
Final Project

ECE 6775
High-Level Digital Design Automation

Fall 2023

▸ Lab 4 due tomorrow
– Useful tips on array partition & reshape posted on Ed
– Focus on reducing HLS-estimated latency before generating

bitstream
– Designs with high resource utilization may cause routing failures

1

Announcements

▸ Fill out project teaming sheet today!
– 3-4 students per teams (12 teams expected)

▸ Project abstract due Wed 11/8 (no extension)

▸ Project meetings start on Thursday at Rhodes 471

▸ Due dates
– Project abstract due Wed 11/8 (no extension)
– Demo due Mon 12/11 in a recorded video
– Final report due Thu 12/14

2

Project Logistics

3

Project Presentations from 5775 FA22

https://www.youtube.com/playlist?list=PLRvJfry30-22OqHmVYfruWs8Hv-Fnwr57

https://www.youtube.com/playlist?list=PLRvJfry30-22OqHmVYfruWs8Hv-Fnwr57

▸ Two project themes
– App: Accelerator design for compute/data-intensive applications
– Tool: Compilation/synthesis for accelerator design/programming

▸ Abstract format
– Write a concise one-page project overview consisting of 2-3

paragraphs
– Include the project title, theme, and list of team members
– Summarize the project, outlining key approaches
– Justify the project's feasibility within the given time constraints

4

Project Abstract (due Wed 11/8)

▸ Utilize HLS to create FPGA-based hardware
accelerators for compute-intensive applications
– Explore hardware customization techniques in emerging

application domains, e.g., computer vision, genomics, machine
learning, confidential computing.

▸ Design languages: C++ or DSL

▸ HLS tools: Xilinx Vivado/Vtis HLS

▸ FPGA platforms
– ZedBoard: a small device; relatively short compile time
– Alveo (datacenter): a much larger device equipped with high-

bandwidth memory (HBM); long compile time (~hours)

5

Theme 1 (App)
Application-Specific Accelerator Design

Lab 1 CORDIC: (b)

Lab 2/3 K-Nearest Neighbors: (a) (c)

Lab 4 Binary Neural Network: (a) (b) (c)

6

Theme 1: How to Choose an Application?

Ideal application characteristics for hardware acceleration
(a) Abundant parallelism
(b) Custom (low-bitwidth) numeric types
(c) Distributed memory accesses

▸ Compute customization
– Systolic array design for dense linear algebra, e.g., MV, MM, Conv

• Evaluate the design using a simple ML model such as an attention
layer in Transformer

▸ Data type customization
– A parameterized HLS library for low-precision floating point

arithmetic (e.g., E2M4, E3M1)
• Evaluate the library using lab designs such as CORDIC or BNN

– Large-bitwidth integer arithmetic on FPGAs (e.g., 512b multiply)
• Evaluate the design using a crypto application

▸ Memory customization (explored in past projects)
– Reuse buffer for stencil-based image/video processing
– Custom memory layout for sparse linear algebra

7

Theme 1: Topics to Consider

8

Theme 1: Sample Projects from Previous Years

Canny Edge Detection

Digit Recognition

Real-Time Vocal
Processor of Pop Music

Face Detection

▸ Choose an application you are familiar with (or one that’s
easy to grasp)

▸ Minimize “setup” time for the baseline implementation
(under 1 week)

▸ Analyze parallelism and operational intensity (OI) before
HLS coding

▸ Focus on HLS-level performance optimization and
minimize runs of bitstream generation

9

Theme 1: Do’s and Don’ts

▸ Week 1: Brainstorm and project abstract

▸ Week 2: Complete baseline design with proper testing

▸ Week 3: Perform design optimizations at HLS level

▸ Week 4: Implement design on board

▸ Week 5: Continue optimization and work on the project
report

10

Anticipated Project Schedule

▸ Develop new compilation and/or HLS techniques
– Compiler analysis & transformations for accelerators
– Improving core HLS algorithms: scheduling, pipelining, binding
– Optimizing new design metrics (e.g., security)

