digital Design Automation Fall 2024

Deep Learning Acceleration on FPGAs

Cornell University

Announcements

- Final project
 - In-depth exploration of a topic related to high-level design automation
 - (1) Designing new accelerators with HLS; <u>OR</u>
 (2) Developing new automation algorithms/tools
 - 3 or 4 students per team, up to 12 teams
 - 12 teams = 10 * 4 students + 2 * 3 students
 - Weekly meetings start next week
 - A Google sheet is created for meeting scheduling, sign up by Saturday noon
 - More project guidelines coming up in the next lecture
 - Project abstract due Friday 11/8

Agenda

- CNN acceleration on FPGAs
- Potential of FPGA-based LLM inference

Recap: Convolutional Neural Network (CNN)

- Front: convolutional layers learn visual features
- Back: fully-connected layers perform classification using the visual features

Convolutional Layer

- An output pixel is connected to its neighboring region on each input feature map (fmap)
- All pixels on an output feature map use the same filter weights

- Four main sources of parallelism
 - 1. Across input feature maps (i.e., input channels)

- Four main sources of parallelism
 - 1. Across input feature maps (i.e., input channels)
 - 2. Across output feature maps (i.e., output channels)

- Four main sources of parallelism
 - 1. Across input feature maps (i.e., input channels)
 - 2. Across output feature maps (i.e., output channels)
 - 3. Across different output pixels (i.e., filter positions)

- Four main sources of parallelism
 - 1. Across input feature maps (i.e., input channels)
 - 2. Across output feature maps (i.e., output channels)
 - 3. Across different output pixels (i.e., filter positions)
 - 4. Across filter pixels

Parallelism in the Code

Optimizing FPGA-based Accelerator Design for Deep Convolutional Neural Networks

Cheng Zhang¹, Peng Li², Guangyu Sun^{1,3}, Yijin Guan¹, Bingjun Xiao², Jason Cong^{2,3,1}

¹ Peking University

² UCLA

³ PKU/UCLA Joint Research Institute in Science and Engineering

FPGA 2015

Main Contributions

- 1. Analysis of the different sources of parallelism in the convolution kernel of a CNN
- 2. Quantitative performance modeling of the hardware design space using the Roofline method
- 3. Design and implementation of a CNN accelerator for FPGA using Vivado HLS, evaluated on AlexNet

Challenges to FPGA Acceleration

- We can't just unroll all the loops due to limited FPGA resources
- Must choose the right code transformations to exploit the parallelism in a resource efficient way

Loop Tiling

Offloading just the inner loops requires only a small portion of the data to be stored on FPGA chip

Loop Tiling

Code with Loop Tiling

for (tii=ti; tii<min(ti+Ti, I); tii++) {
 for (ki=0; ki<K; ki++) {
 for (kj=0; kj<K; kj++) {
 output_fm[too][trr][tcc] +=
 weights[too][tii][ki][kj]*input_fm[tii][S*trr+ki][S*tcc+kj];
 }}
}</pre>

// software: read output feature map

10

}}}

5	for (trr=row; trr <min(row+tr, r);="" th="" trr++)="" {<=""></min(row+tr,>
6	for (tcc=col; tcc <min(col+tc, c);="" tcc++)="" th="" {<=""></min(col+tc,>
7	for (too=to; too <min(to+to, o);="" th="" too++)="" {<=""></min(to+to,>
8	for (tii=ti; tii <min(ti+ti, i);="" td="" tii++)="" {<=""></min(ti+ti,>
9	for (ki=0; ki <k; ki++)="" td="" {<=""></k;>
10	for (kj=0; kj <k; kj++)="" td="" {<=""></k;>
	output_fm[too][trr][tcc] +=
	weights[too][tii][ki][kj]*input_fm[tii][S*trr+ki][S*tcc+kj];
	}}}}

9	for $(ki=0; ki {$
10	for $(kj=0; kj {$
5	for (trr=row; trr <min(row+tr, r);="" th="" trr++)="" {<=""></min(row+tr,>
6	for (tcc=col; tcc <min(col+tc, c);="" tcc++)="" th="" {<=""></min(col+tc,>
7	for (too=to; too <min(to+to, o);="" td="" too++)="" {<=""></min(to+to,>
8	for (tii=ti; tii <min(ti+ti, i);="" td="" tii++)="" {<=""></min(ti+ti,>
	output_fm[too][trr][tcc] +=
	weights[too][tii][ki][kj]*input_fm[tii][S*trr+ki][S*tcc+kj];
	}}}}