▸ Software frameworks
– Open-source compiler infrastructure: LLVM, MLIR, HeteroCL
– Commercial HLS as a back end: Vivado/Vitis HLS

11

Theme 2 (Tool)
Accelerator-Centric Compilation/Synthesis

▸ New customization primitives in HeteroCL
– App-specific data reuse schemes

▸ Automated OI analysis
– First-order data reuse analysis for DNNs

▸ Automated memory customization
– Customized cache generation for irregular data access patterns

12

Theme 2: Topics to Consider

13

i/j 0 1 2 3 4 5 6 7
0 0 0 1 1 0 0 1 1
1 0 0 1 1 0 0 1 1
2 2 2 3 3 2 2 3 3
3 2 2 3 3 2 2 3 3
4 0 0 1 1 0 0 1 1
5 0 0 1 1 0 0 1 1
6 2 2 3 3 2 2 3 3
7 2 2 3 3 2 2 3 3

Important bits (mask)

i … i3 i2 i1 i0

j … j3 j2 j1 j0

Hash function
Mask Bank

00 0
01 1
10 2
11 3 Partitioning array A

Cycles
RD0 RD1 RD2 RD3

i j i j i j i j
1 0000 0000 0000 0010 0010 0000 0010 0010
2 0000 0001 0000 0011 0010 0001 0010 0011
… … … … … … … … …
10 0000 1001 0000 1011 0010 1001 0010 1011
… … … … … … … … …

int A[Rows][Cols];
 int sum;

 for (int i = 1; i < Rows – 1; i ++)
 for (int j = 1; j < Cols – 1; j ++)
 sum = A[i-1][j-1] + A[i-1][j+1]
 + A[i+1][j-1] + A[i+1][j+1];

Theme 2 Sample Project: Trace-Based Array
Partitioning

▸ Leverage open-source compiler infrastructures (e.g.,
LLVM, MLIR)
– Avoid building a new IR from scratch

▸ Formulate the problem in an exact way before
implementing any heuristic algorithms

14

Theme 2: Do’s and Don’ts

15

Recap: About This Course
Hardware/Software Co-Design

▸ Specify applications/algorithms in software programs

▸ Synthesize software descriptions into special-purpose
hardware architectures, namely, accelerators
– Explore performance-cost trade-offs
– Exploit automatic compilation & synthesis optimizations

▸ Realize the synthesized accelerators on FPGAs

16

Co-Design Revisited

Mapping
 Software

 to
 “SOFT” Hardware

“HARD”

“HARD”: Performance-oriented programming is more challenging, esp. for FPGAs
“SOFT”: FPGA is a reprogrammable fabric

▸Hardware

▸Software

17

Blurred Line Between Hardware and Software Design

int max;

int findmax(int a[10]) {
unsigned i;
max = a[0];
for (i=1; i<10; i++)

if (a[i] > max) max = a[i];
}

.text
findmax: ldr r2, .L10
.L10 ldr r3, [r0, #0]

str r3, [r2, #0]
mov ip, #1

.L7: ldr r1, [r0, ip, asl #2]
ldr r3, [r2, #0]
add ip, ip, #1
cmp r1, r3
strgt r1, [r2, #0]
cmp ip, #9
movhi pc, lr
b .L7

.L11: .align 2.
L10: .word max

▸Develop a principled approach to analyzing accelerator
design process and essential design factors

▸Gain comprehensive insights into accelerator design
from the perspective of an HLS compiler

Achieve these objectives through a blend of theoretical
foundation and practical implementation

18

Recap: Learning Outcomes (The Intangibles)

19

Essentials of Hardware Specialization

Compute customization

Data type customization

Memory customization

32b 32b 32b ...

16b 16b 16b 16b 16b 16b ...

m
em

m
em

m
em

m
em

m
em

m
em

m
em

m
em

m
em

m
em

m
em

m
em ...

Parallelism
(dependence)

PrecisionPipelining Parallel processing

Resources
(logic, memory, I/O)

Data
(access pattern)

Bandwidth Reuse Layout