9	for (ki=0; ki <k; ki++)="" th="" {<=""></k;>
10	for (kj=0; kj <k; kj++)="" td="" {<=""></k;>
5	for (trr=row; trr <min(row+tr, r);="" td="" trr++)="" {<=""></min(row+tr,>
6	<pre>for (tcc=col; tcc<min(col+tc, c);="" pre="" tcc++)="" {<=""></min(col+tc,></pre>
	#pragma HLS pipeline
7	for (too=to; too <min(to+to, o);="" td="" too++)="" {<=""></min(to+to,>
8	for (tii=ti; tii <min(ti+ti, i);="" td="" tii++)="" {<=""></min(ti+ti,>
	output_fm[too][trr][tcc] +=
	weights[too][tii][ki][kj]*input_fm[tii][S*trr+ki][S*tcc+kj];
	}}}}

9	for (ki=0; ki <k; ki++)="" th="" {<=""></k;>
10	for (kj=0; kj <k; kj++)="" td="" {<=""></k;>
5	for (trr=row; trr <min(row+tr, r);="" td="" trr++)="" {<=""></min(row+tr,>
6	<pre>for (tcc=col; tcc<min(col+tc, c);="" pre="" tcc++)="" {<=""></min(col+tc,></pre>
	#pragma HLS pipeline
7	for (too=to; too <min(to+to, o);="" td="" too++)="" {<=""></min(to+to,>
	#pragma HLS unroll
8	for (tii=ti; tii <min(ti+ti, i);="" td="" tii++)="" {<=""></min(ti+ti,>
	output_fm[too][trr][tcc] +=
	weights[too][tii][ki][kj]*input_fm[tii][S*trr+ki][S*tcc+kj];
	}}}

9	for (ki=0; ki <k; ki++)="" th="" {<=""><th></th></k;>		
10	for (kj=0; kj <k; kj++)="" td="" {<=""><td></td></k;>		
5	<pre>for (trr=row; trr<min(row+tr, pre="" r);="" trr++)="" {<=""></min(row+tr,></pre>		
6	<pre>for (tcc=col; tcc<min(col+tc, c);="" pre="" tcc++)="" {<=""></min(col+tc,></pre>		
	#pragma HLS pipeline		
7	for (too=to; too <min(to+to, o);="" td="" too++)="" {<=""></min(to+to,>		
	#pragma HLS unroll	/ T :\	
8	for (tii=ti; tii <min(ti+ti, i);="" td="" tii++)="" {<=""><td>(1)</td></min(ti+ti,>	(1)	
	#pragma HLS unroll and output (To) channels		
	output_fm[too][trr][tcc] +=		
	weights[too][tii][ki][kj]*input_fm[tii][S*trr+ki][S*tcc+kj];		
	<pre>}}}}</pre>		

L is the pipeline depth (# of pipeline stages, II=1)

Number of cycles to execute the above loop nest $\approx K \times K \times Tr \times Tc + L \approx Tr \times Tc \times K^2$

Generated Hardware

Performance and size of the accelerator determined by tile factors Ti and To

Number of data transfers determined by Tr and Tc

Overall Accelerator Architecture

Design Space Complexity

- Challenge: Number of available optimizations present a huge space of possible designs
 - What is the optimal loop order?
 - What tile size to use for each loop?
- Implementing and testing each design by hand will be slow and error-prone
 - Some designs will exceed the on-chip compute/memory capacity
- Solution: Performance modeling + automated design space exploration

Performance Modeling

- Three design metrics are estimated:
 - Total number of operations (FLOP)
 - Depends on the CNN model parameters
 - Total external memory access (Byte)
 - Depends on the CNN weight and activation size

– Total execution time (Sec)

- Depends on the hardware architecture (e.g., tile factors To and Ti)
- Ignore resource constraints for now

Performance Modeling

- Total operations FLOPs $\approx 2 \times 0 \times I \times R \times C \times K^2$
- Execution time = Number of Cycles × Clock Period

- Number of cycles
$$\approx \left[\frac{O}{To}\right] \times \left[\frac{I}{Ti}\right] \times \left[\frac{R}{Tr}\right] \times \left[\frac{C}{Tc}\right] \times (Tr \times Tc \times K^2)$$

 $\approx \left[\frac{O}{To}\right] \times \left[\frac{I}{Ti}\right] \times R \times C \times K^2$

- External memory accesses = $ai \times Bi + aw \times Bw + ao \times Bo$
 - Size of input fmap buffer: $Bi = Ti \times (Tr + K 1)(Tc + K 1)$ with stride=1
 - Size of output fmap buffer: $Bo = To \times Tr \times Tc$
 - Size of weight buffer: $Bw = Ti \times To \times K^2$
 - External access times: $ao = \left[\frac{O}{To}\right] \times \left[\frac{R}{Tr}\right] \times \left[\frac{C}{Tc}\right]$, $ai = aw = \left[\frac{I}{Ti}\right] \times ao$
 - Input features and weights are reused across multiple output tiles

Design Space Exploration with Roofline

Which design point do you prefer?

Hardware Implementation

Understanding the Potential of FPGA-Based Spatial Acceleration for Large Language Model Inference

Hongzheng Chen¹, Jiahao Zhang^{2,1}, Yixiao Du¹, Shaojie Xiang¹, Zichao Yue¹, Niansong Zhang¹, Yaohui Cai¹, Zhiru Zhang¹

¹ Cornell University ² Tsinghua University

ACM TRETS 2024 (FCCM Journal Track)

The Era of Large Language Models (LLMs)

Is FPGA suitable for efficient LLM inference?

Transformer GPU Execution Breakdown

- LLMs aren't just about matrix multiplications (MatMul)
- Non-linear & element-wise operators also play a significant role
 - Low compute-to-memory ratio (namely, low OI)
 - High kernel launch overheads

Operator Class	Representative Op	% FLOP	% Run Time
Tensor contraction	MM, MV	99.80	61.0
Stat. normalization	softmax, layernorm	0.17	25.5
Element-wise	bias, dropout	0.03	13.5

Proportions for operator classes in the BERT model, implemented in PyTorch, profiled with an NVIDIA V100 GPU (MM: matrix-matrix multiply; MV: matrix-vector multiply)

Data source: Andrei Ivanov et al., "Data Movement is All You Need: A Case Study on Optimizing Transformers", arXiv:2007.00072, 2021.

Two-Stage LLM Generative Inference

Stage 1: Prefill

Takes in user prompts and generates the first token (seq_len > 1)

Stage 2: Decode

Processes the previously generated token to produce new tokens one at a time in an autoregressive manner (seq_len = 1)

ΜV

compute	mk		
memory footprint	mk + k + m		

Typical GPU Execution Cycle for a Single Operator

- Analogy Compute is like a factory, requiring instructions (kernel launch overhead) and a steady data supply (memory bandwidth) to run efficiently
- If compute efficiency grows faster than data supply, it limits the system's ability to operate at peak performance

Typical GPU Execution Cycle for Multiple Operators

- Moving data to and from GPU compute units incurs a high memory bandwidth cost
- For memory-bound operations, more time is spent moving data than performing computation

The Potential of Dataflow Execution

- Model-specific dataflow accelerator
 - Pass intermediate results directly to the next operator
 - Reduced memory traffic leads to higher performance and higher energy efficiency

Contributions of This Work

- An analytical model to estimate performance and resource/bandwidth usage for model-specific dataflow accelerator on FPGAs
 - **Compute resource**: M is compute power in MACs/cycle and C is the # of layers per FPGA

$$\sum M_i C < M_{\text{tot}}, i \in \{q, k, v, a_1, a_2, p, f_1, f_2\}$$

• Memory capacity: S is buffer size

 $S_{\text{param}}C \! < \! \text{DRAM}_{\text{tot}}, \\ \sum S_iC \! < \! \text{SRAM}_{\text{tot}}, i \! \in \! \{ \text{tile}, \! \text{KV}, \! \text{FIFO} \}$

Memory port: s is tensor size and b is bitwidth

$$R_{i} = \left[\frac{s_{i}b_{BRAM}}{M_{i}/r_{i} \times S_{BRAM}}\right] \times \frac{M_{i}/r_{i}}{k}$$

$$\sum_{i} CR_{i} + 2C(R_{a_{1}} + R_{a_{2}}) < \mathsf{SRAM}_{\mathsf{tot}}, i \in \{q, k, v, p, f_{1}, f_{2}\}$$

- Memory bandwidth: B is bandwidth $\sum_i \! CB_i \! < \! B_{\mathsf{tot}}, i \! \in \! \{q,\!k,\!v,\!p,\!f_1,\!f_2\}$
- An optimized HLS kernel library and compose accelerator designs for LLM on FPGAs

Estimation on Different Models and Devices

Is FPGA suitable for efficient LLM inference?

- Latency estimation of GPT2 and LLaMA2 on different FPGAs
- GPU results are obtained through actual profiling

Compute-bound

Existing FPGAs are inferior in the compute-intensive prefill stage, but can outperform GPUs in the memory-intensive <u>decode</u> stage.

Acknowledgements

- This tutorial contains/adapts materials developed by
 - Ritchie Zhao (Cornell ECE PhD, now NVIDIA)
 - Authors of the following papers
 - Optimizing FPGA-based Accelerator Design for Deep Convolutional Neural Networks (FPGA'15, PKU-UCLA)
 - Understanding the Potential of FPGA-Based Spatial Acceleration for Large Language Model Inference (ACM TRETS, FCCM'24 Journal Track)

Next Lecture

Project Guidelines